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Forestry is expected to play a key enabling role in the transition towards a low-carbon, 

sustainable, and circular biomass-based economy in Europe. This will increase demand 

for forest biomass as a source of energy and traditional and new wood-based products. 

Consequently, it will be necessary to increase the mobilization of underutilized residual 

woody biomass such as logging residues (LR) and small-diameter trees (ST). While 

much residual biomass exists in forest land, significant quantities also exist in other lands 

such as overgrown agricultural land, power line corridors, and roadsides. However, high 

supply costs make it difficult to bring LR and ST to the market at a competitive price, 

which limits their utilization. Managing LR and ST supply chains is complex because it 

involves interconnected upstream and downstream operations performed by several 

contractors. This thesis aims to measure and analyse characteristics of LR and ST in 

Sweden, and the efficiency and costs of their supply systems, considering both current 

(heat and power plants, pulpmills) and future end-users (biorefineries). The main 

methods used for this purpose in this thesis are GIS analysis, time study, fuel-chip quality 

assessment, and discrete-event simulation. LR and ST were assessed along different 

supply chain operations in different operational environments, from the site to the end-

user, and potential improvements leading to cost savings were identified.  

Large quantities of underutilized ST were identified across Sweden. It was also shown 

that using machines to extract overgrown vegetation along power line corridors could be 

more cost-efficient than current motor-manual (brush saw) clearing practices: even if this 

did not provide a net income, it could partially or fully offset maintenance costs. Models 

for predicting the dry mass content of windrows could improve logistics, and a holistic, 

supply chain management approach, is crucial for cost-effective delivery of high-quality 

residual biomass. The use of terminals increases supply costs but helps to secure supply 

during peak demand and cope with operational problems in the supply fleet that would 

prevent demand from being met on time in a direct supply system. Further development 

of supply systems (working methods and technology) is needed to realize the sustainable 

potential of LR and ST. These results offer policymakers, researchers, and industrial 

developers and practitioners new knowledge that could improve supply chains and 

increase the cost-competitiveness and utilization of LR and ST. 
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Abstract 



 

 

Skogsbruk är en hörnsten för att möjliggöra övergången till en koldioxidsnål, hållbar och 

cirkulär biobaserad ekonomi i Europa. Efterfrågan på skoglig biomassa för energi samt 

traditionella och nya träbaserade produkter förväntas därför att öka. Det medför i sin tur 

att försörjningskedjor för underutnyttjade biomassaresurser som grot (grenar och toppar) 

och klenträd behöver effektiviseras. Betydande mängder av grot och klenträd kan även 

skördas från andra marker än skogsmark, som igenväxta jordbruksmarker, 

kraftledningsgator, vägkanter, osv. Höga kostnader för skörd och transport av dessa 

råvaror gör det dock svårt att etablera dem på marknaden till ett konkurrenskraftigt pris. 

Att styra försörjningskedjan av grot och klenträd är komplext då den består av 

sammankopplade operationer utförda av flera entreprenörer. Syftet med denna 

avhandling var därför att analysera effektivitet och kostnader på försörjningssystem för 

grot och klenträd till dagens och morgondagens industrier i Sverige. I detta 

forskningsarbete användes metoder som: GIS-analyser, tidsstudier, bränsleanalyser och 

händelsestyrd simulering. 

Resultaten visar att det finns stora mängder outnyttjade resurser av klenträd i Sverige. 

Att använda skogsmaskiner för att ta tillvara klenträd från igenväxta kraftledningsgator 

kan vara ett mer kostnadseffektivt alternativ än nuvarande praxis (att röja med 

motormanuell röjsåg och lämna biomassan kvar i beståndet), även om det inte ger en 

nettoinkomst för markägaren då röjningen endast medför en kostnad. I avhandlingen 

presenteras modeller för prediktering av torrhalt i vältor av grot och klenträd, vilka kan 

användas i praktiken för att förbättra logistiken samt effektivisera leveranser av 

bränsleflis. Trots att användandet av terminaler i försörjningskedjan höjer 

försörjningskostnaderna till industrierna, så medför det att man kan säkerställa 

försörjning när efterfrågan är som högst och när det finns stor risk för störningar i flödet 

(till exempel under vårförfallet). Teknik, metoder och system för de olika delarna i 

försörjningskedjan behöver dock utvecklas ytterligare för att man skall kunna utnyttja 

den hållbara potentialen av grot och klenträd. Detta avhandlingsarbete utgör ett underlag 

för vidareutveckling av forskningsmetoder, effektivisering av försörjningskedjor, 

politiska beslut rörande bioekonomi, osv. I slutändan kan detta medföra ett ökat 

utnyttjande av hållbar biomassa från det svenska skogsbruket samt annan 

produktionsmark. 

Nyckelord: bioekonomi, bioenergi, bioraffinaderi, skogsbränsle, flis, skogsrester, GIS, 

logistik, simulering, terminal. 
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och teknologi, SE-901 83 Umeå, Sverige. E-post: Raul.Fernandez@slu.se   
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Se espera que la silvicultura desempeñe un papel clave en la transición a una economía 

circular basada en la biomasa, baja en carbono y sostenible en Europa. Por ello, se prevé 

un incremento de la demanda de biomasa forestal para energía y productos madereros 

convencionales e innovadores. A su vez, será necesario incrementar el aprovechamiento 

de la biomasa forestal residual, como por ejemplo restos de corta (RC) y árboles de 

pequeñas dimensiones (AP). Además de los RC y AP en montes, existen cantidades 

significativas en terrenos agrícolas abandonados, pasillos de líneas eléctricas (franjas de 

servidumbre), cunetas, etc. No obstante, los elevados costes de suministro dificultan 

llevar RC y AP al mercado a un precio competitivo y limitan un mayor aprovechamiento. 

La gestión de la cadena de suministro de RC y AP es compleja, ya que se compone de 

múltiples actividades relacionadas entre sí y llevadas a cabo por diferentes maquinistas. 

El objetivo de esta tesis fue la medición y el análisis de características de RC y AP en 

Suecia, los rendimientos y costes de sus sistemas aprovechamiento, considerando las 

industrias actuales (plantas de cogeneración, plantas de celulosa) y futuras (biorefinerías) 

de esta biomasa residual. Los principales métodos fueron: análisis con SIG, estudios de 

tiempo, análisis de calidad de astillas y simulación por eventos discretos. 

Los resultados revelaron la existencia de grandes cantidades infrautilizadas de AP en 

Suecia. Así mismo, el uso de maquinaria forestal para aprovechar AP en pasillos de líneas 

eléctricas podría ser una alternativa a la práctica actual (desbrozado manual con 

desbrozadoras y abandono de la biomasa en el terreno), capaz de compensar parcial- o 

totalmente los costes de mantenimiento. El uso de modelos predictivos del contenido de 

materia seca en pilas de RC y AP puede mejorar la logística de la producción de astillas. 

Un manejo holístico de la cadena de suministro es fundamental para proveer astilla de 

alta calidad. Aunque el uso de terminales logísticas incrementa el coste de suministro de 

biomasa a la industria, su uso contribuye a asegurar el suministro cuando la demanda es 

máxima y hay riesgo de problemas (baja traficabilidad de las pistas forestales debido a 

inclemencias meteorológicas, averías, etc.). Para aprovechar el potencial sostenible de 

RC y AP será necesario el desarrollo de la tecnología y la mejora de los métodos de 

trabajo. Los resultados de esta tesis constituyen una base para apoyar la toma de 

decisiones políticas sobre bioeconomía y la mejora de la competitividad de las cadenas 

de suministro de biomasa forestal residual para incrementar su uso sostenible. 

 

Palabras clave: bioeconomía, bioenergía, biorefinería, combustible forestal, astillas de 

madera, biomasa residual, SIG, logística, simulación, terminales. 
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AC Ash content (dry-basis) 

AFH Accumulating felling head 

AHH Accumulating harvester head 

ANOVA Analysis of variance 

BDTF Biomass-dense thinning forests 

BR Biorefinery 

CHP Combined heat and power plant 

cm Centimetre 

CO2 Carbon dioxide 

DBH Diameter at breast height (i.e. at 1.3 m above ground level) 

DES Discrete-event simulation 

dm Decimetre 

dm3 Cubic decimetre (1 dm3=1 litre) 

DML Dry matter losses 

DSH Diameter at stump height 

e.g. For example 

EU European Union 

FAO Food and Agriculture Organization of the United Nations 

g Gram 

GIS Geographical information system 

GPS Global positioning system 

h Hour 

ha Hectare 

i.e. In other words 

kg Kilogram 

km Kilometre 

kW Kilowatt 

LR Logging residues (slash, i.e. tops and branches) 

Abbreviations 
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M Million 

m Metre 

m2 Squared metre 

m3 Cubic metre 

MC Moisture content (wet-basis) 

min Minute 

mm Millimetre 

MWh Megawatt hour 

NFI Swedish National Forest Inventory 

p p-value 

PCT Pre-commercial thinning 

PL Power line 

PM Productive machine (time), excluding all delays (i.e. productive 

work time, Björheden et al. (1995) 

PMh Productive machine hour 

PMmin Productive machine minute 

PSD Particle size distribution 

R2
adj Adjusted R2 (coefficient of determination) 

SC Supply chain 

SCM Supply chain management 

SM Scheduled machine (time), i.e. workplace time (Björheden et al., 

1995) 

SMh Scheduled machine hour 

ST Small-diameter trees 

t tonne (metric ton), i.e. 1 000 kg 

TWh Terawatt hour 

 

 

Calculations used an exchange rate of 1 € (euro) = 9.6 SEK (Swedish crowns).  
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1.1 Climate change and the forest-based bioeconomy 

Since the beginning of the 19th century, the increasing exploitation of fossil-

based resources (coal, oil and gas) (Ritchie & Roser, 2019) and other natural 

resources for energy generation and material production has enabled historically 

unprecedented demographic and economic growth (Winkel, 2017). However, 

the relentless increase in atmospheric levels of carbon dioxide (CO2) (NASA, 

2019) and other greenhouse gasses originating from fossil fuel combustion is 

causing global warming (EEA, 2019). The Paris Agreement (UN, 2017a) and 

the Intergovernmental Panel on Climate Change (IPPC, 2018) call for a 

reduction in the use of fossil-based resources to mitigate climate change. 

Ambitious targets for achieving this goal have been adopted in Europe 

(European Parlament, 2018). Globally, fossil fuels account for 81% of the total 

primary energy supply (IEA, 2018c), while bioenergy accounts for 10%. The 

expected increase in the world’s population this century (UN, 2017b) will 

increase the global demand for food, fuel, and fibre (KSLA, 2012), necessitating 

a rapid transition to a low-carbon, sustainable, and circular biomass-based 

economy. Forestry is seen as a cornerstone of this transition in Europe (Verkerk 

et al., 2019; Winkel, 2017; Mubareka et al., 2016), but the transition must be 

made while maintaining forests’ capacity to provide ecosystem services (de Rigo 

et al., 2016; Verkerk et al., 2014). If forest productivity and the efficiency of 

wood-based product manufacturing increases, the EU’s CO2 emissions could be 

reduced by as much as 20% by 2050 (Kauppi et al., 2018). 

The forest-based sector actively contributes to climate change mitigation by 

replacing large amounts of fossil-based energy and materials with renewable 

bioenergy and wood-based products (Leskinen et al., 2018; Pelkonen et al., 

2014). Active and sustainable forest management is more beneficial to the 

1 Introduction 
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climate than simply using forests as carbon sinks (Yousefpour et al., 2018; 

Gustavsson et al., 2017; Gustavsson et al., 2015). Wood-based energy and 

products obtained by sustainable forest management (as implemented in Europe 

and elsewhere in the World) have a low-carbon footprint because their net CO2 

emissions are due to the processes involving in their manufacture rather than the 

raw materials themselves (wood is renewable, unlike fossil resources) (IEA 

Bioenergy, 2018; Berndes et al., 2016; Beyer, 2012). Decarbonisation of supply 

chains (SCs) by adopting conventional technologies powered by biofuels (or 

new hybrid/electric machinery powered by renewable electricity) and increasing 

the efficiency of production processes will thus move forest biomass closer to 

carbon-neutrality. Life cycle assessment can quantify the CO2 emissions due to 

production processes in SCs (De La Fuente Diez, 2017; Hammar, 2017), and 

have shown that the energy input into these processes can amount to ~2–6% of 

the energy content of the delivered wood (Joelsson et al., 2016). Andersson et 

al. (2016) calculated that 28 units of energy are returned for each unit of energy 

input into an SC for fuel-chips derived from small-diameter trees (ST). 

1.2 “Yesterday’s residual is today’s raw material” 
(Hakkila, 1989) 

In Sweden, energy derived from renewable sources accounted for 55% of the 

total primary energy supply in 2017 (565 TWh), with bioenergy alone 

accounting for 25% (143 TWh) of this total (Swedish Energy Agency, 2019). 

The success of bioenergy in Sweden is due to the implementation of a CO2 tax 

and an extensive forest industry (Andersson, 2015). Bioenergy is produced on 

an industrial scale and is largely sourced from residual streams from forest-

related activities, notably black liquors from pulpmills (47 TWh) and 

unprocessed forest wood fuels (52 TWh) (Swedish Energy Agency, 2018). Of 

the unprocessed forest wood fuels, around half is extracted directly from the 

forest (i.e. primary forest fuels, including traditional firewood) and the 

remainder comprises by-products (secondary forest fuels, e.g. sawdust, bark, 

etc.) of roundwood processing at saw- and pulpmills. Total production of fuel-

chips from primary forest fuels amounted to ~3.3 M dry tonnes (t) (16 TWh), 

with logging residues (LR; slash, i.e. tops and branches), sub-standard (defect) 

roundwood, ST (undelimbed) and stumps accounting for 54, 40, 5 and 1% of the 

total, respectively (Swedish Energy Agency, 2018). LR and stumps are produced 

during roundwood (sawn- and pulpwood) harvesting, while ST are harvested 

during thinnings of dense forests and clearings of other lands. A typical goal in 

Swedish forestry is to maximize the net present value of timber by focusing on 

the production of high quality industrial roundwood (rather than these residual 
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forest biomasses) and the provision of other ecosystem services (Witzell et al., 

2019; Sängstuvall, 2010). The same is true in Finland (Petty, 2014), which is 

why primary forest fuels are often collectively referred to as residual forest 

biomass (Hakkila, 1989). Much of the forest industry’s residuals are consumed 

by the forest industry itself (in direct combustion to generate heat and power). 

Surplus by-products are typically sold to pellet mills, and to the energy industry 

(together with primary forest fuels) for direct combustion in district heating 

plants and combined heat and power plants (CHPs). The use of by-products is 

currently near-maximal relative to their availability, as shown by Edlund et al. 

(2015). However, Routa et al. (2013) showed that only 50% of the technical 

potential of LR is currently realized; the corresponding figures for ST and 

stumps are 20% and 2%, respectively. 

If the transition towards a forest-based bioeconomy continues, the demand 

for forest biomass is expected to increase (Börjesson et al., 2017; Börjesson, 

2016; Pöyry, 2016; Swedish Forest Agency, 2015a; Mantau et al., 2010) because 

biomass will be needed for energy generation and for the manufacturing of 

traditional and new wood-based products such as textiles, bioplastics, liquid 

biofuels, and green chemicals in new biorefineries (BRs) (Attard et al., 2018; 

Eriksson et al., 2018; SP Processum, 2016; Bergström & Matisons, 2014). 

However, the roundwood harvest in Sweden is approaching its sustainable 

maximum (Nilsson et al., 2018; Swedish Forest Agency, 2015b). Under certain 

future scenarios, the increase in demand for biomass is expected to spur 

competition between industries for raw materials (Mantau et al., 2010). 

Consequently, it will be necessary to intensify forest production, improve the 

efficiency of SCs, and increase the mobilization of underutilized biomass 

resources such as stumps, LR, and ST. Although it is predominantly used for 

energy generation (by direct combustion), residual woody (“lignocellulosic”) 

biomass can also be used as a feedstock in bio- and thermochemical biorefining 

processes (Sowlati, 2016) to produce high-value products. A BR is “a facility 

that integrates conversion processes and equipment to produce fuels, power and 

chemicals from biomass” (Yue & You, 2016). Commercial production of 

biofuels using black liquors from pulpmills as the feedstock has begun in Finland 

and Sweden (UPM, 2019; Sunpine, 2017). Additionally, there are ambitious 

plans in Sweden to use residual woody biomass in other biorefining processes 

(SCA, 2019; SEKAB, 2019; LTU, 2018; Bioendev AB, 2017; Preem, 2017; 

Wormslev et al., 2016). In the United States, LR from Douglas fir have been 

used to produce jet biofuel, and there are plans to start commercial production 

(USDA, 2016). The interest in producing biofuels from residual woody biomass 

is strengthened by the fact that unlike other biomass sources (e.g. food crops 

such as sugarcane, starchy grains, and oil seeds), it can be produced without the 
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risk of competing with food production or triggering potentially negative land 

use changes that could increase CO2 emissions (Valin et al., 2015; Harvey & 

Pilgrim, 2011). The establishment of new BRs will require efficient supply chain 

management (SCM) for woody biomass (to reduce its supply costs), further 

improvements in conversion processes, and the support of policymakers 

(Fethers, 2014; Sharma et al., 2013).  

