
 
Department of Plant Breeding 

 
 
Dietary fibre and phenolic compounds in 
broccoli (Brassica oleracea Italica group) 
and kale (Brassica oleracea Sabellica 
group) 
 
- A literature study about the potential uses of 
side streams  
 

 
Emilia Berndtsson 
Introductory paper at the Faculty of Landscape Architecture, Horticulture 
and Crop Production Science, 2019:1 
Alnarp, Sweden, 2019  



 ii 

Titel på svenska 
Kostfibrer och fenoliska ämnen i broccoli (Brassica olercea Italica gruppen) och grönkål 
(Brassica oleracea Sabellica-gruppen) – en litteraturstudie över användningspotentialen 
hos sidoströmmarna. 

Emilia Berndtsson 
emilia.berndtsson@slu.se 

 

Place of publication: Alnarp, Sweden 
Year of publication: 2018 
Cover picture: Kale plants (left) prior to harvest and close-up of unharvested broccoli 
head (right). Photos: Emilia Berndtsson 
Title of series: Introductory paper at the Faculty of Landscape Architecture, Horticulture 
and Crop Production Science 
Number of part of series: 2019:1 

Online publication: http://epsilon.slu.se 
Bibliografic reference: Berndtsson, E. (2019). Dietary fibre and phenolic compounds in 
broccoli (Brassica oleracea Italica group) and kale (Brassica oleracea Sabellica group). A 
literature study about the potential uses of side streams. Alnarp: Sveriges 
lantbruksuniversitet. (Introductory paper at the Faculty of Landscape Architecture, 
Horticulture and Crop Production Science, 2019:1) 

 

Keywords: dietary fibre, phenolic compounds, side streams, broccoli, kale, food loss, 
food waste,  

 



 iii 

Abstract 
This introductory paper reviews potential uses of side streams obtained from 
the production of broccoli and kale. Here, it becomes clear that of these two 
products, large quantities are available, which are not consumed today 
although these side streams have properties making them of interest for 
future food consumption. Material left as unharvested side streams on field 
are normally not included in the definitions of food waste or food loss. Such 
materials are also less well studied as compared to other food waste/losses, 
contributing to difficulties to approximate the total amount of this 
underutilised resource.  
In fact, the major part of the biomass in the broccoli and kale production is 
not ending up as edible produce for the consumers, but instead as waste or 
side streams. Thus, the potential is considerable for use of this biomass to 
extract functional ingredients or as a raw material source for production of 
health beneficial food products. Both broccoli and kale have been shown to 
have high levels of bioactive compounds, e.g. phenolic compounds, and 
dietary fibre, which makes them interesting for the production of functional 
food or novel food products. However, the distinctive taste of broccoli and 
kale is an issue, restricting addition to food products to a low percentage, to 
secure that the undesirable taste is successfully masked. Another challenge 
is the impact on the texture that the vegetable powder made from these side 
streams might have on the product. 
Generally, intake of dietary fibre and bioactive compounds are positive for 
human health, contributing with e.g. effects of lowering the risk of 
developing certain cancer forms. The present introductory paper presents a 
short overview of the development of the definition of dietary fibre, as well 
as some information related to their chemical composition and health effects. 
Similar information is given for the different groups of phenolic compounds.  
This literature study indicates clear opportunities for using broccoli and kale 
in the production of health beneficial food, even though more studies are 
needed to fully evaluate the most efficient and consumer acceptable use. 
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Sammanfattning 
Denna introduktionsuppsats presenterar den potentiella användningen av 
sidoströmmar från produktionen av broccoli och grönkål. Det står klart att 
stora kvantiteter av dessa grödor är tillgängliga, kvantiteter som idag inte 
konsumeras men som har egenskaper som gör dem intressanta för en 
framtida matkonsumtion. Material som lämnas som oskördade sidoströmmar 
på fältet räknas normalt inte in i definitionerna av matsvinn och matavfall. 
Detta material är även mindre välstuderat jämfört med andra typer av 
matsvinn och matavfall, vilket bidrar till svårigheter att uppskatta den totala 
mängden av denna underutnyttjade resurs.  
Faktum är att den största delen av biomassan i broccoli- och 
grönkålsproduktion inte kommer att användas som ätbara produkter som når 
konsumenterna, utan kommer istället att bli svinn eller sidoströmmar. 
Därmed finns det en betydande potential för denna biomassa att användas för 
att extrahera funktionella ingredienser eller som råmaterial för att producera 
hälsofrämjande livsmedel. Både broccoli och grönkål har visats innehålla 
höga halter av bioaktiva ämnen, exempelvis fenoliska ämnen och kostfibrer, 
vilket gör dem intressanta för produktion av funktionella livsmedel eller nya 
livsmedelsprodukter. Dock kan den distinkta smaken av broccoli och grönkål 
vara ett hinder, vilket kan begränsa tillsatsen till låga procenthalter såvida 
inte den oönskade smaken är framgångsrikt maskerad. En annan utmaning är 
den påverkan på konsistens som ett grönsakspulver från dessa sidoströmmar 
kan ha på produkten.  
Generellt är ett intag av kostfibrer och bioaktiva ämnen positiva för hälsan 
och bidrar med effekter som att minska risken för att utveckla vissa 
cancerformer. Denna introduktionsuppsats ger en överblick av utvecklingen 
av definitionen av kostfibrer samt information relaterad till kostfibrers 
kemiska uppbyggnad och effekt på hälsan. Liknande information presenteras 
för de olika grupperna av fenoliska ämnen.  
Denna litteraturstudie visar på att finns möjligheter att använda broccoli och 
grönkål i produktionen av hälsofrämjande livsmedel, även om fler studier är 
nödvändiga för att till fullo kunna utvärdera det mest effektiva och 
konsumentaccepterade användningsområdet.  
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1 Background 
A diet rich in fruits and vegetables is well known to lower the risk of the 
development of certain forms of cancers (Oyebode et al., 2014), specifically 
in the gastrointestinal tract (Bradbury et al., 2014; Kim & Je, 2016). Also, 
such a diet decreases the risk of developing other chronic diseases, such as 
diabetes and heart diseases (Liu, 2013). Lastly, a diet rich in vegetables might 
lower the osteoclast activity (cells that breaks down the bone tissue as 
opposed to osteoblasts that build up bone tissue), thereby reducing the loss 
of bone mass (Tomofuji et al., 2012). The positive effects of fruits and 
vegetables consumption have been attributed to the high content of  bioactive 
compounds, including antioxidants in these types of food (Liu, 2013). 
Bioactive compounds in fruit and vegetables can be defined as essential and 
non-essential compounds in food products that have an effect on human 
health (Biesalski et al., 2009). Certain groups of bioactive compounds have 
been suggested to affect the vascular health positively, by interacting with 
cellular activities or by the contribution to  scavenging of free radicals or 
other reactive oxygen species (Wang et al., 2011; Liu, 2013). However, 
intake of dietary supplements, in terms of vitamin C and vitamin E did not 
significantly reduce the risk of cardiovascular diseases or cancer (Lee et al., 
2005; Cook et al., 2007; Lin et al., 2009). Thus, replacing consumption of 
fruits and vegetables with the intake of supplements might not be a solution, 
possibly because individual bioactive compounds may need to be combined 
with other compounds, for a synergistic effect, or be combined with other 
constituents of food such as dietary fibre, for a positive outcome.   
Additional to a high content of bioactive compounds, fruits and vegetables 
are known to contain high amounts of dietary fibre, which have been 
suggested to contribute beneficially to the levels of cholesterol in the blood 
(Surampudi et al., 2016). Also, dietary fibre has an impact on the rate of 
gastric emptying, thereby contributing to a feeling of longer lasting satiation 
after a meal (Mackie et al., 2016). Furthermore, dietary fibre promotes the 
peristaltic movement of the intestines, and hence lowering the transit time 
and reducing the risk for constipation (Wrick et al., 1983). Finally, dietary 
fibre is beneficial for the gut microbiota, which has a crucial role in colonic 
health, human metabolism and immune system (Paturi et al., 2010; Desai et 
al., 2016). However, all the mentioned health benefits may not be attributed 
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to the fibres per se, but some can be the result of a by-product (consisting of 
short chained fatty acids (SCFA)) excreted from the gut bacteria using the 
fibres in their metabolism (den Besten et al., 2013). Another feature is that 
dietary fibre can also protect nutritional or health beneficial compounds, such 
as antioxidants, from digestive enzymes, so that they can be transported to 
the colon and be beneficial for the gut microbiota (Quirós-Sauceda et al., 
2014).  
During the production of vegetables and fruits, waste is generated, due to the 
fact that some parts of the plants or parts of the produced crop does not end 
up as human food (Parfitt et al., 2010). Some examples are the stalks and 
leaves in maize production (Lv et al., 2017) and the stems and leaves in 
cauliflower and globe artichoke (Femenia et al., 1998). In fact, 
approximately 60 per cent of the produced biomass is wasted in certain types 
of vegetable production (Strid et al., 2014). This inefficient use of produced 
biomass contributes to a great loss of freshwater, fertiliser (Kummu et al., 
2012), nutrients (Spiker et al., 2017) and calories (Kummu et al., 2012; 
Spiker et al., 2017) and also to an inefficient use of agricultural land (Kummu 
et al., 2012). To alleviate poverty, malnutrition and hunger for the increasing 
world population, estimated to reach nine billion in 2050 (Parfitt et al., 2010), 
global food waste should be decreased. The food production is calculated to 
have to reach a level of 60 per cent higher than the levels of 2005-2007 in 
order to feed the population of 2050 (Alexandratos & Bruinsma, 2012).  
Today, it is estimated that approximately 1/3 of the edible parts of food 
produced globally becomes waste somewhere during the food supply chain 
(Gustavsson et al., 2011). In this calculation, the biomass left on the field is 
not included. An example of a food supply chain (FSC), as well as 
examples on food waste in each step, can be found in the work of Parfitt et 
al (2010) and are summarised in . 
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Table 2. 
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Table 2: Food supply chain. Stages in the food supply chain with examples of food waste 
characteristics during the stage (Parfitt et al., 2010).  

