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Abstract. The policy term green infrastructure highlights the need to maintain functional ecosystems as
a foundation for sustainable societies. Because forests are the main natural ecosystems in Europe, it is cru-
cial to understand the extent to which forest landscape management delivers functional green infrastruc-
tures. We used the steep west–east gradient in forest landscape history, land ownership, and political
culture within northern Europe’s Baltic Sea Region to assess regional profiles of benefits delivered by forest
landscapes. The aim was to support policy-makers and planners with evidence-based knowledge about
the current conditions for effective wood production and biodiversity conservation. We developed and
modeled four regional-level indicators for sustained yield wood production and four for biodiversity con-
servation using public spatial data. The western case study regions in Sweden and Latvia had high forest
management intensity with balanced forest losses and gains which was spatially correlated, thus indicating
an even stand age class distribution at the local scale and therefore long-term sustained yields. In contrast,
the eastern case study regions in Belarus and Russia showed spatial segregation of areas with forest losses
and gains. Regarding biodiversity conservation indicators, the west–east gradient was reversed. In the Rus-
sian, Belarusian, and Latvian case study regions, tree species composition was more natural than in Swe-
den, and the size of contiguous areas without forest loss was larger. In all four case study regions, 54–85%
of the total land base consisted of forest cover, which is above critical fragmentation thresholds for forest
landscape fragmentation. The results show that green infrastructures for wood production and biodiver-
sity conservation are inversely related among the four case study regions, and thus rival. While restoration
for biodiversity conservation is needed in the west, intensified use of wood and biomass is possible in the
east. However, a cautious approach should be applied because intensification of wood production threat-
ens biodiversity. We discuss the barriers and bridges for spatial planning in countries with different types
of land ownership and political cultures and stress the need for a landscape approach based on evidence-
based collaborative learning processes that include both different academic disciplines and stakeholders
that represent different sectors and levels of governance.
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INTRODUCTION

Contemporary policy documents highlight the
need to use a development approach that satisfies
all sustainability dimensions based on material
and immaterial values of landscapes and regions
(e.g., European Commission 2009, 2013a). Ulti-
mately, functional ecosystems form the supply
base for human well-being and the development
of sustainable societies (Burkhard et al. 2012).
Ecological networks are a solution and have been
subject to research, policy, and practice in Europe
for decades (Jongman et al. 2011, �Civi�c and
Jones-Walters 2014). The EU’s green infrastructure
policy (European Commission 2013a, b) retains
this ambition and aims at a strategically planned
network of natural and semi-natural areas with
other environmental features designed and man-
aged to deliver a wide range of benefits, today
often referred to as ecosystem services (e.g., de
Groot et al. 2002, Lele et al. 2013). It incorporates
green spaces (or blue if aquatic ecosystems are
concerned) and other physical features in terres-
trial (including coastal) and marine areas, in both
rural and urban settings. Development of green
infrastructure is a key step toward the success of
maintaining and enhancing biodiversity accord-
ing to the EU 2020 Biodiversity Strategy (http://
ec.europa.eu/environment/nature/ecosystems/stra
tegy/index_en.htm). The backbone of EU’s green
infrastructure policy is the Natura 2000 network
of high conservation value areas (Salomaa et al.
2017). The EU’s green infrastructure policy thus
aims at ensuring that conservation, restoration,
and management of green infrastructure will
become parts of integrated spatial planning and
territorial development. Implementing green
infrastructure policy requires maintenance of suf-
ficient amounts of patches of different representa-
tive vegetation types, which then form ecological
networks. Note, however, that the term green
infrastructure evolved more than a century ago
along two paths, in the United Kingdom and the
United States. The UK approach views green
infrastructure as the linking of urban parks and
other green space into functional networks to
benefit people, while the US approach sees green
infrastructure primarily as a biodiversity conser-
vation measure to counteract habitat degradation
and fragmentation (e.g., Benedict and McMahon
2006, Allen 2014).

The increased pressure for higher biological
production in terrestrial and aquatic systems
under the heading of bio-economy (McCormick
and Kautto 2013) and the expansion of the human
footprint through housing, transport, communica-
tion, and energy infrastructures make the manage-
ment and sustainability of green infrastructures a
difficult balancing act (e.g., Popescu et al. 2014).
Resolving competing interests through collabora-
tive spatial planning is a key approach for reach-
ing sustainability (e.g., Elbakidze et al. 2015), as
well as a challenge for developing inclusive gover-
nance processes (Baker 2006) and active adaptive
management (Walters 1986, 1997).
Therefore, to understand whether land covers

representing a region’s ecosystems actually form
functional green infrastructures, it is crucial to
assess the entire chain of actions from policy to
practice, including evidence-based knowledge
about the resulting state of sustainability in land-
scapes and regions. This requires both evaluation
of the policy process and the outcomes of this
process (Rauschmayer et al. 2009). Evaluation of
the former involves assessment of what consti-
tutes good governance (Currie-Alder 2005, Baker
2006), including elements such as more and
improved information management and learn-
ing, a legitimate process, and the normative aims
of transparency and participation. According to
Rauschmayer et al. (2009), outcomes of the policy
process can be divided into two parts: firstly, the
outputs in terms of implementation of practices
and rules to be applied by governors at multiple
levels, including pronouncements of norms (e.g.,
Lammerts van Bueren and Blom 1997) such as
strategic performance targets for short-term and
long-term goals (e.g., Angelstam and Andersson
2001), as well as tactical planning and operational
management approaches (e.g., Eriksson and
Hammer 2006). Depending on the sector, man-
agement involves practices that imply both pres-
sures and responses on sustainability (Butchart
et al. 2010). Secondly, the consequences of the
operational implementation of strategic and tacti-
cal plans by managers on the sustainability of
landscapes and regions need to be assessed (e.g.,
Angelstam et al. 2011a, Elbakidze et al. 2011,
2015). This requires monitoring of indicators that
measure the effectiveness of policy implementa-
tion tools on different aspects of sustainability,
such as the functionality of green infrastructures.
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There are three approaches to monitoring: (1)
implementation monitoring, (2) validation moni-
toring, and (3) effectiveness monitoring (Busch
and Trexler 2003). The development of effective-
ness monitoring based on evidence-based knowl-
edge about the states of green infrastructures is a
prerequisite for planning toward functional green
infrastructures (M€uller and Burkhard 2012).
While policy-level indicators generally focus on
national level reporting about policy implemen-
tation, spatially explicit data at the scale of local
landscapes in regions are needed to provide
knowledge about the state of green infrastructure
for effective steering by spatial planning. Conse-
quently, monitoring must also be undertaken at
the scale where land management takes place,
that is, in a local forest management unit or an
administrative unit such as a municipality. A
range of studies have proposed indicators and
presented different frameworks for monitoring
forest values, all of which need to be validated
before being used (e.g., Stem et al. 2005).

Successful implementation of green infrastruc-
ture policy thus requires that stakeholders and
actors coordinate and integrate their monitoring
of land covers, landscapes, and regions. How-
ever, given that national and business policies,
landscape histories and governance contexts
among countries in Europe are very diverse,
Pan-European and EU policies linked to green
infrastructures are likely to be comprehended
and implemented differently. This is not made
easier by national-, regional-, or local-level rheto-
ric that only stresses continued pressure on valu-
able natural systems, or only the responses made
in terms of set-asides and management practices.
The net effect of pressures and responses on the
state of ecosystems is thus confounded to practi-
tioners, policy-makers, and the public, unless
comprehensive analyses are made (e.g., Elba-
kidze et al. 2016). Indicators of green infrastruc-
ture functionality need to address specific
benefits and be robust and understandable.