Any end-user of woody biomass will require a reliable and cost-efficient 

feedstock supply throughout the year. Forest fuels are harvested year-round, but 

the demand curve of energy industries is highly seasonal: demand peaks in 

winter and bottoms out in summer. Consequently, forest fuels must be stored 

somewhere within the SC, and contractors supplying biomass directly from the 

forest must concentrate their operations during a few months of the year. A 

common practice in the forest fuel business is for the industry and suppliers to 

agree on a delivery plan specifying the quantity of chips to be supplied every 

month (Johansson, 2013). Conversely, the annual demand of Swedish BRs is 

expected to be relatively stable (non-seasonal) because they are likely to be 

integrated with existing pulpmills (Pettersson et al., 2013), allowing contractors 

to maintain year-round operation. The supply costs of residual biomass could be 

significantly reduced if its supply was integrated with that of roundwood 

(Joelsson et al., 2016). Roundwood contractors commonly reduce supply around 

July, ramp it up in August, and reach full capacity again in September, as shown 

by Erlandsson (2016). This means that contractors normally take holidays before 

production at the mills bottoms out and then resume supplying feedstock before 

the plants reach full production again. According to the Swedish Forest Agency 

(2019), current forest industries tend to reduce their stored biomass stocks during 

summertime and perform maintenance activities. 

1.3 Alternative sources of residual woody biomass 

Residual LR and ST are not only found in forest land; they also exist in 

significant quantities on other types of land and are produced by landscape care 

activities (Oldenburger, 2010). The supply of LR and ST from forest land can 

be integrated with that from other lands (Bergström et al., 2015). In Sweden, 

brushwood (i.e., ST and shrubs) is cut during regular clearing or thinning of 

naturally overgrown vegetation, which may be conducted every 10-20 years in 

the course of landscape care operations to maintain essential infrastructure and 

keep the traditional landscape open (Ebenhard et al., 2017). Lands maintained 

in this way include overgrown agricultural land (arable fields, meadows and 

pastures, including edge zones), power line (PL) corridors, roadsides, edges of 

railways, and green areas in urban environments. The overall techno-economical 
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harvesting potential of brushwood from these lands is estimated to be ~1–2 M 

dry t year-1 (Andersson et al., 2016). Biomass harvesting during landscape care 

operations could be beneficial in terms of both biodiversity and cultural heritage 

(de Jong et al., 2017; Ebenhard et al., 2017). Trees growing under the wires and 

around the pylons of PLs represent a threat to the power supply because they can 

cause power outages and fires, and thus pose a risk to people’s safety (Svenska 

Kraftnät, 2017). The Swedish national grid consists of a network of 15 000 km 

of 220 and 400 kV lines. The overgrown vegetation in PL corridors is normally 

cleared using brush saws (and left on site to rot) by the same contractors who 

carry out pre-commercial thinning (PCT) in forestry. 

The management of vegetation in these alternative lands has some 

similarities to coppice forestry in Europe (Dimitriou et al., 2018; Johansson, 

2014). Cut-away peatlands in Finland are another source of residual biomass, 

whose logging can be mechanized using forest machines (Jylhä & Bergström, 

2016). In Spain, scrublands are a significant resource that can be harvested with 

balers (González-González et al., 2017; Mediavilla et al., 2017); this reduces the 

risk of wildfires and facilitates livestock grazing. The creation of firebreaks (by 

clearing vegetation along a linear strip) and thinnings for wildfire prevention 

(Lerma Arce, 2015) are additional potential sources of residual forest biomass 

in several European countries (Xanthopoulos et al., 2006). Some landscape care 

operations are one-time harvests (for clearing or thinning overgrown ST) rather 

than periodic events. For instance, a one-off harvest can be performed to 

reinstate grazing in overgrown pastures (Waldén, 2018; Claesson & Bengtsson, 

2014) or to establish a new forest stand on marginal land (Bergström et al., 

2015). Garrido Rodriguez (2017) showed that the abandonment of ecosystems 

such as wood pastures represents a challenge for their conservation. The term 

marginal land encompasses agricultural land abandoned due to its low yield or 

profitability (Shortall, 2013). Such land may be well suited for cultivating short 

rotation energy crops such as willow and poplar (Dimitriou & Mola-Yudego, 

2017), energy grasses (Nilsson et al., 2015), or oilseed species (Cañadas-López 

et al., 2018), outside the scope of this thesis. Other residual woody biomass 

produced during activities such as agricultural pruning (Velázquez-Martí et al., 

2011) was also excluded from the analysis. The land use classification criteria 

that determine the boundaries between forests and other land types differ 

between countries. This thesis uses the FAO’s definitions of forest land and other 

land uses (FAO, 2000), in accordance with the Swedish National Forest 

Inventory (NFI) (FAO, 2010). The term “residual woody biomass” is used 

throughout the thesis to refer to biomass from both forests and other land. The 

analyses presented here are restricted to the economic aspects (efficiency, cost, 

and quality) of sustainable SCs for LR and ST in Sweden. 
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1.4 Supply chain and operations management 

An SC is “the network of organisations that are involved, through upstream and 

downstream linkages, in the different processes and activities that produce value 

in the form of products and services in the hands of the ultimate consumer” 

(Christopher, 2011). In the framework of this thesis, the upstream of the SC is 

the wood procurement triad (Erlandsson, 2016), i.e. the supply: forest owners, 

forest owners association, and contractors. The downstream is the biomass 

processing industry, i.e. the demand or end-user. SCM is “the task of integrating 

organizational units along an SC and coordinating materials, information and 

financial flows in order to fulfil (ultimate) customer demands with the aim of 

improving competitiveness of the SC as a whole” (Stadtler, 2005). Logistics are 

part of SCM and consist of “the planning and control of the flow of goods and 

materials through an organization or manufacturing process” (Badiru & 

Bommer, 2017). The goal of logistics is to maximize the total benefit (Dahlin & 

Fjeld, 2004), so effective logistics are essential in forestry (Gunnarsson, 2007; 

Ranta, 2002). Forest biomass SCs are customer-oriented (Carlsson & Rönnqvist, 

2005; Mikkonen, 2004) and must therefore achieve the “seven rights” of 

logistics by delivering “the right product, in the right quantity and the right 

condition, to the right place at the right time for the right customer at the right 

price” (Swamidass, 2000). Keeping track of stock inventory (at roadside 

storages, terminals, plant yards) and quality (by monitoring quality parameters) 

is fundamental in SCM (Lee & Billington, 1992). 

Operations management is a core domain of SCM (Frankel et al., 2008), 

defined as “the design, execution, and control of operations that convert 

resources into desired goods and services, and implement a company's business 

strategy” (Business Dictionary, 2019). Specifically, forest operations 

management consists of “analysis, design, control, and continuous improvement 

of business processes, such as procurement, order fulfilment, distribution, 

monitoring and control within firms and business to business networks. It 

measures and analyses internal processes with emphasis on effectiveness, 

efficiency, and quality by using quantitative models to map and solve related 

problems of scheduling, inventory, shipment routing, or facility locations” 

(Heinimann, 2007). In operations management, three planning levels can be 

defined based on the time scale of the decision(s) to be made: strategic (long-

term, e.g. years or decades), tactical (medium-term, e.g. a year) and operational 

(short-term, e.g. days or months) (D'Amours et al., 2008). The level of detail at 

which decisions are made increases as their timescale decreases. 

Based on the definitions given above, operations management is 

management of the internal production processes within an SC that transform 

the raw material(s) used to manufacture end-product(s), while SCM is 
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management of the entire SC, including the movement of materials from the 

source to the end-user. SCM in forestry is challenging because every link in a 

forest SC usually corresponds to an independent business that is interlinked with 

and influences the other links, which complicates their integration (D'Amours et 

al., 2008). Heinimann (2007) noted that two key challenges in forest operations 

management are to achieve a transition from business management to SCM and 

to develop effective decision-support tools.  

1.5 Methods for studying and improving forest operations 

Since profit margins in primary forest fuel SCs are small (Eriksson, 2016), it is 

essential to improve their operations and SCM (i.e. to increase efficiency and 

cut costs by better management of work and energy inputs) to increase their cost-

competitiveness. Karttunen (2015) found that improvements in biomass SCs 

should be applied across the entire network of an SC rather than exclusively 

within a company’s internal operations; also, that research in process innovation 

is needed to reduce supply costs and increase the cost-competitiveness and added 

value of residual biomass. Business re-engineering has been implemented in 

chip SCs (Väätäinen, 2018; Windisch, 2015). However, before improvements 

can be implemented, the current systems must be understood. 

1.5.1 Work studies 

A method rooted in the discipline of Work Science, a work study is “a systematic 

study of technical, psychological, physiological, social and organizational 

aspects of work” (Björheden et al., 1995). Work studies often involve work 

measurement based on time studies. The objective of work measurement is to 

describe the relationship between the inputs (e.g. time or energy) and outputs 

(e.g. mass or energy) of work, and the influence of process variables on that 

relationship (Magagnotti et al., 2012). Efficiency is defined as the rate of input 

per produced unit for a given production system (e.g. time consumption per 

product output), while productivity is the inverse relationship (Björheden et al., 

1995). Productivity is the result of the interaction between human, technology, 

organization and environment (Häggström & Lindroos, 2016). The goals of time 

studies are to 1) improve work organization and planning, 2) monitor the control 

and follow-up of operations, 3) improve and compare working methods, tools 

and machinery, and 4) create data for performance and cost assessment 

(Björheden, 1991). A key goal of companies performing work studies is to 

develop productivity norms that can be expressed as equations (mathematical 

models) (Lindroos, 2018). 
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1.5.2 Simulation studies 

A system (real or theoretical) can be defined as a group of parts or items that are 

joined together and interact over time to accomplish some purpose(s). A model 

is an abstract representation (simplification) of a system that is used to study 

some aspect of its behaviour and describes only those components and 

relationships relevant to the investigated problem (Banks et al., 2010). A 

simulation involves experimentation using a model, with a specific purpose. 

This purpose could be, for example, to test operational options for increasing 

efficiency (i.e. to investigate “what if” questions) and advise decision-makers 

without requiring risky (and costly) real-world experiments. Simulation models 

are mathematical models, and can be static or dynamic, deterministic or 

stochastic, and discrete or continuous (Banks et al., 2010). The results of time 

studies can serve as input data for simulation models (Eliasson et al., 2017; 

Manner et al., 2017; Eriksson, 2016). Discrete-event simulation (DES) is a 

dynamic simulation method commonly used with stochastic simulations (i.e. 

simulations with one or more random variables as inputs) that is characterized 

by the fact that the system’s state variable changes only at a discrete set of points 

in time (when an event occurs). DES can be used to break down complex SCs 

and account for interactions between their components. It is therefore commonly 

used, along with optimization and risk assessment, to analyse SCs (Seay & You, 

2016). In particular, it has been used extensively in biomass logistics (Aalto et 

al., 2019; Kogler & Rauch, 2018) and the healthcare and manufacturing sectors 

(Jahangirian et al., 2010; Jacobson et al., 2006). 

1.5.3 Geographical information systems (GIS) and other methods 

GIS are used extensively as decision-support tools at all levels of forest operation 

planning (Grigolato et al., 2017), sometimes in conjunction with optimization 

(Sosa et al., 2015; Forsberg et al., 2005). While simulations do not necessarily 

involve optimization, several decision-support tools use a combination of these 

techniques (Andersson et al., 2018; SLU, 2016). Optimization has been 

extensively used for planning transportation (Acuna, 2017). Tools for improving 

forest operations and SCM in roundwood supply have been presented by Brown 

et al. (2011) in Australia and Skogskunskap (2019a) in Sweden. Statistics, 

simulation, and optimization are key methods in the discipline of Operations 

Research (OR), in which advanced analytical methods are used to improve 

decision-making (INFORMS, 2019). 
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1.6 Challenges in residual woody biomass supply chains 

If the usage of residual woody biomass in the bioeconomy is to be increased, it 

must be brought to market with a competitive advantage – a cost advantage, a 

value advantage, or both (Christopher, 2011). Eriksson (2016) found that SC 

efficiency can be increased by maintaining high utilization of comminution 

machinery and taking quality parameters into account when planning SC 

operations. The configuration of a residual woody biomass SC is determined by 

aspects of the operational environment such as the terrain conditions and end-

user type (Röser, 2012). The end-user (whether a CHP or a BR) determines the 

quantity and quality of feedstock that is required (Joelsson & Tuuttila, 2012; 

Ranta, 2002). SCs for primary forest fuels involve complex logistics due to the 

involvement of different contractors, the intrinsic characteristics of the 

feedstock, and their dependence on other SCs (e.g. roundwood) (Sowlati, 2016). 

Primary forest fuel procurement involves several, interconnected, upstream and 

downstream operations: harvest (cutting), forwarding (extraction), storage, 

comminution and transportation, all of which affect the production costs of chips 

(Aalto et al., 2019; Karttunen, 2015). 

The procurement of primary forest fuels has some challenges in common 

with that of roundwood supply. For instance, both resources are unevenly 

distributed in space and usually dispersed over large areas (Seay & You, 2016). 

Also, in both cases, as the biomass is supplied, supply nodes are dynamically 

replaced by new ones in different locations (Väätäinen, 2018). These factors 

force supply fleets to relocate between landings many times during the year. 

Demand nodes may be concentrated, for instance along shores (Svebio, 2018), 

meaning that many supply points are separated from end-users by relatively long 

trucking distances; the average trucking distance for primary forest fuels in 

Sweden is 63 km (Davidsson & Asmoarp, 2019). Efficient long-distance 

transport is thus needed to increase the use of residual forest biomass (Routa et 

al., 2013). Trucks are the dominant means of transportation for distances < 100 

km, while rail and boat dominate for longer distances (Karttunen, 2015; 

Wolfsmayr & Rauch, 2014; Dahlin & Fjeld, 2004). The accessibility of the 

resource can also vary over the year because the trafficability of forest roads may 

be limited during freeze-thaw melting periods or heavy rains (Rönnqvist, 2003). 

A major challenge of harvesting stumps, LR and ST is their high bulkiness when 

harvested, and their quality parameters such as ash content (AC) and moisture 

content (MC). These characteristics result in a low energy density, requiring 

some sort of densification (e.g. bundling, rough delimbing, comminution, etc.) 

and natural drying before long-distance transportation (Erber & Kuhmaier, 

2017). 
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1.6.1 Harvest of logging residues 

LR are produced during roundwood harvesting and recovered predominantly 

during final fellings of stands dominated by Norway spruce (Picea abies) (Routa 

et al., 2013). LR harvesting is integrated with that of roundwood; the felling 

process is adapted by having the harvester pile LR in heaps at the side of the 

strip road (i.e. the road the harvester creates to perform operations from) to avoid 

driving on them. Before the LR are forwarded into windrows, it is recommended 

that the material is left at the cutting site for one summer to dry and induce the 

shedding of nutrient-rich fractions (i.e. needles and small twigs) (Pettersson & 

Nordfjell, 2007; Nurmi, 1999). However, for practical and economic reasons, 

LR are often forwarded directly after roundwood, using the same base machine 

(Björheden, 2010). To handle LR effectively, the forwarder should use a slash 

grapple (i.e. one with open forks) to minimize the risk of uprooting small 

undergrowth trees that may have mineral soil attached. Pre-clearing of the 

undergrowth vegetation is also recommended to reduce this risk (Eliasson & 

Johannesson, 2009). Since operations in the SC are interconnected, handling of 

the biomass at this early stage will affect downstream operations and variables 

such as chipping efficiency and fuel-chip quality. 

1.6.2 Harvest of small-diameter trees 

ST are harvested during thinnings of non-commercially thinned, overstocked, 

forest stands, referred to in this thesis as biomass-dense thinning forests (BDTF). 

Other authors have referred to these stands as “early thinnings” or “young dense 

forests” (Sängstuvall, 2018; Karlsson, 2013; Ulvcrona, 2011; Bergström, 2009). 

Their main feature is a high density of small, heterogeneously-sized trees, and 

they normally arise when tending practices (such as PCT) have been neglected 

or not performed properly since natural regeneration, seeding or planting. PCT 

entails cutting trees (motor-manually) and leaving them on the ground 

(Skogskunskap, 2019b) to reduce competition and obtain a homogeneous stand 

of future crop trees that will yield large quantities of high quality roundwood. 

Nilsson et al. (2018) showed that large forest areas are currently not subjected 

to PCT. In many of these stands, the right time to do PCT has passed, doing it 

now would be costly, and a conventional first commercial thinning for pulpwood 

would provide low returns (Di Fulvio & Bergström, 2013; Di Fulvio et al., 

2011b). Instead, ST can be harvested as whole, undelimbed trees, bucked into 

sections (“whole tree-parts”), and used for energy. If the harvest is integrated, 

the largest trees could be delimbed (or rough-delimbed) and bucked for use at 

pulpmills. The main assortments obtainable from BDTF are whole tree-parts and 

pulpwood, and the scope for their integration depends on tree size, the market, 
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and distances to the end-user(s) (Bergström & Di Fulvio, 2014a; Petty, 2014; 

Jylhä, 2011; Vikinge, 1999). An alternative source of ST is clearings of other 

lands, performed using the same technologies as in BDTF (Andersson et al., 

2016; Bergström et al., 2015; Di Fulvio et al., 2011a; Iwarsson Wide, 2009). In 

contrast to thinning of ST in BDTF, the ST on these other lands can be clear-cut 

or thinned intensely, which can result in larger volumes per ha and more efficient 

logging operations (Fernandez-Lacruz & Bergström, 2015b). These stands are 

often easily accessible from existing road networks, but they can also be 

scattered in the landscape and they may be too small to be economically viable. 

Additionally, due to the great diversity of other land, large variations in logging 

operations efficiency should be expected.  

Harvester productivity depends on the size of the removed trees (i.e. stem 

volume), tree density, and the intensity of removal (Eliasson, 1999). 

Consequently, the productivity of selective thinning of ST in BDTF is low, 

leading to high cutting costs. Cutting operations account for the dominant share 

of the costs in ST SCs, because ST require a separate dedicated cutting operation 

(Routa et al., 2013; Laitila et al., 2010) and this is a key barrier to cost-efficiency 

(Bergström & Di Fulvio, 2014a). These costs can make the use of ST 

unprofitable by causing the overall cost of their extraction to exceed the revenue 

obtained by selling the biomass. To increase cutting efficiency, heads with 

accumulating arms for handling multiple trees per crane cycle are often used. 

