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Foreword 

The Planning Group on Commercial Catch, Discards and Biological Sampling 

(PGCCDBS) 2012 was approached by the ICES Publications and Communications 

Group (PUBCOM) with the suggestion to combine the existing protocols on the age 

estimation of fish species within the ICES Area and publish them as an ICES Coopera-

tive Research Report (CRR). This idea was received favourably by PGCCDBS. It was 

deemed important to (i) summarize the state of knowledge for key species, (ii) scruti-

nize, by peer review, the work done during the many calibration exercises, and, by 

doing so, (iii) promote an increase in quality. The aim of the present publication is to 

provide a comprehensive manual on the methodology of age estimation and validation 

and represents a collation of the state-of-the-art scientific work on the methods and 

validated age estimation of commercially exploited fish species across Europe. Having 

a collation of the latest methodologies by species grouping will also facilitate rapid and 

quality-assured development of methods suitable for new species. 
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1 Introduction 

1.1 Why do we age read fish? 

Assessment of individual age through the use of calcified structures (scales, otoliths, 

opercular bones, fin rays, etc.) has been proven to be very useful in assessing the status 

of any fish stock. According to Panfili et al. (2002), data on age and growth of fish are 

essential for understanding vital traits of species and populations (e.g. lifespan, age at 

recruitment, age at sexual maturity, reproduction periods, migrations, mortality) and 

the study of population demographic structure and its dynamics (e.g. age-based stock 

assessment). The age profile of a fish stock can be indicative of its general “health”, as 

one will expect to see evidence of a broad range of ages in a healthy population. A lack 

of young fish may indicate recruitment failure, which will have repercussions in future 

years, while a lack of older fish can signal overexploitation of the stock. Fisheries sci-

entists are especially concerned with the dynamics of exploited populations, with the 

view to providing advice about the sustainable harvesting of the resource. In the ICES 

Area, this task is generally focused on providing a quantitative assessment and forecast 

on a stock, with age data at its core. Hilborn and Walters (1992) pointed out that the 

“aim of such studies is not only to assess the state of stocks and fisheries relative to 

historical states, biological reference points or management targets, but also to evaluate 

the consequences for both fish stocks and fishermen, of alternative management sce-

narios.” Therefore, it is clear that reliable age–length data are important for the man-

agement and sustainable exploitation of fish stocks. The need for reliable data is espe-

cially acute in times when stock levels are low and errors in predictions can have dev-

astating effects on the resources. 

1.2 The history of quality assurance and quality control (QA/QC) 

Improved awareness of ensuring quality and standardization of age estimation has 

been the main goal for the development of quality assurance and quality control 

(QA/QC) over time. Quality assurance (QA) can be defined as systematic measure-

ment, comparison with a standard, monitoring of processes, and an associated feed-

back loop that confers error prevention. This can be contrasted with quality control, 

which is focused on process output. Thus, quality assurance focuses on the accuracy of 

the age estimation, i.e. how well is the real, true age estimated and what is the associ-

ated precision. The quality control (QC) then is a monitoring system of how well age 

readers perform in relation to the standards set under QA. 

Establishing European-wide control mechanisms is a sensitive issue that requires time 

to implement as well as a good international working climate. In recent years, an im-

proved awareness of the value of validation and the benefit of evaluating assumptions 

has developed. However, bridging the gap between highly specific research and the 

operational QA/QC programmes within various laboratories has been a challenge. Ad-

vances in sophisticated research into age estimation and biomineralization processes 

have not fully translated into the routine age estimation methodologies applied for 

fishery assessment within European age estimation laboratories. The quality of age 

data often depends on the individual skills and independent experience of the age 

reader and does not always incorporate elements of standardization, objective control, 

and statistical evaluation. Here, we review major milestones in this process. 

In December 1997 a Concerted Action, i.e. “European Fish Ageing Network” (EFAN – 

FAIR PL.96.1304) was started in order to develop a network of laboratories with the 

capacity to collaborate on research and training. The goal of this network is to ensure 

that age estimation is a reliable basis for stock assessments and scientific advice on 
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fisheries and environmental resources. By the end of the project in December 2000, 

EFAN had become a network of 34 university and research institutes representing 16 

countries in Europe. EFAN was coordinated through a steering group which collated 

information and disseminated, via a periodic newsletter, the production of EFAN re-

ports and the maintenance of an internet homepage that is now defunct. This facility 

provided access to information, reports, and databases, not only for EFAN members, 

but also for a wider audience. EFAN developed into an important forum for the open 

discussion of ideas, dissemination of results and access to unpublished material. 

The achievements of EFAN were carried further by another concerted Action “To-

wards Accreditation and Certification of Age Determination of Aquatic Resources” 

(TACADAR – Q5CA-2002-01891) which was initiated in October 2002. As a starting 

point, TACADAR used the network developed in EFAN to address the requirements 

of environmental and fisheries management strategies for data quality, necessary for 

the timely assessment of living resources. The overall objective was to increase the re-

liability of age estimation procedures in the European Community and to promote the 

adoption of procedures that include QA/QC mechanisms. TACADAR developed 

guidelines and a manual for quality assurance and standardized practices in age esti-

mation to be applied on the European level, including statistical criteria as well as an 

evaluation of legal aspects of accreditation and certification and implications within 

the EU.  

Under the remit of the International Council for the Exploration of the Sea (ICES), a 

Planning Group on Commercial Catches, Discards and Biological Sampling 

(PGCCDBS) was established in 2002 to provide support for the EU Data Collection 

Framework (DCF). A particular role for PGCCDBS was to develop standards and 

guidelines for the types of data required by the DCF, principally stock-based biological 

parameters from sampling of fishery and survey catches (age, growth, maturity, fecun-

dity, sex ratio) and fleet-related variables (discard estimates and length/age composi-

tions of landings and discards). One of the main goals for PGCCDBS was to ensure 

correct and consistent interpretation of biological material such as otoliths and gonads. 

The multiannual work plan of PGCCDBS included intercalibration studies to promote 

agreement among scientists classifying calcified age structures, such as otoliths and 

gonads of specific species or groups of species, using web-based tools to facilitate this 

work.  

Over the years, it became apparent that more specific workshops were needed to facil-

itate a pan-European QA/QC of age estimations. Two workshops of National Age 

Reader Coordinators were established, WKNARC1 in 2011 and WKNARC2 in 2013. 

These workshops further gauged the quality assurance and the means of dealing with 

uncertainty in relation to age data in stock assessment. For the purpose of intercalibra-

tion between age estimation labs and age readers involved in stock assessment, the 

WKNARC reviewed preparation methods by species and areas, material and tech-

niques development, methods in image processing, and validation methods. 

The most recent development within the ICES community to facilitate and guide 

QA/QC of age estimations and other biological parameters is the formation of the 

Working Group on Biological Parameters (WGBIOP). WGBIOP is a newly formed ex-

pert group which took over the responsibilities of PGCCDBS on the coordination and 

implementation of quality assured and statistically sound methods for the provision of 

accurate biological parameters for stock assessment purposes. However, the focus of 

WGBIOP is not only on technical aspects of data collection and quality assurance, but 

also on accuracy in life history parameter estimations to support stock assessment. 

WGBIOP will review stock-specific life history parameters and monitor potential 
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changes in biological processes, such as growth rate, onset of maturity, maturity and 

fecundity at size/age, and related causal factors. 

WGBIOP is an expert group devoted to all stages of the provision of biological param-

eters (methodological improvements, implementation, quality assurance, statistical 

analysis) at a national, regional, and stock level. It provides a bridge between the data 

collectors and the end users that has often been lacking. The ultimate objective is to 

stimulate the achievement of a higher level of quality within, and integration among 

European institutes concerning fish age estimation. 

1.2.1 Tools available for quality assurance and quality control 

There are several tools available for routine QA/QC, either in the form of a spreadsheet 

with R-script-based evaluations of reader results, or of web-based tools which facilitate 

the annotation of images of otoliths, adding further information for evaluation of dis-

agreements. The choice of tool depends on the purpose of the QA/QC. 

The more recent recommendations for any calibration are to apply a tool that compares 

exactly the structures interpreted by the readers (ICES, 2014a). The prevailing tool used 

in the European Community for many years was WebGR (Web Service for support of 

Growth and Reproduction studies), which was an open-source software developed in 

2008 by a consortium of research institutes and software developers 

(http://webgr.azti.es/ce/search/myce). 

However, many security issues with WebGR were identified and eventually a decision 

was taken to move to the new tool called SmartDots, developed by the Belgian Institute 

for agriculture, fisheries, and nutrition (ILVO) and managed by ICES. 