The steep west–east gradient in landscape his-
tory, ownership, and political culture within Eur-
ope’s Baltic Sea Region (BSR) provides excellent
opportunities to explore the consequences for the
profile of benefits delivered by landscapes’ green
infrastructures (e.g., Kern and Loffelsend 2004,
Metzger and Schmitt 2012, Angelstam et al. 2013,
2017b). Following the enlargement of the European

Union in 2004 by inclusion of the three Baltic States
and Poland, the Baltic Sea has become close to an
EU-internal sea. The BSR strategy (European Com-
mission, 2009) aims at functional coordination and
more efficient use of financial resources and exist-
ing cooperation schemes between Sweden, Fin-
land, Estonia, Latvia, Lithuania, Poland, Germany,
and Denmark. The European Commission (2014)
noted that the involvement of stakeholders needs
to be strengthened, including parliaments at differ-
ent levels, regional governments, and civil society.
Consistent with that, EU InterReg and other fund-
ing mechanisms for neighborhood collaboration
have a broader geographical scope than the EU.
Non-EU countries are also participating actively in
work with the BSR Cooperation. These include
Norway, Russia, and sometimes Iceland and
Belarus (Swedish Agency for Economic and Regio-
nal Growth 2014). The BSR strategy emerged due
to a suite of critical environmental problems as
well as severe differences in infrastructural accessi-
bility and economic development among regions
(e.g., Bengtsson 2009). Being the first macro-regio-
nal cooperation of its kind in the EU, the BSR is a
good test case. Thus, it is important to assess the
extent to which this new model functions and
whether this model may be applied in other
macro-regions. This requires evidence-based
knowledge about how different countries’ gover-
nance and management affect environment, infras-
tructure, and development of natural resources.
With forests being the main natural ecosystems

in the BSR, it is thus crucial to understand the
extent to which forest landscape management sat-
isfies the different dimensions of sustainable for-
est management policy by maintaining functional
green infrastructure. Effective wood production
and habitat for biodiversity conservation are two
key benefits received from forest landscapes,
which are articulated in policy (e.g., Edwards and
Kleinschmit 2013) and practice (e.g., Juutinen and
M€onkk€onen 2004). Integrative vs. segregative
approaches to sustainable forest management are
debated as solutions (Bollmann and Braunisch
2013). This dichotomy is analogous to land-
sharing, which combines wood production with
biodiversity conservation across a landscape,
and land-sparing, in which more intense forestry
is combined with protected areas (Edwards et al.
2014). Maximum sustained yield wood produc-
tion and biodiversity conservation with policy
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ambitions about viable populations of special-
ized species and their habitats as well as ecologi-
cal processes are rival in the same local forest
area (e.g., M€onkk€onen et al. 2014). Accommodat-
ing both production and biodiversity conserva-
tion thus requires spatial planning that includes
multiple sectors at the scales of landscapes and
regions (e.g., Vierikko et al. 2008, Angelstam
et al. 2011a, Elbakidze et al. 2015). This requires
evidence-based knowledge about the state of
these benefits in different contexts, such as in the
BSR with its diversity of contexts.

The aim of this study was to assess the relative
state of sustained yield wood production as a
means of delivering provisioning ecosystem ser-
vices, and biodiversity conservation to supply
supporting (or habitat) services, as rival objec-
tives in the west–east gradient of the BSR. Using
public spatial databases with proxy data relevant
to forest landscapes in different regions, we
developed and modeled four effectiveness indi-
cators (sensu Busch and Trexler 2003) of wood
production and four indicators for biodiversity
conservation at the regional level in Sweden,
Latvia, Belarus, and Russia. The resulting param-
eter values were then compared and the results
discussed in the context of land-sharing or
land-sparing.

STUDYAREAS

The BSR is diverse regarding both ecological
and social systems. In terms of ecosystems, the
BSR’s most common potential natural vegetation
is forest, from the temperate zone in the south
with broad-leaved tree species to the boreal biome
in the north dominated by conifers (e.g., Laasimer
et al. 1993). The different forest biomes form broad
longitudinal zones at similar latitudes in both the
western and eastern parts of the BSR (Ahti et al.
1968). Naturally, these forest biomes are domi-
nated by site-specific disturbance regimes, which
result in a diversity of forest environments ranging
from old-growth forests, mixed deciduous–conif-
erous, and deciduous forests during certain suc-
cessional stages and to forests disturbed by fire,
wind, and flooding (e.g., Angelstam and Kuulu-
vainen 2004, Shorohova et al. 2011). However, the
social systems of these countries and regions differ
considerably in landscape history and governance
across the west–east gradient. The BSR ranges

from western countries with long-term stable rules
and democratic institutions such as Sweden to
Belarus and the Russian Federation with authori-
tarian rule (Hague et al. 1992), as well as countries
in transition (e.g., Latvia).
Sweden and Russia have always been indepen-

dent countries, but with different governance tra-
ditions (Hauge et al. 1992), as well as approaches
to forest management linked to different forest
histories and ideologies (Nordberg et al. 2013,
Naumov et al. 2016). While Sweden has devel-
oped maximum sustained yield principles, Russia
is still by and large focusing on wood mining
(Knize and Romanyuk 2006, Elbakidze et al.
2013). Before the Soviet occupation in 1940, Latvia
was an independent state with developed prop-
erty structure and German forest management
traditions that focused on the principle of even-
aged stand age distributions (Dumpe 1999, see
also Puetmann et al. 2009). During the Soviet per-
iod, forest cover in Latvia increased due to forced
abandonment of agricultural land (Vanwambeke
et al. 2012). After the collapse of the Soviet Union
in 1991, agricultural and forest land was to be
returned to its previous owners, but the forest
restitution process is gradual involving finding
alternative land, implementation by acquiring
legal document, and developing forest manage-
ment plans. Intensification of forest harvesting
and management to increase economic benefits
by application of maximum sustained yield prin-
ciples were introduced in the 1990s using Sweden
as an example (E. Peterhofs, personal communica-
tion). In contrast to Latvia, which moved to demo-
cratic governance from its independence, Belarus
has remained under authoritarian rule being
entwined with Russia. These four countries thus
represent a clear west–east gradient in forest gov-
ernance and management methods (Duncker
et al. 2012). In each country, we identified one
representative case study area with similar sizes
in the southern part of the boreal forest ecoregion
(Laasimer et al. 1993), including entire Latvia as
one of them (Fig. 1).
Strategic spatial planning needs to be addressed

within an area that is sufficiently large to satisfy a
particular benefit. Regarding wood production,
say that an industry requires 2 Mm3 annually (S.
Lundell, personal communication). With a wood
production of 3–5 m3/ha per year, the total area
of forest planning units needs to encompass

 ❖ www.esajournals.org 4 March 2018 ❖ Volume 9(3) ❖ Article e02119

ANGELSTAM ET AL.