Accumulating felling heads (AFHs) are commonly used in energy thinnings or 

clearings, and accumulating harvester heads (AHHs) can also be used. AHHs 

are flexible because they can process trees (by rough-delimbing or delimbing 

and bucking into sections), allowing the integration of fuelwood (i.e. undelimbed 

ST) and pulpwood (i.e. delimbed ST). The density of the bunched ST can be 

increased by rough-delimbing or by using compressing stakes on the forwarder’s 

load bunk, increasing productivity (Bergström & Di Fulvio, 2014b; Bergström 

et al., 2010). Rough-delimbing allows nutrient-rich fractions to fall off during 

harvest, reducing the AC of the biomass and nutrient removal from the stand 

(Fernandez-Lacruz & Di Fulvio, 2014; Bergström et al., 2010). Alternative, 

feller-bundlers designed to harvest ST (Manner et al., 2017; Bergström et al., 

2016) can be used. Technologies and working methods (e.g. boom-corridor 

thinning, instead of conventional selective thinning) for efficient ST harvesting 

are undergoing rapid development (Sängstuvall, 2018; Bergström, 2009). 

To better understand and improve the management of forest operations, time 

studies of systems working in operational environments (e.g. PL corridors) other 

than forest land will be needed. In parallel, the characteristics and potential of 

BDTF in Sweden should be analysed to support further technological 

developments and investments in new industries such as BRs. 
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1.6.3 Storage and management of quality parameters 

Fuel-chip quality depends on the assortment used for chip production, the season 

in which it is cut, forwarded and chipped, its natural MC, the methods used 

during its harvest and storage, and its duration of storage (Filbakk et al., 2011a; 

Filbakk et al., 2011b; Kent et al., 2011; Björheden, 2010; Nurmi, 1999; 

Lehtikangas, 1998; Lehtikangas & Jirjis, 1993; Jirjis et al., 1989). Water 

accounts for ca. 50% of the weight of wood when harvested (Lehtikangas, 1998). 

MC is a key quality parameter for fuel-chips (Fridh, 2017) because payments for 

fuel-chips in Sweden are normally based on the amount of delivered energy, 

which is determined at the plant by scaling each truckload and MC sampling. 

Maximizing natural drying and minimizing re-moistening are essential elements 

of MC management (Routa et al., 2015). To enable natural drying, after harvest 

(and subsequent on-site seasoning of LR), LR and ST are forwarded into 

windrows and normally covered with residue wrapping paper (Walki, 2019; 

Björheden et al., 2013). To enhance natural drying, windrows should be exposed 

to ambient conditions (sun and wind), typically for one full drying season (i.e. a 

summer) (Skogskunskap, 2016). In addition to its role in drying, windrowing at 

landings provides a buffer that compensates for temporal imbalances in biomass 

supply and demand, and also reduces dry matter (mass) losses (DML) compared 

to storing comminuted material (Jirjis, 1995): windrowed LR exhibited DML 

below 1% per month (Jirjis & Lehtikangas, 1993), compared to 2-3% for chipped 

LR (Nilsson & Thörnqvist, 2013). It should be noted that MC is a less important 

measure of quality for some assortments: payments for uncomminuted LR or ST 

depend on measurement of their fresh weight, which rarely involves MC 

sampling, and the price of sub-standard roundwood is typically based on 

measurements of stack (truck frame) volume (Björklund & Fryk, 2014). 

The gross calorific value of woody biomass depends on the natural ash and 

chemical composition of the assortment, but its net calorific value largely 

depends on its MC and contaminating ash (Thörnqvist, 1984). Incorrect handling 

can cause contamination with mineral soil, increasing AC and causing potential 

ash-handling problems in the furnace (Khan et al., 2009). Unlike MC, AC is 

only determined a few times per year at most plants. Particle size distribution 

(PSD) can be influenced by chipper configuration, knife sharpness, temperature 

and MC (Eriksson et al., 2013; Lehtikangas, 1998). High coarse and fine fraction 

contents can impair feeding and combustion in the boiler (Bäfver & Renström, 

2013). Relatively small plants require high fuel-chip quality (i.e. low MC, AC, 

and homogeneous PSD), but larger plants are less sensitive and accept higher 

levels of variation in quality parameters (Röser, 2012). 
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1.6.4 Comminution and transport 

In Europe, LR and ST are often comminuted at forest roadsides using mobile 

chippers (Ghaffariyan et al., 2017; Díaz-Yañez et al., 2013); forwarder-mounted 

chippers and chipper-trucks are the most common systems in Sweden (Eliasson 

& von Hofsten, 2017). Alternatively, uncomminuted LR or ST can be 

transported for chipping at terminals or at the end-user, using more efficient 

stationary or semi-stationary machines (Kuhmaier & Erber, 2018; Wolfsmayr & 

Rauch, 2014). However, the inefficiency of transporting uncomminuted biomass 

over long distances (Ranta & Rinne, 2006) other than defect roundwood, limits 

the cost-efficiency of this option. The choice of comminution strategy is 

determined by aspects of the operational environment (Röser, 2012) such as the 

placement of the windrows and transport distances to the end-user. According to 

Eriksson (2016), there is no perfect comminution system; each one has its own 

advantages and drawbacks.  

For instance, a forwarder-mounted chipper is a flexible system that can work 

either by the roadside landing or off-road (i.e. at the cutting site, in cases where 

the windrow is unreachable from the road). One operational option for the 

forwarder-mounted chipper is to tip over the chip-bin by the roadside so that a 

self-loading chip-truck(s) can subsequently load and transport the chips to the 

terminal or end-user (Liss, 2006). This system configuration allows machines to 

work independently from each other (i.e. it is a “cold system”): there is no need 

for interaction because material can be stored on the ground temporarily between 

operations. However, the system’s cost-efficiency may be reduced at small sites 

that necessitate many relocations of the chipper. Alternatively, the chipper could 

chip directly into containers by the roadside. This system configuration is “hot” 

and requires better planning (e.g. windrows placed by the roadside) and balance 

to minimize waiting times (the chipper cannot operate without a container). A 

chipper-truck (i.e. a truck with an integrated drum chipper, bin and container) is 

an independent (“cold”) system for chipping and transport; it is less sensitive to 

object size because it relocates by itself. However, in practice, windrows must 

be within ca. 9 m of the roadside to be reached by the chipper’s crane. Long 

trucking distances to the end-users could make it impossible to achieve high 

utilization of a chipper truck’s chipping capacity, reducing the system’s overall 

cost-efficiency (Skogskunskap, 2016).  

The possibility to accurately predict the dry mass and chip volume in 

windrows containing LR or ST would make it possible to enable better planning 

of chipping operations. 
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1.6.5 Terminals in the supply chains of biomass 

Terminals act as intermediate nodes between forests and industrial sites, and 

enable processes such as transloading (i.e. changing transportation modes), 

storage, and upgrading of biomass (comminution, sieving, drying, etc.) before 

final delivery. Terminals for fuel- and roundwood are common in Europe. They 

can be located close to the resource or the end-user (“feed-in terminal”), and are 

sometimes connected to a railway or adjacent to harbours (Kons et al., 2014). 

Delivery via terminal inevitably introduces extra costs into the SC (compared to 

direct delivery) because of the investment necessary to build and maintain the 

terminal and increased material handling (Virkkunen et al., 2015; Eriksson & 

Björheden, 1989). However, terminals can be essential because they increase the 

reliability of supply during peak demand (Ranta et al., 2012). In addition, they 

make it easier to cope with operational problems in the supply fleet such as 

machine breakdowns or extreme weather events (e.g. freeze-thaw melting, 

wildfires, or windthrow) that may impede access to forest roadside storages. 

Terminals also provide buffering for industries with limited storage capacity. 

Plants near urban areas usually have small buffers that can only store a few days’ 

worth of material, whereas plants outside urban areas can maintain much larger 

reserves (Olsson et al., 2016). For plants located in urban areas, railway links to 

terminals can help avoid traffic congestion problems at the delivery point. 

Terminals can also help to maintain the year-round operation of supply fleets, 

serving as storage sites during periods of machine overcapacity (Raitila & 

Korpinen, 2016). In real-world operation, the chip flow through a terminal can 

range between 10-30% of the total annual supply (Asmoarp, 2013; Johansson, 

2013; Hansson, 2010). The need for terminals is increasing as the capacity of 

industries expands, necessitating larger uptake areas and reliable high-efficiency 

procurement solutions (Virkkunen et al., 2016; Tahvanainen & Anttila, 2011). 

When managing an SC, one can adopt either a just-in-time (pull) or push 

strategy. In just-in-time systems, wherever possible, there should be no activity 

within the system until it is needed (Christopher, 2011). Thus, the end-user pulls 

products downstream and buffers are minimized. In a push system, products are 

manufactured according to forecasted demand, and stored in buffers along the 

SC. A just-in-time strategy for forest biomass SCs thus requires a reliable and 

agile supply fleet that can quickly ramp up production. It also increases risks and 

makes the SC sensitive to disruptions. Push strategies have higher costs because 

they require buffers (terminals), giving rise to DML, although the latter can be 

minimized by using optimal storage methods, as shown by Anerud et al. (2018). 

The design of efficient SCs for LR and ST could be facilitated by developing 

a simulation model able to quantify the cost of incorporating a terminal (which 

will depend on the type of end-user to be served and the forecasted demand). 
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The overall aim of this thesis was to measure and analyse characteristics of LR 

and ST in forest and other land in Sweden, and to evaluate the efficiency and 

costs of their supply systems. The ultimate goal was to generate useful 

knowledge for policymakers, researchers, and industrial developers and 

practitioners that could help improve supply chains if used correctly, increasing 

the cost-competitiveness and utilization of this residual woody biomass. 

 

The studies on which this thesis is based and the relationships between them 

are summarized in Figure 1. The specific objectives of the thesis were to: 

 

 Describe the areal distribution, characteristics and harvesting potential 

of biomass-dense thinning forests in Sweden (Paper I). 

 Describe the characteristics of the overgrown vegetation in a power line 

corridor in central Sweden (Paper II). 

 Model the efficiency of a forest machine system in harvesting and 

extracting whole trees for bioenergy during power line corridor cleaning, 

calculate its costs, and compare it to motor-manual clearing (Paper II). 

 Describe the storage conditions of windrows containing LR and ST from 

forest and other land, and assess the quality of the resulting fuel-chips 

(Paper III). 

 Develop a predictive model for estimating the dry mass content of 

windrows containing LR and ST from forest and other land (Paper III). 

 Develop a simulation model to analyse the supply cost of chipped LR 

and ST, from chipping to delivery to the end-user. Two end-user demand 

curves were considered, one for a theoretical combined heat and power 

plant and one for a biorefinery. In addition, two different demand levels 

(low and high), and two possible modes of supply chain operation were 

considered: exclusive direct supply from the sites to the end-user and 

combined supply via a feed-in terminal (Paper IV). 

2 Aim and objectives 
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Figure 1. Conceptual framework of the thesis and underlying studies (papers). The dashed lines 

enclose the topics addressed by each paper. Every paper deals either with the characterization of 

the feedstock (and its sources), supply chain operations, or both. Three end-users were considered: 

a combined heat and power plant (all papers), a pulpmill (Paper I), and a biorefinery (Paper IV). 
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The choice of materials and methods in this thesis was determined by the 

objectives and the type of information to be processed in each study (Table 1). 

The goal of representing the characteristics and distribution of BDTF and 

analysing a large NFI dataset prompted the use of GIS-based analysis in Paper 

I. Paper II describes an inventory and experimental time study on the operations 

of a harvester and forwarder. The machines’ operational environment and work 

were studied and analysed in conjunction with literature data. Paper III presents 

an observational field study conducted to characterize an operational 

environment, its windrows, and the fuel-chips produced at the sites. Finally, 

Paper IV describes a simulation-based cost analysis using DES and input data 

from Paper III. Simulations were used because of the need to study the real-

world operation of chipping systems and its evolution over time. 

Table 1. Sources of input data and research methods used in the papers included in this thesis. 

Paper Sources of input data Research methods 

I NFI GIS 

II Fieldwork, literature Forest inventory, time study, statistics 

III Fieldwork, CHP Survey, fuel-chip sampling and quality assessment, statistics 

IV Paper III, literature DES, statistics 

3.1 Paper I 

3.1.1 Forest dataset and analysis with GIS  

The NFI provided a dataset containing details of all forest inventory plots of 

productive forest land in Sweden (29 105 plots, clustered, with a radius of 7 or 

10 m, covering 22.5 M ha in total) for the period 2006-2010 (Axelsson et al., 

2010). The variables listed in Table 2 (based on measurements of all trees in the 

3 Materials and Methods 
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plot that had reached breast height, i.e. 1.3 m) were used in subsequent analyses. 

The dataset was imported into a GIS using ArcGIS®. Plots containing four 

categories of BDTF in the dataset were then identified by successively applying 

the following selection criteria: 

A. non-commercially-thinned plots, with an average tree height ≥ 3 m and average 

diameter at breast height (DBH) < 20 cm; 

B. plots of category A with an above-ground biomass density ≥ 30 dry t ha-1; 

C. plots of category B with an average tree height < 12 m; 

D. plots of category C with an average stem volume (denoted v) of 10–120 dm3, 

divided into five subclasses:  

1. 10 ≤ v < 20 dm3: typical PCT forest, normally cleared with a brush saw; 

2. 20 ≤ v < 30 dm3: energy thinning forest, normally harvested as fuelwood 

with AFHs; 

3. 30 ≤ v < 40 dm3: thinning forest, harvested either as fuelwood only (AFHs), 

or integrated with pulpwood (AHHs); 

4. 40 ≤ v < 60 dm3: thinning forest, harvested either as pulpwood only (AHHs) 

or integrated fuelwood; 

5. 60 ≤ v < 120 dm3: pulpwood thinning forest harvested with AHHs. 

Table 2. Variables in each NFI plot used in analyses. 

Variable Explanation 

Diameter at breast height (DBH) Average of all trees, basal area-weighted. 

Height If height ≥ 7 m, the average height of all trees weighted 

by basal area; if height < 7 m, the arithmetic average of 

the dominant trees. 

Tree density Number of trees ha-1. 

Above-ground biomass (i.e. growing 

stock) density 

dry t ha-1 of stemwood with bark and living branches 

including needles and fine fractions (calculated 

according to Marklund (1988). 

Standing volume per ha  Stem volume over bark and above the stump, including 

the tops. 

Maturity class Cutting class according to Nilsson et al. (2018). 

Stand age Years. 

Composition of tree species Proportions (%) of Scots pine, lodgepole pine, Norway 

spruce and broadleaves. 

Ground moisture, soil parent material Classes using the Swedish terrain classification method 

of Berg (1992).  

Pre-commercially thinned No / Yes 

Commercially thinned No / Yes 

Previous land use other than forest No / Yes (e.g. pasture, arable land, gravel pit, etc.)  

Category A included all plots (11 823) containing trees that had passed the 

regeneration stage, because 2–4 m is the usual height for applying PCT in 

Sweden (Skogskunskap, 2019b). However, it excluded plots containing very 

thick trees (DBH ≥ 20 cm) because such trees can be used to produce high-value 
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sawlogs, as shown by Varmola and Salminen (2004). Category B included 8 262 

of these plots, excluding plots having a standing biomass < 30 dry t ha-1 because 

it is reasonable to let such stands continue to grow to increase their biomass 

concentration (Nordfjell et al., 2008). Category C included 3 437 plots, 

excluding plots with an average tree height ≥ 12 m because the most economical 

strategy for such plots is to perform a conventional first thinning and use the 

trees to produce pulpwood rather than fuelwood (Heikkilä et al., 2009; Nordfjell 

et al., 2008). Category D included 2 446 plots, excluding plots containing trees 

with an average stem volume ≥ 120 dm3, because they can be harvested 

exclusively as pulpwood rather than fuelwood using conventional techniques. 

Category D also excluded plots containing trees with extremely small stem 

volumes (< 10 dm3), because these cannot be harvested effectively with current 

technology; even anticipated technological developments are unlikely to make 

their mobilization economical, as shown by Sängstuvall et al. (2012). 

Most analyses were performed at a regional level, based on Sweden’s 

historical divisions: Norrland (the northernmost region), subdivided into 

northern Norrland and southern Norrland; Svealand (the central region); and 

Götaland (the southernmost region) (Nilsson et al., 2018). Detailed calculations 

of variables such as the area occupied by BDTF in relation to the total forest area 

and the average age of the BDTF were performed at the county level. The area 

and growing stock of BDTF on difficult terrain was also determined. Difficult 

terrain was defined as terrain falling into class 4 or class 5 according to the 

classification system of Berg (1992) in which class “1” indicates very firm, 

stable ground and “5” indicates very soft ground with a low bearing capacity. 

3.1.2 Harvesting potential of biomass-dense thinning forests 

The techno-economical harvesting potential of BDTF was calculated after 

filtering the dataset by applying selection criteria A–D (which implicitly account 

techno-economic constraints), explicit technological constraints (it was assumed 

that only 70% of the BDTF area had a bearing capacity high enough to support 

machines) and ecological constraints (harvesting was considered to be 

sustainable, corresponding to removal of 100% of the annual increment in 

stemwood volume). The NFI data provided the mean annual increment in stem 

volume for each plot (m3 ha-1 year-1). Stem volume was defined as the volume 

over bark above the stump up to the top, excluding branches and needles. Solid 

m3 was converted to dry t, using WeCalc (Nylinder & Kockum, 2016), based on 

the observed proportions of tree species within the BDTF and an assumed basic 

stemwood density of 402 dry kg m-3. The potential of whole-tree harvesting was 

also calculated. Stemwood accounted for 70% of the dry weight of standing 
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biomass within the studied BDTF, while branches and needles accounted for 

30%. The potential of whole-tree harvesting was based on these proportions and 

an assumed basic density of 479 dry kg m-3 for the branch fraction. 