Stage Examples, food waste characteristics 
Harvesting Edible crops left in the field, ploughed into soil, damaged by 

pests, wrong time for harvest, damaged during harvest, not 
reaching required standard of quality, size or shape.  

Transportation Spoiling, bruising, transportation not optimal 
Storage Drying out, contamination, pests, disease 
Processing (cleaning, 
de-hulling, pounding, 
grinding, packaging, 
milling) 

Processing losses (peeling, slicing) 

Packaging (weighing, 
labelling, sealing) 

Inappropriate packaging, spillage, damage by pests 

Distribution Damage during transport, poor handling, poor storage 
Consumer Poor storage and preparation in homes, discarded prematurely 

 
Of the amount of food waste in the FSC, approximately 10 per cent are 
estimated to be lost during harvesting (including mechanical damage and 
spilling during harvest and sorting after harvest, but not produce left 
unharvested on the field) and 25 per cent are estimated to be lost during 
processing and packaging (including spilling and degrading during 
processing, peeling, slicing and boiling and insufficient handling, storage and 
transportation) (Gustavsson et al., 2011). The amount that are not harvested 
are usually not included in the food loss calculations, with some exceptions, 
e.g. in the work of Strid et al  (2014) and Hartikainen et al  (2017). As an 
example, of the not harvested material in vegetable production, an average 
of 57 % were found to have the possibility to be used as human food (Johnson 
et al., 2018).  
One way to reduce the amount of waste in food production is to adopt a 
circular perspective. Circular bioeconomy is a concept in which the amount 
of waste is minimised and the value of products, materials and resources is 
maintained as long and as high as possible (European Commission, 2015). 
Examples of how this concept can be used in practice may be to upgrade the 
waste or side streams for production of added value products such as biofuel 
(Dahiya et al., 2018), animal feed (Hu et al., 2011; Yi et al., 2015) or novel 
food products (Femenia et al., 1997; Collar et al., 2009). The most efficient 
solution for minimising the negative impact of food waste on the 
environment would be to make novel food products from the food waste, 
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instead of using it for composting, incineration, anaerobic digestion (e.g. to 
make biofuel) and business as usual (Oldfield et al., 2016).  
In this introductory paper, an overview of the field of research regarding 
dietary fibre and phenolic compounds will be presented, as well as a short 
historical overview of the evolution of the term “dietary fibre”, the role of 
phenolic compounds and dietary fibre in health and lastly there will be a 
presentation of broccoli and kale as crops, including historical information 
and specific scientific findings. Some of the most common methods used for 
analysis of dietary fibre and phenolic compounds will be described and some 
examples of future uses of side streams tin order to reduce the waste will be 
presented.   
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2 Fibre 
2.1 A definition of dietary fibre 

The health benefits of a regular intake of dietary fibre have been known since 
several decades (Hipsley, 1953; Burkitt et al., 1972). Despite this, there has 
historically been some problems to define the concept of dietary fibre, both 
in research and to the consumers. The definition of dietary fibre has been 
debated since the 1970s (Phillips & Cui, 2011). Furthermore, the definition 
of dietary fibre differs among countries, making comparisons of studies 
difficult.  
The term ”dietary fibre” was first coined by Hipsley (1953) in an article 
about the relation between diet with high levels of fibre during pregnancy 
and the decreased occurrence of pregnancy toxaemia (today called 
eclampsia). In this definition, lignin, cellulose and the hemicelluloses were 
defined as dietary fibre. Later on, it was suggested that dietary fibre should 
be defined as ”the skeletal remains of plant cells that are resistant to 
digestion by enzymes of man” (Trowell, 1972), and that it were these dietary 
fibre that contributed with health benefits. A few years later, the definition 
was developed into ”[dietary fibre consist of] the remnant of edible plant 
cell polysaccharides lignin and associated substances resistant to digestion 
by the alimentary enzymes of humans” (Trowell, 1974). Here, the substances 
that were discussed were structural polysaccharides, lignin, unavailable 
lipids (waxes associated with fibre) and unavailable nitrogen, and their 
possible inclusion into the dietary fibre concept (Trowell, 1974).  
These first definitions only contained the chemical aspects of the compounds 
collectively called dietary fibre, together with information about which of the 
compound that should be included in the concept. In the beginning of the 
21th century the health promoting aspects were incorporated into the 
concept. One example of this incorporation is the definition from The 
American Association for Cereal Chemists (AACC), stating; ”[d]ietary fiber 
is the edible parts of plants or analogous carbohydrates that are resistant to 
digestion and absorption in the human small intestine with complete or 
partial fermentation in the large intestine. Dietary fiber includes 
polysaccharides, oligosaccharides, lignin, and associated plant substances. 
Dietary fibers promote beneficial physiological effects including laxation, 
and/or blood cholesterol attenuation, and/or blood glucose 
attenuation.”(AACC, 2001). Another definition was stressing that only 
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substances that are naturally occurring in plants should be included into the 
dietary fibre concept: “Dietary fiber consists of non-digestible carbohydrates 
and lignin that are intrinsic and intact in plants. Added fiber consists of 
isolated, non-digestible carbohydrates that have beneficial physiological 
effects in humans. Total fiber is the sum of Dietary Fiber and Added Fiber”  
(Food and Nutrition Board, 2001). This later definition resulted in a clearer 
labelling of content in food.  
Only a few years later a more international agreed definition for dietary fibre 
was presented. After several years of discussion, the Codex Alimentarius 
(founded in 1963 by FAO and WHO in order to promote the work with 
international food standards) was able to agree about a new, international 
definition for dietary fibre. This new definition was as follows:” Dietary fibre 
means carbohydrate polymers with a degree of polymerisation (DP) not 
lower than 3, which are neither digested nor absorbed in the small intestine. 
A degree of polymerisation not lower than 3 is intended to exclude mono- 
and disaccharides. It is not intended to reflect the average DP of a mixture. 
Dietary fibre consists of one or more of: Edible carbohydrate polymers 
naturally occurring in the food as consumed, carbohydrate polymers, which 
have been obtained from food raw material by physical, enzymatic or 
chemical means, synthetic carbohydrate polymers. Dietary fibre generally 
has properties such as: 
• Decrease intestinal transit time and increase stools bulk 
• Fermentable by colonic microflora 
• Reduce blood total and/or LDL cholesterol levels 
•Reduce post-prandial blood glucose and /or insulin levels.”  
(Codex Alimentarius, 2008). 
In addition to carbohydrates, dietary fibre also includes the phenolic 
compound lignin, if it is intrinsic to the plant based food (Codex 
Alimentarius, 2017).  
To summarise; the definition of dietary fibre has taken turns into the different 
areas of chemical and physiological aspects during the last 60 years. With 
the Codex definition, a great step was taken in order to streamline the work 
with dietary fibre, even if some debate is still present as to which compounds 
that should be included in the context of dietary fibre (Dai & Chau, 2017). 
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2.2 Constituents of dietary fibre  