4,000–6,500 km2. If the forest cover in the region is
50%, the planning region for securing wood for
the industry should be in the order of 8000–
13,000 km2. Biodiversity conservation is about
maintaining sufficient amounts of habitat suitable
to host viable species populations and ecological
interactions. For example, Angelstam et al. (2004)
estimated that the required size of management
units for viable populations of species with large
area requirements is ~10,000 km2. To match this
range of necessary area extents of an assessment
region for sustained yield wood production and
biodiversity conservation, we choose to focus on
five counties (Stockholm, Uppsala, S€odermanland,
€Orebro, and V€astmanland) in Sweden’s Bergsla-
gen–M€alardalen region, entire Latvia, Vitebsk
oblast in Belarus, and Pskov oblast in Russia,
respectively (Fig. 1).

METHODOLOGY

Spatial data sources and their characteristics
Spatial planning is hierarchical, ranging from

larger to smaller spatial extents and longer to
shorter time spans. Regional-level planning is
thus subsequently sub-divided into plans for
smaller units, such as municipalities, and secto-
rial management units for forest management
and biodiversity conservation. With this study’s
regional focus to support strategic planning in
local landscapes, analyses were made based on
the spatial resolution of a 10 9 10 km grid.
This area (100 km2) corresponds to the order of
magnitude of forest landscape planning units
in the BSR, which typically is 50–300 km2

(Angelstam and Pettersson 1997, Elbakidze
et al. 2016).

Fig. 1. Map of the Baltic Sea Region countries (in gray color) showing in the four regional case studies Bergsla-
gen–M€alardalen (the five counties: Stockholm, Uppsala, S€odermanland, €Orebro, and V€astmanland) in Sweden
(34,400 km2), entire Latvia (64,600 km2), Vitebsk oblast (40,100 km2) in Belarus, and Pskov oblast (55,300 km2) in
NW Russia.
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Given the lack of harmonized national spatial
forest management data in the BSR, we based
the analyses on three internationally harmonized
thematic data sets: (1) the global data set about
forest cover change at pixel size 30 9 30 m pro-
duced by Hansen et al. (2013) covering the per-
iod 2000–2013, (2) the map of coniferous and
broad-leaved forest produced by the European
Forest Institute (EFI) (Kempeneers et al. 2011),
and (3) OpenStreetMap data on road networks,
for which Ather (2009) demonstrated 80%
accuracy compared to official data sets. We
pre-processed some of data the sets to mirror
the indicator requirements. According to FAO
(2000), forest is defined as >5 m high woody veg-
etation with a canopy cover of >10% that covers
>0.5 ha. We thus included only 30-m pixels in
Hansen et al.’s (2013) data set with more than
10% forest cover, but not for the data from the
EFI (see Kempeneers et al. 2011) for which we
used the forest cover proportions provided in
that database. Details about the data sources are
summarized in Table 1. To minimize area distor-
tions (Nyerges and Jankowski 1989), raster data

were re-projected to metric Albers equal-area
conic projection (Snyder 1987) with standard
parallels 53° and 61° N and central meridian at
23° E. To make the numerical analyses and maps
consistent, the borders of the four study regions
were generalized to fit a 10 9 10 km grid.
Analyses of raster data were done with GRASS
(Neteler and Mitasova 2013) and statistics calcu-
lations with R (R Development Core Team 2013).
To achieve the lowest data loss, we used a

nearest neighbor algorithm to resample categori-
cal data (forest cover loss and gain); for all other
data, we employed bilinear interpolation (Parker
et al. 1983). The global change data set (Hansen
et al. 2013) already has induced errors because it
was created based on 654,178 growing season
Landsat 7 Enhanced Thematic Mapper Plus sce-
nes which have Universal Transverse Mercator
planar coordinate system. We did not use a grid
approach for the road density algorithm, that is,
calculation of lengths within rectangular grid
cells, due to limitation caused by artificial cell
borders. Instead, we applied an algorithm based
on kernel density estimation (Cai et al. 2013). We

Table 1. List of provisioning and supporting (habitat) services, indicators, associated variables, and units ana-
lyzed in this study, as well as data and algorithm.

Ecosystem
service Indicator Variable (unit)

Data source (spatial
resolution) Algorithm for 10 9 10 km grid

Provisioning Forest management
intensity (FORINT)

Forest loss per year
(proportion)

Hansen et al. (2013)
(1 arc second)

SUM loss/SUM forest area during
2000–2013 divided by 14

Net forest gain
(FORGAIN)

Net forest gain (log10) Hansen et al. (2013)
(1 arc second)

log10(SUM gain/SUM loss)

Accessible
coniferous forest
(ACC_CON)

Conifer forest with good
access (index)

(a) Kempeneers
(2011) (1 9 1 km)

(b) OpenStreetMap

(a) SUM area (conifer ≥ 70%)
(b) SUM road length/SUM

forest area
(c) index (a 9 b)

Economic
sustainability
(ECONSUST)

Relationship between
forest gain and loss (slope
of linear regression)

Hansen et al. (2013)
(1 arc second)

SUM gain = b0 + b1 9 SUM loss;
if b1 = 1 then forestry is
economically sustainable

Supporting
(habitat)

Deciduous forest
habitat (DECHAB)

Proportion of local
landscape (10 9 10 km)
with deciduous forest
(proportion)

Kempeneers (2011)
(1 9 1 km)

SUM area (decid ≥ 50%)

Mixed forest habitat
(MIXHAB)

Proportion of local
landscape (10 9 10 km)
with mixed coniferous–
deciduous forest
(proportion)

Kempeneers (2011)
(1 9 1 km)

Mask (conif and decid)

Intact forest
(INTACT)

Size of patches with low
forest loss (km2)

Hansen et al. (2013)
(1 arc second)

(1) a = SUM loss <1%
(2) clump (a)

Forest landscape
fragmentation
(FRAG)

Proportion of local
landscapes (10 9 10 km)
with forest cover
(proportion)

Hansen et al. (2013)
(1 arc second)

(1) SUM forest cover >40%
(2) classification into three

categories
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thus argue that it is safe to draw conclusions for
the coarse spatial scale chosen to explore differ-
ences among regions in the BSR.

Indicators for effectiveness monitoring in
management units

Focusing on effectiveness monitoring (see Busch
and Trexler 2003), this study takes the perspective
of spatial planners in forest landscapes. The princi-
ple strategic, tactical, and operational planning for
maximum sustained yield wood production is a
general paradigm in forest management world-
wide (Elbakidze et al. 2013). It implies achieving
high continuous wood production, at the earliest
practical time and a balance between increment
and cutting (Nieuwenhuis 2000), that is, a steady-
state balance of gains and losses of forest stands in
a local forest management unit. The emergence of
systematic conservation planning takes the same
hierarchical approach (Angelstam et al. 2011a). In
the BSR, the size of landscape planning units is
typically 50–300 km2 (Angelstam and Pettersson
1997, Elbakidze et al. 2016). We used 100 km2

areas as virtual forest management units. To moni-
tor the effectiveness of wood production, we devel-
oped indicators for forest management intensity
(FORINT) and for the balance between loss and
gain (FORGAIN). To mirror the focus on conifers,
we developed an indicator for accessible conifer-
ous forest (ACC_CON). Finally, to be economically
sustainable, costs and incomes need to be balanced
within the forest management units, which led to
the indicator ECONSUST (see Table 1).