3.2 Paper II 

3.2.1 Study site 

Fieldwork was conducted during May 2012 in Knivsta (east-central Sweden). 

The PL to be cleared carried a voltage of 400 kV, with a corridor width of 50 m 

(equivalent to the outer wires’ projection). The average distance from the wires 

to the ground ranged from 16 to 26 m. When working in PL corridors, the crane’s 

tip (including grasped trees) must be at least 5.5 m from the nearest wire in the 

vertical direction and at least 6.5 m in the horizontal direction for safety reasons 

(Svenska Kraftnät, 2015). A total of 13 study units were marked out, with lengths 

of 20 m in the direction of the PL and widths of 40–50 m (corresponding to the 

corridor width). Before harvesting, a systematic stand inventory was conducted 

in each unit by defining 6 circular plots of radius 2 m in each one. The terrain 

conditions were assessed according to Berg (1992), by considering bearing 

capacity (G), roughness (Y) and slope (L). The average GYL in the study area 

was 1.2.1., corresponding to a good bearing capacity with a shallow slope and a 

few boulders. 

3.2.2 Time study 

A time study was conducted on a harvester and a forwarder working in the 

inventoried units. The harvester was a Skogsjan 495 (162 kW engine power, 15 

t mass, 4 wheels fitted with chains, and an 11 m crane). It was equipped with a 

Bracke C16.b AFH that was specifically designed for thinning and clearing of 

ST, with a cutting chain mounted on a saw disc, four-jawed cutting arms, and 

four-jawed accumulating arms. The harvester used the pre-existing strip road to 

move from the landing to each unit (Figure 2). Separate time studies were 

conducted in each unit, beginning when the harvester started cutting trees at 

point “A1”, on one side of the unit. The time study was continued as the harvester 

moved along an obround path within the unit, felling a 10 m wide swath as it 

went, and concluded when it reached the end point, designated “B1”. The 

harvester then moved from point “B1” to the starting point of the next unit, “A2”. 

After harvesting, the biomass was forwarded to the landing using a Valmet 

890.1 forwarder (154 kW engine power, 18 t mass, 18 t load capacity, 8 wheels 
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and 8.5 m crane) equipped with a CE360 slash grapple with two forks each 

having two legs for effective handling of ST/LR. The time study began when the 

forwarder began its unloaded journey from the landing to the unit. The forwarder 

followed the same path as the harvester inside each unit. Once all the biomass 

from the unit was loaded, the forwarder drove back to the landing, where the 

biomass was weighed and then unloaded in two windrows, ending the time 

study. The process of weighing the biomass was excluded from the time studies. 

 
Figure 2. Working method of the harvester in the PL corridor. It started to work at “A1”, followed 

the path shown and finished when it reached the point “B1” (unit 1). It moved from “B1” to “A2”, 

in the next unit (unit 2). The forwarder followed the same path as the harvester inside each unit. 

In this study, the scheduled machine (SM) time comprised all machine working 

time including delays shorter than 15 min but excluding driving time between 

units and relocations. Productive machine (PM) time was defined as SM time 

excluding all delays. The SM time of the harvester was recorded by conducting 

a frequency study (Harstela, 1991) using an Allegro Field PC® equipped with 

SDI software (developed by Haglöf Sweden AB) because the harvester work 

cycle involves brief repeated elements. The work element being performed by 

the harvester was recorded once every 7 seconds. These elements included Boom 

out, Felling, Boom in, Moving, Miscellaneous, and Delays (Paper II). The 
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running time per unit was recorded with a chronometer to correct for possible 

missing observations from the frequency measurement. The forwarder time 

study was performed as a continuous time study (Harstela, 1991) because its 

work elements last long enough to be recorded individually with adequate 

precision. These elements included Loading, Moving while loading, Driving 

loaded, Unloading, Driving empty, Miscellaneous, and Delays. The forwarder’s 

loading distances and forwarding distances (driving loaded and empty) were also 

recorded. 

3.2.3 Economic analysis 

The fieldwork data (i.e. the inventory and time study results) were used to model 

the biomass removal and efficiency (time consumption per biomass output) 

achieved by the forest machines as a function of tree height. Models were built 

by regression analysis using Minitab™15, using a significance threshold of p < 

0.05. Based on the derived models, the net income (profit) of PL corridor 

clearing using the mechanized harvesting system was calculated as the 

difference between the revenue from selling the undelimbed ST and the cost of 

harvesting and forwarding, including a relocation cost. The calculated profit was 

compared to the cost of motor-manual cleaning reported in the literature. The 

economic analysis was conducted for a theoretical unit with a rectangular size 

of 1 ha (50 m × 200 m), assuming a one-way forwarding distance of 100 m, and 

it was presented as a function of average tree height. 

The estimated revenues were based on the then-prevailing market price for 

uncomminuted, undelimbed ST at the roadside, which amounted to 22 € solid 

m-3 (average in Sweden in 2012), equivalent to 44 € dry t-1, using a basic density 

of 497 dry kg solid m-3 (Nylinder & Kockum, 2016). Logging costs were 

calculated by multiplying the hourly operating cost of the machines by the SMh 

required to harvest and forward the biomass from the modelled unit (depending 

on the specified tree height). Hourly operating costs were calculated according 

to Nordfjell (2010), including fixed and variable costs (Paper II), and amounted 

to 90 and 80 € SMh-1 for the harvester and the forwarder, respectively. The 

modelled efficiencies of the harvester and forwarder were used to calculate the 

required PMh in the modelled unit. PMh was converted into SMh by adding a 

10% delay time (the maximum percentage of delays during fieldwork). A 

relocation cost to the site of 208 € (for a truck with a low-bed trailer) was 

included for each machine. 

The cost of motor-manual clearing was calculated by multiplying the hourly 

operating cost by the SMh required to clear the vegetation in the modelled unit. 

The cost of the operator was set at 31 € SMh-1 based on the reference price in 
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Sweden in 2012. The PM time for motor-manual clearing was calculated using 

Eq. 1 (SLA-Norr, 1991), a formula used for PCT in conventional forestry. Here, 

T denotes PMmin ha-1, RA the tree density in the unit (×103 trees ha-1) and h the 

average tree height (m). An extra time consumption of 5% was added to account 

for the presence of obstacles on the ground, as observed during the fieldwork. 

The average tree density, RA, was calculated as a function of the average height, 

decreasing from 18 000 to 12 000 trees ha-1 as the average tree height increased 

from 3.4 to 6.3 m. PMh were converted into SMh by including 25% delays, 

assuming 6 PMh out of 8 SMh per day, discounting planning, refuelling, etc. 

T = 0.765 × ((15.08 × 𝑅𝐴) + (9.5 × 𝑅𝐴 × ℎ) − (0.15 × 𝑅𝐴2 × ℎ) + 91) (1.) 

3.3 Paper III 

3.3.1 Study sites 

From February to April 2014, 44 windrows containing LR and 32 windrows 

containing ST were surveyed at 34 sites in the vicinity of Umeå (northern 

Sweden) owned by private forest owners belonging to Norra Skogsägarna. LR 

were harvested predominantly during final-fellings of spruce (Picea abies), 

along with minor fractions of stemwood and other species. ST were either 

harvested at full length (“whole unprocessed trees”) or bucked into sections 

(“unprocessed whole tree-parts”), ca. 6–9 m long. Assessments of species in ST 

windrows revealed a dominance of grey alder (Alnus incana), birch (Betula spp.) 

and willow (Salix spp.), with an overall average butt-end diameter (basal-area 

weighted) of ~11.2 cm (range: 9.7–13.7 cm). Harvesting was conducted by 

conventional operations (final-fellings and thinnings) in forest land at 65% of 

the sites, by clearing other lands (overgrown edges of arable land, roadsides, and 

industrial land) at 26% of the sites, and by a mixture of forest and other land 

operations in the remaining 9% of sites. The average cut area was 5.3 ha (range: 

0.1–25 ha). All windrows had been built within 1 month of harvest, and most of 

them were covered with 4 m-wide residue wrapping paper. The average 

windrowing time was 10 months (range: 1–31 months). The height of the front 

sides of the windrows was measured with a stick. The length of each windrow’s 

base (and top if trapezoidal; see Figure 3) was measured along the front side, 

and the width was measured along the left and right sides. 

The inventoried windrows were comminuted using a Bruks 805 CT chipper 

with a self-dumping chip-bin (volume: 21 m3), mounted on a Komatsu 860.4 

forwarder. The fresh mass (fresh t) of every chip load was registered using an 



36 

 

integrated scale in the bin. Each loaded bin was tipped at the roadside or a large 

landing, and loaded within 2 days into a self-loading chip-truck with a container 

and trailer (total volume: 122 m3). The trucks delivered the fuel-chips to Dåva 2 

CHP in Umeå and each truck was scaled on a static weighbridge. Since 

truckloads could be tipped directly into the dump pocket at the CHP, the truck 

driver filled a 3-litre paper bag with fuel-chip samples immediately before 

loading at the forest roadside, as stipulated by Umeå Energi AB (2014). The 

CHP determined the MC of the delivered biomass according to EN 14774-

2:2009 (CEN, 2009a) (48 h) and provided a dataset specifying (inter alia) the 

site of origin, assortment, mass and MC of each truckload. 

 
Figure 3. Dimension measurements on a windrow approximated as a trapezoidal prism. 

3.3.2 Fuel-chip sampling during fieldwork and analyses 

Fuel-chips were sampled from 25 paper-covered windrows (10 LR and 15 ST), 

at 16 sites within a few hours of the chipper tipping them onto the ground. The 

number of samples per windrow (range: 1–3) and windrows sampled per site 

(range: 1–4) depended on the size and total number of windrows, and the time 

available before the trucks started loading the chips. During sampling, a 5-litre 

bucket was filled with 5–8 subsamples shovelled from different points and 

heights of the chip pile.  

The MC, PSD and AC of each collected sample (46 in total) were determined. 

MC was determined following EN 14774-2:2009 (CEN, 2009a) (24 h). To 

calculate PSD, the same (dry) samples were then subjected to a 15-min pre-

defined program in an electromagnetic sieve shaker BA 400N with oscillating 

circular sieves (opening mesh sizes: 63, 45, 31.5, 16, 8 and 3.15 mm). The 7 

fractions were weighed to determine the percentages of dry mass associated with 

each particle size class. To determine AC, the seven fractions were then pooled 

and milled down to 1 mm. Each milled sample was subdivided with a riffle box 

to obtain a 0.5-litre subsample from which two ~2 g subsamples were taken for 

AC determination following EN 14775:2009 (CEN, 2009b). Statistical analyses 
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were performed using Minitab™16 and R 0.99 (R Core Team, 2015), deeming 

results to be significant if p < 0.05. Measurements of quality parameters (MC, 

PSD, AC) of fuel-chips were compared by one-way ANOVA with Tukey’s post-

hoc tests, aiming to identify possible assortment-based differences (LR vs. ST) 

and sampling-method (fieldwork vs. plant)-based differences (only for MC). 

The fresh and dry bulk density of each LR and ST windrow were calculated 

in terms of fresh mass and dry mass (dry t) per bulk m3. For this purpose, the 

windrows’ bulk volumes were calculated using the measured dimensions, 

approximating the geometrical shape of each windrow as a trapezoidal, 

triangular or rectangular prism as appropriate. The fresh and dry mass of each 

windrow were calculated by two approaches. In the first (referred to as the 

“chipper” approach), registered fresh masses from the chipper and calculated dry 

masses were used, with MC values obtained from fieldwork sampling (when 

available). For windrows not subjected to MC sampling in the field (i.e. by the 

researcher during fieldwork), a weighted average MC based on the CHP 

measurements was assumed for all windrows within the same site.  

The second approach (the “plant” approach) used only data from the CHP. 

Because mass measurements at the CHP were conducted for truckloads rather 

than individual windrows, the fresh mass of each windrow was estimated as 

follows: the bulk volumes of all windrows in each site were summed, then the 

percentage contributions of each windrow were calculated and multiplied by the 

total fresh mass (i.e. all truckloads) delivered from the site to obtain a theoretical 

windrow fresh mass. The dry mass was then calculated using the weighted 

average MC of all truckloads from the site. 

Differences in dry bulk density between assortments (LR vs. ST) based on 

results from the same data source (chipper or plant) were tested by one-way 

ANOVA, as were differences between data sources (chipper vs. plant) based on 

results for the same assortments. Linear regression was used to investigate the 

dependence of windrows’ dry mass (dry t, dependent variable) on their bulk 

volume (bulk m3, independent variable). 

3.4 Paper IV 

3.4.1 Description of the simulation model 

A simulation model was constructed using DES in ExtendSim®9.2. An 

operational environment was designed (resembling that studied in Paper III) and 

the work of a theoretical chip supplier over one year was modelled. The objective 

was to provide the defined end-users with chips from a mixture of LR and 
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undelimbed ST seasoned in windrows at forest and other land storage sites. The 

simulated windrows were generated at the sites (i.e. the entities whose attributes 

are shown in Table 6), and chipped by two machine systems, which delivered 

chips to the end-user’s buffer (plant yard) (Figure 4). To mimic real-world 

operations, the model included stochasticity based on probability distributions 

for biomass characteristics, process times for machine activities, delays, and 

forecasted demand (a deviation of ±20% relative to forecasted demand values 

was incorporated). The supply of chips was modelled separately for two 

theoretical end-users with distinct demand profiles: a CHP and a BR (Figure 5).  

 
Figure 4. Outline of the combined supply chains (direct and via-terminal deliveries). 

 
Figure 5. Simulated mean daily chip demand for each end-user (high-demand scenarios). 

Both end-users were assumed to be located at the same place and consume the 

same feedstock. Processing of the incoming chips at the plant was outside the 

model boundaries. The CHP’s demand curve was derived from data on mean 

production at Dåva 2 in Umeå provided by Umeå Energi AB, while the BR’s 

demand was assumed to be non-seasonal. Two demand scenarios were defined: 

low, corresponding to a demand of 21 000 dry t per annum, and high (29 000 

dry t per annum). A daily delivery plan for the chip supplier was calculated for 

each demand level and end-user, matched against the daily shares of forecasted 
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demand. The simulated demand volumes (low: 21 000 dry t, high: 29 000 dry t) 

represented ca. 40 and 55%, respectively, of the mean supply of primary forest 

fuels for heat and power in Umeå (0.256 TWh per year during 2012-2016) 

(Energy Companies Sweden, 2017). Two possible modes of SC operation were 

modelled: exclusive direct supply from the sites to the end-user, and combined 

supply via a feed-in terminal (using a combination of direct and via-terminal 

deliveries). 

The modelled terminal area was set to 2 ha, of which 90% was devoted to 

storage (Paper IV). The terminal’s storage capacity when supplying the CHP 

was assumed to be identical to that when supplying the BR, corresponding to a 

buffer time of 1 month at the CHP (based on demand in January). A DML of 2% 

per 30 days of storage was assumed, and the DML was calculated for each dry t 

leaving the terminal based on its storage time at departure. A shuttle chip-truck 

was available, driving 10 km (one-way) between the terminal and the end-user. 

A wheel-loader operated at the terminal, equipped with a scale to measure 

outbound deliveries and avoid overloading the shuttle chip-truck. Facilities and 

machinery were shared with other suppliers, but machinery was available to the 

modelled chip supplier with no waiting time. The terminal lacked equipment 

such as a weighbridge and drying oven. Therefore, drivers of incoming trucks 

were expected to measure the chip volume in the cargo and the chips’ MC using 

handheld equipment. 

The model included a buffer at each end-user’s yard (i.e. the delivery point). 

Plant buffers were equal in capacity for the CHP and BR and corresponded to 4 

days of mean demand in January at the CHP. Alarms based on storage levels at 

the end-user’s buffer pulled chips downstream, thereby controlling upstream SC 

operations in the model: if storage levels exceeded 95% of total capacity, chips 

were redirected to the terminal, and the generation of new sites by the model was 

paused; for levels between 60–95%, only direct deliveries from the sites were 

allowed; and when storage levels at the buffer fell below 60%, the terminal was 

opened for outbound deliveries, thus combining direct and via-terminal 

deliveries. The same alarm levels were set for both the CHP and the BR, aiming 

to achieve a chip flow through the terminal of 10–30% of total supply. 

3.4.2 Machine systems working for the modelled chip supplier 

The modelled fleet consisted of two supply systems, with one unit of each 

system. The simulated systems were identical for all scenarios save for the 

terminal machinery (exclusively used in combined SCs). System 1 comprised a 

forwarder-mounted chipper and two self-loading chip-trucks. These trucks 

transported the chips to the terminal or end-user, depending on the current alarm 
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levels at the plant buffer. Relocation of the forwarder-mounted chipper between 

sites was performed by driving on the road by itself (over distances shorter than 

10 km) or by a truck with a low-bed trailer. System 2 consisted of a chipper-

truck used for roadside comminution and transport to the terminal or end-user. 

The logic of the work and efficiency of the modelled machines (Paper IV) 

was based on literature measurements conducted in Swedish or similar 

operational environments (average for LR and ST). The model dynamically 

computed the size of every chip truckload, which depended on the current MC. 

The limiting factor for relatively dry chips was the cargo volume, but weight was 

limiting for relatively wet chips, as in Eriksson et al. (2014b). Trucks were only 

allowed to drive to the terminal or end-user if they were fully loaded, so they 

had to relocate between sites until fully loaded. A queueing time at the delivery 

point (Väätäinen, 2018) was also incorporated. 

Machines were scheduled to work 200 days annually, using the same shift 

configuration for both end-users. Machines were set off-shift from the middle of 

June to the end of August (i.e. annual holidays were concentrated this period). 