Cellulose 

Cellulose is the most abundant plant polysaccharide on Earth (Vermerris & 
Nicholson, 2006; Horwath, 2015), being formed as a linear polymer by b-
glucose connected by 1,4-bonds, which means that the glucose units are 
bound between carbon 1 in the first glucose molecule and carbon 4 in the 
second glucose molecule, (Figure 1) (Schweizer & Edwards, 1992).  
Cellulose molecules can be 1000-4000 units (Figure 1) long in the 
parenchyma cell walls being the bulk of undefined tissue in plants 
(MacDougall & Selvendran, 2001). A total of 20-30 per cent of the dry 
weight in the parenchyma cell wall consists of cellulose (MacDougall & 
Selvendran, 2001). However, cellulose molecules may contain up to 12 000 
units in the plant cell secondary walls (MacDougall & Selvendran, 2001), or 
even up to 15 000 units (Gibson, 2012).  

 
Figure 1. Chemical structure of 1-4-linked b-glucose with, which build up cellulose. 

Licence under Creative Commons. https://en.m.wikipedia.org/wiki/File:Cellulose_Sessel.svg.  

Pectin (or pectic substances) 

Pectin, or also called pectic substances (Voragen et al., 2009), is a group of 
complex polysaccharides (Ridley et al., 2001). The structure is composed of 
a linear chain of 1,4-linked a-D-galacturonic acid units (Figure 2), usually 
with neutral sugars such as L-rhamnose, D-galactose and L-arabinose in the 
side chains. Pectic substances can often be found in the middle lamellae in 
plant cell walls, where they form complexes with cellulose (so called 
insoluble protopectin), which during the ripening leads to the formation of 
pectin (Fernandez, 2001). Pectic substances can act as stabiliser for the 
primary cell wall by acting as an embedment for the cellulose network (Taiz 
et al., 2015). 
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Figure 2: Galacturonic acid, one of the constituents of pectic substances. 

Licence under Creative commons. https://commons.wikimedia.org/wiki/File:Galacturonic_acid.png 

Pectic substances can be divided into three major pectic polysaccharides 
(Ridley et al., 2001; Taiz et al., 2015):  

1. homogalacturonan (HG); a linear chain of 1,4-linked alpha-D-
galacturonic acid residues (Taiz et al., 2015). This type of pectin is 
the main part found in plants and has the most impact on the 
properties of pectin (Voragen et al., 2009). 

2. rhamnogalacturonan I (RH I); with a backbone of alternating 
rhamnose and galacturonic acid residues with side chains of neutral 
pectic polysaccharides, e.g. arabinans, galactans and 
arabinogalactans (Taiz et al., 2015). 

3. rhamnogalacturonan II (RG II); with the same backbone as HG, but 
with side chains of several different sugars in a complicated pattern 
of linkages (Taiz et al., 2015).  

Due to the different structures in the groups of pectic compounds, pectin can 
be used for different purposes, e.g. a thickening and stabilising agent in food 
products such as jam and dairy products (Voragen et al., 2009), as a gelling 
agent (Voragen et al., 2009; Christiaens et al., 2015) or as emulsifier 
(Fernandez, 2001; Christiaens et al., 2015). 
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Hemicellulose 

Hemicelluloses is a heterogenous group of polysaccharides composed of a 
range of different polysaccharides  such as glucomannan, xylan, xyloglucan, 
glucuronoxylan, arabinoxylan and glucuronoarabinoxylan, with a  backbone 
of  1–4-linked glucose, mannose or xylose residues (Figure 3) (Scheller & 
Ulvskov, 2010). Traditionally, hemicelluloses were defined as the remaining 
polysaccharides when the cellulose and the pectin were removed (Scheller & 
Ulvskov, 2010). The traditional way of defining hemicelluloses it today not 
seen as scientifically correct, and therefore the composition of the 
constituents is instead applied to define the polysaccharide type (Scheller & 
Ulvskov, 2010). Hemicelluloses can presently be defined as “cell-wall 
polysaccharides that are insoluble in water but can be extracted with aqueous 
alkali and hydrolysed into its component monosaccharides with diluted 
sulphuric acid” (Schädel et al., 2010) 

 
Figure 3. Chemical structure of glucuronoarabinoxylan, a member of the hemicelluloses. 

By Yikrazuul - Own work by uploader; ISBN 978-1600219047 S. 19, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=7141633  

 
Lignins 

The phenolic polymer lignin, although not a carbohydrate, is still included in 
the definition of dietary fibre. Lignin were included in the first definition of 
dietary fibre by Trowell (1974), and are included in the current definition if 
lignin is intrinsic in the plant material (Codex Alimentarius, 2017).  
Lignin provides structural support to plant secondary cell wall  (Vermerris & 
Nicholson, 2006). It has a complex and variable structure first described by 
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Adler (1977) (Figure 4). Lignin has high molecular weight (MacDougall & 
Selvendran, 2001) and high levels of branching (Mongeau & Brooks, 2001). 
Due to its complex structure the polymer is often referred to as the plural 
form lignins instead. The main constituents in lignin are cinnamyl alcohols 
coniferyl alcohol, sinapyl alcohol and p-coumaryl alcohol (MacDougall & 
Selvendran, 2001; Vermerris & Nicholson, 2006), with the relative levels of 
these cinnamyl alcohols as one of the important difference between the 
different lignin structures (Theander & Åman, 1979). 
In general, lignin can represent 15-25 % of the biomass in plants (Vinardell 
& Mitjans, 2017). There is an increasing amount of research done about 
lignins health beneficial properties, e.g. in the area of preventing diabetes and 
obesity (Vinardell & Mitjans, 2017).  

 
Figure 4. One example of the chemical structure of lignin, as first described by Adler (1977). 

By real name: Karol Głąbpl.wiki: Karol007commons: Karol007e-mail: kamikaze007@ tlen.pl - own 
work from: Glazer, A. W., and Nikaido, H. (1995). Microbial Biotechnology: fundamentals of 
applied microbiology. San Francisco: W. H. Freeman, p. 340. ISBN 

 
Oligosaccharides  
Oligosaccharides are smaller sized polysaccharides compared to cellulose, 
pectic substances and hemicellulose, and are defined as carbohydrates with 
2-20 monomeric sugar units (Roberfroid & Slavin, 2001). Examples of 
oligosaccharides are oligofructose and inulin (Figure 5). Oligosaccharides 
are not digested by the enzymes in the upper  gastrointestinal tract and have 
a low caloric value, and have hence recently gotten more focus as a sweetener 
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and fat replacement in foods (Coussement & Franck, 2001). When the 
oligosaccharides reach the colon, they are metabolised by the bacteria into 
for instance short chained fatty acids (SCFA) (den Besten et al., 2013), with 
health benefits that are explained below in Section 2.4.2.  
Oligosaccharides, such as inulin are especially common in the crops 
Jerusalem artichokes and chicory, with chicory as the main industrial crop 
for commercialised inulin extraction (Coussement & Franck, 2001; Franck, 
2002).  