Biodiversity is about species, habitats, and pro-
cesses (e.g., Brumelis et al. 2011). Land manage-
ment affects habitat directly by modifying the
quality, amount, and spatial configuration of land
cover patches, which thus need to be considered
in spatial planning. Maintaining green infrastruc-
tures requires that sufficient amounts of represen-
tative naturally occurring forest ecosystems are
maintained (Angelstam and Andersson 2001).
This means that patches of different land covers
should be of sufficient quality and size and have
sufficient connectivity. Given the focus on conifer-
ous forest as a base for industrial use, we ana-
lyzed deciduous forest habitat (DECHAB) and
mixed deciduous and coniferous (MIXHAB) as
two key natural forest land covers. Additionally,
we modeled the amount of forested areas of dif-
ferent size with low levels of stand-replacing

disturbance (INTACT), and the level of fragmen-
tation of the forest land cover irrespective of age
class by using both natural features, such as lakes
and mires, and anthropogenic features, such as
agriculture and urban areas (FRAG; see Table 1).

Indicators of sustained yield wood production
Forest management intensity (FORINT).—In the

BSR, managed forest rotation times for conifer
range from 60 to 90 yr in Sweden (Fries et al.
2015), 81–121 yr in Latvia (Anonymous 2007),
80 yr in Belarus (Zinovskij 2006), and 80–120 yr
in Pskov (V. Rezhetov, personal communication).
This means that in an entire local forest manage-
ment unit, subject to clear-felling forestry prac-
tices in the long term, a little over ~1% of the
forest area should be harvested annually. Hence,
forest loss values considerably over 1% per year
would be unsustainable or be the result of natu-
ral disturbances such as fire and wind throw.
Conversely, very low forest loss values indicate
poor wood resource utilization. As a proxy for
annual harvest by clear-felling, we used the for-
est loss raster maps for 2000–2013 created by
Hansen et al. (2013). During this period, there
were no catastrophic wind throws such as the
storms “Gudrun” (2005) and “Per” (2007) and
V€astmanland fire (2014) in Sweden on forest land
within the case study regions. However, in 2011
there was one large fire event in easternmost
Pskov oblast on a bog complex.
Net forest gain (FORGAIN).—The net forest gain

was estimated as the sum of gained forest area
divided by the sum of the loss forest area for
each 10 9 10 km grid cells. Due to the great vari-
ance within the raster data (net forest gain), it
was log-transformed with a base of 10.
Accessible coniferous forest (ACC_CON).—By

and large, the wood trade and forest industrial
economy in the BSR focus on the conifers Scots
pine (Pinus sylvestris) and Norway spruce (Picea
abies; Tilli and Skutin 2004). Economic benefits in
forestry are maximized if conifer stands are con-
centrated, and can be reached by permanent roads
for both (1) harvesting by commercial thinning
and final felling and (2) repeated silvicultural
treatments by owners with the long-term vision to
sustain wood yields over several rotations (Sund-
berg and Silversides 1988). Hence, the opportunity
for economically sustainable production of conif-
erous wood should be higher in local landscapes
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with higher proportion of coniferous forest areas
and higher road density. To estimate the available
relative amount of coniferous forest resources
(ACC_CON), we used the EFI forest database
with spatial resolution of 1 km2 (Kempeneers
et al. 2011). Using the scale of a local landscape,
we selected 1 km2 pixels with >70% conifers and
then expressed this as the proportion of conifer-
dominated pixels within local landscapes
(10 9 10 km). In the BSR, the dominating har-
vesting machine system is based on harvester–
forwarder teams practicing cut to length. The
economically acceptable distance to forward tim-
ber from the harvesting site to a permanent forest
road is <500 m (Sundberg and Silversides 1988).
Thus, to provide full access to forest resources by
road transportation, the road density should be
>1 km/km2 (Sundberg and Silversides 1988,
Skogsstyrelsen 1991, Goltsev et al. 2012:126). To
eliminate flaws of grid computing (Cai et al.
2013), we calculated road density at a 200-m res-
olution by using Gaussian kernel function with a
radius of 500 m. The kernel density raster was
then aggregated to 1 9 1 km resolution. Pixels
with values <1 km/km2 were omitted. Further,
we computed proportions of valid pixels within
10 9 10 km grid cells. The resulting indicator of
accessible coniferous forest was estimated as the
coniferous forest resource (ACC_CON) multi-
plied by proportions of sufficient road density in
1 km2 pixels, and summarized for local land-
scapes (10 9 10 km pixels).

Economic sustainability (ECONSUST).—During
a full rotation of sustained yield forest manage-
ment, the balance between costs and incomes for
a forest stand changes in the management cycle
from one final felling event to the next. While
final felling yields high net revenue, site prepara-
tion and tree planting are investments that imply
significant costs (Brukas and Weber 2009). Inter-
mediate felling by thinning to improve stand
productivity, and to gain additional wood vol-
umes, ranges from being cost-neutral early in the
rotation to yielding an increasing profit net rev-
enue. Hence, to allow for intensive forest man-
agement based on silvicultural treatments, a
forest management unit needs to include both
regeneration areas and areas ready for commer-
cial thinning and final harvest. A precondition
for economic viability in an area is thus that both
forest gain and forest loss should be spatially

sufficiently juxtaposed within forest manage-
ment units. To estimate this, we calculated the
regression line between forest loss and forest
gain among 100 km2 virtual forest management
planning units within each of the four regions
and used the slope (BETA) as an indicator eco-
nomic sustainability.

Indicators of biodiversity conservation
Deciduous forest habitat (DECHAB).—To esti-

mate the available relative amount of deciduous
forest as habitat (DECHAB), we used the EFI for-
est data with a spatial resolution of 1 km2 (Kem-
peneers et al. 2011). This is motivated by the area
requirements of specialized focal species (e.g.,
Angelstam et al. 2004). To estimate DECHAB at
the scale of a local landscape (10 9 10 km), we
selected all 1 km2 pixels with >50% deciduous
forest and expressed DECHAB as the proportion
of local landscapes.
Mixed forest habitat (MIXHAB).—To estimate

the relative amount of mixed forest resources as
habitat (MIXHAB), we masked the forest cover
by the raster themes CON and DECHAB with a
spatial resolution of 1 km2. To estimate MIXHAB
at the scale of a local landscape (10 9 10 km),
we selected all 1 km2 pixels not classified as
CON or DECHAB. This is motivated by the area
requirements of specialized focal species (e.g.,
Angelstam et al. 2004). MIXHAB was expressed
as the proportion within local 10 9 10 km land-
scapes.
Intact forest areas (INTACT).—Naturally dynamic

boreal forests are dominated by late-successional
stages after stand-replacing disturbances (Pennanen
2002) as well as gap dynamic forests and multi-
cohort forests after low-intensity disturbances
(Shorohova et al. 2011). Such forest landscapes
should thus have a low proportion of stand-
replacing forest loss and thus harvesting would
not be detected by satellite-based remote sensing
data (Potapov et al. 2015). To calculate the patch
size distribution of forest areas with low forest
loss at the stand scale, we mapped areas with low
forest loss (<0.1% per year) during the period
2000–2013 in individual 1 km2 cells and com-
pared the size distributions of contiguous 1 km2

cells with low forest loss among the case study
regions. Contiguous patches were defined as
1 km2 cells that touch adjacent cells in any direc-
tion, including diagonally. The results were
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presented as histograms showing the area distri-
bution among patch size classes (<1, 1–10, 11–100,
>100 km2).