The SmartDots age estimation platform is developed to facilitate age estimations based 

on otolith images. A set of software tools supports the user in managing all of ICES age 

estimation data. On the one hand the database can manage the metadata related to 

workshops and exchanges and, on the other hand, the age reader can carry out age 

estimations by annotating otolith images. All registered data are available in the con-

nected reporting environment. The SmartDots age estimation platform is an open 

source solution available at http://www.ices.dk/marine-

data/tools/Pages/smartdots.aspx. 

The coordinator of an age calibration workshop uploads the selected images to the 

server which stores the images and metadata grouped by species, date, area, etc. All 

participants of that workshop annotate and assign an age to each individual image 

without having access to the work of the other participants. When all the images have 

been annotated and aged, the coordinator arranges access for the participants to all the 

annotations and aged images. The participants can then compare and discuss each 

other’s annotations and ages to identify sources of disagreement. 

SmartDots can contain reference collections with agreed ages, which can be used by 

inexperienced readers as a self-training tool, where they can access images and com-

pare their annotation of images with those of experts. 

SmartDots has been established as the standard tool for managing age calibration ex-

changes and workshops, across Europe, from 2018. 

The Age Readers Forum (ARF) was established by PGCCDBS in 2009, in response to 

feedback received from those engaged in age estimation across Europe. 

ARF was originally envisaged to be a “One Stop Shop” for all those involved in age 

estimation. It was thought that the forum would provide an important resource for 

http://webgr.azti.es/ce/search/myce
http://www.ices.dk/marine-data/tools/Pages/smartdots.aspx
http://www.ices.dk/marine-data/tools/Pages/smartdots.aspx


4  | ICES Cooperative Research Report No. 346 

 

training of new age readers, as well as providing opportunities for sharing and dis-

cussing existing age estimation manuals, establishing standard operating procedures, 

and standardising preparation and interpretation methods. 

However, this SharePoint site was never widely used in spite of the ageing and ma-

turity communities agreeing that it was a good idea to have such a forum. The past 

eight years have clearly demonstrated that the current forum does not work as a stand-

alone concept; it must be integrated with the widely used software for managing ex-

changes and workshops, which will be SmartDots. 

Having a central repository of (a) internationally agreed age estimation/maturity stag-

ing protocols, (b) contact details for age readers/maturity stagers with the stocks they 

read and their level of expertise, and (c) a single location for workshop reports and the 

resulting reference collections of both age and maturity images is still deemed by the 

community a very positive and necessary resource. 

1.2.2 The concepts of accuracy and precision 

Errors in age estimation may have two forms not necessarily related (Wilson, 1987; 

Campana, 2001); one affecting accuracy, i.e. the proximity of the age estimate to the 

true value and the other affecting precision, i.e. how close individual measurements 

on a given structure are to each other, i.e. reproducibility. The latter, related to preci-

sion, can easily be detected and described by means of common statistical measures. 

The most traditional method used to measure interreader precision is the percentage 

agreement (PA), which is the percentage of structures where there was an agreement 

by two readers (or by the same reader on two different occasions). However, the aver-

age percent error (APE) and the CV (coefficient of variation) are commonly deemed 

more informative indices than PA (Kimura and Anderl, 2005; McBride, 2015): 

𝐴𝑃𝐸𝑗 = 100 ×
1

𝑅
∑

|𝑋𝑖𝑗 − 𝑋𝑗|

𝑋𝑗

𝑅

𝑖 =1

 (1) 

where Xij is the ith age estimation of the jth fish, Xj is the mean age of the jth fish, and 

R is the number of times each fish is aged (in this case, it coincides with the number of 

readers). When APE is averaged across many fish, it becomes an index of average per-

cent error. 

The use of standard deviation rather than the absolute deviation from the mean age 

leads to the following equation: 

𝐶𝑉𝑗 = 100 ×  
√∑

(𝑋𝑖𝑗 − 𝑋𝑗)
2

𝑅 − 1
𝑅
𝑖=1

𝑋𝑗

  (2) 

This formula represents the CV of the age estimate for a single fish (jth fish) and needs 

to be averaged across fish to produce a mean CV. A low CV indicates high precision in 

age estimation. 

Both APE and CV are more proper indices of precision (actually imprecision) than per-

cent agreement and can either be scaled to percentage or used as proportion. However, 

CV is recognized as having a greater meaning and is easier to interpret (Kimura and 

Anderl, 2005; McBride, 2015). 

It is important to stress that these measures, PA, APE, and CV, are independent of the 

closeness to the true value, i.e. not related to accuracy. The term “absolute bias “ is 

commonly used to describe age estimation errors related to accuracy and represents 
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the systematic over- or underestimation of age relative to the true age. When the sys-

tematic over- or underestimation of age relative to the modal age is determined, the 

term “relative bias” is used instead (Eltink et al., 2000). 

The definition of accuracy is a matter of degree, which measures how close an esti-

mated age is likely to be to the true age (Francis, 1995). It is expected that older indi-

viduals are more difficult to read than younger individuals. As a result, accuracy 

should be measured from the readings of individual age readers across different age 

groups by estimating how close the estimated ages are to the true ages. 

Ideally, validation should be an obligatory step in all age estimation procedures, en-

compassing two fundamental aspects:  

 The age estimation structure has a consistent interpretable pattern of growth 

increments (i.e. precision). 

 The growth increments are laid down with a periodicity that can be related 

to a regular time-scale (i.e. accuracy). 

Accuracy is generally determined by experimental studies that clarify the increment-

formation regulatory process, which is linked to environmental cues and life history 

events. Precision is improved by establishing protocols, repeated readings by the same 

reader or group of readers, and otolith exchanges among experts. 

1.2.3 Validation 

Calcified structures (CSs) in fish have the potential to grow throughout the life of the 

individual and act as a permanent record, documenting episodic patterns of growth at 

different time-scales. When true, these processes can be related to time, e.g. weights-

at-age, fishing mortality by year, maturity-at-age, etc., which are all important param-

eters for stock assessment. Errors in age estimation will especially affect the estimates 

of recruitment, fishing mortality, and spawning-stock biomass. Therefore, validation 

studies are a fundamental part of fish age estimation, allowing the provision of accu-

rate mortality and growth rate estimates for stock assessment. 

According to Beamish and McFarlane (1983), age validation is a process of establishing 

the accuracy of an age estimation method. Validation of an age estimation procedure 

indicates that the method is sound and based on facts (Kalish, 1993). 

In theory, a validation should be made of every population of a given species, since 

there may be important differences among them (Panfili et al., 2002). Two aspects of 

validation must be determined: (i) that the increments are laid down with a periodicity 

that can be related to a regular time-scale (i.e. accuracy) and (ii) that the age estimation 

structure has a consistent interpretable pattern of increments (i.e. precision). 

According to Francis (1995), three levels of validation are possible: 

 The first increments are annual, but there are insufficient data to determine 

the periodicity of the latter increments and to make a quantitative estimate 

of the accuracy. 

 All the increments are effectively annual, but there are insufficient data to 

make a quantitative estimate of the accuracy. 

 The increments are effectively annual, and a quantitative estimate of the ac-

curacy is provided. 

Ideally, where finance and time permits, validation techniques should be carried out 

on all species where the age data are used in stock assessment. Once the ages have been 

validated for a stock, future age readers can have greater confidence in their readings 
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and the method applied, and the stock assessors will have greater confidence in the 

data provided. 

A comprehensive review of validation methods, including advantages and limits, was 

presented by Campana (2001), while the status of age validation in Europe was re-

viewed by Appelberg et al. (2005), and a more recent study provides a priority frame-

work for directing future validation studies (Spurgeon et al., 2015). 

The methodologies available for validating the frequency of formation of increments 

can be roughly divided into indirect and direct methods, depending on whether they 

give support to the growth rates determined in the population or whether they assess 

the increment periodicity of individual fish. The latter is a population-based technique, 

which requires the observation of a time-series of growth marks on a large number of 

individuals. It usually uses otolith-edge evolution through time. 

It is noteworthy to also define the term “corroboration”, which involves multiple in-

terpretations (obtained after one or more readings) usually using different calcified 

structures (scales, vertebrae, spines), as a “validation” method. 

Several validation methods are described below. Each of the validation methods has 

its strengths and weaknesses; the choice of which method to apply will depend on a 

series of circumstances (funding, time, laboratory availability, species, aim of the study, 

etc.). The species-specific chapters (Chapters 2–5) each have examples of application of 

the methods for the species where these have been applied. Below, a short list of con-

clusions for each of the methods is given as a quick overview:  

 Length-based methods: estimate the growth rates and age of individual co-

hort from length frequency data; this has to be compared with other inde-

pendent methods of age estimation; do not allow the validation of the peri-

odicity in the deposition of growth zones; inexpensive and use data rou-

tinely obtained. 