 
Figure 5: Chemical structure of the oligosaccharide inulin. Image from Florian Fisch [Public 
domain] https://commons.wikimedia.org/wiki/File:Inulin_strukturformel.png  

 
Gums and mucilage  
There is some confusion about the two terms gums and mucilage, with the 
two terms sometimes used indistinctly. Both are classified as soluble dietary 
fibre (see definition in section 2.4.1.) From a botanical point of view, the two 
different substances originate from different parts of the plant and have 
different functions. Gums are excreted as a response to mechanical injury 
and are supposed to heal the injured area and are highly soluble in water 
(Jones & Smith, 1949; Cano-Barrita & León-Martínez, 2016). Mucilage 
swells in water but is not completely soluble in water (Jones & Smith, 1949; 
Choudhary & Pawar, 2014), does not form gels as pectin and is mainly 
produced in the seed coats or at the surface of  the root (Cano-Barrita & León-
Martínez, 2016). 
Gums are polysaccharides, mainly heteroglycans with branched structures, 
which contribute to a desirable texture in processed food products by acting 
as gelling, thickening or emulsifying agents (Saha et al., 2017; Salarbashi & 
Tafaghodi, 2018). Significant portions of the gums are derived from plant 
cell walls, e.g. pectins, alginates, guar gum and carrageenan (MacDougall & 
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Selvendran, 2001). Gums used in food are also called “hydrocolloids” due to 
their affinity for water (Vaclavik & Christian, 2014). Hydrocolloids often 
include pectins (Saha & Bhattacharya, 2010), leading to some confusion 
about pectin being a separate group or a constituent of gums.  
Mucilage comes from the seed coat, or spermoderm, especially from species 
in the plant genus Plantago (MacDougall & Selvendran, 2001) or from flax 
seed, quince and lucerne (Jones & Smith, 1949) The mucilage consists 
mainly of pectic substances and hemicelluloses (Kreitschitz & Gorb, 2017) 
and has been suggested to be described as a specialised pectin-rich secondary 
cell wall, even though the composition is distinct from more typical 
secondary cell walls with cellulose (Haughn & Western, 2012). The major 
neutral sugars in mucilage are D-xylose, L-rhamnose and L-arabinose 
(MacDougall & Selvendran, 2001; Kaur et al., 2018). Mucilage has 
important physiological effects in both the small and the large intestines and 
is only partially degraded by the colonic bacteria (MacDougall & 
Selvendran, 2001). It can be used as a laxative, facilitating the bowel 
movements and can contribute to a lowering of blood cholesterol levels 
(Surampudi et al., 2016).  

2.3 Occurrence of dietary fibre 

Dietary fibre consists mainly of cellulose, hemicellulose, pectins, lignins, 
gums and mucilage, and most of these are constituents of the plant cell wall 
(Figure 6). Thus, the composition of dietary fibre in plant-based food 
depends on the composition of plant cell wall in the food. Significant impact 
has been shown from plant species and the specific part of the plant used, the 
stage of maturity of the plant and the post-harvest modifications of the food 
items on cell wall composition of the plant food products (Schäfer et al., 
2017). In the living plant, the cell wall have numerous functions; it provides 
strength to the plant cell, it affects the transportation of larger size 
compounds in and out of the cell, influences the growth of the cell and affects 
the interactions with herbivores (Brett & Waldron, 1996; Taiz et al., 2015). 
For the plant as whole, the cell wall with its content of dietary fibre provides 
a structural support against gravity and environmental forces and also make 
water transport possible in tall plants (Brett & Waldron, 1996; Taiz et al., 
2015). Therefore, tougher and more dietary fibre rich structures are found in 
plant parts with needs to withstand higher forces or harsher conditions, such 
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as the stem (Evans et al., 2003), and hulls seeds (Chen et al., 2012; Barros et 
al., 2015). The levels of dietary fibre are specifically high in the thick, often 
lignified secondary cell wall with high levels of lignin and cellulose (Evans 
et al., 2003; Barros et al., 2015). Furthermore, the dietary fibre of the 
secondary cell wall are also structurally different from those of the primary 
cell wall (MacDougall & Selvendran, 2001; Taiz et al., 2015). The primary 
cell wall is usually thin, with high amounts of pectins and lower amounts of 
cellulose and hemicellulose (Taiz et al., 2015). The secondary cell wall is 
normally formed in the plant when the cell have stopped growing in size 
(Taiz et al., 2015) The best studied secondary cell walls are from highly 
lignified cells that become dead cells when they have reached maturity, e.g. 
xylem vessels and fibres in woody tissues (Taiz et al., 2015).  
Vegetables that are eaten by humans consist mainly of fast growing, 
immature tissues, in which the secondary cell wall will not develop or has 
not developed to a significant level of lignification which would have made  
the tissues tougher (Brett & Waldron, 1996).  

 
Figure 6: Model of the cell wall of a plant cell. Pectin, cellulose, soluble proteins and hemicellulose 
build up a matrix.  

Licence under Creative Commons from author LadyOfHats: 
https://commons.wikimedia.org/wiki/File:Plant_cell_wall_diagram-en.svg 
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2.4 Chemistry and effects on human health  

 

2.4.1 Physiochemical properties of dietary fibre 

The dietary fibre components can be divided into groups according to various 
criteria, e.g. by monosaccharide composition, specific attached sugars, level 
of branching, origin or chemical properties (Bemiller, 2001). Most 
commonly dietary fibre is subdivided into two major groups; one with 
polymers that are soluble in water, soluble dietary fibre (SDF), and a second 
one with polymers that are insoluble in water, insoluble dietary fibre (IDF). 
Most plant foods contain a combination of soluble and insoluble fibre 
(Hassan et al., 2011). The SDF contains mainly pectins, gums and mucilage, 
while the IDF contains primarily cellulose, hemicellulose and lignin. For 
food processing or other industrial uses, the properties of the dietary fibre as 
a food ingredient are important. This, e.g. the water retention capacity 
(WRC), defined as the amount of water retained by a known weight of fibre, 
is an important character (Robertson et al., 2000), as is oil-holding capacity 
(OHC) defined as the amount of oil retained by the fibres after mixing, 
incubation with oil and thereafter centrifugation (Elleuch et al., 2011) and 
swelling capacity (SWC), the change in volume of the dry sample after 
hydration in distilled water overnight (Zhang et al., 2011). 

2.4.2 Impact on health 


The food intake is influencing transit time as well as bulk and consistency of 
the stool. A large proportion of refined foods (e.g. white flour) with low 
amounts of fibre has been found to result in small firm stools passing slowly, 
which was also correlated to several diseases in industrial societies. Thus, 
intake of more fibre rich food was reported as beneficial for the health 
(Burkitt et al., 1972). Specifically, the SDF have been reported as 
contributing with health benefits to humans, e.g. by lowering the total 
cholesterol in the blood (Mandimika et al., 2012; Surampudi et al., 2016). 
Content of SDF has been shown to affect the serum cholesterol levels and 
inflammations factors in the blood (Ning et al., 2014). The content of SDF 
also impacts the rate of gastric emptying which leads to longer feeling of 
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satiation after a meal (Mackie et al., 2016). The IDF is promoting the 
peristaltic movement of the intestines and hence lowering the transit time 
(Wrick et al., 1983) and is beneficial for the human gut microbiota (Paturi et 
al., 2010; Desai et al., 2016). Processing of dietary fibre has shown a 
negative correlation with transit time and volume of the stool, explained by 
the loss of structure in the dietary fibre while processed (Monro et al., 2016). 
Bacteria strain in the microbiota are differently affected by the dietary fibre 
content (Yang et al., 2014). Thus, the gut microbiota can be readily affected 
by changes in the diet  (Li et al., 2009).  
However, some of these positive health effect reported from intake of dietary 
fibre may originate from other sources than from the fibres per se. A by-
product, e.g. short chained fatty acids (SCFA), excreted from the gut bacteria 
as they use the fibres in their metabolism, have been reported as one such 
source (den Besten et al., 2013; Sawicki et al., 2017). These short chained 
fatty acids have been found to lower the risk of depression (Miki et al., 2016), 
regulate the uptake of lipids to have an impact on the cholesterol metabolism 
(den Besten et al., 2013), and improve the immune system (Corrêa-Oliveira 
et al., 2016). Thus, a diet rich in dietary fibres is an objective to strive for.  