Forest landscape fragmentation (FRAG).—As a
result of forest clearing for agriculture and settle-
ments in the BSR during Millennia, forest cover
has been lost and fragmented. Forest loss is higher
on more fertile soils and at lower altitudes (e.g.,
Angelstam and Andersson 2001). This is an obsta-
cle to the maintenance of habitat networks that
have sufficient amounts of habitat to be functional
(Angelstam et al. 2011a). Due to past forest loss,
local landscapes may thus have passed thresholds
for the proportion of habitat that permits presence
of particular species. There are two key thresholds.
The first is when contiguous habitat is broken up
into patches, thus no longer permitting percolation
of individuals of different species through an un-
fragmented habitat. Individuals of species can
usually move across shorter distances outside their
habitat patch, a local landscape may be perceived
as contiguous as long as the proportion of habitat
exceeds 40–50% (With and Crist 1995, Fahrig
2003). We used a threshold of 40% remaining for-
est land as habitat for the potential occurrence of
species that need contiguous forest (see Angelstam
et al. 2017a). The second key threshold is when
fragments begin increasing in inter-patch distance
and thus isolation. We applied the Nagoya agree-
ment’s 17% target (CBD 2010) for what has been
agreed internationally as the minimum proportion
that needs to be allocated for protected areas. First,
we included only 1 9 1 km pixels (see above)
with >40% forest cover, that is, above the percola-
tion threshold for the local forest stand scale. Sec-
ond, the data were aggregated into coarser local
landscapes (10 9 10 km). Finally, we re-classified
raster data into three categories based on these
two key threshold values, viz. (1) areas that permit

percolation (i.e., >40% forest cover), (2) areas with
intermediate levels of fragmentation within local
landscapes (17–40%), and (3) areas that suffer from
forest fragmentation (<17%).

RESULTS

Sustained yield wood production
Forest management intensity (FORINT).—In both

the Swedish Bergslagen–M€alardalen region and
Latvia, the mean annual forest loss rates among
10 9 10 km pixels were very similar and ranged
from 0.75 to 0.82% (Table 2). In contrast, the
annual forest loss rates in Vitebsk and Pskov ran-
ged from 0.30 to 0.21%. Additionally, the spatial
distributions of different forest management
intensities among the local 10 9 10 km land-
scapes were clearly different when comparing
Swedish Bergslagen–M€alardalen and Latvia on
the one hand and Belarusian Vitebsk and Rus-
sian Pskov on the other. While in the former two
countries, FORINT was normally distributed, in
the latter two FORINT was clearly skewed
toward low forest management intensities
(Fig. 2). The spatial distribution of loss rates
among the four case study regions confirms the
major difference between the western and east-
ern groups of countries (Fig. 3).
Net forest gain (FORGAIN).—All regions showed

negative forest gain during the study period.
Latvia had the lowest mean value (�0.73) and
then followed Swedish Bergslagen–M€alardalen
and Belarusian Vitebsk (�0.46 and �0.44). Rus-
sian Pskov had the highest mean value (�0.32;
Table 2). The range of variation among local
10 9 10 km landscapes was lower in Bergsla-
gen–M€alardalen and Latvia than in Vitebsk and
Pskov (Table 2, Fig. 4). For Vitebsk, and espe-
cially Pskov, many of the local 10 9 10 km

Table 2. Indicator values for four indicators of provisioning ecosystem services and four supporting ecosystem
services (habitat services).

Region

Provisioning ecosystem services Supporting ecosystem services

FORINT FORGAIN ACC_CON ECONSUST DECHAB MIXHAB INTACT FRAG

Bergslagen–M€alardalen (Sweden) 0.0075 �0.46 3699 0.64 0 0.55 3.29 3.29
Latvia (entire country) 0.0082 �0.73 677 0.49 0.39 12.38 3.18 3.18
Vitebsk (Belarus) 0.0030 �0.44 611 0.44 2.40 6.88 4.52 4.52
Pskov (Russia) 0.0021 �0.32 6.45 0.19 0.37 58.86 7.54 7.54

Note: For details on the indicator units and how they were calculated, see Table 1.
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landscapes showed high net forest gain (up to
0.81 and 1.61, respectively; Fig. 3).

Accessible coniferous forest (ACC_CON).—The
distribution of contiguous coniferous forest was
concentrated to the NW part of the Bergslagen–
M€alardalen region (Fig. 5). In Latvia and
Vitebsk, coniferous forests had a patchy distribu-
tion. Finally, in Pskov, coniferous forest was very
rare. Regarding road density, Bergslagen–
M€alardalen stands out with the highest values,
followed by Belarus, Latvia, and Pskov (Fig. 5,
Table 3). The resulting index of accessible conif-
erous wood (i.e., a 9 b in Table 3) showed a very
steep gradient from Sweden (3698) to Latvia and
Vitebsk which were similar (677 and 611) and to
Pskov (6; see Table 3). The map showing the
ACC_CON index of the accessible coniferous

forest also showed considerable variation among
landscapes within each region. For example, the
NW (i.e., the Bergslagen region; Angelstam et al.
2013) and SE parts of the Bergslagen–M€alardalen
region were clearly different (Fig. 5). In Latvia
and Vitebsk, the occurrence of higher ACC_CON
values was patchily distributed throughout these
regions, and in Pskov, there was virtually no
ACC_CON.
Economic sustainability (ECONSUST).—Bergsla-

gen–M€alardalen clearly showed the best relation-
ship between forest loss and forest gain (slope
0.41 and R2 = 0.64; Fig. 6). Next, Latvia and
Vitebsk had similar slopes and R2 values
(Table 4). Finally, Pskov showed a very poor rela-
tionship with low slope (0.10) and R2 value of
0.19.

Fig. 2. Distribution of the proportion of the annual forest loss (FORINT) 2000–2013 as an indicator of forest
management intensity inside the forest mask among 10 9 10 km grid cells in Bergslagen–M€alardalen counties in
Sweden (380 grid cells), Latvia (648 grid cells), Vitebsk oblast in Belarus (400 grid cells), and Pskov in Russia (547
grid cells).
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Biodiversity conservation
Deciduous forest habitat (DECHAB).—The amount

of 100-ha deciduous forest habitat patches was
generally low (0–2.4%), but still clearly differed
among the four case study regions. Bergslagen–
M€alardalen was devoid of deciduous forest
concentrations (see map in Fig. 7, and Table 2).
In Vitebsk and Pskov, there were some large
deciduous forest massifs.

Mixed forest habitat (MIXHAB).—Also, the
amount of 100-ha patches with mixed deciduous
and coniferous forest was clearly different among
the four regions. In Bergslagen–M€alardalen, the
amount of mixed forest concentrations was very
low (0.55%), except some patches in the east (see
map in Fig. 7, and Table 2). Latvia and Vitebsk
had similar proportions of MIXHAB (12.4 and
6.9%, respectively) and spatial distributions of

Fig. 3. Maps showing forest management intensity (FORINT; top) and net forest gain (FORGAIN; bottom) in
the four regional case studies Bergslagen–M€alardalen in Sweden, entire Latvia, Vitebsk oblast in Belarus, and
Pskov oblast in Russia. FORINT is expressed as the proportion of the annual forest loss 2000–2013 inside the for-
est mask among 10 9 10 km grid cells and FORGAIN expressed as the ratio of gain to loss expressed as log10
classes (see also Fig. 4).
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mixed forest. Pskov oblast had one large contigu-
ous mixed forest massif that covered on average
59% of the local 10 9 10 km landscapes.