 Marginal increment analysis: a successful method to corroborate annual in-

crement formation across large age ranges, but hampered by the difficulty 

in measuring small increments accurately and the need for high contrast be-

tween growth zones; similar alternative: edge-zone analysis; inexpensive. 

 Daily increments: a useful tool to (i) identify the first winter ring, (ii) help 

understand the mechanisms behind observed otolith macrostructure, and 

(iii) corroborate that an annual growth structure is present; moderately ex-

pensive. 

 Microchemistry: a tool to link otolith macrostructure features (though not 

necessarily seasonal structures) with environmental conditions through 

physiological processes affecting otolith accretion; not useful for age valida-

tion, but rather the understanding of otolith features; expensive. 

 Tag–recapture: the most direct validation method in use; a highly successful 

method that validates age directly and should be used if common agreement 

on age interpretation is not achieved; very expensive; risk of not recapturing 

the released individuals. 

 Rearing in captivity: the only method to validate a fish’s true age; expensive 

and may not mirror conditions in the wild, resulting in otolith macrostruc-

ture features that do not correspond to those observed in wild fish. 
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1.2.4 Direct validation methods 

A direct validation method is an individual-based technique which makes use of pre-

cise temporal reference marks on a calcified structure relative to other growth marks. 

Tag–recapture 

Tag–recapture experiments rely on catching, tagging either via a chemical marker like 

oxytetracycline (OTC) or a physical tag such as a Petersen tag, and releasing a fish in 

the hope of recapturing it later. The success of a tagging programme relies heavily on 

the hardiness of the fish because many fish die shortly after capture, either as a result 

of damage caused in the capture process, shock, or through a higher exposure to pre-

dation due to reduced physical capabilities as a result of the tagging process. 

Most recaptures happen within a short time after release. However, some are recap-

tured years later, and it is these examples that are particularly valuable in validation of 

age estimation. Fish that are tagged at very small sizes, where the age at tagging is 

virtually certain, can provide strong validation for the whole age structure. Fish tagged 

at larger sizes can still be useful, providing validated proof of growth rates between 

the fish length at tagging and that at recapture, assuming the tagging process had 

no/minor effect on fish growth. If the tagging is performed using both a physical tag 

and a chemical marker in the otolith, tagging of older fish can potentially give good 

records of the growth of the calcified structure over seasons (preferably over a whole 

year), validating the features counted when estimating the age of fish. 

This method of validation is described in Campana (2001) as probably the most rigor-

ous validation method for many species because the absolute age of the recaptured fish 

is known. The major disadvantage of this approach to validation is the time-scale. It 

can take many years to produce results, given the rather limited recapture successes; 

however, even a few individuals will form the basis for a validation of the age estima-

tion of any species. 

Captive rearing 

Compared to all other techniques, rearing of fish in captivity from hatch under labor-

atory or mesocosm conditions provides a tool for the validation of a fish’s true age. The 

drawbacks of this technique are that the experiments are expensive to set up and run 

and may not mirror conditions in which a fish lives in the natural environment, result-

ing in otolith macrostructure features that do not correspond to those observed in wild 

fish. It can, however, be a useful tool to establish the periodicity of observed rings in 

juvenile fish. 

1.2.5 Indirect validation methods 

Indirect validation methods are population-based techniques supporting the growth 

rates determined by the age estimation. Those methods compare individual age esti-

mates with statistical age estimated from length frequency distributions as well as 

other age data. They cannot be considered as validation in the sense of Francis (1995), 

but frequently they are the only available methodology to support age estimation. 

Length frequency analysis (LFA) 

Length frequency analysis (LFA) is a relatively generalized tool which assumes that 

each age group has a normal distribution within a length frequency of the whole pop-

ulation and that the modes for each age group occur at a clearly distinct length for each 

age (differential modal length). Petersen (1891) was the first to identify that the modes 

of the length composition correspond to age groups. Age 0 corresponds to the smallest 
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mode present in the sample obtained after the spawning period, with subsequent 

modes corresponding to age 1 and so on. Modal lengths corresponding to age classes 

can be identified through different methods and then compared to individual length-

at-age observed from the calcified structures (Morales-Nin and Panfili, 2002; or more 

recently Zhu et al., 2013). However, it is often only the earliest year classes that can be 

defined in this way. After first maturity, sexual dimorphism, and individual growth 

variables, LFA becomes too blurred to identify individual age classes. 

Marginal increment analysis (MIA) 

Marginal increment analysis (MIA) is the most commonly used validation method and 

validates increment formation over time. MIA aims to prove that the pattern of alter-

nating opaque and translucent growth zones observed in otoliths is seasonal and pre-

dictable (i.e. annual). This method is commonly used and is easy to establish, relying 

on the type of deposit (opaque or translucent) observed on the edge of the otolith; 

measuring this by month provides a sinusoidal profile through the year. Thus, the dis-

tance of increments (translucent or opaque) can be determined on the otolith edge with 

monthly periodicity by which the marginal increment can be measured and a growth 

index estimated. Marginal increment analysis is an indirect validation technique and 

is quite cost-effective. There are some limitations of MIA, mainly related to the diffi-

culty in measuring small increments accurately. This problem is exacerbated in slow-

growing and older individuals, particularly at the edge of the otolith. Difficulties in 

interpreting opaque/translucent zones can arise, and lighting setup of the microscope 

may be a factor in this. However, when done properly, this technique is a solid indirect 

validation technique (Smith, 2014). 

Edge-zone analysis 

In cases where there is low contrast between growth zones making marginal increment 

analysis difficult, an edge-zone analysis may be applied (Ross and Hüssy, 2013). This 

method is also based on the subjective interpretation of whether the edge zone under 

formation is opaque or translucent. 

Daily increment analysis 

Daily increment analyses apply measurements of the width of the daily increments to 

validate an annulus. The method is based on the close relationship between the widths 

of daily growth increments with the environmental temperature experienced by the 

fish (Mosegaard and Titus, 1987). The width of daily increments decreases with de-

creasing temperature, and patterns of successively decreasing/increasing increment 

widths can, therefore, be used to identify macroscopic growth zones, providing that 

these occur during specific seasons (and thereby link with environmental temperature) 

(Hüssy et al., 2010). Daily increments are used almost exclusively in the earliest life 

stages (< 1 year) and are useful in verifying the first winter ring (Rehberg-Haas et al., 

2012), as well as for corroborating subsequent structures (Hüssy, 2010; Hüssy et al., 

2010). 

Daily increment analysis cannot be considered a true validation technique unless 

properly validated because it is based on the assumption that the growth increments 

used to validate a macroscopic structure are formed on a daily basis. Daily increment 

analysis is, however, a useful tool to help understand the mechanisms behind the ob-

served structures in the otolith macrostructure and to corroborate that an annual 

growth structure is present. 
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Microchemistry 

Microchemistry analysis is a method to validate the seasonal frequency of otolith 

macrostructure features through tracking the seasonally varying incorporation rates of 

different microconstituents and stable isotopes. The elemental composition of otoliths 

seems to reflect physiological processes which simultaneously induce changes in the 

otolith macrostructure. This method is, therefore, not useful for independent age vali-

dation, but provides insight into the mechanisms behind observed macrostructure fea-

tures. 

Three major assumptions underpin the application of otolith microchemistry to age 

validation: 

 otolith composition reflects seasonal temperature variations; 

 temperature variations correspond to visible features; 

 variations in microchemical composition validate the seasonal frequency of 

visible features. 

The concentrations of the main microconstituents of the otoliths (Ca, Sr, Na, K, Fe, Mn, 

and Mg) can be measured using a wavelength dispersive spectrometer (WDS or elec-

tron microprobe) to validate the seasonality of visible opaque and translucent (hyaline) 

bands used for age estimation. Elemental ratios in the otolith calcium carbonate, espe-

cially the Sr/Ca ratio, have been hypothesized to vary in response to seasonal changes 

in water temperature. 

Micromilling is used as a tool to extract small samples of biogenic carbonate, with mi-

cron-scale resolution, which, in turn, can be analysed to acquire high-resolution δ13C 

and δ18O values and major/minor elemental chemistry. 

Isotopes have been used to validate the age estimates of fish. They have mostly been 

used for long-lived species where the intention has been to “validate” either the 

younger ages estimated from whole otoliths or older ages estimated from sectioned 

otoliths. Bomb radiocarbon, based on the fallout from nuclear bomb testing, is one of 

the most reliable age validation techniques for long-lived species (Kalish et al., 1997; 

Campana, 1999). Also, radiochemical dating of the otolith core, based on the decay of 

naturally occurring radioisotopes, is primarily suited for long-lived species (Kastelle et 

al., 1994; Burton et al., 1999; Cailliet et al., 2001). 