2.5 Analytical methods for dietary fibres 

When analysing dietary fibre, there is no available procedure to be utilised 
for all types of foodstuffs or diets (Southgate, 1978). Instead, the method  that 
enables the most accurate measurement for the characterisations of dietary 
fibre should be chosen (Southgate, 1978). The method to be used depends on 
the aspects of the dietary fibre that are of relevance for the study. An 
analytical methodology that is often applied is to measure the total amount 
of dietary fibre, divided into the amount of SDF and IDF (Asp et al., 1983; 
Prosky et al., 1988; McCleary et al., 2012). Another commonly applied 
method is to measure the sugar constituents that are the building blocks of 
dietary fibre (Englyst et al., 1994; Theander et al., 1995) after removing 
starch, and later calculate the amount of non-starch polysaccharides and 
Klason lignin (Theander et al., 1995). Klason lignin is defined as the sample 
insoluble constituent remaining after hydrolysis in sulfuric acid (Technical 
Association of the Pulp and Paper Industry, 2006). Furthermore, methods 
have been developed mimicking the environment of the human 
gastrointestinal tract in order to evaluate which part of the fibre are not 
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digested in this environment (Asp et al., 1983). Lack of digestion in the 
human gastrointestinal tract is a major definition of the dietary fibre and the 
latter methods are building on this knowledge. The first such method used an 
16-hour incubation for enzymatic digestion of carbohydrates and proteins in 
the food sample, and thereafter the obtained dietary fibre was divided into 
SDF and IDF. The composition of the fibre subgroups could be further 
analysed chromatographically (Asp et al., 1983). The mentioned method was 
later improved by McCleary et al (2015), with an incubation time more 
resembling the digestion time in the human gastrointestinal tract of 4 hours. 
The method of McCleary et al was also adapted for including e.g. resistant 
starch and oligosaccharides according to the new definition of dietary fibre 
from Codex (Codex Alimentarius, 2008). Using another approach, Englyst 
(1994) measured dietary fibre as the non-starch polysaccharides (NSP). First 
the starches are removed enzymatically and thereafter NSP are hydrolysed 
with acid to their constituent sugars. The constituent sugars are thereafter 
analysed with LC, HPLC or spectrophotometry (Englyst et al., 1994).  
Whichever method that is chosen for the determination of the content of 
dietary fibre, it is important to understand the presence of other substances 
and also what is recovered in the chosen method of analysis (Englyst et al., 
2013). 

3 Phenolic compounds 
3.1 A definition of phenolic compounds 

Phenolic compounds are defined as ” substances possessing an aromatic ring 
bearing one or more hydroxyl group including their functional derivatives” 
(Figure 7) (Shahidi & Naczk, 2004). A variety of phenolic compounds and 
their derivatives exist, e.g. flavonoids, simple phenols, stilbenes, tannins, 
lignans and lignins. Various classification systems are present for the 
phenolic compounds, although the number of carbons is the most widely 
used today (Vermerris & Nicholson, 2006). The most common phenolic 
compounds in the genus Brassica are the phenolic acids (hydroxybenzoic 
acid and hydroxycinnamic acid derivatives) and flavonoids (Figure 8). An 
overview of the different groups can be seen in Figure 9.  
The phenolic compounds shows various functions in plants, e.g. they acts as 
antifeedants and anti-pathogens (protects against pathogens such as virus, 
bacteria and fungus), contributes to pigmentations of plants, functions as 
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antibiotics (protects against bacteria), natural pesticides (protects against 
pests such as insects, rodents, fungi and other plants), attractants for 
pollinators, protective agents (e.g. for UV light), make the cell walls 
impermeable for gas and water and gives physical stability in the plant 
(Shahidi & Naczk, 2004). Phenolic compounds are normally weak acids and 
are ubiquitous present in plants, where they usually are present as esters or 
glycosides rather than as free compounds (Vermerris & Nicholson, 2006).  

 
Figure 7. The defining structure of phenolic compounds; an aromatic ring with one or more hydroxyl 
group directly attached. 

 
Figure 8 Examples of the most common phenolic compounds in Brassica.  
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3.2 Constituents of phenolic compounds 

More than 8000 different types of phenolic compounds have been identified 
in plant material (Shen et al., 2017), and of these hundreds have been 
characterised in plant based food (Manach et al., 2004; Cartea et al., 2011). 
Despite the wide range of phenolic compounds present being defined from 
their number and configuration of carbons in the molecule (Vermerris & 
Nicholson, 2006), the majority of phenolic compounds in plants can be 
divided into the two major groups in plants, phenolic acids and flavonoids, 
which are presented below.  
 

3.2.1 Phenolic acids 

Approximately 30 % of the phenolic compounds in plant-based food are 
defined as phenolic acids. However, the concentration and composition of 
the phenolic acids depend on location and year of the production of the plant, 
cultivar used and also of the harvesting and processing techniques applied in 
food production (Martinez et al., 2017). The phenolic acids can be divided 
into two major subclasses: hydroxybenzoic acids and hydroxycinnamic 
acids.  
The subclass of hydroxybenzoic acids includes substances such as gallic 
acid, vanillic acid, protocatechuic acid and salicylic acid. The main structure 
of the hydroxybenzoic acids is a benzene ring with up to four hydroxyl 
groups attached (Vermerris & Nicholson, 2006) (Figure 8). 
In the subclass of hydroxycinnamic acids substances like caffeic acid, 
chlorogenic acid, coumaric acid and ferulic acid can be found. The main 
structure is one benzene ring with a carbon chain of three carbon attached, in 
addition to the hydroxyl groups (Vermerris & Nicholson, 2006) (Figure 8).  
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3.2.2 Flavonoids 

Flavonoids are even more common than phenolic acids in plant based food, 
contributing approximately 60 % of the phenolic compounds (Martinez et 
al., 2017). Flavonoids have a structure of C6-C3-C6, which means that they 
have two benzene rings connected by a three-carbon chain (Vermerris & 
Nicholson, 2006). The group can be further divided into subgroups (e.g. 
chalcones, aurones and flavonols) depending on the arrangement of the 
carbon chain, and thereafter the subgroups are divided into additional groups 
based on compounds composition (Vermerris & Nicholson, 2006).  
In Brassica, the main flavonoids are the flavonols kaempferol, quercetin and 
isorhamnetin (Schmidt et al., 2010a; b; Cartea et al., 2011) (Figure 8). 

 
Figure 9: Hierarchy of some of the most common phenolic compounds. 
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3.3 Occurrence and function of phenolic compounds 

Generally, high levels of phenolic compounds are found in plants and not 
least in green leafy vegetables (Sakakibara et al., 2003; Lin & Harnly, 2010; 
Kumar, 2017). Also, phenolic compounds, especially the group of 
compounds named lignins, can make up approximately 30 per cent of the 
secondary cell wall in plants (Scheller & Ulvskov, 2010). Furthermore 
phenolic compounds are in general found in higher concentrations in plant 
parts that are exposed to solar radiation, temperature fluctuations or other 
types of environmental stress (Zietz et al., 2010; Groenbaek et al., 2016). 
One reason for phenolic compounds being present in high quantities in plants 
at stressed conditions may be due to their capacity to act as antioxidants. 
Antioxidant are known to scavenge reactive oxygen species (ROS), 
including free radicals and hence lower the risk for oxidative stress damages. 
One commonly used definition of an antioxidant is “any substance, present 
in comparable low concentrations, that delays, prevents, or removes 
oxidative damage to a target molecule” (Halliwell & Gutteridge, 2015a), and 
examples of antioxidants are carotenoids, phenolic compounds and some 
vitamins (Shi & Noguchi, 2001; Halliwell & Gutteridge, 2015a) 
Reactive oxygen species (ROS) include free radicals of oxygen as well as 
other reactive molecules such as hydrogen peroxide (H2O2). Free radicals are 
defined as “any species [atoms, molecules, ion etc] capable of independent 
existence that contains one or more unpaired electrons” (Halliwell & 
Gutteridge, 2015c), and can for this reason react efficiently with other 
molecules, for example the DNA molecule and give rise to mutations 
(Sardina et al., 2012). ROS are produced during the cells’ normal metabolism 
(Sardina et al., 2012) but may also be formed due to abiotic (radiation, 
temperature and moisture) and biotic (herbivores) factors (Suzuki et al., 
2014). However, ROS normally only constitute a problem to the cells if their 
concentrations becomes immensely high and exceed the capacity of the 
antioxidant defence in the cells which control the levels (Halliwell & 
Gutteridge, 2015b). Under these conditions, the cell might experience 
oxidative stress, which is a situation when the concentration of ROS is 
enhanced, which will disturb the cellular metabolism and its regulation and 
hence risk to damage cellular constituents (Lushchak, 2011).  
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3.4 Chemistry and effects on human health 