Intact forest areas (INTACT).—The mean size of
contiguous patches created by merging adjacent
1 km2 pixels with <1% forest loss increased from
Sweden (3.3 km2) and Latvia (3.18 km2) to
Vitebsk (4.5 km2) and to Pskov (7.5 km2; see
Table 2). The proportion of area located in
patches >10 km2 (i.e., 1000 ha) increased from
Sweden (37%) and Latvia (33%) to Vitebsk (50%)
and Pskov (70%; Fig. 8). As a result, Pskov and
Vitebsk had large contiguous forest patches
spread over the regions (Fig. 9).

Forest landscape fragmentation (FRAG).—All four
case study regions were similar in terms of

contiguous forest areas with a level of forest land
fragmentation that exceeds the percolation
threshold (Fig. 9). Histograms of the distribution
of local landscape into different landscape frag-
mentation classes (<17%, 17–39%, >40%) also
show that all regions have low proportions (3–
13%) of local landscapes that suffer severe
(<17%) forest landscape fragmentation (Fig. 10).

DISCUSSION

Regional-level comparison reveals major
differences
Landscape history gradients and harmonized open-

access data.—This macro-scale study focuses on
use of open-access remote sensing data as a base

Fig. 4. Net forest gain (FORGAIN) divided into six log10 classes for the four regional case studies Bergslagen–
M€alardalen in Sweden (380 grid cells), entire Latvia (648 grid cells), Vitebsk oblast in Belarus (400 grid cells), and
Pskov oblast in NW Russia (547 grid cells).
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for comparing forest landscapes’ opportunity for
wood production and biodiversity conservation
in regions with different histories of forest land-
scapes as coupled human-nature systems. With
its large contrasts between forest landscape his-
tory and governance legacies in different parts,
the BSR is unique as a time machine (Angelstam
et al. 2011b). This offers the opportunity for both
comparative studies of different governance con-
texts (Elbakidze et al. 2010) and the consequences
of different landscape histories for sustaining

populations of species that require naturally
dynamic habitats (Roberge et al. 2008). We clearly
show that different regional units within the BSR
demonstrate very different states regarding wood
production and biodiversity conservation func-
tions of forest landscapes. Indeed, the results for
the eight indicators developed and analyzed in
this study demonstrate a clear inverse relationship
among the four case study regions (Fig. 11).
International comparisons aimed at landscape

and regional planning in the BSR’s west and east
are hampered by the accessibility of harmonized
data. Many databases are produced for EU coun-
tries only, and in general, digital land cover data
for Russia and Belarus are difficult or expensive
to obtain. Implementing green infrastructure
policy requires integrated spatial planning using
evidence-based knowledge about the states of
landscapes in different regions and countries
(Angelstam et al. 2017a, Valasiuk et al. 2017), and
multi-level cross-sectorial integration (Elbakidze
et al. 2015). Thus, while coarse remote sensing
data are needed to cover large spatial extents in a
harmonized manner (e.g., Rose et al. 2015) as a
base for strategic planning in the BSR region, for
tactical and operational planning at the local level
our approach needs to be succeeded by finer the-
matic resolution that match different forest age
classes, tree species, and stand structure (Manton
et al. 2005, Naumov 2017).
Assessment of wood production using indicators.—

Indicators are approximations, the validity of
which depends on the extent to which existing
data sources mirror derived verifier variables. For
example, the forest loss data used in this study
have a minimum mapping unit of 25 9 25 m.
This means that forest harvesting made by selec-
tive felling that covers spatial units smaller than
this pixel size in the remote sensing data would
be underestimated. For example, the low propor-
tion of clear-cuts in Vitebsk oblast (8%; Zinovskij
2006) makes it likely that forest loss data derived
from remote sensing underestimate the effects of
forestry on biodiversity. Additionally, indicators
may represent relative rather than absolute num-
bers. We used the slope for the relationship
between gain and loss as an indicator of economic
sustainability, with the assumption that the closer
the slope is to 1, the higher the probability of eco-
nomic sustainability. To see whether forest gain
has occurred in absolute terms, however, a

Fig. 5. Maps showing the local area proportion (%)
of coniferous forest (top), road density (ACCON; mid-
dle), and an index of coniferous forest stands accessi-
ble from roads (CONWOOD; bottom) with an
estimated forwarder distance of <500 m (c) in the four
regional case studies Bergslagen–M€alardalen in Swe-
den, entire Latvia, Vitebsk oblast in Belarus, and Pskov
oblast in Russia.
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sufficient amount of time is needed for vegetation
to recover. Therefore, if the time lag for forest
recovery in terms of regeneration of young forest
is 5 yr (Potapov et al. 2015), loss from T_0 to T_10
should be compared with gain from T_5 to T_15.
Another caveat regards the estimate of the acces-
sible amount of coniferous stands (ACC_CON).
Not only forest road density affects accessibility
of wood for road transportation. Additionally, the
distance from harvested wood at the forest road-
side to value-adding units such as paper and pulp
industries and sawmills should be considered
(Naumov et al. 2017). In this study, the Swedish
Bergslagen–M€alardalen, with access to value-
adding industries on good public roads, differs
from the case study regions in Latvia, Belarus,
and Pskov, all lacking paper and pulp industries.

With forest being the natural potential vegeta-
tion in the BSR (Bohn et al. 2000), in all case study
regions the dominating reason for loss of forest
land, that is, not loss of stands with taller trees, is
clearing of forests for agriculture and gray infras-
tructure. In Sweden, pastures and poor agricul-
tural land were re-forested after WW2, which led
to increased forest land. In Latvia, Belarus, and
Russia, forest cover is currently increasing due to

encroaching forest on abandoned agricultural
lands with less fertile soils and on wet soils
(Angelstam et al. 2005, Potapov et al. 2015). Fur-
ther intensification of forest management is cur-
rently desired to increase economic benefits (e.g.,
Naumov et al. 2016). This is further stressed by
current policies concerning increasing use of
bioenergy.
Assessment of the opportunity for biodiversity

conservation using indicators.—Clearly, current
opportunities for biodiversity conservation are
higher in the Belarusian Vitebsk and Russian
Pskov regions, and still to some extent in Latvia,
than in the Swedish case study region. This is
indicated by lower forest management intensity,
higher proportions of mixed deciduous–conifer-
ous forest, and larger patches of forests with low
forest loss toward the east. The status of species in
western vs. eastern parts of the BSR confirms this.
By compiling the breeding status and population
trends for 17 specialized bird species that together
represent all forest habitats in the seven countries
of the BSR, Angelstam et al. (2004) found that the
distribution among the categories extinct, declin-
ing, no trend, and increase was skewed toward a
more negative situation in the three western

Table 3. Indicators of conifer resource density, road density, and an index for the amount of accessible coniferous
forest by 10 9 10 km grid cells.