In a similar way to the Sr/Ca ratios, dating of the otolith core based on interannual 

variations in δ18O is useful to validate the age of short-lived species (Upton et al., 2012). 

Høie and Folkvord (2006) demonstrated the suitability of stable oxygen isotopes as a 

validation technique in Atlantic cod (Gadus morhua), owing to the link between δ18O 

incorporation and environmental temperature. 

Thus, otolith element composition holds great potential for validating the total age of 

fish. For otolith microchemistry to serve as a useful tool for age validation, the mecha-

nisms of element incorporation have to be a function of seasonal patterns in either en-

vironment and/or growth and consistent across age classes and years. Hüssy et al. 

(2015) found distinct periodic patterns in the concentration of Cu, Zn, and Rb from the 

core to the edge of Atlantic cod otoliths that covaried with otolith opacity, with the 

highest element incorporation during the summer growth season, thus validating age 

estimations by applying trace elements in the otoliths. 
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1.3 Standardization of procedures 

1.3.1 Why standardization is needed 

EU fisheries management relies on data collected, managed, and supplied by EU coun-

tries under the Data Collection Framework (DCF; EC, 2008) which was first put into 

place in 2000 and subsequently reformed in 2008. Under this framework, EU Member 

States collect, manage, and make available a wide range of fisheries data, including age 

data, supporting the scientific advice regarding the Common Fisheries Policy (CFP). 

As a result, different EU Member States and, in many cases, different institutes within 

the same country dealing with the same stocks are eventually merging their data before 

the analysis. 

Otolith age estimations should not be used indiscriminately by ICES stock assessment 

groups when there are clear indications of inaccurate age estimations of the species 

assessed (Reeves, 2003). There is, in fact, a heavy reliance by stock assessors on age data 

submitted by a variety of countries using different age estimation techniques, not all of 

which are validated. This, coupled with very low agreement on ages between individ-

ual readers and institutes for some stocks, can severely impact the precision of stock 

assessments. Thus, for stocks for which the responsibility of age estimation resides 

with multiple institutes, priority should be given to interlab quality checks to ensure 

that results remain consistent, and common protocols for stocks exploited by different 

countries have to be agreed and employed to reduce disagreements among age read-

ers. 

1.3.2 Monitoring performance 

Consistency in age estimation can be monitored by ensuring that (i) the age interpreta-

tion by individual age readers does not “drift” through time, introducing bias relative 

to earlier interpretations, and (ii) the age interpretations by different readers are com-

parable (Campana et al., 1995). 

Growth increment patterns are usually complicated by the presence of “false rings”, 

splits or multiple rings, and growth discontinuities. Therefore, the identification of the 

“true rings” to use in age estimation is not a simple issue. Discrepancies generally ap-

pear in the identification of the first annual increment and in the interpretation of the 

otolith marginal structures. 

Moreover, because age estimation is not an exact science, there is understandably a 

“drift” among and within readers over time. To avoid this as much as possible, each 

age estimation laboratory should have protocols in place to ensure that all readers 

within an institute use an agreed standard age estimation method. 

The disagreement in age estimation may be caused not only by different age estimation 

methods, but also by different preparation methods of the calcified structures (e.g. use 

of burnt vs. whole otoliths) or by use of different calcified structures (e.g. the use of 

scales vs. otoliths). 

The criteria for interpreting calcified structures are transferred from person to person. 

With a control collection acting as a reference, subtle shifts in age estimation among 

age readers can be detected. Past interpretations that are found to be incorrect in the 

light of new data can be identified and corrected. The use of control collections facili-

tates the management of age estimation teams, because it can provide early signs of 

divergence and differences in perception. An evaluation that is perceived to be fair is 

more likely to elicit positive adjustments among readers. 
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Each age estimation laboratory may have control collections for each species/stock/sea-

son which should be regularly updated, because, over time, environmental factors may 

affect the micro- and macrostructures displayed within the calcified structures. Analy-

sis of results achieved by different age readers over time, when looking at these control 

collections, can produce a history of precision and relative bias and show any signifi-

cant changes that have occurred over time. Such control collections might also be used 

to test whether an age reader is achieving the expected levels of precision and, for qual-

ity assurance, if a threshold is set on the precision that must be achieved before an age 

reader can become qualified in the age estimation of a certain species (Eltink, 2000; 

Eltink et al., 2000). 

At an international level, otolith exchange exercises and age estimation workshops are 

commonly seen as effective methods of quality control aimed at increasing precision 

in age estimation. However, high precision cannot replace the lack of accuracy, and 

validation should be carried out for all species. An exchange programme of calcified 

structures (otoliths, bones, scales, etc.) can be conducted to test whether significant dif-

ferences in age estimation methods and age estimations exist among age readers and 

whether using different calcified structures can lead to significant differences in age 

estimation results. Thus, an exchange programme is conducted regularly to check 

whether the precision in age estimation and bias of the age readers is still within ac-

ceptable levels. 

At the start of an exchange, it is very important to have some idea of the problems that 

might cause differences in age estimation among the possible participants. These prob-

lems generally fall in two categories: 

1. The use of different calcified structures or different preparation techniques 

by age readers. 

2. The application of different age estimation methods by the age readers, 

which might be indicated by the following features: 

 Large differences in growth parameters within the same population. 

 The interpretation of the edge of calcified structures usually causes more 

problems in age estimation when the calcified structures are collected 

during the period of fast growth. This can be tested by comparing the 

age estimation results within sets of calcified structures collected in peri-

ods of slow and fast growth. 

 The interpretation of the annual rings in calcified structures might be 

more difficult because of the occurrence of false rings during the juvenile 

period. This is indicated by higher CVs for the younger ages relative to 

those for older ages. 

Exchange programmes obtain more objective estimations of the precision and bias in 

age estimation because readers use their own equipment and are not subject to tight 

time schedules (circumstances which may not be possible in a workshop). The objective 

of exchanges of calcified structures is to estimate precision (CV) and relative/absolute 

bias in the age estimations by readers from different institutes with an interest in the 

same species. 

1.3.3 The benefits of having agreed (validated) manuals 

International committees, through workshops and exchanges, continue to work hard 

towards age validation or consistency of the interpretation of age, i.e. the repeatability 

and/or precision of a numerical interpretation that may be independent of age. The 

basis for this effort is that, although validation of age is of key importance in terms of 
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accuracy, being able to interpret otoliths in a precise and repeatable way is equally 

important to achieving consistent and useful results. A consistent approach to the pro-

cessing of otoliths prior to age estimation and the techniques used during the age esti-

mation process are vital. Once a consensus is reached on which techniques produce the 

best results for a given species, the production of a generic manual for the processing 

of specific species otoliths and their subsequent age estimation that details the opti-

mum techniques is a valuable step. Such manuals are frequently the outcome of inter-

national age estimation workshops in the form of workshop reports (e.g. ICES, 2015a; 

see also Almeida and Sheehan, 1997, and Matta and Kimura, 2012). 

The existence of protocols is essential to define and set up a standard procedure to: 

 sample the otoliths (stratified by size range, season, sex, etc.); 

 prepare them (sections, clarifying mediums, etc.); 

 read them (image-analysis systems, filters, lighting, magnification, etc.); 

 establish accuracy and precision. 

A manual on age validation should encompass various steps, from otolith sampling to 

a complete validation of the age estimation procedure. These steps are summarized 

below in Figure 1.1. 

 

Figure 1.1. Schematic representation of the different steps, from otolith sampling to completed age 

validation, that should be included in a generic species-specific manual on age estimation. 

1.4 Accreditation 

The European Commission has stated that “accreditation is essential for the correct 

operation of a transparent and quality-oriented market.” From the scientific perspec-

tive, participating in an accreditation scheme can act as a catalyst to raise standards, 

improve quality, and introduce improved work practices. 

EU Member States have established a network of national accreditation bodies, which 

ensure that the competence of all laboratories and inspection and certification bodies 
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are assessed by the same principles. This is a mechanism for laboratories to demon-

strate conformance with internationally agreed protocols and standards of age estima-

tion. For age estimation programmes, it is important to be clear that only the process 

can be accredited, not the result. This is because for the majority of fish species, vali-

dated age material is not available. 