The phenolic compounds can be divided into two separate groups according 
to their solubility; extractable polyphenols (EPP), soluble in aqueous-organic 
solvent, and non-extractable polyphenols (NEPP), insoluble in aqueous-
organic solvent (Pérez-Jiménez et al., 2014). During food intake, the NEPP 
are known to reach the human colon almost intact due to the fact that they 
are not released from the food by the human digestive system (mastication, 
acid pH in stomach or action of digestive enzymes) (Pérez-Jiménez et al., 
2014).  
Epidemiological studies have shown that diets with high levels of phenolic 
compounds can improve the vascular health (Wang et al., 2011), lower the 
risk of cardiovascular diseases (Manach et al., 2005; Williamson, 2017), 
lower the risk of developing certain forms of cancers (Kyle et al., 2010),  
lower the mortality in cancer (Ivey et al., 2015) and lower the risk of chronic 
inflammations (Williamson, 2017; Kasprzak et al., 2018). The 
bioavailability of phenolic compounds is dependent on other 
macromolecules in the food matrix (Scheepens et al., 2010), for example 
proteins (Jakobek, 2015; Foegeding et al., 2017) and dietary fibre (Quirós-
Sauceda et al., 2014; Phan et al., 2015; Gonzalez-Aguilar et al., 2017).  
In addition, the composition of the gut microbiota, fermenting the phenolic 
compounds and their associated substances, influences the amount of 
absorbable metabolites that are beneficial to the human metabolism  (Selma 
et al., 2009; Pérez-Jiménez et al., 2014; Martinez et al., 2017).  

3.5 Analytical methods for phenolic compounds 

The analyses of phenolic compounds are a challenge due to the fact that the 
group consists of over 8000 different compounds, with different 
characteristics. Therefore, measurement of the total antioxidant activity, e.g. 
with the Folin-Ciocalteu phenol reagent which measures the reducing 
capacity of a sample can be used as a rough estimate of total phenolic content 
in a sample. The methods works on the principle that there is an electron 
transfer between the reagent, molybdotungstate, and the phenolic compounds 
(Prior et al., 2005; Sánchez-Rangel et al., 2013), which gives a change of 
colour at the wavelength of 765 nm. The total phenolic content measured by 
Folin-Ciocalteu was shown to have a good correlation with the sum of the 
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individual polyphenols from HPLC according to one study of Kaulmann et 
al (2014), though other reducing substances might interfere (Sánchez-Rangel 
et al., 2013). Another method to analyse the content of phenolic compounds 
is to use HPLC, an analysis that can be performed also after hydrolysis with 
acid or alkaline conditions (Guo et al., 2001; Lin & Harnly, 2007; Olsen et 
al., 2009; Kumar, 2017).   



 24 

4 Antioxidant dietary fibre 

Recently, studies have suggested to group antioxidants and dietary fibre into 
one joint group, i.e. as antioxidant dietary fibre (Sánchez-Rangel et al., 
2013), due to the interactions between these two groups of compounds (Le 
Bourvellec & Renard, 2012). Dietary phenolic compounds bind 
spontaneously and rapidly to cellulose, hemicellulose, lignin and pectins 
(Phan et al., 2015), which can affect the release of phenolic compounds from 
the food inside the gastrointestinal tract (Padayachee et al., 2017). The 
dietary fibre entraps and protects the phenolic compounds from digestive 
enzymes while they are transported through the intestines, resulting in that 
the phenolic compounds reach the microbiota mainly intact (Perez-Jimenez 
et al., 2009; Palafox-Carlos et al., 2011). Therefore, antioxidant dietary fibre 
(ADF) has been defined as dietary fibre rich material that contains 
antioxidant phenolic compounds in high amounts associated to the fibre 
matrix (Saura-Calixto, 1998).  
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5 Broccoli and kale 
5.1  Introduction to broccoli and kale 

Broccoli (earlier Brassica oleracea italica, now denoted Brassica oleracea 
Italica group) and kale (earlier Brassica oleracea acephala, now denoted 
Brassica oleracea Sabellica group) are both members of the Brassicaceae 
family, and the Brassica genus. There is no clear record of starting time for 
cultivation of Brassica vegetables (Gray, 1982), partly because the 
distinction of broccoli and cauliflower is not clear early in history. Broccoli 
originated most likely in the eastern Mediterranean area, even if the exact 
location and time is not known (Maggioni, 2015). One of the first literature 
records mentioning broccoli is from Britain around 1774, using the terms 
”sprout cauliflower” and ”Italian asparagus” to describe broccoli (Gray, 
1982). Also, some records from medieval times might be about broccoli and 
kale, although the vegetables mentioned may also be close relatives (Gray, 
1989; Maggioni, 2015).  
In Sweden, the broccoli production occupied 362 hectares (1 hectare = 10 
000 m2) in 2016 (Persson, 2017). This is a slight reduction in areal from 2015, 
when 375 hectares broccoli were cultivated in Sweden. However,  the 
acreage of broccoli cultivation has increased in total during later years, from 
2008 the cultivated acreage has increased by 67 % (Persson, 2017). As a 
comparison, the production of kale has increased from 49 hectare 2014 to 89 
hectare in 2017 (Persson, 2018), with no data collected before the year 2014. 
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5.2 Broccoli 

As a whole, consumption of broccoli has been suggested to result in health 
benefits due to the content of nutrients and bioactive compounds such as 
glucosinolates, phenolic compounds, minerals, vitamin C, vitamin K and 
folic acid (Vasanthi et al., 2009; Ares et al., 2013; Liu et al., 2018). 
Depending on the cultivar, location of the field and the season of harvest, the 
content of sugar (glucose, fructose, sucrose) varies considerably in the stems, 
leaves and florets of broccoli (Bhandari & Kwak, 2015a). As to the different 
parts of the broccoli, the florets were found to have higher levels of 
glucosinolates and free sugars compared to the leaves and stem, and with the 
highest levels of phenolic compounds in the leaves and the stem richest in 
vitamin C (Bhandari & Kwak, 2014, 2015b) and sodium (Liu et al., 2018), 
with moderate levels of sugars (Bhandari & Kwak, 2015a). The leaves are 
also rich in vitamin E and K, magnesium and calcium (Liu et al., 2018).  
Leaves and stems of broccoli are not used for food purpose to the same extent 
as the florets, although these side streams of broccoli are often as nutritional 
as the florets. Stems and leaves have been found richer in sugars than the 
florets, and had higher levels of sugar in the autumn season as compared with 
the levels in the spring season (Bhandari & Kwak, 2014, 2015b). 
Furthermore, the stem were found to have lowest cultivar dependent 
variations in content of phytonutrients as compared to other parts of the 
broccoli and also when comparing autumn and spring season (Bhandari & 
Kwak, 2014). Broccoli have differences in sugar composition that are organ-
specific (stem and florets) (Houben et al., 2011). Due to the high nutritional 
content of broccoli stems and leaves, novel uses for these parts would be 
valuable. However, the stem in broccoli can be perceived as tough due to the 
thickened vascular cell walls, which might cause problems with consumer 
acceptability (Muller et al., 2003). Due to the physiological functions of 
stems, the majority of broccoli stem cell wall polymers are not water soluble 
(33 % of the dry weight) compared to soluble polymers (3 % of the dry 
weight) (Schäfer et al., 2017). The content of lignin is in most cases low in 
broccoli (Muller et al., 2003), while the levels of pectin and hemicellulose 
are higher (Houben et al., 2011). In general, the broccoli plant has a water 
content of 81-86 % (Liu et al., 2018).   
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There is a lack of studies about the exact volume of non-harvested biomass 
on the broccoli field, though measurements have been done in greenhouses. 
Approximately 45-50 % of the edible parts of broccoli has been theoretically 
estimated to become waste during processing, and approximately 70 % of 
the total weight of broccoli becomes waste on the field (Campas-Baypoli et 
al., 2009), due to the lack consumer market for the stem and leaves of the 
plant. The division of the broccoli plant can be seen in Figure 10. In a 
greenhouse experiment, approximately 90 % of the above ground biomass 
was determined as waste, which included stems, leaves and too small 
inflorescences (Dominguez-Perles et al., 2010). Thus, it is clear from the 
above description that substantial amounts of valuable side streams are 
available from broccoli cultivation, which is possible to be valorised into 
nutritional food or novel food products.  