The SMh comprised PM time including delays due to operator or mechanical 

breakdowns and machine relocation. From September to the end of February, 

System 1 and System 2 were scheduled to perform double shifts (16 SMh) per 

day. From March until the middle of June, these machines performed single 

shifts (8 SMh), halving the chip flow from the roadsides. This was done to 

simulate an extreme weather event, as observed during fieldwork in Paper III. It 

was assumed that the roads would sometimes be untrafficable during March-

May due to freeze-thaw and snow melting (allowing the machines to operate for 

only one shift per day on average), and because of the need to avoid soil damage. 

Single shift operation was assumed from May to June because of the decline in 

demand and to avoid accumulating large stocks of chips at the terminal during 

summer. The summed SMh for the forwarder-mounted chipper, self-loading 

chip-trucks, and chipper-truck amounted to 2 648 SMh each. The wheel-loader 

and shuttle chip-truck were scheduled to work double shifts from September to 

the end of April, and single shifts from May to the middle of June, amounting to 

2 992 SMh each. 

3.4.3 Cost calculation and experimental design 

The hourly cost of machines and the terminal’s operational cost were computed 

(Paper IV), using the “FLIS” machine-cost calculator (von Hofsten et al., 2006). 

Contractors were assumed to work for other suppliers during off-shift time (and 

during eventual idle time due to lack of material) until they reached 3 200 SMh 

(corresponding to year-round double shifts). The total supply cost calculation 
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included costs for chipping, transport, relocations, and terminal activities 

(wheel-loader operation, shuttle chip-truck operation, including terminal 

operational costs). The calculated total supply cost included the production cost 

of biomass lost due to DML during terminal storage. Mean supply cost (€ dry t-

1) was calculated as the total supply cost divided by the actual delivered biomass 

to the end-user. Costs due to machine idling, stumpage, tied up capital at 

storages, snow shovelling (to access the sites and clean the terminal), and 

upstream SC operations (i.e. harvesting and forwarding) were excluded.  

Model verification was performed using subjective methods, namely 

visualization (assisted by the software’s graphical interface) and walkthroughs 

(Balci, 1994). Model validation was performed by discussing its output with 

experts familiar with the modelled systems to confirm that its behaviour 

reproduced that of real systems, and by checking that some of its key outputs 

(e.g. efficiency, work time elements’ distribution, and costs) were consistent 

with previous studies. All these tests indicated the model to be reasonable. 

Simulations were performed for eight defined scenarios (Table 3). Inputs and 

system configurations were kept constant between runs. Five replicate 

simulations were performed for each scenario. Results were compared by one-

way ANOVA with Tukey’s post-hoc tests, using a significance threshold of p < 

0.05. A sensitivity analysis was performed to evaluate the cost impact of 

integrating supplies of chips from forest and other land, assuming that an 

integrated biomass supply from multiple sources would increase biomass 

concentrations and reduce relocation distances. To this end, analyses were 

performed, assuming a “high” level of integration with 50% shorter relocation 

distances, and a “low” level involving 50% longer relocation distances. 

Table 3. Simulated scenarios. 

End-user Demand level Supply alternative Scenario 

Combined heat and 

power plant (CHP) 

Low (21 000 dry t) 
Direct (only) 1 

Combined (direct and via-terminal) 2 

High (29 000 dry t) 
Direct (only) 3 

Combined (direct and via-terminal) 4 

Biorefinery (BR) 

Low (21 000 dry t) 
Direct (only) 5 

Combined (direct and via-terminal) 6 

High (29 000 dry t) 
Direct (only) 7 

Combined (direct and via-terminal) 8 
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4.1 Paper I 

All results presented relate to BDTF of category D (i.e. sites selected from the 

overall NFI dataset by applying all four of the selection criteria A–D). The area 

occupied by BDTF amounted to 2.1 M ha, corresponding to 9% of Sweden’s 

total productive forest land (Table 4). Both the absolute and relative areas of 

BDTF increased on moving northwards (Figure 6). Most of the BDTF area was 

found in Norrland (65%, representing 6% of Sweden’s productive forest land), 

followed by Svealand (20%) and Götaland (15%). In general, across the counties 

of Norrland, productive forest land contained the greatest proportion of BDTF 

and coastal counties had high proportions of productive forest land. 

Table 4. Regional distribution of BDTF area (ha), average above-ground biomass density (dry t 

ha-1) and total growing stock (M dry t), by average stem volume subclass. 

Region Subclass (average stem volume “v”, dm3) 

 10 ≤ v < 20 20 ≤ v < 30 30 ≤ v < 40 

 ha dry t ha-1 M dry t ha dry t ha-1 M dry t ha dry t ha-1 M dry t 

N. Norrland 262 292 50.1 13.14 147 003 54.6 8.03 108 859 55.3 6.02 

S. Norrland 195 624 58.8 11.51 128 204 61.0 7.83 79 770 57.3 4.57 

Svealand 146 521 53.6 7.85 83 711 55.3 4.63 57 296 57.3 3.28 

Götaland 93 846 54.4 5.10 53 124 59.7 3.17 49 465 63.6 3.15 

Total 698 282 53.8 37.60 412 042 57.4 23.65 295 390 57.6 17.02 

 40 ≤ v < 60 60 ≤ v < 120 Total 

 ha dry t ha-1 M dry t ha dry t ha-1 M dry t ha dry t ha-1 M dry t 

N. Norrland 137 044 49.3 6.76 142 258 54.8 7.80 797 455 52.3 41.74 

S. Norrland 76 397 61.1 4.67 97 930 60.3 5.90 577 924 59.7 34.48 

Svealand 75 715 60.5 4.58 66 881 59.3 3.96 430 125 56.5 24.30 

Götaland 64 683 67.1 4.34 44 556 66.7 2.97 305 673 61.3 18.73 

Total 353 839 57.5 20.34 351 624 58.7 20.64 2 111 177 56.5 119.26 

 

 

4 Results 
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Figure 6. The areal proportion (%) of productive forest land by county (left), the areal proportion 

(%) of BDTF within the productive forest land by county (middle) and the average stand age of 

BDTF by county (right). 

Most of the BDTF were Scots pine-dominated (52% of the BDTF area), 

followed by Norway spruce- (27%), broadleaf- (11%) and lodgepole pine- (7%) 

dominated stands. BDTF on former (abandoned) agricultural land accounted for 

41 517 ha (2%) of the BDTF area, of which 38% was found in Götaland, 39% 

in Svealand and 23% in Norrland. These stands were dominated by spruce (66%) 

and broadleaves (25%). About 451 000 ha (21%) of the BDTF area was on 

difficult terrain, of which peatlands accounted for 26%. The analyses showed 

that 251 247 ha (12%) of the BDTF area had been subjected to PCT. 

The total growing stock of BDTF amounted to 119 M dry t (7% of the total 

stock on Swedish productive forest land) (Table 4). Most of the biomass was 

found in Norrland (64%), followed by Svealand (20%) and Götaland (16%). 

About 65% of the BDTF area fell within the 0–40 years average stand age class 

(with 7% and 58% in the 0–20 and 21–40 years classes, respectively). Stands 
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41–60 years and > 60 years old accounted for 19% and the remaining 16% of 

the BDTF area, respectively. The average stand age (Figure 6) increased from 

South to North and East to West, being 28, 33, 42 and 57 years in Götaland, 

Svealand, southern Norrland and northern Norrland, respectively. Average 

BDTF characteristics are reported as cumulative percentages in Figure 7.  

The analyses revealed a techno-economical harvesting potential of 4.3 M dry 

t year-1 of undelimbed whole trees (10.2 M m3 year-1) and 3.0 M dry t year-1 of 

delimbed stemwood including tops (7.5 M m3 year-1) (Paper I). 

 
Figure 7. Characteristics of the BDTF across the whole of Sweden. The y-axis shows the 

cumulative percentage of the area occupied by the stands characterized by the parameters 

represented on the upper and lower x-axes. The absolute BDTF areas are shown in Table 4. 

4.2 Paper II 

4.2.1 Characteristics of power line corridors 

The inventory of the harvesting units (Table 5) revealed a dominance of 

broadleaves, high tree densities (range: 10 080–30 239 trees ha-1) and above-

ground biomass density (i.e. biomass removal) of 19–37 dry t ha-1. The measured 

biomass removal (dry t ha-1) was modelled as a function of the average tree 

height, denoted h (m), yielding Eq. 2 (R2
adj=0.573;  p=0.0017). 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 = 0.6712 + 5.8736 × ℎ (2.) 
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Table 5. Main parameters of the harvesting units. 

Unit Species1 

(% b/s/p) 

DBH2 

(cm) 

DSH2 

(cm) 

Height2 

(m) 

Density 

(trees ha-1) 

Harvested 

area3 (m2) 

Harvested 

biomass4 

(dry t) 

Biomass 

removal 

(dry t ha-1) 

1 86/12/2 2.7 4.0 3.7 15 717 908 2.52 27.8 

2 93/7/0 2.3 3.4 3.5 30 239 795 1.64 20.6 

3 73/24/2 2.3 3.5 3.4 20 640 812 1.85 22.8 

4 86/11/4 3.1 4.4 4.0 14 854 819 1.90 23.2 

5 86/14/0 4.7 6.5 4.9 15 385 592 2.16 36.5 

6 93/7/1 4.7 6.2 4.7 15 099 677 2.17 32.1 

7 85/15/0 3.1 4.5 4.0 13 396 659 1.51 22.9 

8 94/6/0 2.5 3.7 3.8 15 648 921 1.76 19.1 

9 92/8/0 2.4 3.6 3.7 15 252 1 120 2.14 19.1 

10 95/5/0 3.7 5.2 4.5 10 080 600 1.61 26.8 

11 99/1/0 3.5 4.9 4.5 12 202 668 1.45 21.7 

12 95/5/0 3.0 4.3 4.1 12 732 609 1.52 25.0 

13 98/2/0 3.9 5.1 6.3 17 507 620 2.19 35.3 

Mean 90/9/1 3.2 4.6 4.2 16 058 754 1.88 25.6 

1. b, broadleaves (birch, Betula spp., and willow, Salix spp.); s, spruce (Picea abies); p, pine (Pinus sylvestris).  

2. Mean values, weighted by basal area. In every sample plot (6 plots per unit), the DBH of all trees with DBH 

≥ 1 cm was measured. The diameter at stump height (DSH, measured at 10 cm above the ground, i.e. the 

estimated cutting height) and the tree height were measured for a sample of 3 trees per plot. 

3. The effective harvested area was measured after forwarding using a GPS on a personal data assistant. 

4. The harvested biomass was forwarded to the roadside landing and weighted, one unit at a time, with an axle 

load scale system. MC was determined according to EN 14774-2:2009 (CEN, 2009a), cutting 3 wood discs from 

10 sample harvested trees, and it averaged 45% (range: 43.7–46.2%). 

4.2.2 Mechanization of power line corridor cleaning 

The harvester was studied during 14.62 SMh (1.9% delay time) and its efficiency 

(PMmin dry t-1) was modelled based on the field observations, as a function of 

the average tree height, denoted h (m), yielding Eq. 3 (R2
adj=0.617; p=0.0009). 

Harvester′s efficiency = e5.4935 × ℎ−1.379 (3.) 

The forwarder was studied during 4.73 SMh (1.3% delay time). One load was 

sufficient to complete the extraction of the biomass in each unit (a full load 

corresponded to 2.52 dry t). The efficiency (PMmin dry t-1) of the work element 

Loading was modelled as a function of the removal of biomass per unit, denoted 

b (dry t ha-1, Eq. 2), yielding Eq. 4 (R2
adj=0.468; p=0.0059). The time 

consumption of Driving empty and Driving loaded was modelled as a function 

of forwarding distance (one-way), denoted d (m), using the average measured 

empty and loaded driving speeds of 83.1 and 67.3 m min-1, respectively. Average 

efficiency values of 2.11, 1.08, and 0.51 PMmin dry t-1 were used for Driving 

while loading, Unloading, and Miscellaneous, respectively. The forwarder’s 
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efficiency (PMmin dry t-1) was then modelled based on the summed field 

observations of these work elements, yielding Eq. 5. 

Loading efficiency = 𝑒3.6365 × 𝑏−0.7616 (4.) 

Forwarder′s efficiency = 𝑒3.6365 × 𝑏−0.7616 +
(

𝑑
83.1

+
𝑑

67.3
)

2.52
+ 2.11 + 1.08 + 0.51 (5.) 

For the modelled unit size of 1 ha, and considering the lowest (3.4 m) and highest 

(6.3 m) average tree heights observed in the field, the net income for the 

mechanized harvesting system was negative (Figure 8). The net income of the 

mechanized harvesting system and the cost of motor-manual clearing reached 

the same (negative) value for an average tree height of 5.9 m. Therefore, for trees 

above this height, the mechanized harvesting system would be a more cost-

efficient alternative. For an average tree height of 7.6 m, the mechanized system 

would give a net income of zero. 

 
Figure 8. Net income of the mechanized harvesting system (i.e. harvester and forwarder) and costs 

of motor-manual clearing as functions of the average tree height. The red circles indicate the tree 

heights at which the net income of the mechanized system equals the cost of motor-manual clearing 

(left) and the mechanized system gives a net income of zero (right). 

4.3 Paper III 

4.3.1 Characteristics of windrow storage sites and fuel-chip quality 

A total windrow stacked volume of 42 298 bulk m3 was measured in the field, 

and a total fuel-chip mass of 2 651 dry t (12 940 MWh) was scaled at the CHP. 

To facilitate subsequent analyses in Paper IV, the surveyed characteristics 

(attributes) of the windrows and storage sites were analysed using Stat::Fit®, to 

find probability distributions fitting the fieldwork data (Table 6). To ease the 

interpretation of the distributions, the range of variation (around the median) of 
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95% of the measurements was determined. The survey found that most LR 

windrows were located in the cutting site and were outside the reach of the 

chipper’s crane if operated from the roadside (Table 7). Conversely, most ST 

windrows were placed on a roadside or a large landing, within reach. 42% of the 

total sampled windrows were not reachable from the roadside. 

Table 6. Main attributes of the surveyed sites in forest and other land. 

Attributes Unit Distribution 95% of values between 

Site size1 dry t Gamma (12,1.53,44.6)2 42-88 

Individual windrow size dry t Gamma (12,3.43,10.9)3 30-55 

Moisture content (MC) % Triangular (26,45,61)4 44-48 

Trucking distance from sites to the 

terminal or end-user5: 

   

May-November km Triangular (40,49,99)4 45-54 

December-April km Triangular (4,27,35)4 20-29 

Relocation distance between sites6 km Beta (0.10,68,0.56,4.83)7 5-15 

1. Surveyed sites consisted of 1–10 windrows. 

2. Gamma (minimum, shape parameter, scale parameter), with an upper boundary of 350 dry t.  

3. Gamma (minimum, shape parameter, scale parameter), with an upper boundary of 111 dry t. 

4. Triangular (minimum, mode, maximum).  

5. Observed trucking distances to the CHP during fieldwork. To be used in Paper IV, distances were clustered 

into two groups: one for sites that were far from end-users (during the low heating season) and the other for sites 

close to end-users (during the high heating season). The distribution of trucking distances between the sites and 

terminal was assumed to be identical to that for distances between sites and end-users. 

6. Distances were calculated based on the chipper’s routes observed during the fieldwork. 

7. Beta (minimum, maximum, lower shape parameter, upper shape parameter). 

Table 7. Windrow placement and underlay for tipping over the chip-bin. 

Assortment Placement (%)  Underlay1 (%) 

 Roadside Big landing Out of reach  Snow Clean bare ground Forest ground 

LR 32 2 66  41 7 52 

ST 63 28 9  91 3 6 

1. Snow was often compacted and flattened by the forwarder’s front-mounted shovel and crane, with the help of 

a log. Clean bare ground consisted of grass or gravel. Forest ground (in the cutting site) was an irregular underlay 

with stumps, undergrowth, moss, mineral soil, etc. 

 

The overall mean plant-determined MC was 45% and varied significantly both 

between and within sites, with inter- and mean intra-site standard deviations of 

7.1% and 3.4%, respectively. Comparisons revealed that the MC associated with 

assortments (LR vs. ST) or sampling methods (fieldwork vs. plant) did not differ 

significantly. LR yielded significantly (ca. two-fold) higher proportions of fines 

(particle size class < 3.15 mm) and oversized (> 63 mm) fractions than ST (12.2 

vs. 5.8% and 2.2 vs. 1.1%, respectively), and significantly higher AC (mean 
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2.43%, range: 1.67–3.44%, standard deviation 0.49%) than ST (mean 1.54%, 

range: 0.56–2.93%, standard deviation 0.56%) (Paper III). 

4.3.2 Predictive models of dry mass content in windrows 

Dry bulk densities of windrows averaged 68–66 and 58–59 dry kg bulk m-3 for 

LR and ST, respectively, depending on whether chipper or plant data were used. 

Dry bulk densities differed significantly between assortments but not between 

methods of calculation (i.e. the results obtained using chipper data did not differ 

from those based on plant data). Regression analyses showed that the dry mass 

of the windrows depended strongly on the windrow bulk volumes measured in 

the field and generated four predictive models (Figure 9): one for each 

permutation of dry mass of LR or ST based on chipper or plant data (i.e. one for 

each method of calculation). 

 
Figure 9. Predictive models for dry mass of LR and ST windrows. Confidence intervals (CI) and 

prediction intervals (PI) are represented by dashed lines and dotted lines (95% confidence level). 