Accreditation standards are set by the International Organization for Standardization 

(ISO), which is based in Geneva, Switzerland. Certification bodies in each EU Member 

State then apply this internationally agreed standard when auditing individual insti-

tutions. Accreditation is then provided by the national accreditation body in the rele-

vant Member State, e.g. the certification body in the United Kingdom is the United 

Kingdom Accreditation Service (UKAS), and in Ireland it is The Irish National Accred-

itation Board (INAB). Details on how to achieve accreditation (the processes and doc-

umentation that need to be in place) will be provided by these accreditation bodies. 

There are many advantages to participating in an accreditation programme; however, 

in order to be able to accredit a process, there must be clear internationally agreed 

guidelines and standard operating procedures in place for the preparation of calcified 

structures as well as established age estimation criteria. Encouraging Europe-wide co-

operation and standardization on the issue of age estimation and validation has been 

one of the key focuses of the PGCCDBS for the past twelve years. Greater consistency 

in calcified structure collection, storage, preparation, and age estimation has been 

achieved through an annual schedule of age calibration exchanges and workshops. 

This work is now continued and developed further in the ICES Working Group on 

Biological Parameters (WGBIOP). 

The objective of these exchanges and workshops is to estimate precision and rela-

tive/absolute bias in the age estimations of readers from different laboratories and to 

check that these readings are still within acceptable levels. The frequency of exchanges 

and workshops mainly depends on the perceived difficulty of the individual stock 

whose fish ages are being read and the current quality of the age estimations. Ex-

changes and workshops can also result from recommendations from ICES assessment 

working groups or as a result of benchmark reviews. The exchanges and workshops 

have resulted in the production of agreed age estimation criteria, reference sets of 

agreed age otoliths, and,in some cases, age estimation manuals that provide an inval-

uable training resource for all age readers of a particular stock. These age estimation 

criteria and manuals can prove to be very useful in the pursuit of accreditation. 

Working towards accreditation has very clear internal benefits in helping to improve 

and streamline a laboratory’s own processes, and, importantly, it provides a driver to 

do those things. The process can also highlight why a laboratory does certain things in 

a particular way and can encourage age readers to investigate alternatives. Accredita-

tion places a very clear emphasis on training programmes and provides the impetus 

for a structured approach to ongoing training and benchmarking of age readers 

through interreader checks within laboratories and across Europe. This assures the 

quality of the agereading process and, by association, the result, i.e. the assigned age 

estimations, even in the absence of validation. 

However, accreditation can be a very demanding process. Achieving accreditation is 

not the end, but merely the beginning of a rather involved process that places a strong 

emphasis on constant improvement year after year in order to maintain the accredita-

tion certification. The laboratory or institute must be able to show what they intend to 

improve, refine, and review next. Furthermore, gaining certification can be costly be-

cause it involves fees for the accreditation certification and accreditation visits and will 
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also involve considerable time and effort from a team of people involved in the age 

estimation process. The cost of getting equipment calibrated annually, if this is not al-

ready routinely done, should be factored in because accreditation demands it. 

The costs and the administrative burden will invariably increase as the scope of the 

accreditation widens. Therefore, it is extremely important for a laboratory or institute 

to understand clearly why they are striving for accreditation in the first place. 

For those deciding to embark on the journey towards achieving accreditation, it is wise 

to begin small and expand as the team becomes more familiar with the demands of the 

accreditation process. Beginning with one aspect of the age estimation programme 

should be more manageable as a learning exercise and will allow the team to adjust to 

the rigors of an accreditation culture. New species or techniques can then be added as 

knowledge and confidence increases. 

1.5 Contributors 

This CRR is a product of several contributors; each chapter is edited by experts who 

have collated all available information. Some of the contributions are derived from 

workshops. Contact information for the various contributors is provided in Annex 1. 
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2 Gadoids 

Karin Hüssy, Beatriz Morales-Nin, Carmen Piñeiro Álvarez, Hélène de Pontual, Jo-

anne Smith, Kélig Mahé, Uwe Krumme, Sally Songer, Yvonne Walther, and Javier 

Rey 

2.1 Introduction 

This chapter was written during the Workshop on Age Validation of Gadoids 

(WKAVGS 2013) which was held 6–10 May 2013 at Imedea in Esporles, Mallorca. The 

terms of reference for the workshop were to: 

1. Review information on age estimations, otolith exchanges, workshops, and 

validation works done so far on the following species: European hake, cod, 

pollock, saithe, haddock, whiting, and blue whiting; 

2. Assemble and compare the results of different validation methods (i.e. 

marking and recapture, marking the calcified structure, marginal increment 

analysis, marginal analysis, modal progression analysis, length back-calcu-

lation, etc.); 

3. Discuss and propose the most appropriate validation methods of age and 

growth pattern of calcified structures (CS), for each species and stock; 

4. Propose the appropriate validation methods to recognize the growth check 

as well as the spawning ring, demersal ring, migration ring, etc.; 

5. Propose an ICES Cooperative Research Report on: Age Validation Studies 

for ICES and GCFM Gadoid Stocks to ICES PGCCDBS, using previous stud-

ies and the outcome of this workshop; 

6. Based on results, conclusions, and recommendations from this workshop to 

initiate and design an international cooperation project on validation meth-

ods (such as on the validation of checks and spawning rings) to commence 

after the workshop. 

2.2 Age estimation methodologies in gadoids 

A review of efforts carried out to reach common agreement on the interpretation of 

otolith growth zones, including an overview of exchange programmes, workshops, 

and summaries of problem identifications and recommendations, is presented. 

The precision of age estimates by different national institutes is improved by means of 

otolith exchange schemes and age estimation workshops. Several reports on gadoids 

in ICES waters are available (Easey et al., 2005; Worsøe Clausen et al., 2005; ICES, 2008a, 

2009a, 2013a, 2015a; Mahé, 2009; Piñeiro and Sainza, 2011; Mahé et al., 2014). A sum-

mary of the results from these workshops can be found in Table 2.1. 
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Table 2.1. Workshops and exchanges by species. Further information in “WK Ex SG History Master 

Table by Species 2018” in WGBIOP’s Data quality assurance repository (ICES, 2018a, 2018b). 

Species ICES area n 

Preparation 

of the age 

estimation 

process 

No. of 

readers 

Agreement 

(%) 
CV 

Workshop/ 

Exchange 

Saithe 

Division 4.a 

Division 6.a 

154 

137 

Sectioned 

otolith 

20 

18 

95.9 

82.8 

3.3 

5.4 

Exchange 2007–

2008 (Mahé, 2009) 

Division 2.a 

Subarea 4 

Division 4.a 

24 

34 

237 

Sectioned 

otolith 

13 85.9 6.2 Exchange 2013 

(Mahé et al., 2014) 

Division 2.a 

Division 6.a 

50 

10 

Sectioned 

otolith 

10 79.2 

reflected light 

82.3 

transmitted 

light 

3.7 

4.6 

WKARPV 2015 

(ICES, 2015) 

Whiting 

Various areas 

around the 

British Isles 

200 Broken 

otolith 

Sectioned 

otolith 

11 

 

19 

72.6 

 

80.9 

16.3 

 

13.7 

Exchange 2004  

(Easey et al., 2005) 

Divisions 7.d, 

4.a, 4.c, and 

Subarea 6 

120 Sectioned 

otolith 

17 80.7 10.3 Workshop 2009 

(report not  

available) 

Division 3.a 

and subareas 4 

and 7 

134 Sectioned 

otolith 

16 70 14 WKARWHG2 2016 

(ICES, 2017a) 

Hake 

Divisions 8.a–b, 

8.c, and 9.a 

104 Sectioned 

otolith 

16 46.3 41.2 WKAEH 2009* 

(ICES, 2009a) 

Divisions 8.c 

and 9.a 

237 Sectioned 

otolith 

12 62.3 33.1 Exchange 2011 

(Piñeiro and Saínza, 

2011) 

Cod 

Divisions 3.b–d  Sectioned 

otolith 

   Several workshops 

and exchanges 

(summarized by 

Hüssy et al., 2016) 

Subarea 4 118 Sectioned 

otolith 

21 74.0 39.8 WKARNSC 2008 

(ICES, 2008a) 

Divisions 4.a 

and 4.b 

120 Broken/ 

sectioned 

otolith 

17 66 14.7 Exchange 2010 

(ICES, 2011a) 
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Species ICES area n 

Preparation 

of the age 

estimation 

process 

No. of 

readers 

Agreement 

(%) 
CV 

Workshop/ 

Exchange 

Haddock 

Subareas 4  

and 6 

NA Sectioned 

otolith 

12 84.2 18 Exchange 2009 

(ICES, 2010a) 

Broken oto-

lith 

12 85 7.5 

Blue 

whiting 

Division 4.a 100 Whole 

otolith 

15 86.5 12.2 Workshop 2005 

(Worsøe Clausen et 

al., 2005) 

Divisions 4.a, 

4.b, 2.a, and 5.a 

189 Whole 

otolith 

21 46.4 17.1 Exchange 2010–

2011 (Mehl et al., 

2012) 

Subdivision 

5.b.1 

158 Whole oto-

lith 

19 57 13.4 WKARBLUE 2013 

(ICES, 2013a) 

Mediterranean/ 

ICES divisions 

9.a, 8.c, 7.j, 7.c, 

7.b, 6.a, 4.a, 2.b, 

and 14.b / 

NAFO 1C 

245 Whole oto-

lith 

29 68.7 44.2 WKARBLUE2 2017 

(ICES, 2017b) 

* The age estimation method was invalid. 