 
Figure 10: A broccoli plant divided into florets, stem (with roots) and leaves 

5.3 Kale 

The name kale is used for a variety of large leafy specimens of Brassica 
oleracea (Hahn et al., 2016) (Figure 11). In this introductory paper, the 
denomination kale or curly kale is used for the specimens in the Brassica 
oleracea Sabellica group. Leafy kales are considered as the first cultivated 
brassicas (Maggioni, 2015), although the exact cultivars have been difficult 
to identify. Some historical document suggests that leafy brassicas were used 
for human consumption and as animal feed in ancient Greece and Rome 
(Maggioni, 2015). 

Photo: Emilia Berndtsson 
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Kale is a good source for bioactive compounds such as vitamin C, 
carotenoids including some that have pro-vitamin A activity, phenolic 
compounds, and glucosinolates (Becerra-Moreno et al., 2014; Kaulmann et 
al., 2014). The concentration of these compounds can be affected by e.g. 
environmental factors. Frost exposure improved the phytochemical content 
and sensory properties even further in the edible parts of the kale plant 
(Steindal et al., 2015; Groenbaek et al., 2016). As the plant matures, the 
levels of vitamin C and phenolic compounds increase (Korus, 2011). Levels 
of soluble sugars and vitamin C decrease with longer exposure to cold or cold 
storage and also with delayed harvest (Hagen et al., 2009). However, despite 
a decrease in the level of vitamin C with the mentioned treatments, the levels 
are still high (Hagen et al., 2009).  
The antioxidant capacity in kale is affected by the soil type (Łata, 2014), as 
well as the geographic location of the fields (Ferioli et al., 2013). The 
composition of flavonoids in kale is dependent on genotypic and climatic 
factors, such as temperature and solar radiation during the cultivation time, 
and higher concentration of flavonoids is found in older cultivars (so called 
heirloom cultivars) as compared to newer ones (Schmidt et al., 2010a; Zietz 
et al., 2010; Neugart et al., 2012). Also the time of season is impacting the 
mineral content in kale, with higher levels early in the season, although 
variation between cultivars has been reported (Rosa & Heaney, 1996). The 
tough central stem of curly kale (Figure 12 and Figure 13) is composed of 
mainly lignified secondary xylem, with high levels of pectins (Wilson et al., 
1988), and low levels of lignin (Evans et al., 2003) 
 

Photo: Emilia Berndtsson  

Figure 11: A kale plant ready for first harvest (left) and a 
kale plant with central stem exposed (right) 
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Figure 12: Longitudinal section of kale stem. To the left is the topmost part of the stem and to the right 
is the lower part of the stem. 

 
Figure 13. Transverse section of the lower part of the stem in kale (B. olearacea Sabellica group). 
Notice the thick lignified layer.  

Photo: Emilia Berndtsson 

Photo: Emilia Berndtsson 
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6 Side streams and food loss 

 

6.1 Side streams 

Side streams is a term for the materials of products being produced in a 
production line, but not being the major target product in this line. In 
agricultural and horticultural production, quite a range of side streams are 
existing, e.g. the straw from wheat production (where wheat kernels for food 
production are the target, while the straw often have other uses), the pomace 
after juice or oil production, and the leaves and parts of stems of the broccoli 
plant. Even though the side streams are not the target food product, they may 
still have a potential to be valorised into useful products. A few examples of 
how the side streams can be used are shown below: 

• Fibre supplements in biscuits, cereal bars or snacks, e.g. cauliflower 
upper stem, artichoke bracts/petals and chicory leaves (Ferreira et al., 
2015) and soybean hulls (Yang et al., 2014). 

• Food additives, e.g. core of maize stalks (Lv et al., 2017), lower part 
of the asparagus spear (Fuentes-Alventosa et al., 2009), cabbage 
outer leaves (Tanongkankit et al., 2012) and  pomace after juice 
production (Ferreira et al., 2015). 

• Animal feed, e.g. pomace from juice production (Nawirska & 
Kwasniewska, 2005), broccoli stems and leaves (Hu et al., 2011), 
broccoli by-products (Yi et al., 2015) and broccoli florets (Mustafa 
& Baurhoo, 2016). 

For dietary fibre material aimed at being used as food additives, there are 
some characteristics that are desirable (Larrauri, 1999). Such specific 
characteristics include being insipid in taste, colour and odour, have a good 
shelf life, have the expected physiological effects, be reasonable in price and 
be compatible with food processing (Larrauri, 1999). Most dietary fibre 
material do not meet all these criteria, meaning that depending on the product 
and its requirement certain criteria need to be fulfilled. Consumers’ of today 
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often have high expectations on food; it should not only be tasty, but also 
contribute to health benefits (Ridderheim & Kairos Future, 2015). Addition 
of dietary fibres from side streams from field crop production may contribute 
beneficially to the gut microbiota, and thereby meet consumers’ expectations 
of healthy food.  

6.2 Food waste and food loss 

In order to have a useful discussion about the amount of food that, for some 
reason, could be eaten but is not, defining food waste and food loss is 
necessary. Both the term food waste and food loss are used in the literature, 
although sometimes inconsistently defined, making comparisons and life-
cycle assessments insecure. However, the edible but non-harvested parts in 
vegetable production is usually not included in the food loss definitions, with 
some exceptions such as Strid et al  (2014) and Hartikainen et al  (2017). 
These edible but non-harvested parts include parts with cosmetic damages 
and overproduction (de Hooge et al., 2018) and parts with no available food 
market. The following section discusses some of the different definitions in 
the literature.  

6.2.1 Some examples of definitions of food waste and food loss. 

In a well cited report from FAO (Gustavsson et al., 2011) the distinction 
between food waste (the decrease of edible food at the end of the food chain, 
mainly retail and consumers) and food loss (the decrease in edible food 
throughout the food supply chain that leads to human consumption, 
essentially at production, post-harvest and processing) is stated (Figure 14). 

 
Figure 14 Difference between food loss and food waste. 

According to Gustavsson et al. (2011) 

Food waste vs food loss

Food loss

Production Transport
Processing 

and 
packaging

Distribution ConsumerHarvest

Food waste

Introductory seminar, Emilia Berndtsson

(Gustavsson et al, 2011)
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Gustavsson et al. (2011) also stresses that the food waste is influenced by 
retailer's and consumer's behaviour and expectations on the products.  
A more detailed explanation can be found in Buzby et al (2014) were they 
describe food loss as “food available post harvest for human consumption 
but that are not consumed for any reason”. In the same article, food waste is 
defined as a component of food loss, being edible items that are not 
consumed, e.g. by being discarded in the retail phase or food discarded on 
the plate by consumers (Buzby et al., 2014). Thus, food loss could be the 
result of changes in the product after storage or cooking, e.g. parts of the 
products that are cut away prior to cooking, shrinkage due to moisture loss 
in a sub-optimal storage or loss from pests and mould (Buzby et al., 2014). 
Thereby, the two above mentioned studies results in a similar definition of 
food waste (Gustavsson et al., 2011; Buzby et al., 2014).  
A recent study has used the difference between the total amount of food 
produced and the amount of food employed in any kind of productive use, 
either as food or as non-food (e.g. as fodder for animals) as a short and 
informative definition of food waste (Bellemare et al., 2017). However, other 
studies have suggested abandoning the concept of food waste and instead use 
a grouped definition of food loss (Quested & Johnson, 2009) as described 
below: 

1. Avoidable losses. This group is referring to the food and drinks that are 
thrown away because they are no longer wanted as food, e.g. because 
they have exceeded their “eat before”-date. The products were at some 
point edible but have deteriorated. 