4.4 Paper IV 

4.4.1 Simulated supply cost of chips 

The simulations revealed that the mean supply cost of chips was 9% higher on 

average (47.0 vs. 43.2 € dry t-1, range: 5–11%) in the combined SC scenarios 

than the direct SC scenarios. The cost of direct and combined supply to the CHP 

averaged 42.7 € dry t-1 and 47.0 € dry t-1 across scenarios, respectively, while 

those of direct and combined supply to the BR averaged 43.8 € dry t-1 and 47.0 

€ dry t-1, respectively. No significant differences in unitary biomass costs or 
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annual (total) supply costs were found between end-users in the combined SC 

scenarios, but direct supply to the BR yielded a 3% higher mean cost than to the 

CHP. System 1 accounted for 59–72% of the annual supply costs, including 

relocations, while System 2 was responsible for 28–35%. Because 42% of the 

sampled windrows were unreachable from the roadside (see Paper III), System 

1 was assigned a higher priority, leading to a comparatively high use of the 

forwarder-mounted chipper. This explains its large share of the total supply cost. 

System 1 also had an 8% higher operational cost than System 2 (44.2 vs. 40.8 € 

dry t-1). Terminal activities accounted for 5–6% of the annual supply cost in the 

combined SCs. 

Sensitivity analyses revealed that reducing the integration of chip supply 

from forests and other lands (increasing relocation distances from ca. 13 to 20 

km) increased supply costs by ca. 2% (average for both end-users). Conversely, 

increasing the integration (by reducing relocation distances from ca. 13 to 7 km) 

when supplying the CHP reduced mean supply costs by ca. 2%. A similar 

decrease was observed when supplying the BR directly, but the decrease was not 

significant (p=0.065) when compared to combined supply.  

The distribution of workload (represented by monthly production) over the 

year (Figure 10) when supplying the BR directly was more even than when 

directly supplying the CHP, which had a seasonal demand. Regardless of the 

end-user, combined supply via terminal evened out the contractors’ annual 

workload. 

 

Figure 10. Mean monthly production (dry t) of the supply fleet for direct (left) and combined chains 

(right) when supplying the combined heat and power plant (CHP) and biorefinery (BR) at the high-

demand level. FM=forwarder-mounted, SL=self-loading. 

4.4.2 Simulated chip flow 

In the low-demand scenarios, the chip supplier provided all agreed chip amounts 

on time. In the high-demand scenarios, supply was only delivered on time in the 
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combined SC scenarios (scenario 4 and 8); in direct SC scenarios (scenario 3 

and 7), a volume corresponding to ~8% (average 2 386 dry t) of the annual 

demand was not provided on time. In scenario 3, the CHP’s demand was not met 

on time for several days in January and February (peak demand), and also for 

several days in March, April, and early May (due to operational problems in the 

SC, i.e. untrafficability of forest roads). In scenario 7, the BR’s demand was not 

met on time for several days from the middle of March to the middle of May. 

For combined SC scenarios, at the high-demand level, the amount of biomass 

passing through the terminal ranged from 15 to 17% of the total supply (4 486–

4 927 dry t, in scenario 4 and 8, respectively). When supplying the CHP (Figure 

11), the storage of chips at the terminal increased from September and peaked in 

November. The majority of outbound deliveries occurred between the end of 

February and the beginning of May. Conversely, when supplying the BR, 

terminal storage accumulated more uniformly, peaking at the beginning of 

March. The majority of outbound deliveries occurred from March onwards. 

 

 
Figure 11. Mean chip flow in/out of the terminal (weekly) and storage levels (daily). 

Mean storage time at the terminal was 4–22% greater when supplying the CHP 

(28–15 weeks in the low and high-demand scenarios) than the BR (27–12 

weeks). The longer storage times, together with the higher mean storage levels, 

resulted in 12–43% greater DML when supplying the CHP (547–400 dry t, in 

the low- and high-demand scenarios) than the BR (488–279 dry t). DML when 

supplying the CHP corresponded to 2.5–1.4% of annual supply and 2.3–0.9% 

when supplying the BR, in the low- and high-demand scenarios, respectively. 
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5.1 Usefulness of results and filled knowledge gaps 

This thesis provides a foundation for further studies on forest operations. 

Furthermore, the results presented herein can be used for teaching and learning 

purposes to help students understand the state-of-the-art in residual biomass 

utilization, including issues such as biomass sourcing, SC engineering, chip 

quality assessment, and SCM. Target groups (stakeholders) likely to be 

interested in the outcomes reported here include policymakers, researchers, and 

industrial developers and practitioners in the SC. In a broader context, the global 

climate system (and thus society as a whole) could indirectly benefit from the 

implementation of this thesis’ concluding recommendations. 

5.1.1 To policymakers 

The quantification of the areal distribution, potential and characteristics of 

BDTF (Paper I), provides strategic information that could be used to develop 

new silvicultural regimes in forest management. For instance, early thinnings 

could be performed instead of PCT if there was a higher willingness to use ST 

in energy or biorefining processes (Sängstuvall, 2018; Karlsson, 2013). Paper I 

revealed the considerable sustainable potential of ST across Sweden 

(particularly in the northern part of the country), which could influence strategic 

decisions regarding investments in new infrastructure (e.g. railways or 

terminals) and new industries. The model presented in Paper IV could support 

such investments by guiding the design of environmentally sound and efficient 

forest biomaterial SCs. However, long-term stable policy frameworks are 

needed to enable the commercial-scale deployment of biorefining processes and 

investments in BRs (Mustapha et al., 2017a; Mustapha et al., 2017b).  

5 Discussion 



54 

 

There is an on-going electrification of passenger cars and light commercial 

vehicles worldwide (IEA, 2018b). Nevertheless, demand for fossil fuels is 

expected to increase in the coming decades (IEA, 2018a) because aircraft, ships, 

and heavy-duty vehicles such as trucks, forest machines, and construction 

machinery will continue to be powered by combustion engines for the 

foreseeable future. However, some of this demand could be met by biofuels. Of 

the feedstocks that could be used for biofuel production, residual forest biomass 

has one of the lowest carbon footprints (Ganguly et al., 2018; Valin et al., 2015). 

To avoid misleading interpretations and decisions, policymakers must take into 

account the time scales considered and assumptions made in analyses of the 

sustainability of feedstocks for biofuel production (Berndes et al., 2016). 

Additional policy instruments are needed to displace fossil fuels and make 

wood-based biofuels competitive. Residual woody biomass from forest and 

other lands is a local resource whose use contributes to the fulfilment of EU 

renewable energy targets (European Parlament, 2018), in line with the Paris 

Agreement, and help mitigate climate change. A higher mobilization of this 

biomass could further reduce the EU’s dependence on imported fossil fuels and 

imported pellets, enhancing energy security, maintaining and creating new jobs 

in rural areas, and increasing the resilience of forests towards disturbances such 

as wildfires and insect pests. 

5.1.2 To researchers 

Paper I refined earlier assessments of the potential of ST in Sweden 

(Athanassiadis & Nordfjell, 2017; Routa et al., 2013; Nordfjell et al., 2008). 

Sängstuvall (2018) found that previous potential assessments had yielded very 

different results depending on the model used, temporal scope, and assumed 

restrictions, which complicates direct comparisons. The calculated techno-

economical potential reported here should be considered optimistic because the 

inclusion of ecological constraints to account for impacts on nutrient balance in 

the remaining stands in the recommended manner (Agestam, 2015; Swedish 

Forest Agency, 2008), would reduce the calculated potential. Additional explicit 

economic restrictions (e.g. the imposition of minimum stand sizes or maximum 

forwarding distances) would further reduce this potential. Nevertheless, the 

results presented here could be used to further analyse logistics from BDTF to 

potential end-users, as shown by Sánchez-García et al. (2017). Such analyses 

could use optimization to find optimal locations for new BRs and terminals.  

The models of machine efficiency presented in Paper II could provide input 

data for other studies (e.g. simulation studies like that reported in Paper IV) and 

could also be applied to alternative lands with similar tree sizes and species, such 
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as cut-away peatlands (Jylhä et al., 2015). Other systems, such as biomass 

harvesters used in short rotation coppices (Vanbeveren et al., 2017), could also 

be suitable for use in PL corridors or linear clearings in firebreaks or roadsides. 

The models for predicting the dry mass content of windrows (Paper III) could 

be further developed for use as a decision-support tool in combination with 

drying models to forecast MC (Routa et al., 2015; Acuna et al., 2012). The 

potential of such approaches was demonstrated by Windisch et al. (2015), who 

combined DES and GIS to improve the allocation of a chip supply fleet in 

Finland. Similarly, Eriksson et al. (2017) developed and implemented another 

SCM system to prioritize chip deliveries based on storage time, fuel-chip quality 

and trucking distances. Predictive models (Figure 9) and drying models can 

provide input to such SCM systems, improving the precision of deliveries. 

5.1.3 To industrial developers and practitioners 

The calculated amounts of ST and the characteristics of their stands across 

Sweden (Paper I) clearly demonstrate that substantial quantities of material are 

available to contractors and could potentially supply BRs. The creation of new 

end-users and the considerable potential of ST could motivate investment by 

machine manufacturers and spur the development of ST harvesting technologies. 

The data on the characteristics of PL corridors (Paper II) could help the 

managers of PLs make strategic decisions about maintenance operations and 

better adjust the frequency of clearings with regards to safety regulations. For 

instance, a mechanized harvest of PL corridors could be integrated with forest 

operations in nearby forest land (using the same machines) to achieve cost 

savings. The analysis presented in Figure 8 could be used to guide the selection 

of a cost-efficient system based on the size of trees to be cleared. Even if it does 

not provide a direct economic profit per se, the results presented here show that 

residual biomass utilization could offset maintenance costs in PL corridors 

because the clearing has to be performed anyway. The efficiency models of 

machines developed in this work could be used to improve the planning of 

operations at the tactical and operational levels by helping to size the machine 

fleet, forecast the time required to complete operations, and determine whether 

machines are working properly. The base machines studied in Paper II (a 

harvester and forwarder) represent the most common machine system in forestry 

in Sweden. However, the usability of medium- or large-sized forest machines in 

operational environments other than forest land may be limited due to the low 

bearing capacity of the ground. For example, arable land has soft soil; this 

difficulty could be avoided by harvesting in winter when the ground is frozen or 
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in summer when it is dry. Alternatively, smaller forest machines or alternative 

systems (e.g. biomass harvesters or farm tractors) could be used. 

Paper III describes important characteristics of the operational environment 

and fuel-chip quality of LR and ST in northern Sweden. The survey revealed a 

wide range of variation in quality parameters (MC, AC and PSD), which poses 

challenges to end-users (e.g. the chips’ MC ranged from 26 to 61%). In this case, 

the end-user was a large CHP (Dåva 2 in Umeå), with flue gas condensation that 

can handle wide variation in chip quality (unlike small heating plants). The 

comparatively higher quality of ST than LR in terms of AC and PSD (less ash, 

fines, and oversized fractions) is consistent with previous reports (Kons et al., 

2015; Pettersson & Nordfjell, 2007). The results and findings presented in Paper 

III can be useful to contractors, chip supplier companies, and heating plants, 

helping them to improve their SCM.  

Since upstream and downstream SC operations are closely interconnected, a 

holistic, SCM approach, from the harvesting site to the end-user, is crucial for 

cost-effective delivery of high-quality residual biomass. Field observations 

(Paper III) revealed that some windrows contained small uprooted trees (with 

mineral soil and stones attached), perhaps resulting from the use of a roundwood 

rather than a slash grapple. Despite the cautious work of the operator, some 

impurity-containing biomass may have been fed into the chipper, leading to high 

AC in the sampled chips. Therefore, good communication between contractors 

along the SC is needed, since low-quality work in the initial stages results in low 

chipping productivity (as the operator will have to sort the material and change 

blades often) and low fuel-chip quality. The MC, AC and PSD of the delivered 

fuel-chips can thus be enhanced by maintaining proper handling practices along 

the whole SC. Attempts were also made to avoid overturning the chip-bin on 

bare forest ground (which increases the risk of contamination and material losses 

during fuel-chip loading onto trucks), but this was not always possible due to the 

narrow roadsides. From an SC manager perspective, it is preferable that 

contractors leave some material on the site (i.e. not forward it) than not load 

chips (or overspill) onto trucks, because each unit of produced chips accumulates 

a cost along the SC (Eriksson, 2016).  

The use of bottom sieves during chipping, and screening (Spinelli et al., 

2011), produce more homogeneous chips and improve the use of different 

particle sizes: e.g. fines could be used in BRs or potting-soil industries, medium-

sized fractions for combustion or torrefaction, and coarse fractions for further 

chipping. Fractionation can be combined with wind shifting to reduce amounts 

of impurities (e.g. stones). The resulting improvements in feedstock quality and 

system efficiency, together with the reduced risk of failure or damage to the end-

user’s feeding systems, may compensate for the extra costs of such systems. 
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The predictive models developed in this work (Figure 9) can forecast the dry 

mass content in windrows based on simple field measurements of windrows’ 

height, length and width. Their output can be used to estimate the chip volumes 

produced during chipping operations. This information can improve the 

planning of logistics on the tactical and operational levels by guiding the sizing 

of machine capacity (e.g. helping identify the optimal type of chipper and 

required number of trucks), system configuration, and vehicle routing. 

Alternatives to manual volume measurements, such as photogrammetric 

techniques (i.e. structure from motion) and drones can be viable options for 

stockpile inventory, especially at terminals and the end-user (Forsman, 2016). 

The simulation model presented in Paper IV was designed to quantify the 

extra cost of using a terminal in an SC for chipped LR and ST, and to study the 

logistical implications of supplying different end-users (CHP or BR) at different 

expected levels of demand. The main outcome was that the use of terminals 

increases supply costs compared to direct supply but helps to secure supply 

during peak demand and to cope with operational problems in the supply fleet 

(in cases where direct SCs would be unable to meet demand on time). The cost 

of not meeting demand on time can be difficult to quantify in real-world 

operation, so it can be convenient to use a terminal to reduce risks despite the 

increase in the cost of supply. The simulations also revealed that DML at 

terminals may amount to 0.9–2.5% of annual supply. Therefore, when managing 

terminals, DML should be minimized by using optimal storage methods (Anerud 

et al., 2018) and finding a balance between maintaining low storage levels and 

being able to rapidly meet demand as needed.  

Results (Figure 10–11) also revealed that direct supply of chips to a BR, and 

combined supply via-terminal to a CHP or BR evened out the contractors’ annual 

workload and enabled more steady annual operation. The model can be tailored 

to different cases to answer other questions and assist in decision-making 

relating to strategic (e.g. terminal design), tactical (annual procurement plans, 

supply fleet sizing, DML, etc.), and operational (machine utilization, vehicle 

routing, bottlenecks, etc.) issues.  

The key findings of this thesis and their practical relevance to selected 

stakeholders are summarized in Table 8.
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5.2 Strengths and pitfalls of chosen research methods 

The approach used in Paper I, involving static GIS-analysis of NFI data, made it 

possible to achieve the study’s goals and generate cartographic models with 

results on a regional or county level. To support future investment decisions, it 

would be necessary to account for the current and future demand nodes of this 

biomass, as highlighted by Sängstuvall (2018) and shown by Sánchez-García et 

al. (2015) in northern Spain. GIS permits advanced analyses (Grigolato et al., 

2017), but the quality of the outputs and reliability of results depends on the 

amount and quality of input data. Paper I used a high-detail dataset from the NFI, 

but comparable datasets may not be available in other countries, limiting the 

extent of the analyses that can be conducted; in such cases, it will be necessary 

to modify the study design used here accordingly. When working with large 

datasets, it is essential to understand how the data is structured. If a spatial 

representation was not needed, the analyses could be done in a spreadsheet. 

Paper II presented an experimental study, modelling the harvester and 

forwarder’s efficiency by measuring time inputs and mass outputs under 

controlled conditions in 13 different study units. The resulting models can 

predict the time consumption of similar machines in similar environments, but 

the studied units do not represent the whole spectrum of conditions existing in 

PL corridors. The study examined only one operator per machine, and while they 

were very skilled, operators affect system performance (Purfurst & Lindroos, 

2011). Therefore, the uncertainty of the models’ output would be increased if 

they would be applied to alternative conditions with different tree sizes, levels 

of terrain roughness or different machines. Time studies are commonly 

performed to measure work, and were performed by personnel using handheld 

equipment (manual timing) in Paper II. However, automatic data collection 

procedures could also be used (Manner, 2015; Nuutinen, 2013). Such 

approaches enable monitoring of machinery over longer periods, but the risk of 

losing detail and not fully understanding the studied working methods increases. 

In forestry studies, it is common to use tree volume or DBH to model harvester 

efficiency. However, tree height was chosen in this case because of its 

significantly greater effect on efficiency and because PL maintenance operations 

are based on tree height. PL corridors are a unique operational environment, with 

distinct safety regulations. Although the estimated costs of motor-manual 

clearing were based on productivity norms for PCT in conventional forestry, 

consultations with practitioners indicated that they were reasonable. 

Nevertheless, the economic analysis (e.g. Figure 8) should be adapted when 

applying the methods used here to other cases. 
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Paper III was an observational study, following the campaign of a chipping 

contractor in northern Sweden over two months. The predictive models (Figure 

9) developed in this study were based on a survey of 76 windrows at 34 sites and 

can be considered consistent. Photogrammetry and drone-based imaging could 

be used instead of manual measurements in such volume measurements 

(Forsman, 2016). The CHP provided a dataset recording the fresh, dry mass and 

MC of every truckload it received during the trial. However, a systematic 

sampling was lacking when fuel-chips were sampled in the field by the 

researcher. In practice, the number of samples taken depended on the time 

available before the chip-trucks started loading the chips. Therefore, the use of 

a standard method such as EN 14778:2011 (CEN, 2011) would have been 

impractical. Statistical analysis was thus restricted to linear regression analysis 

and ANOVA. With a more thorough experimental design, multivariate statistics 

could have been used to study the effect of storage conditions on fuel-chip 

quality. When determining MC for trade purposes, sampling must be performed 

correctly to correctly estimate MC. Therefore, the intensity of sampling should 

be adapted to the size of the chip delivery (Björklund & Fryk, 2014). 