Region Variables Mean Median Range Variance Skewness

Bergslagen–M€alardalen
(Sweden) (n = 380)

A. Conifer resource in 1 km2 pixels
dominated by coniferous forest)

40.62 35 0-8 876.58 0.29

B. Proportions (%) of areas with road
density ≥ 1 (km/km2)

88.52 94 8–100 255.16 �2.86

Accessible coniferous forest index (A 9 B)
(ACC_CON)

3698.56 3201 0–956 7,642,968 0.29

Latvia (entire country)
(n = 648)

A. Conifer resource in 1 km2 pixels
dominated by coniferous forest

12.91 4 0-5 335.07 1.87

B. Proportions (%) of areas with road
density ≥ 1 (km/km2)

48.68 47 2–100 308.35 0.21

Accessible coniferous forest index (A 9 B)
(ACC_CON)

677.1 199 0–8360 1,223,367 2.67

Vitebsk (Belarus)
(n = 400)

A. Conifer resource in 1 km2 pixels
dominated by coniferous forest

9.65 2 0–73 225.96 2.15

B. Proportions (%) of areas with road
density ≥ 1 (km/km2)

64.23 66 2–99 205.67 �0.51

Accessible coniferous forest index (A 9 B)
(ACC_CON)

611.23 150 0–6745 1,029,591 2.78

Pskov (Russia)
(n = 547)

A. Conifer resource in 1 km2 pixels
dominated by coniferous forest

0.21 0 0–27 2.19 12.87

B. Proportions (%) of areas with road
density ≥ 1 (km/km2)

35.4 34 1–97 324.11 0.44

Accessible coniferous forest index (A 9 B)
(ACC_CON)

6.45 0 0–1377 4214.11 18.56
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Fig. 6. The ECONSUST indicator based on regressions between forest loss on the x-axis and forest gain on
the y-axis among 10 9 10 km pixels in the four regional case studies Bergslagen–M€alardalen in Sweden, entire
Latvia, Vitebsk oblast in Belarus, and Pskov oblast in Russia.

Table 4. Linear regression between gain and loss with 10 9 10 km areas within the four study areas.

Region Intercept Slope R2 n P

Bergslagen–M€alardalen (Sweden) �0.13 0.41 0.64 380 <0.0001
Latvia (entire country) 0.19 0.17 0.49 648 <0.0001
Vitebsk (Belarus) 0.23 0.24 0.44 400 <0.0001
Pskov (Russia) 0.52 0.10 0.19 547 <0.0001

Note: R2 is used as the indicator ECONSUST (see Table 1).
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countries (Denmark, Sweden, and Finland) with
more intensive forest landscape management
compared to the four eastern countries (Estonia,
Latvia, Lithuania, and Poland). All six extinctions
were confined to the three western countries.

However, the current status does not imply
that this west–east trend in biodiversity status
will remain. The mechanism is that a long-term
wood production focus in forest management
gradually modifies the tree species composition;
removes dead wood in different decay stages,

old stands, and trees; and changes the microcli-
mate (e.g., Vellak and Paal 1999). Intensification
of forestry in Latvia (Potapov et al. 2015, Rende-
nieks et al. 2015a) is already affecting green
infrastructures for wood production positively at
the expense of opportunities for biodiversity con-
servation. This is clearly noted in Latvia’s report
to EU on unfavorable status of forest habitats
(http://bd.eionet.europa.eu/article17/reports2012/
habitat/report/?period=3&group=Forests&country=
LV&region=). For example, while from a sustained

Fig. 7. Maps showing the proportion (%) of deciduous (DECHAB; top) and mixed deciduous–coniferous forest
(MIXHAB; bottom) in local 10 9 10 km landscapes in the four regional case studies Bergslagen–M€alardalen in
Sweden, entire Latvia, Vitebsk oblast in Belarus, and Pskov oblast in Russia.
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yield perspective forest gain means improved
opportunities for wood and biomass harvest, nei-
ther rapid vegetation regeneration after forest
harvesting nor encroaching vegetation on aban-
doned agricultural land, are factors that improve
forest biodiversity conservation in the short and
medium term.

Our study, as well as Potapov et al.’s (2015)
analysis of Eastern Europe’s forest cover dynam-
ics from 1985 to 2012 and Hsu and Zomer (2016),
shows that Latvia stands out with high forest
loss. Additionally, the fact that there were more
deciduous trees in the easternmost case study
regions does not mean that the relatively better
status for biodiversity in Latvia will remain in
the long term. The limiting factors for most focal

species of birds, invertebrates, lichens, mosses,
and fungi are presence of old (i.e., mature in an
ecological sense) stands, stands with mixed tree
species, and the amount of the dead wood
(preferably large dimensions and in different
decay stages; e.g., Siitonen 2001). Increased eco-
nomic activity in Latvia is likely to cause reduced
proportions of biologically old stands (Rende-
nieks et al. 2015b) resulting in reduced habitat
quality, patch size, and functional connectivity
(Angelstam and Andersson 2013) in the short
and medium term. Modeling suggests that due
to current tree retention practices during final
felling, the conditions for biodiversity conserva-
tion could improve in the long term (Roberge
et al. 2015). However, the amount of tree

Fig. 8. Histograms showing the proportion of differently sized contiguous areas with low forest loss (the
INTACT indicator) in the four regional case studies Bergslagen–M€alardalen in Sweden, entire Latvia, Vitebsk
oblast in Belarus, and Pskov oblast in Russia.
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retention is low in Sweden (Gustafsson et al.
2012), and the quality and connectivity of set-
asides are poor (Elbakidze et al. 2011). Addition-
ally, maintenance of natural disturbances such as
fire and gap dynamic is important for biodiver-
sity conservation (Shorohova et al. 2011). Thus,
the overall conclusion is that forest landscapes
with a long history of effective wood production
require landscape restoration in terms of
increased amount natural structures at multiple
spatial scales (Halme et al. 2013). Countries and
regions aiming at forestry intensification should
be aware of this.

The analyses of the remaining area proportion of
forest showed that there is in principle potential for
conserving biodiversity at the local 10 9 10 km
landscape scale, except in the parts of the case
study regions that are dominated by agricultural
land. However, to deal with habitat loss and forest
fragmentation of particular forest types and age
classes for biodiversity conservation requires the
combination of restoration, management, and con-
servation in the long term by segregation of differ-
ent forest functions. This includes two distinct
aspects. The first one is the gradual transformation
of forest land to agricultural lands affecting the rep-
resentation of different forest types. This forest loss

is generally linked to a systematic bias toward loss
of more fertile forest site types being transferred to
agricultural land (e.g., Angelstam and Andersson
2001). The second aspect is the reduction of older
age classes linked to intensified forest management
including lower final felling ages. For example, in
Latvia, there was a considerable increase in the
total final felling volumes and concentration of
clear-cuts after the restoration of state indepen-
dence in 1991. Thus, while from an economic per-
spective, forest will have re-appeared 3–5 yr after
clear-felling (Potapov et al. 2015; NASA Earth
Observatory (http://eoimages.gsfc.nasa.gov/image
s/imagerecords/86000/86221/latvia_etm_2012_lrg.
jpg), the regeneration time of forest habitats suit-
able for natural forest specialist species is much
longer than the current rotation time.