2. Possible avoidable losses. In contrast to the group before, this group 
contains the parts that are eaten by some people but are left by other (e.g. 
apple peels and core), or parts that could be eaten when processed in 
some way (e.g. skins of potato or pumpkin) or foods that are selected due 
to specific criteria (size or shape). 

3. Unavoidable losses. The remaining group consists of the waste from 
food and drink preparation that are normally not edible (e.g. banana peel, 
tea leaves, coffee ground and slaughter waste). Also included are the 
losses at harvest, and during storage, transportation and processing that 
could not be avoided with best available techniques and reasonable costs. 

As the examples above show, there are several ways to define and classify 
the amount of produced food material that are not eaten. For convenience the 
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term “food loss” will be used henceforth in this text to describe the produced, 
but for some reason not eaten human food. 

6.2.2 Example: Broccoli side streams in baked goods 

Broccoli for human food consists of harvested broccoli florets and the upper 
part of the stem, i.e. the topmost part of the plant, that is cut off and after 
harvest is brought by the distribution chain to reach the consumers as a 
vegetable product. The lower part of the stem and the leaves, which make up 
over 50 per cent of the total weight of the plant, are normally not harvested, 
but left in the field. These side streams can instead be used as an ingredient 
e.g. in baked goods.  
Previous studies have shown steam blanching prior to slicing and 
vacuum drying at 80 °C as a possibly recommended process suitable for 
the production of functional dietary fibre powder from the otherwise 
discarded parts of white cabbage (Tanongkankit et al., 2012, 2015). Similar 
methods could have good effect on broccoli side streams. However, a 
previous investigation has also shown the less processed dietary fibre being 
more beneficial for the gut microbiota than fibre with higher degree of 
processing (Monro et al., 2016). Broccoli stems could be used in baking, 
either by drying, milling and adding it as a powder, or by grating it raw. 
However, the lower parts of the stem are quite fibrous and broccoli have a 
strong taste, which may thereby affect the taste and sensory qualities of the 
products (Femenia et al., 1998). While adding the broccoli side streams as 
an ingredient, it is vital to understand the requirements of the final product 
with its nutritional benefits in order to select the most optimal processing 
method for the broccoli powder.  
If broccoli powder is to be used as an ingredient, the powder could be 
prepared through different methods for blanching, drying, and milling which 
in turn may affect the nutritional content of the ingredient (Tanongkankit et 
al., 2012). With the use of ultrafine grinding (with a particle size of 100-1000 
nm), fractions of smaller dietary fibre can be obtained (Zhu et al., 2010). This 
ultrafine powder resulted in a higher content of soluble fibre, and a reduction 
in hydration properties (WHC, WRC and swelling capacity) and antioxidant 
capacity as compared to powder from commercial milling. The small particle 
size of the ultrafine powder allowed it to penetrate into the structure of foods, 
resulting in a high dispersibility and solubility of the powder in the food 
systems. The particles of the ultrafine powder were are also easier absorbed  
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due to their greater surface area and will thereby be more readily digested by 
enzymes and microbiota in the gut (Zhu et al., 2010). An ideal broccoli 
powder should be useable as a food ingredient, have a good nutritional value, 
and be safe from human pathogens. 
When baking bread with sourdough or baker’s yeast it is important to make 
a dough with a great network of gluten threads, which results in an elastic 
dough with good rheological properties (Mis et al., 2017). Broccoli powder 
added to the dough would contribute with valuable minerals for the yeast and 
bacteria in the dough, and the soluble dietary fibre could increase the water 
holding capacity, leading to a better dough (Arufe et al., 2017; Han et al., 
2017). Since dough with added dietary fibre takes longer time to develop 
(Mis et al., 2017), it could be an idea to add broccoli powder in sourdough 
bread, since it has a longer development time and hence the dough could 
have the opportunity to benefit from the fibre in matter of structural and 
nutritional properties (Gobbetti et al., 2014). Adding broccoli powder in 
sourdough could also make bioactive compounds more available for human 
absorption, since the steps of fermentation, acidification, proteolysis and 
activation of enzymes (steps that are missing when baking with bakers’ 
yeast) may affect the matrix in which these compounds are bound (Gobbetti 
et al., 2014). There is a need to develop fibre-rich gluten free alternatives, 
since many of the gluten free products that are on the markets today lack vital 
nutrients and components such as dietary fibre, vitamins and minerals (Han 
et al., 2017). When it comes to gluten free cakes, which often have a problem 
of low nutritional value, an additive of broccoli leaf powder of 2 % had a 
good impact on the content of protein, minerals and phenolic compounds 
without affecting the sensory qualities (Drabińska et al., 2018).  
To conclude, there are opportunities for using broccoli side streams in e.g. 
bread and cakes, with increasing nutritional value as a result. The problem is 
the risk of drawbacks in texture and taste and how to efficiently prepare the 
side streams into a useable ingredient.    
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7 Conclusions  

Generally, this paper identifies the large quantities of produce that could be 
consumed as human food but currently are not. Two major definitions, food 
waste and food loss, are used to characterise food items possible to eat but 
not eaten. Basically, the material left unharvested in the field is not included 
in any of these definitions and is also less studied, making approximations of 
the total amount of this underutilised resource difficult.  
The major part of the biomass in the broccoli and kale production is not 
ending up as vegetables for the human consumption but is instead considered 
as waste or side streams. Thus, the potential is obvious to utilise this 
inexpensive biomass for extraction of functional ingredients or as a raw 
material for making health beneficial food products. However, clear 
challenges currently restrict the use of these side streams. Such challenges 
include the distinctive taste, allowing only low percentages of addition in 
food products, and the negative textural impact vegetable powder might have 
on a product. Broccoli and kale are both known to contain high levels of 
bioactive compounds, e.g. phenolic compounds, as well as dietary fibre, of 
relevance for functional food or novel food products. Therefore, the potential 
to increase the content of minerals, vitamins and dietary fibre in gluten-free 
cakes by the use of powder from broccoli leaves have been evaluated with 
promising results in earlier studies. 
As for the definition of dietary fibre, there is a history of disagreement, that 
now has come to an international agreement. A range of methods is currently 
available, some being defined as international standards, of which the 
analyses of the total amount of dietary fibre and for identification of the 
different constituents.  
The phenolic compounds correspond to over 8000 identified substances. 
Many of these substances are known to have a beneficial effect on human 
health by reducing the risk of developing certain forms of cancer, 
cardiovascular diseases and chronic inflammations.  
Antioxidant dietary fibre is a novel terminology implemented due to the fact 
that phenolic compounds and dietary fibre are often found either solely 
together or in combination with other substances in complexes. Thereby, the 
dietary fibre contributes to a transportation of the intact phenolic compounds 
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to the intestines, where the bacterial flora uses the dietary fibre and phenolic 
compounds in its metabolism. During this metabolism, the bacteria are 
producing e.g. short chained fatty acids (SFCA), which are beneficial for the 
human health.  
Throughout this literature study, the focus has been on the potential use of 
the side streams from broccoli and kale production. To conclude, a wide 
array of opportunities is existing while searching for novel uses of broccoli 
and kale side streams within the production of health beneficial food. 
However, substantial and additional studies are needed to fully evaluate the 
most efficient and consumer acceptable use of these side streams.   
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