Paper IV presented a simulation-based cost analysis. Simulations can help to 

evaluate real or future systems and their operational alternatives, at 

comparatively lower costs and with lesser risks than real-world experiments. 

Several assumptions and trade-offs were made when designing the simulation 

model, simplifying the real systems. However, increasing the level of detail 

wouldn’t necessarily improve the results. A balance must therefore be found, 

keeping in mind the simulation’s purpose. Given the interconnectivity and 

complexity of SC operations, DES was identified as a powerful method for 

modelling machine interactions and stochastic events. Its use was motivated by 

the results of Asikainen (1998), who found that costs can be underestimated by 

ca. 20% if delays caused by interactions and random elements (e.g. breakdowns) 

are neglected, and by the assessment of the differences between static 

approaches and DES presented by She et al. (2018). Although the modelled 

systems (Paper IV) were meant to be “cold”, it would have been impossible to 

perform the analyses using static, analytical approaches due to the large number 

of random variables that had to be accounted for. In addition to the capabilities 

of DES, the use of software such as ExtendSim®, which has a user-friendly 

graphical interface, made it possible to monitor material flows in real-time 

(Fernandez-Lacruz, 2018). It should be noted that several caveats emerged 

during the conduct of the simulation study. First, it was clear that learning-by-

doing and discussion with experts are needed for successful simulation. Second, 

transportation was not optimized, which could have reduced total supply costs. 

However, it is important to recall that real-world transportation may be non-
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optimal, as observed during the fieldwork (Paper III): the chipper often deviated 

from planned routes to find alternative sites because some forest roads became 

untrafficable due to freeze-thaw and snow melting during March-April. Third, 

hourly operating costs of machinery can be difficult to estimate, especially in 

isolated analyses such as those presented in Papers IV and II. A machine’s 

expected annual working time strongly affects its calculated hourly costs, so the 

economic results must be treated as an approximation of reality.  

Analysis of the four studies’ limitations thus yielded several learning 

outcomes, which are summarized in Table 9. 

5.3 Harvesting small-diameter trees 

The area of BDTF exhibiting a given stand characteristic depended on the 

parameter under consideration (Figure 7). For instance, about 13% of the BDTF 

area (~274 000 ha) contained stands with a mean DBH < 10 cm. Figure 7 also 

shows that over 67–47% of the stands had a density exceeding 2 000–3 000 trees 

ha-1, which is the target density for future crop trees after PCT (Skogskunskap, 

2019b; Varmola & Salminen, 2004). Analyses showed that only 12% of the 

BDTF area had been subjected to PCT. Parameters such as average stem volume 

(dm3) are arithmetic averages, and can therefore be misleading for plots with 

many small stems and a few big trees. The mean DBH is arguably a more robust 

indicator because it was weighted by basal area (i.e. thicker trees were better 

represented). To improve operations planning, detailed inventory data would be 

needed to assess the distribution across DBH classes, rather than average values. 

In the year 2010, the break-even tree size (for harvested trees) needed to make a 

profit in energy thinnings in Sweden was around a DBH of 8 cm (stem volume 

of ~35 dm3) (Di Fulvio et al., 2011a). In Finland, a DBH of 9–10 cm is seen as 

the break-even size for harvesting ST as pulpwood instead of fuelwood (Petty & 

Kärhä, 2014). This break-even size will depend on factors such as current market 

prices, species, and trucking distances to the end-user. Regional differences in 

mean annual stem volume increment explain the spread in stand age across 

BDTF (Figure 6), and for this reason the term “young” was avoided when 

referring to the BDTF; instead, the discussion and analysis focus on stand 

characteristics from a harvesting perspective.  

The harvester’s efficiency (Paper II) was consistent with that observed during 

harvesting of short rotation coppice willow (Di Fulvio et al., 2012), with the 

same AFH. The small trees of PL corridors, whose overall mean DBH and height 

were 3.2 cm and 4.2 m, respectively (Table 5), have stem volumes of ~3–5 dm3, 

similar to those in PCT stands. Forest stands with such undersized trees were 

excluded from analysis in Paper I because their use is unlikely to be economical 
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in the near future. Motor-manual clearing will continue to be a cost-efficient 

option in many operations related to landscape care activities, unless the tree size 

exceeds some threshold or the cost of contractors performing motor-manual 

clearing increases notably. In some cases, however, as found in Paper II, the 

recovery of biomass could partly offset maintenance costs even if it is not 

profitable. Other constraints, e.g. long forwarding distances, soft ground, or the 

need to strike agreements with different landowners (to drive forest machines 

across their estates) may limit the scope for mechanized harvesting in other 

lands. Conditions in other lands are very heterogeneous (Andersson et al., 2016; 

Fernandez-Lacruz & Bergström, 2015b; Iwarsson Wide, 2009), and they may 

contain large trees, as found in Paper III (where the mean butt-end diameter was 

11 cm). During PL corridor cleaning, the utilization of the forwarder’s loading 

capacity (18 t) never exceeded 25% (corresponding to a full load of 4.5 fresh t). 

To make the utilization of ST profitable (whether harvested in forest or other 

land), further development of cutting technology and working methods is needed 

(Jundén et al., 2013; Sängstuvall et al., 2012; Bergström, 2009). 

5.4 Current supply costs 

Di Fulvio et al. (2016) assessed the amount of LR that could be mobilized at a 

given supply cost in Europe. The costs of forwarding, chipping and transport are 

fairly similar for LR and ST (Ghaffariyan et al., 2017; Brunberg, 2013), so they 

were treated simultaneously in the simulations (Paper IV). Production of LR is 

integrated with that of roundwood, so its harvest adds no extra cost unless pre-

clearing is performed. The main difference in overall supply cost between LR 

and ST is the extra cost of felling ST, which requires a dedicated operation. The 

simulations showed that the costs of direct and combined supply via-terminal of 

chipped LR and ST to a CHP averaged 42.7 € dry t-1 (range: 42.2–44.0 € dry t-1) 

and 47.0 € dry t-1 (range: 45.8–48.3 € dry t-1) across scenarios, respectively, 

(accounting for the cost of chipping, relocations, transportation and eventual 

terminal cost). These values are within the cost range based on earlier studies 

(Väätäinen et al., 2017; Belbo & Talbot, 2014; Eriksson et al., 2014b; Brunberg, 

2013; Routa et al., 2013). Direct cost comparisons between studies can be 

difficult and misleading because specific results are only valid for a given set of 

input data and relationships between model components, which are often unique 

to the case study. For a tree height of 6 m, the cost of harvest and forwarding of 

ST during PL corridor clearing (including machine relocations) was 56.6 € dry 

t-1. In combination with the mean cost of direct supply to the CHP, the overall 
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supply cost (excluding additional costs such as stumpage and administration) 

would amount to 99.3 € dry-1 (for delivery at the industry gate). 

The simulation’s results (Paper IV) revealed that the mean supply cost of 

chips was 9% higher on average in the combined SC scenarios than the direct 

(i.e. just-in-time) SC scenarios. Direct supply was feasible in the low-demand 

scenarios, in which case using a terminal could be seen as an unnecessary cost. 

Conversely, at higher levels of demand, the agreed volumes could only be 

delivered on time when using the terminal (otherwise 8% of the annual demand 

could not be delivered on time). The terminal helped to secure supply during 

peak demand and to cope with operational problems in the supply fleet (i.e. 

untrafficability of forest roads and breakdowns) in cases where direct SCs were 

unable to meet demand on time. The model applied a mix of push-pull strategies: 

the inventory levels at the end-user’s buffer sent feedback upstream that 

controlled material flows and could cause the generation of new sites to be 

paused. The growth of the bioeconomy may spur an increase in the use of 

terminals as new industries flourish and existing industries increase in capacity, 

necessitating the construction of safe and efficient SCs. 

The simulations (Paper IV) assumed that trucks would relocate between sites 

until they were fully loaded (thus mixing chips from different sites). However, 

when forest owners’ associations supply chips, material from different sites must 

be kept distinct to compensate each landowner based on the amount of energy 

delivered. The results indicated that this alternative approach (in which trucks 

need not arrive at the CHP fully loaded) increased supply costs by 12%. This 

illustrates the large cost saving potential in transportation. The integration of 

scales into the trucks (von Hofsten, 2018) and the use of handheld equipment for 

MC determination (Fridh et al., 2018) could allow chips from different 

landowners to be mixed in the future.  

The simulations (Paper IV) indicated that integrating chip supply from 

forests and other land would reduce mean supply costs by 2% and allowed the 

forwarder-mounted chipper to perform more relocations by itself instead of 

using a truck with a low-bed trailer. The concept of integration should not be 

limited to comminution and transport; it is also applicable to upstream operations 

such as harvesting, forwarding, and managerial work (which generates overhead 

costs). The cost savings of integration would be greater if flexible harvesting 

systems were used for diverse operations, i.e. harvesting and forwarding 

(Joelsson et al., 2016; Bergström & Di Fulvio, 2014b; Di Fulvio & Bergström, 

2013; Di Fulvio et al., 2011a). Integration of fuel- and pulpwood harvest could 

be performed in large areas of BDTF based on their characteristics (Figure 7); 

in Finland, integration was found to be most cost-efficient for trees of DBH < 

15 cm (Petty & Kärhä, 2014). Alternatively, a single assortment could be 
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produced, e.g. bundled whole tree-parts, and the fuel- and pulpwood fractions 

could be separated at the end-user (Bergström et al., 2016; Jylhä, 2011). 

Integration could be relevant to private forest owners’ associations because 

contractors work in relatively small sites and must relocate several times per 

year. Integrating biomass supply from forest, agricultural, and other land could 

thus reduce supply costs to future BRs (Sultana & Kumar, 2011). 

5.5 Potential cost savings by improving supply chains 

The practical implementation of the methods and results presented in this thesis 

and earlier publications could improve operations in the SC and SCM as a whole. 

Even if an improvement only yields a small percentage decrease in supply cost 

(per unit of finished product), this can give large savings (increases in profit 

margins) because of the large volumes of chips traded by chip supplying 

companies over a year. Improvements leading to cost savings are relevant to 

industries that rely on continuous material flows (sawmills, pulpmills, future 

BRs) and those with seasonal demand (CHP and heating plants). In addition to 

cost savings, adding value (quality improvement) to the supplied feedstock is 

also important. Considering an ST-derived chip SC (from the standing tree to 

the end-user), a potential conservative estimation of cost savings along different 

operations in the SC (relative to a business-as-usual baseline) would be: 

 Harvest and forwarding (using boom-corridor thinnings, optimized bundle-

harvesters and load-compression devices in the forwarder): 12%  (Bergström 

& Di Fulvio, 2014a). 

 Enhanced windrow storage (decreasing MC to 35%): 10% (Eriksson et al., 

2014a). 

 Enhanced material handling at roadside (minimizing material losses): 4% 

(Eriksson et al., 2014a). 

 More efficient chipping at roadside. Many measures could increase 

efficiency (Eliasson, 2016); a good example is replacing chipper knives 

before they become too blunt: ~5% (Eliasson et al., 2011). 

 Higher supply integration between forest and other land (only for 

comminution and transport): 2% (Paper IV). 

 Higher efficiency of truck transportation (ensuring full truckloads): 12% 

(Paper IV). 

 Optimising transportation and time of delivery, aggregating different 

assortments, and collaboration: 22% (Flisberg et al., 2015). 

 

The above estimates show that there is the potential for large cost savings along 

the whole SC. Further cost savings of 10% could be also achieved, e.g. by using 
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74-ton chip-trucks (Enström, 2016). Such savings would reduce the required 

inputs of work time and fuel as well as the carbon footprint of SC operations. 

However, further improvements of harvest and comminution operations 

(technology, working methods) and logistics are needed to realize this cost 

saving potential, as also highlighted by Röser (2012) and Ranta (2002). 

Windisch et al. (2010) estimated that cost savings of 40% over the SC could be 

achieved by implementing an SCM tool for forest fuel procurement. Systems for 

SCM using optimization, information and communication technologies (GIS, 

GPS, wireless) already exist for roundwood procurement (Svenson, 2017; 

Dahlin & Fjeld, 2004; Mikkonen, 2004), but they are less well established in the 

forest fuel business. Systems for on-line measurement of chip quality parameters 

(Fridh, 2017; Fernandez-Lacruz & Bergström, 2015a) could also improve SCM.  

An SCM perspective is needed to avoid sub-optimizing systems (Dahlin & 

Fjeld, 2004). The truth of this comment was especially apparent in Paper III, 

which showed that SC activities upstream (harvest and forwarding) were closely 

interrelated with activities downstream (chipping and transport), and that both 

affected the quality and production cost of the fuel-chips. Placing windrows 

closer to the roadside (when forwarding the LR and ST into windrows) would 

have reduced terrain driving time for the chipper (which always discharged its 

chip-bin by the roadside) and increased chipper utilization rates, reducing overall 

supply costs. The placement of windrows far from the roadside appears to have 

been driven by a lack of space, low-hanging PL conductors, terrain conditions, 

and deliberate choices probably made to dry the biomass more effectively. 

5.6 Current demand, future opportunities and challenges 

Despite the large potential of ST in forest (Paper I) and other land (Andersson et 

al., 2016), and the potential of LR in forest land (Di Fulvio et al., 2016; Routa 

et al., 2013), only a small part is currently used. High supply costs prevent higher 

utilization of these biomass resources. In parallel, the availability of cheaper 

energy feedstocks (bark, sawdust, sub-standard roundwood, demolition waste 

wood, household waste, etc.) makes it difficult to bring ST and LR to the market 

cost-competitively. The prices paid for biomass at the gates of industry affect all 

upstream operations in the SC, determining how far the biomass can be delivered 

profitably and whether it is profitable to extract biomass at all (Joelsson et al., 

2016; Fernandez-Lacruz & Bergström, 2015b). Average prices paid for fuel-

chips at the gates of CHP and heating plants decreased by 16%, from 22.3 

€/MWh (~108 € dry t-1) in 2011 to 18.8 €/MWh (~91 € dry t-1) in 2017 (Swedish 

Energy Agency, 2019). End-users’ willingness to pay for expensive assortments 

such as LR, ST and stumps is thus low. Low prices could even cause the 
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disappearance of SCs that took several years to establish, along with “know-

how”, investments in machinery and jobs in rural areas (Segerstedt, 2016). 

However, recent signs point to a change in this trend (Melin, 2018). 

To reduce the dependence on the ups and downs of the energy market, the 

use of LR and ST could be increased by creating new sources of demand such 

as BRs that convert these biomasses into high-value products (Bergström & 

Matisons, 2014; Karlsson, 2013). It seems the use of LR and ST will be favoured 

in the near future versus stumps (Väätäinen, 2018), partly because of the 

comparatively high supply costs of stumps (Brunberg, 2013). However, LR and 

ST will require new developments to realize their sustainable potential in a cost-

competitive way, and to compete with petrol-based feedstocks in refineries. 

The willingness of forest owners to mobilize LR and ST will also increase if 

a sufficiently lucrative market exists. Current forest management practices treat 

the harvest of ST as a corrective action to create value in a stand (Mellanskog, 

2019) rather than an alternative to PCT (Sängstuvall, 2018). However, 

management regimes could change if the demand for ST increases. Concerns 

about soil damage, nutrient depletion, and impacts on biodiversity must also be 

addressed, e.g. by adopting novel methods (Marra et al., 2018). The regular 

clearing of vegetation during landscape activities is considered beneficial for 

biodiversity, as many species are dependent on open landscapes, but this 

depends on how, where and when the clearing takes place (Andersson et al., 

2016). The extent of nutrient removal caused by extracting LR and ST will 

depend on the properties of the stand, making it difficult to draw general 

conclusions; ash recycling can therefore be recommended (Emilsson, 2006). 

European forests have been intensively shaped by humans over the last 

5 000–6 000 years following the settlement of the first agricultural societies 

(Kaplan et al., 2009). During the twentieth century, Europe’s forest land area 

and growing stock has increased markedly (Nabuurs, 2016), due to the practice 

of sustainable forest management, afforestation, reforestation, and 

socioeconomic changes that are leading to the abandonment of agricultural land 

and natural overgrown (McGrath et al., 2015; Terres et al., 2013). Some studies 

have quantified the conversion of agricultural land into forest land, in Sweden 

(Kempe & Fridman, 2011), Spain (Delgado Artés, 2015) and the whole of 

Europe (Fuchs et al., 2015; Fuchs, 2013). In contrast to the situation in Europe, 

deforestation continues in Latin America, Africa and subtropical Asia, with 

commercial agriculture being its main driver (Kissinger et al., 2012). Melin 

(2014) showed that from 1980 to 2010, the total growing forest stock in Europe 

increased by ~60% (~10 billion m3). It is therefore reasonable to expect an 

increase in the volumes and areas covered by dense stands for the foreseeable 

future, posing new challenges and opportunities for their management. 
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The overall conclusions of this thesis are that: 

 There are large amounts of underutilized, residual ST in Sweden, in forest 

and other lands, that could boost the growth of the bioeconomy.  

 It is possible to utilize part of the sustainable potential of ST and LR in a cost-

efficient way, but further developments of supply systems (working methods 

and technology) and forest management (e.g. new silvicultural regimes in 

which early thinnings are performed instead of PCT), are needed to reduce 

supply costs and fully utilize their sustainable potential.  

 There is room for large cost savings in the SCs of ST and LR if further 

developments of supply systems are implemented. 

 Simulation is a powerful tool for SC engineering, allowing different 

scenarios to be tested at minimal cost and risk in order to advise decision-

makers. 

 

More specific conclusions include: 

 Biomass-dense thinning forests (containing ST) constitute a large biomass 

resource in Sweden (especially in the northernmost part), covering at least 

9% (2.1 M ha) of the productive forest land area. 

 Large proportions of biomass-dense thinning forests could be thinned with 

existing technologies and working methods, but further technological 

developments are needed to increase their cost-competitiveness. 