Functional green infrastructure requires
integrated spatial planning
This study stresses the need to develop region-

ally adapted solutions for functional green infras-
tructure to secure both a high sustained yield
wood production and biodiversity conservation.
This requires both compass and gyroscope (Lee
1994). Compass is about knowing the states and
trends of regions, based on evidence-based

Fig. 9. Map showing the location of contiguous areas with low forest loss (INTACT) in the four regional case
studies Bergslagen–M€alardalen in Sweden, entire Latvia, Vitebsk oblast in Belarus, and Pskov oblast in Russia.
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knowledge about ecological targets/tipping points
and measures, for managing, restoring, and recre-
ating habitats for species, including preferences of
humans, habitats, and ecosystem processes and
functions. Gyroscope is about developing collabo-
rative learning among researchers, stakeholders,
and policy-makers, including managers and users
in the field, businesses, policy actors, local adminis-
trations, and citizens. Together, an integrated focus
on ecological and social systems forms the base for
transparent sustainable development processes
toward sustainability through functional green

infrastructures. The terms landscape approach
(Axelsson et al. 2011, Sayer et al. 2013) and land-
scape restoration (Laestadius et al. 2015) capture
this. Concepts such as Biosphere Reserve, Model
Forest, and Long-Term Socio-Ecological Research
platforms are solutions being explored in Sweden
and Russia (e.g., Elbakidze et al. 2010, 2013, Angel-
stam and Elbakidze 2017) and in Latvia (Melecis
et al. 2014). However, their success hinges on their
ability to critically assess landscape trajectories by
monitoring the outcomes of attempts toward col-
laborative spatial planning.

Fig. 10. Histograms of the distribution of local landscapes (10 9 10 km pixels) into different forest landscape
proportion classes in percentage in the four regional case studies Bergslagen–M€alardalen in Sweden, entire
Latvia, Vitebsk oblast in Belarus, and Pskov oblast in Russia. The number 17 corresponds to the lowest possible
forest cover that could potentially support the Nagoya target of 17% protected area (CBD 2010), and 40%
represents the forest cover above which forest area is contiguous (With and Crist 1995).
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Our comparative study confirms the work of
M€onkk€onen et al. (2014), who concluded that
maximizing sustained yield wood production
and effective biodiversity conservation cannot be
combined in the same area. This is primarily due
to the fact that the habitat suitability for a number
of key biodiversity indicators is strongly linked to
old-growth forest with high quantities of diverse
types of dead wood (Tikkanen et al. 2007), but
also undisturbed early post-disturbance and mid-
dle-aged successional stages with deciduous trees
(Angelstam et al. 2004). Intensification of sus-
tained yield forestry leads to a decrease in the
proportion of forest development stages impor-
tant for biodiversity conservation. These factors
thus require policy-makers to choose between
conflicting priorities and for planners to make
trade-offs between economic and biodiversity val-
ues at different spatial scales (European Commis-
sion 2013a, b). This dilemma thus requires
application of strategic regional and tactical spa-
tial planning and management approaches with a
landscape and regional perspective (Angelstam
1998, Puettmann et al. 2009).

Regional gap analysis is a method that strategi-
cally assesses the extent to which networks of

areas set-aside for conservation represent the dif-
ferent representative land covers of a region (e.g.,
Scott et al. 1993, Angelstam et al. 2017c). Angel-
stam and Andersson (2001) and L~ohmus et al.
(2004) used the emerging empirical knowledge
about how much habitat is needed to maintain
functional habitat networks for biodiversity con-
servation, and assessed the extent to which this
can be satisfied through formally protected areas,
voluntary set-asides and sustainable use of the
matrix surrounding protected areas and set-
asides. To secure green infrastructure functional-
ity, tactical spatial planning based on, for example,
habitat suitability modeling using forest spatial
data with sufficient thematic resolution needs to
follow (Manton et al. 2005).
Past and current trajectories of intensive forest

landscape use mean that management and
restoration for biodiversity conservation as well as
area protection are needed in the two western case
study regions with a longer landscape history.
However, implementation is unlikely to be suc-
cessful where the forest use history is very long
and intense (Angelstam et al. 2011a). At the same
time, there is opportunity for intensified forest
management for wood and biomass in the

Fig. 11. Means (depictured as bars) and SE (as lines) of normalized values for four indicators of wood produc-
tion (dark gray) and four of biodiversity conservation (light gray; Table 2), respectively, among the in the four
regional case studies Bergslagen–M€alardalen in Sweden, entire Latvia, Vitebsk oblast in Belarus, and Pskov
oblast in Russia.
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easternmost case study regions with shorter land-
scape histories (Naumov et al. 2016, Angelstam
et al. 2017b). However, caution should be applied
because too much focus on intensification of forest
management for wood production threatens forest
biodiversity. This difference between the western
and eastern regions supports the case for ensuring
a balance between maximizing sustained yield
and maintaining the potential for biodiversity con-
servation. A sole focus on maximizing sustained
yield will lead to sustainable economic returns,
but at the cost of causing harm to biodiversity
(Trivi~no et al. 2015). This study is thus in line with
Edwards et al.’s (2014) study on Borneo, which
concluded that land-sparing where some forests
are left unlogged and more species resulted in
higher abundances of species and higher species
richness than land-sharing with lower intensity
forest management.

Maximum sustained yield and effective bio-
diversity conservation are not compatible. Thus,
rather than focusing solely on the economic sus-
tainability, a multi-perspective approach should be
used to evaluate economic, ecological, and socio-
cultural sustainability. This means promotion of
sustainable forest management policy, which is
consistent with securing the provision of ecosys-
tem services and integrated catchment manage-
ment (e.g., Cook and Spray 2012), and requires the
same set of steps. First, the extent to which net-
works of formally and voluntarily protected areas
form functional green infrastructures that repre-
sent a regions’ forest land covers types needs to be
assessed (e.g., Angelstam et al. 2011a, Elbakidze
et al. 2016). Second, regarding general guidelines
about tree retention during thinning and final fell-
ing linked to voluntary forest certification (Elba-
kidze et al. 2016), what is the most efficient spatial
distribution of retention trees across scales for bio-
diversity conservation? Third, which landscapes
have few ecological (and social) values and are
thus particularly suitable for intensive forest man-
agement (Andersson et al. 2013). Fourth, given
that human habitat selection for recreation pur-
poses is similar to the habitat characteristics for
biodiversity conservation (Giergiczny et al. 2015),
segregation of different forest landscape functions
is also desirable to maintain forests’ social values.

Three examples of forest landscape zoning
toward functional green infrastructure are the
Ekopark concept developed by Sveaskog Co. in

Sweden (Angelstam and Bergman 2004, European
Commission 2013b), the Latvian Ecoforest (E.
Peterhofs, personal communication), and the Rus-
sian forest zoning system (Lazdinis and Angel-
stam 2005, Naumov et al. 2017). However,
systems of forest land tenure, and the spatial con-
figuration of them on the one hand, as well as the
cultures and legacies of what forestry is and is
expected to deliver (Brukas et al. 2011, Brukas
2015) on the other, effectively determine the extent
to which segregated approaches are feasible. In
Sweden and Latvia, small patches of ownership
are a key challenge (e.g., Rendenieks et al. 2015a).
Unless land owners collaborate across borders,
zoning approaches are increasingly feasible with
increasing size of forest management units within
the same ownership. However, even if regions
dominated by a single land owner, the sectorial
silos of forestry and conservation imply that dif-
ferent stakeholders and actors have different and
rival objectives. Thus, power relations and not evi-
dence-based knowledge to balance production
and biodiversity relationships may rule.
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