 

2.3 General age estimation methods and problems 

In this section, the general age estimation methods for gadoids are described by spe-

cies. A series of images exemplifying the relevant otolith structures to analyse when 

estimating the age of a particular gadoid species are shown in Annex 2. 

2.3.1 Saithe (Polliachius virens) 

Difficulties of interpretation: Differences could be explained by the position of the first 

ring and identification of increments representing ages older than eight years. How-

ever, this species is generally considered to be relatively easy to read. 

Recommendations: It was recommended to compare the two methods of preparation 

(sectioning and breaking). It is still necessary to present a direct or indirect validation 

of the formation of the rings (one ring per year). 

2.3.2 Whiting (Merlangius merlangus) 

Difficulties of interpretation: For some fish there was confusion over the first annual 

zone because of splits and the wide range of growth that can occur during the first 

year. Indecision over zone formation at the edge of the otolith could lead to differences 

of one year between reader ages. The wide difference in growth rates between fish 

caught in the same area also adds to the problem of interpreting the ring structure, as 

does the fact that the ring structure is only suitable for age estimation on limited parts 

of the otolith. 

Recommendations: There was no significant difference in the results between the two 

age estimation methods of broken otoliths or sections. Each method has its own ad-

vantages and disadvantages. The workshop concluded that both age estimation meth-

ods were acceptable for whiting. “Humphries shadow” is a feature that is present on 
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most otoliths, although not in every year and, as such, has only limited use in the in-

terpretation of the ring structure. 

2.3.3 European hake (Merluccius merluccius) 

In the Northeast Atlantic, northern and southern ICES hake stock assessments have 

been based on age structure from 1992 to 2010. To that effect, age data have been de-

manded routinely from different research institutes, with many attempts at improving 

the precision of otolith age estimations through successive age estimation calibration 

exercises, such as exchanges and workshops (for more details, see Table 2.1.1 in Piñeiro 

et al., 2009). During the 1980s, when different preparation techniques were used, scien-

tists undertook several exchanges and workshops to agree on standardized prepara-

tion techniques and age estimation methods. The main outcome of this decade was the 

adoption of a common preparation technique (transversal sections of otolith) and the 

identification of the main sources of discrepancies among readers, i.e. the location of 

the first annulus, difficulty in discerning differences between annulus and other 

checks, and the interpretation of otolith edge type. During the 1990s, several work-

shops and calibration exercises resulted in common age estimation criteria suitable for 

fish up to age 5, according to the accepted slow-growth model at that time. These cri-

teria were internationally adopted and applied by all readers from institutions in-

volved in hake stock assessments. However, age estimation of hake still presented 

problems for older ages, which was a limiting factor for assessments. In 2004, an ICES 

otolith workshop focused on older fish in an attempt to deal with these problems. The 

results indicated that the precision of age estimations dropped from 0–5 to 0–3 years 

old. This was a consequence of the difficulty in using non-validated age estimation 

criteria in hake otolith reading, especially after the presentation of the first tagging re-

sults indicated that the age estimation criteria in use at that time were not accurate (de 

Pontual et al., 2003, 2006). As a consequence of these results, another workshop was 

organized in 2009 using a reference collection of 104 OTC-marked otoliths. Eight re-

search institutes (AZTI [Spain], IPIMAR [Portugal], Cefas [UK], MI [Ireland], Ifremer 

[France], IEO [Spain], AFBI NI [Northern Ireland], and VTI-DF [Germany]) partici-

pated in the evaluation of age estimation errors (accuracy and precision). 

Difficulties of interpretation: Otoliths are difficult to interpret due to the complexity of 

the macrostructure and growth variability that has been related, among other reasons, 

to the long spawning season. The internationally agreed age estimation criteria are 

based on a concentric pattern of translucent and opaque rings/bands around the nu-

cleus of otolith sections. The growth pattern presents several translucent rings per year 

that probably correspond to short environmental and/or physiological events, and the 

difficulty in interpreting such otoliths often increases with fish size. The classification 

of the edge type tends to be complicated since translucent edges appear year-round 

indicating a high incidence of checks (> 60 %), particularly in summer (Piñeiro and Saí-

nza, 2003). Recently, blind interpretation of marked hake otoliths at the last workshop 

(ICES, 2009a) demonstrated with tagging material that the internationally agreed age 

estimation criteria are neither accurate nor precise and provide overestimation of age. 

This raises concern about the use, for stock assessment, of age–length keys that were 

inaccurate (ICES, 2010b). At this time, a replacement age estimation method with suf-

ficient precision and accuracy is not available (de Pontual et al., 2006; Piñeiro et al., 

2007). 

Recommendations: The main results (ICES, 2010b) demonstrated that the age estima-

tion method was not only imprecise, but also inaccurate and led to an overestimation 

of age (by a factor of two). The age estimation of European hake remains complex, and 
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further work is needed for both age-related assessment and ecological studies. There-

fore, the age estimations used as input for the ICES Working Group on the Assessment 

of Southern Shelf Stocks of Hake, Monk and Megrim (WGHMM) should be suspended 

until new validated/accurate criteria are available. Considering the age estimation re-

sults obtained in the last workshop (ICES, 2009a) and the recent advances on hake age 

validation (tagging and recapture experiments, daily growth; de Pontual et al., 2006; 

Piñeiro et al., 2007, 2008), it was concluded that there are currently no reliable age esti-

mation criteria. These overall findings led to substantial changes in the assessment con-

ducted by ICES (2010b), that is now carried out using length-based models instead of 

the age-based model XSA previously used. A better understanding of the complex oto-

lith growth pattern of this species might be achieved through a better knowledge of 

fish behaviour (migrations, feeding activity, etc.) and differences in individual life his-

tories. Approaches coupling validation methods (e.g. otolith structures and DST tag-

ging, otolith microchemistry, otolith modelling) should be promoted. 

2.3.4 Cod (Gadus morhua) 

Difficulties of interpretation: The interpretation of the first annulus can be confused 

with a first translucent band most likely deposited at the time the juvenile cod moves 

from the pelagic to the bottom zone. This confusion can be avoided by considering that 

the first annulus is wider than the first translucent band, ca. 2 and 1 mm in diameter, 

respectively. Another difficulty is the interpretation of age 1 cod captured during quar-

ter one, when otoliths have a rather wide opaque-edge growth. Some readers estimated 

these fish at 2 years old because they assumed the translucent band was deposited after 

the New Year (1 January), and the opaque edge represented a summer growth period. 

The agreed interpretation is that the translucent band is deposited in autumn (New 

Year), and the opaque-edge growth is deposited during winter in quarter one. A third 

difficulty of interpretation is the occurrence of split rings. Some of the translucent an-

nuli can consist of several thinner translucent bands that can be misinterpreted as true 

annuli, which leads to overestimation of fish age. These bands can be identified as be-

ing thinner than true annuli and with less distance between them. 

Contrary to most other cod stocks, the eastern Baltic cod stock (subdivisions 25–32) is 

subject to extensive age estimation problems. The interaction of various factors (e.g. 

different hydrographic conditions on the vertical and horizontal scale, successive onset 

of spawning from west to east) result in unclear growth-ring formation. Age estimation 

of Baltic cod is presently performed with broken (Denmark, Sweden), broken and 

burnt (Estonia, Latvia, Poland, Lithuania, Russia), or sectioned (Germany) otoliths. The 

key problems with age estimation are: (i) identification of the first winter ring, (ii) tim-

ing of the winter ring formation, and (iii) interpretation of the edge. The interpretation 

of growth zones varies widely among countries and institutes, and even among readers 

within a given institute. To improve the precision of age estimation, a reference collec-

tion of otoliths was compiled in 1995–1996. The purpose of the reference collection was 

to have a set of otoliths as reference material for calibration and training of new and 

established readers and to reach consensus on the interpretation of the otolith charac-

teristics. As the quality of the otoliths deteriorates with frequent handling, images of 

each otolith were digitized and the image collection distributed among all countries. 