 The use of machines for harvest and extraction of the overgrown vegetation 

in power line corridors can be a more cost-efficient alternative than motor-

manual clearing (if trees are at least 6 m high). Cost-competitive utilization 

6 Conclusions 
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of residual woody biomass from landscape care operations is therefore 

possible in stands that have reached a certain tree size. 

 Even if it does not provide a direct economic profit per se, the maintenance 

costs of essential infrastructure (e.g. power lines, roads, railways, etc.) could 

be partially or fully offset by biomass recovery. For safety reasons, this 

overgrown biomass must be cleared in any event. 

 Fuel-chips from undelimbed ST were of higher quality than those from LR 

(less ash, fines and oversized fractions) for the end-user considered (direct 

combustion for heat and power). However, in the growing bioeconomy, 

quality requirements will differ between end-users. 

 The predictive models developed to estimate dry mass contents in windrows 

containing LR or ST can be used as decision-support tools in logistics 

planning to size supply fleets and estimate costs. They could also be 

combined with drying models to provide input to SCM systems. 

 Fieldwork and analyses revealed that since upstream and downstream SC 

operations are closely interconnected, a holistic, SCM approach that 

considers flows from the harvesting site to the end-user is needed for cost-

effective delivery of high-quality residual woody biomass. 

 The simulation model indicated that the use of terminals can increase supply 

costs by 5–11% (when compared to direct supply), but terminals help secure 

supply during peak demand and cope with operational problems in the 

supply fleet in cases where direct SCs would be unable to meet demand on 

time. 

 Direct supply of chips to a biorefinery, and combined supply via-terminal to 

a combined heat and power plant or a biorefinery, can even out contractors’ 

annual workload, enabling more steady annual operation. 

 Integrating the supply of residual biomass from forest and other land could 

reduce supply costs by at least 2%, and mixing chips from different sites 

until trucks were fully loaded could reduce supply costs by 12%. 

 

This thesis covers the whole SC from the forest and other land to the end-user 

(Figure 1): Papers I and II describe supply sources, Paper II addresses cutting 

and extraction, Paper III examines storage, and Paper IV deals with chipping and 

final transport to the end-user, either directly or via a terminal. Despite the 

Swedish scope of this work, its conclusions could be valid in other countries or 

regions facing similar problems, challenges and opportunities. However, to 

produce meaningful results in other contexts, the methods presented here will 
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have to be tailored to the case at hand, using representative input data for the 

operational environment. Suitable data sources include: 

 Forest inventory data (with an appropriate level of detail and geographical 

extent). 

 Supply systems data (e.g. the available machinery in the case study area, the 

structure of the wood supply business: current practices, the organization of 

the SC, and its efficiencies and operational costs). 

 Structure of the demand: (e.g. type of consumer of the biomass, required 

quality and volumes, current market price for the biomass). 

 Sustainability and legal constraints (e.g. limitations of the ground’s bearing 

capacity, steepness of terrain, biodiversity considerations, nutrient balances 

in the stand, and laws regulating forest operations). 
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Future studies could assess the impact of integrating residual woody biomass 

supply from forest, agricultural, and other lands on factors such as cost-

efficiency, biodiversity, soil damage, nutrient balances, and employment and 

welfare in rural areas. A potentially interesting issue to study is integrated 

harvesting using multipurpose machines (e.g. feller-bundlers, harwarders, 

biomass harvesters) and integrated logistics. 

Additional GIS-based analyses could consider demand nodes (e.g. pulpmills, 

CHP and heating plants, future biorefineries) to estimate transport distances and 

supply costs of residual biomass on a detailed level. Optimization techniques 

could be used to determine optimal locations of terminals and conversion 

facilities, and to identify the optimal area of supply needed to meet a specific, 

integrated, demand. 

Another area in need of further development is the design of decision-support 

tools based on information systems, simulations, and existing results from 

research. This could be done by extending systems for SCM of primary forest 

fuels (as used with roundwood) using input data from, e.g. predictive models of 

dry mass and moisture content. This could help improve the allocation of supply 

fleets and improve overall SC efficiency. In general, more development work is 

needed to translate the results of applied research into practice. 

Further research in neighbouring areas could focus on the integration of 

residual woody biomasses (e.g. LR, ST and stumps) into biorefinery processes. 

  

7 Future research 
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Forestry is regarded as a cornerstone that will enable the transition towards a 

low-carbon, sustainable and circular biomass-based economy in Europe while 

safeguarding biodiversity and other ecosystem services. If the bioeconomy 

develops, there will be an increase in demand for forest biomass for energy and 

for traditional and new wood-based products (textiles, bioplastics, liquid 

biofuels, etc.). Consequently, there will be a need to increase the mobilization of 

underutilized residual woody biomass resources such as logging residues (LR) 

and small-diameter trees (ST). In addition to the residual biomass in forest land, 

significant amounts can be found in other land such as overgrown agricultural 

land, power line corridors, and roadsides. At present, most LR and ST are used 

to generate renewable heat and electricity, and delimbed ST are used for pulping. 

Biorefineries could become major consumers of this residual biomass in the near 

future. However, high supply costs make it difficult for LR and ST to compete 

with cheaper feedstocks in the market, limiting their utilization. This thesis 

aimed to measure and analyse characteristics of LR and ST in forest and other 

land in Sweden, and the efficiency and costs of their supply systems. The results 

obtained offer useful knowledge for policymakers, researchers, and industrial 

developers and practitioners that could improve LR and ST supply chains, 

increasing their ability to compete with cheaper feedstocks and their utilization. 

The main findings of this thesis were: 

1 There are large amounts of underutilized residual ST in Sweden which can 

boost the growth of the bioeconomy. Dense thinning forests cover 2.1 million 

ha (much of which is in northern Sweden), or around 9% of Sweden’s 

productive forest land area. However, further developments of supply 

systems (technologies and working methods) are needed to realize their 

sustainable potential at a competitive cost. 
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2 Depending on the tree size and market conditions (the price paid for the 

biomass and distance to the plant), it could be economically viable to use 

forest machines to harvest and extract overgrown vegetation in power line 

corridors and use it later for generating heat and power (instead of current 

clearing practices with a brush saw and leaving the trees to rot in situ). Even 

if it doesn’t provide a direct economic profit per se, the extraction and sale 

of this biomass could partial- or totally offset maintenance costs of power 

lines and other infrastructure (roads, railways, etc.). For safety reasons, 

these trees must be cleared no matter how they are subsequently used. 

3 ST-derived fuel-chips were of higher quality than those from LR, having less 

ash, fines and oversized fractions for renewable heat and power generation. 

However, holistic management of the supply chain, from the site to the end-

user, is crucial for cost-effective delivery of high-quality chips. 

4 We can predict the dry weight of windrows containing LR and ST by taking 

simple measurements (height, length and width) in the forest and using 

predictive models. These models could be used to improve the management 

of operations and logistics. 

5 Using terminals increases supply costs (when compared to direct supply), 

but terminals help secure supply during peak demand and cope with 

problems in the supply fleet (machine breakdowns and extreme weather), that 

would prevent direct supply chains from meeting demand on time. The cost 

of not meeting demand on time can be difficult to assess in the real-world, so 

terminals reduce risk. 

6 There is room for large cost savings along the whole supply chain of ST and 

LR, when compared to current practices. These monetary savings could also 

reduce CO2 emissions associated with production processes in the chain. 

However, cost savings will only be realized if technology, working methods, 

supply systems and management of the supply chain are notably improved. 

7 Simulation is a tool for supply chain engineering that enables testing in 

different scenarios, allowing decision makers to obtain good advice at 

minimal cost and risk (compared to real-world experiments). 

 

Residual woody biomass such as ST and LR is an indigenous resource that can 

reduce our dependence on fossil fuels and enhance energy security, providing a 

benefit in the fight against climate change. The sustainable use of ST and LR 

from the forest and other lands represents an opportunity to maintain and create 

new jobs in rural areas, at the same time, increasing the resilience of forests 

against disturbances such as wildfires and insect pests.  
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Skogsbruk är en hörnsten för att möjliggöra övergången till en koldioxidsnål, 

hållbar och cirkulär biobaserad ekonomi i Europa. Detta samtidigt som man 

säkerställer bevarandet av den biologiska mångfalden och andra 

ekosystemstjänster. Om bioekonomin fortsätter att växa, förväntas efterfrågan 

på skoglig biomassa för energi samt traditionella och nya träbaserade produkter 

att öka (textilier, bioplaster, flytande biodrivmedel, osv.). Det medför i sin tur att 

försörjningskedjor för underutnyttjade biomassaresurser som grot (grenar och 

toppar) och klenträd, utvecklas och effektiviseras. Betydande mängder av grot 

och klenträd kan även skördas från andra marker än skogsmark som igenväxta 

jordbruksmarker, kraftledningsgator, vägkanter, osv. Höga kostnader för skörd 

och transport av dessa råvaror gör det dock svårt att etablera dem på marknaden 

till ett konkurrenskraftigt pris (jämfört med andra billiga och/eller icke förnybara 

råvaror), vilket begränsar dess utnyttjande. Att styra försörjningskedjan av grot 

och klenträd är komplext då den består av sammankopplade operationer (skörd, 

terrängtransport, flisning, vägtransport) utförda av flera entreprenörer. Syftet 

med denna avhandling var därför att analysera effektivitet och kostnader på 

försörjningssystem för grot och klenträd till dagens och morgondagens industrier 

i Sverige. De viktigaste resultaten av denna avhandling är följande: 

 

1 Det finns stora mängder av outnyttjade resurser av klenträd i Sverige, som 

kan utgöra en råvara till nya bioraffinaderier. Täta (och ofta unga) 

gallringsskogar täcker 2.1 million hektar (65% av dessa är belägna i 

Norrland), vilket motsvarar ungefär 9% av den total produktiva skogsmarken 

i Sverige.  

2 Beroende på trädstorleken och marknadspris som betalas för biomassan, kan 

det löna sig att använda skogsmaskiner för att ta tillvara klenträd från 

igenväxta kraftledningsgator och producera förnybar bioenergi (värme och 

el). Nuvarande praxis är att man röjer motormanuellt med en röjsåg och 

Populärvetenskaplig sammanfattning 
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lämnar klenträd kvar i beståndet. Tillvaratagandet av dessa klenträd kan 

således minska underhållningskostnaden för viktig infrastruktur 

(kraftledningar, vägar, järnvägar, osv.). Även om en skörd inte ger en 

nettoinkomst för markägaren, kan kostnaden understiga en röjningskostnad. 

På grund av säkerhetsskäl måste dessa klenträd oavsett röjas bort! 

3 Bränsleflis från klenträd har högre kvalité än bränsleflis från grot (mindre 

mängd aska och mer homogen flisstorlek) för generering av förnybar 

bioenergi. Resultaten visar att kommunikation mellan de olika 

entreprenörerna i varje led av försörjningskedjan är avgörande för att kunna 

leverera bränsleflis av hög kvalité för ett lågt pris. 

4 Vi kan förutse torrvikt på vältor som innehåller oflisad grot och klenträd 

genom att med enkla mätningar (höjd, längd och bredd), mäta vältors volym 

i fält och sedan prediktera torrvikten med framtagna modeller. Dessa 

modeller kan användas i praktiken för att förbättra logistiken (till exempel 

styra flishuggar och transporter) som i sin tur medför en effektivisering av 

leveranser. 

5 Trots att användandet av terminaler i försörjningskedjan höjer 

försörjningskostnaderna till industrierna så medför det att man kan 

säkerställa försörjning när efterfrågan är som högst och när det finns stor 

risk för störningar i flödet (till exempel under vårförfallet) eller vid 

maskinavbrott. 

6 Det finns utrymme för kostnadsbesparingar längs hela försörjningskedjan av 

grot och klenträd. Teknik, arbetsmetoder och system för de olika delarna i 

försörjningskedjan behöver dock utvecklas ytterligare för att kunna 

möjliggöra betydande besparingar och utnyttja den hållbara potentialen av 

grot och klenträd. 

7 Simulering av försörjningskedjor möjliggör att man kan svara på olika 

frågor och rådgöra beslutsfattare till en mindre kostnad och risk än att 

genomföra verkliga tester. 

Detta avhandlingsarbete utgör ett underlag för vidareutveckling av 

forskningsmetoder, effektivisering av försörjningskedjor, politiska beslut 

rörande bioekonomi, osv. I slutändan kan detta medföra ett ökat utnyttjande av 

hållbar biomassa från det svenska skogsbruket samt annan produktionsmark. 

Grot och klenträd representerar en inhemsk resurs som kan minska vårt beroende 

av fossila bränslen och öka energisäkerheten, vilket är positivt i kampen mot 

klimatförändringen. Den hållbara användningen av grot och klenträd är också ett 

sätt att behålla och skapa nya arbetstillfällen på landsbygden och öka skogarnas 

motståndskraft mot till exempel skogsbränder och skadegörare. 
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La silvicultura se considera una piedra angular para hacer posible la transición a 

una economía circular basada en la biomasa, baja en carbono y sostenible en 

Europa (al mismo tiempo, salvaguardando la biodiversidad y otros servicios 

ambientales). Si el desarrollo de la bioeconomía continúa, se prevé un 

incremento de la demanda de biomasa forestal para energía y productos de 

madera convencionales e innovadores (textiles, bioplásticos, biocombustibles 

líquidos, etc.). A su vez, será necesario incrementar el aprovechamiento de la 

biomasa forestal residual, como por ejemplo restos de corta (RC) y árboles de 

pequeñas dimensiones (AP). Además de los RC y AP en montes, existen 

cantidades significativas en terrenos agrícolas abandonados, pasillos de líneas 

eléctricas (franjas de servidumbre), cunetas, etc. No obstante, los elevados costes 

de suministro hacen difícil llevar RC y AP al mercado a un precio competitivo 

(comparado con otros recursos más baratos y/o no renovables) y limitan un 

mayor aprovechamiento. La gestión de la cadena de suministro de RC y AP es 

compleja, ya que se compone de múltiples actividades relacionadas entre sí 

(corta, desembosque y apilado, astillado, transporte a planta, etc.) y llevadas a 

cabo por diferentes maquinistas. El objetivo de esta tesis fue la medición y el 

análisis de características de RC y AP en Suecia, los rendimientos y costes de 

sus sistemas aprovechamiento, considerando las industrias actuales (plantas de 

cogeneración, plantas de celulosa) y futuras (biorefinerías) de esta biomasa 

residual. Los principales resultados fueron los siguientes: 

1 Existen grandes cantidades infrautilizadas de AP en Suecia que podrían ser 

la materia prima para futuras biorefinerías. Montes densos (y a menudo 

jóvenes) con necesidad de claras cubren 2.1 millones de hectáreas, lo que 

equivale aproximadamente al 9% de la superficie total de monte productivo. 

2 Dependiendo del tamaño del árbol y del precio que el mercado paga por la 

biomasa, puede ser rentable el uso de maquinaria forestal para la limpieza 

de AP en pasillos de líneas eléctricas y su aprovechamiento para generar 

Resumen de divulgación científica 
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bioenergía (calor y electricidad). En la actualidad, la práctica más común 

consiste en el desbrozado motorizado con desbrozadoras y su abandono en 

el terreno. Su aprovechamiento podría reducir los costes de mantenimiento 

de infraestructura esencial (líneas eléctricas, vías de tren, carreteras, etc.). 

Por motivos de seguridad, esta biomasa debe de ser cortada igualmente. 

3 Las astillas de AP tienen una calidad superior a las astillas de RC, 

presentando un menor contenido en cenizas y tamaño más homogéneo para 

generar bioenergía. Buena comunicación y colaboración entre los diferentes 

maquinistas a lo largo de toda la cadena de suministro es fundamental para 

poder abastecer el mercado con astillas de alta calidad a un precio bajo. 

4 Podemos predecir el peso seco en pilas de RC y AP (no astilladas) mediante 

la toma de medidas (altura, longitud y anchura) en campo y posteriormente, 

usando los modelos predictivos presentados en la tesis. El uso de estos 

modelos en la práctica puede mejorar la logística (planificación de la ruta 

de las astilladoras, transportes) e incrementar la eficiencia del suministro. 

5 El uso de terminales logísticas incrementa el coste de suministro de biomasa 

a la industria, pero su uso contribuye a asegurar el suministro a tiempo 

cuando la demanda es máxima y hay riesgo de problemas (dificultad para 

transitar pistas forestales debido a inclemencias meteorológicas o averías). 

6 Existen oportunidades para reducir costos a lo largo de la cadena de 

suministro de RC y AP. No obstante, para hacer posible estos ahorros y 

aprovechar su potencial sostenible, será necesario el desarrollo de la 

tecnología, los sistemas de suministro y la mejora de los métodos de trabajo. 

7 El uso de modelos de simulación para cadenas de suministro de biomasa 

puede dar respuesta a multitud de preguntas y aconsejar la toma de 

decisiones, a un menor coste y riesgo que llevar a cabo experimentos reales. 

Esta tesis constituye una base para apoyar la toma de decisiones políticas sobre 

bioeconomía y mejorar la eficiencia de las cadenas de suministro de RC y AP, 

en último término, contribuyendo a incrementar su uso sostenible. La biomasa 

forestal residual representa un recurso local, cuyo uso disminuye nuestra 

dependencia de los combustibles fósiles e incrementa nuestra seguridad 

energética, lo cual es positivo en la lucha contra el cambio climático (la madera 

es un recurso renovable). La gestión forestal sostenible, activa, mediante la 

silvicultura (como se realiza en Europa y otras regiones del mundo), proporciona 

un mayor beneficio al clima que usar los bosques únicamente como sumideros 

de carbono. Además, su aprovechamiento sostenible contribuye al 

mantenimiento y creación de puestos de trabajo en zonas rurales e incrementa la 

resistencia de los montes ante perturbaciones como incendios forestales y plagas.  
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