Details of the age estimation methods, problem descriptions, and the reference collec-

tion can be found in the revised “Manual for Baltic Cod Age Reading” (ICES, 2000). 

Despite 30 years of effort to standardize preparation techniques and interpretation of 

growth zones with numerous workshops and otolith exchanges, precision in age esti-

mates is still very low. As a result, the age distributions of catches vary alarmingly by 

country (ICES, 2012a; specifically section 2.4, Figure 2.4.1a–d), which may negatively 
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influence the quality of the assessment (Reeves, 2003). Since 2013, the traditional age-

based stock assessment has been abandoned because of the extensive age estimation 

problems. 

Recommendations: The workshop concluded that sectioning of the otolith is the pre-

ferred method to use (vs. the broken method). The various life history traits of North 

Sea cod may differ within the North Sea, and knowledge of this is highly important for 

age readers. In addition, all age readers would benefit from more information on the 

formation of otolith structures in North Sea cod, especially the formation of split rings. 

Thus, the group recommended the inclusion of general studies on otolith formation 

and, in relation to this, North Sea cod physiology, growth, and behaviour as part of the 

training and updating of all North Sea cod age readers. Owing to the poor readability 

of eastern Baltic cod otoliths, there is still no consensus on the interpretation of growth 

zones of these two cod stocks. Consequently, neither the age estimation manual nor 

the reference collection have been updated in recent years. A tag–recapture study for 

the entire Baltic Sea is urgently required to generate material for validation of fish age 

and to assess growth, movement, and exchange processes within and between stocks. 

2.3.5 Blue whiting (Micromesistius poutassou) 

Difficulties of interpretation: The first difficulty of interpretation is the position of the 

first ring where the Bowers zone is clear. This is often seen in younger individuals as 

the otolith is thinner and the structures therefore clearer. The second difficulty of in-

terpretation arises when some readers choose to omit specific rings identified as splits, 

while other readers identify the same rings as true annuli. This becomes more prob-

lematic after the second year of growth. 

Recommendations: Inclusion of general studies on otolith formation and, in relation to 

this, blue whiting physiology, growth, and behaviour. 

2.4 Age validation case studies in gadoids 

In gadoids, only a limited number of validation methods described in the literature 

(Campana, 2001; Appelberg et al., 2005) have been applied. A summary, therefore, is 

given in Table 2.2, which is a modification of Campana’s table, with a column showing 

the gadoid species that were studied and which technique was used. 
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Table 2.2. Summary of age validation methodologies, modified from Campana (2001), highlighting 

the methods used for gadoids. DGI = daily growth increments. N/A = not available. 

Method Annual/DGI Age Advantages Limitations 

Gadoids in which 

this validation 

technique has 

been employed 

Released 

marked fish 

Annual and 

DGI 
All 

Validate  

absolute 

age and  

periodicity 

Source of fish with 

known age, recap-

tures of old fish are 

null 

N/A 

Mark–recap-

ture chemi-

cally tagged 

fish 

Annual and 

DGI 
All 

Validate 

periodicity 

post release 

Low recaptures, 

some markers may 

affect survival 

Hake (de Pontual 

et al., 2003; 2006; 

Piñeiro et al., 2007; 

Mellon-Duval et 

al., 2010; ICES, 

2010b) 

Captive 

rearing from 

batch 

Annual and 

DGI 
 

Validate  

absolute 

age and  

periodicity 

Differences with 

wild fish 
N/A 

Microstruc-

ture 
Annual 1 year 

Validation 

of 1st year 

Daily periodicity as-

sumed 

Hake, cod (Mo-

rales-Nin and 

Aldebert, 1997; 

Arneri and Mo-

rales-Nin, 2000; 

Morales-Nin and 

Moranta, 2004; 

Belcari et al., 2006; 

Hidalgo et al., 

2009; Hüssy, 2010; 

Pattoura et al., 

2011) 

Most likely 

age (MLA) 

Annual and 

DGI 

0–5 

years 

Validation 

of ages 1–2 

No overlapping 

length modes, no 

length-based migra-

tions 

N/A 

Marginal 

increment 

analysis 

Annual All 
Validate 

periodicity  

Not so straightfor-

ward in slow-grow-

ing/older individu-

als. Needs adequate 

sample size by 

month.  

Cod, saithe, whit-

ing, haddock, 

hake  

(Mahé et al., 2016) 

Radiochemical 

dating 
Annual 

Plus 5-

year-

olds 

Validate  

absolute 

age of old 

fish 

Can only distin-

guish between di-

vergent estimates 

N/A 

Bomb radio-

carbon 
Annual All 

Validate  

absolute 

age and  

periodicity 

Very old fish 

needed 
N/A 

In the following, the validation studies carried out on gadoids referred to in Table 2.2 

will be described in detail. The methods are reported according to whether they are 

indirect or direct validation methods. 
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2.5 Application of indirect validation methods 

2.5.1 Length-based analyses 

Length frequency analysis has been applied successfully on some gadoid species (Ta-

ble 2.3), especially European hake (Aldebert and Morales-Nin, 1992) and hake in the 

western Mediterranean Sea, obtaining an indirect validation of the first three age clas-

ses and confirming the first winter ring of Baltic Sea whiting (Ross and Hüssy, 2013). 

In the case of European hake in the Mediterranean Sea, the formation of the translucent 

zone corresponds generally to winter months (Colloca et al., 2003), and the frequency 

distribution of the ring distances from the nucleus shows two principal peaks for each 

annual ring (Figure 2.1), in agreement with the presence of two spawning periods 

(spring–summer and autumn–winter; Arneri and Morales-Nin, 2000; Belcari et al., 

2006). Consequently, in this case, two spawning groups of individuals should be rec-

ognizable at the time of the first hyaline ring formation: those that hatched in summer 

(age 0+ group) and those that were born the previous winter (age 1 group). This pattern 

also appears for subsequent age groups. 

 
Table 2.3. Summary of species where length frequency analysis (LFA) has been applied. 

Species Method Area Age/size range 

Whiting  

(Ross and Hüssy, 2013) 

Mode progression + 

daily increments 
Western Baltic 0–1 years  

Hake  

(Aldebert and Morales-Nin, 

1992; Arneri and Morales-

Nin, 2000; Belcari et al., 2006) 

LFA Tyrrhenian Sea 0–3.5 years  

Hake  

(Aldebert and Morales-Nin, 

1992) 

LFA + otolith daily 

growth increments 
Gulf of Lion 7.5–30 cm  

 

 

Figure 2.1. Frequency distribution of the distance between the nucleus and specific growth zones in 

European hake. The peaks represent different age classes, indicated with arrows. 

In general, this technique verifies the growth rates associated with each age class by 

comparing them with another independent method of age estimation. This method is 
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easily applicable because it is based on data gathered on a routine basis in fishery stud-

ies (i.e. length frequencies). However, this procedure does not allow validation of the 

periodicity in the deposition of hyaline rings, and it is difficult to apply when an over-

lap between modes is present. For this reason, if used for species with a relatively long 

spawning period (e.g. European hake), it provides reliable growth rate verification 

only for the first few age classes. 

2.5.2 Marginal increment analysis 

This method has been carried out on a number of gadoid species (Table 2.4). 

 

Table 2.4. Summary of species where marginal increment analysis (MIA) has been applied. TL = 

total length (Mahé et al., 2016). 

Species Method Area Time-series Age/size range 

Cod Sectioned 
Divisions 7.f–j and 

8.a–b 
Jan 2011–Jan 2012 2–9 years 

Saithe Sectioned Division 6.a Jan 2011–Jan 2012 2–14 years 

Whiting Sectioned 
Subareas 4–6 and 

divisions 7.a–d 
Jan 2011–Jan 2012 2–14 years 

Whiting Sectioned Divisions 7.f–h Jan 2011–Jan 2012 2–8 years 

Haddock Sectioned 
Divisions 7.f–j and 

8.a–b 
Jan 2011–Jan 2012 2–8 years 

Hake Whole Tyrrhenian Sea Mar 1997–Feb 1998 2–16 years 

Hake Sectioned, burnt  Gulf of Lion Jan 1989–Dec 1990 6–94 cm TL 
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Figure 2.2. Marginal increment analysis of cod, haddock, saithe, and whiting from the North Sea to 

the Bay of Biscay (source: Mahé et al., 2016). 

For the gadoid species discussed at the Workshop on Age Validation Studies of Ga-

doids (WKAVSG) and listed in Table 2.4 above, the use of MIA proved to be a success-

ful method to corroborate annual increment formation, using sectioned otoliths in fish 

across large age ranges. Figure 2.2 shows the application of MIA for a range of species. 

2.5.3 Edge-zone analysis 

See Section 1.2.5 on indirect validation methods. 

2.6 Application of direct validation methods 

2.6.1 Tag–recapture 

Tag–recapture is one of the direct methods to validate the intrinsic age information of 

otoliths. Upon capture, individual fish are usually marked externally (e.g. with T-bar 

or spaghetti tags to ensure recovery) and internally (to produce a mark in the otolith at 

the time of capture). Different chemical marker substances can be used, e.g. fluorescent 

compounds such as oxytetracycline, that may fade over time but have also been shown 

to remain visible in cod otoliths 40 years after tagging (Krumme & Bingel, 2016). A 

chemical mark like strontium chloride is stable over time, but requires a scanning elec-

tron microscope to detect it in the otolith (Geffen, 1992). The combined use of injections 

with tetracyclin and strontium chloride may therefore provide a long-term solution 

(Stötera et al., 2018). 

Information on the suitability of alternative chemical markers for certain species is of-

ten poor, so the choice of which otolith marker to use and which concentration to apply 

in validation studies must often be made without evidence from robust experiments. 

The material and methods sections of published studies are often not sufficiently de-

tailed to allow the experiments to be reproduced (e.g. it is unclear exactly which chem-

ical substances were used, how they were prepared and how applied). Sometimes, it is 

not clear whether failure in marker experiments was caused by real biological or other 

reasons, or whether the chemical concentrations were wrong. 
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It is, therefore, necessary for large-scale tag–recapture studies, aimed at age validation 

of otoliths, to be preceded by robust experiments that allow determination of the suit-

ability of different chemical agents at different marker concentrations. Such experi-

ments should ascertain adverse effects on the tagged fish (increased mortality; Mo-

rales-Nin et al., 2011), perceptibility of the artificial time-mark in the otoliths at different 

marker concentrations, and visibility of the mark over time. The use of control groups 

is essential. Stötera et al. (2018) provide an example of a systematic approach to as-

sessing the effect of different tetracycline concentrations on the fluorescent band qual-

ity of Baltic cod. 

A pilot tag–recapture experiment was carried out for hake in the Bay of Biscay in 2002. 

A specific protocol was developed, including a modified gear designed to optimize 

fish survival. Recoveries showed much higher growth than previously expected (de 

Pontual et al., 2003). 

Analysis of marked and recaptured fish and their otoliths showed that the previous 

underestimation of growth (by a factor of ~2) could be clearly related to an overestima-

tion of age (de Pontual et al., 2006; Figure 2.3). 

 

Figure 2.3. Comparison between blind and supervised interpretation of chemically marked (oxytet-

racycline [OTC]) European hake otoliths. 

The approach was extended to the Iberian Peninsula (Piñeiro et al., 2007) and the Med-

iterranean Sea (Mellon-Duval et al., 2010), and sustained tagging effort was maintained 

in the Bay of Biscay during 2004–2007. In this region, 27 690 fish were tagged, chemi-

cally marked, and released. A total of 1199 fish have been recovered to date, leading to 

a new growth model being established as well as new insights on migrations and mor-

tality. An overview of the tagging programmes carried out to date is given in Table 2.5. 

The 104 marked otoliths resulting from this tagging programme were analysed in an 

international exchange and workshop (ICES, 2010a). Supervised otolith interpretation 

(taking into account oxytetracycline [OTC] mark position and fish data) showed that 

the internationally agreed age estimation method was neither accurate (bias of a factor 

~2) nor precise. Even the otolith-supervised interpretation remained difficult (73.9% 

agreement among hake readers, with substantial differences in ring positions). It was 
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strongly recommended to stop producing annual age–length keys for use in ICES as-

sessment of European hake. 

These overall findings led to substantial changes in the assessment conducted by ICES 

(2010b) that is now carried out using a length-based model (e.g. stock synthesis 3 [SS3]) 

instead of the previously used age-based model (XSA). 

 

Table 2.5. Summary of tagging programmes carried out on European hake. 

The “tag–recapture” programme ended the controversy over the growth rate of Euro-

pean hake. Results invalidated the otolith-based age estimation method that was being 

used, and it was concluded that there are currently no reliable age estimation criteria. 

A better understanding of the complex otolith growth pattern of this species might be 

achieved through better knowledge of fish behaviour (migrations, feeding activity, 

etc.) and differences in individual life histories. Approaches that couple validation 

methods (e.g. otolith structures and DST tagging, otolith microchemistry, otolith mod-

elling; see Section 2.7 “Future perspectives”) should be promoted. 

2.6.2 Rearing in captivity 

Rearing European hake in captivity from wild eggs has been done several times. In an 

experimental environment in Norway, European hake were reared from eggs up to 245 

days in temperature- and salinity-controlled stable conditions. The lapillus and sagitta 

of one of these fish were examined for microstructural features. The age derived from 

increment counts support the daily nature of the hake sagittal increments that start 

forming on day 8, probably related to the start of exogenous feeding. The lapillus 

showed a later increment formation. 

Tagging experiment Recapture results 

Location 

No. of 

fish re-

leased 

TL range 

at release 

(cm) 

Max 

time at 

liberty 

(days) 

TL range 

at recap-

ture (cm) 

No. of 

tagged 

fish recov-

ered 

Recaptured 

(%) 
Reference 

SW Ireland 78 28.9 255 40.6 1 1.3 Belloc (1935) 

Southern Bay 

of Biscay 
152 56 24 60 1 1.9 

Lucio et al. 

(2000) 

Bay of Biscay 1 307 21–40 1 066 24–67 36 3.1 
de Pontual et 

al. (2006) 

Bay of Biscay 27 690 9–84 1 555 19.2–78.9 1 199 4.33 
de Pontual et 

al. (2013) 

Mediterrane

an Gulf of 

Lion 

4 277 15–40 717 16–57 280 6.5 
Mellon-Duval 

et al. (2010) 

NW Iberian 

Peninsula 
527 29–36 466 31–56 6 1.3 

Piñeiro et al. 

(2007) 

NW Iberian 

Peninsula 
2 725 28–46 466 31–56 27 1 

C. Piñeiro  

(pers. comm.) 

Balearic 

Islands 
675 10–44 - - - - 

E. Massuti 

(pers. comm.) 
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2.6.3 Daily increment analysis 

See Section 1.2.5 (Indirect validation methods). Table 2.6 summarizes studies where 

this technique has been applied specifically on gadoid species. 

 

Table 2.6. Summary of species where daily increment analysis has been applied. 

Species Method Area Time-series Age range 

Cod Sectioned 
Baltic Sea, subdivisions 22–24 

Baltic Sea, Subdivision 25 

2009 

2001 

0–1 years 

< 3 years 

Whiting Ground in sagittal plane Baltic Sea, subdivisions 22–24 2009–2011 0–1 years 

Hake Ground in sagittal plane Ionian Sea ? 0 group 

Hake Ground in frontal plane Adriatic Sea 1992–1997 0–1 years 

Hake Ground in frontal plane Tyrrhenian Sea 2001 0–1 years 

Hake Ground in sagittal plane Gulf of Lion, Balearic Sea 1997, 2004 0–1 years 

Validation of the first winter ring  

This analysis is based on the enumeration of daily increments from hatch to capture, 

where individuals are sampled repeatedly from the same cohort before, during, and 

after the formation of the first winter ring. This approach was successfully used in Eu-

ropean hake from the Ionian Sea (Pattoura et al., 2011), Adriatic Sea (Arneri and Mo-

rales-Nin, 2000), Tyrrhenian Sea (Belcari et al., 2006), Mediterranean, Gulf of Lion, and 

Balearic Islands (Morales-Nin and Aldebert, 1997; Morales-Nin and Moranta, 2004; Hi-

dalgo et al., 2009). Similarly, the enumeration of daily increments from hatch to capture 

can be used to identify the timing of growth zones by linking the occurrence of trans-

lucent checks to the time of occurrence.  

Subsequent winter rings  

Cyclical patterns with daily increments forming a bell-shaped pattern separated by pe-

riods without visible increments were linked with seasonal temperature cycles based 

on cod tagged with data storage tags and strontium chloride (Hüssy et al., 2009, 2010). 

Comparison of daily increment patterns revealed inconsistencies between winter 

zones identified by the lack of visible increments with the formation of translucent 

zones (Figure 2.4; Hüssy, 2010). 
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Figure 2.4. Four examples of 3-year old cod with different daily increment (dots) and opacity (lines) 

patterns over two consecutive years: (a) overlap in both years, (b) no overlap, (c) overlap in the 

second, but not the first year, (d) overlap in the first, but not the second year (modified from Hüssy, 

2010). 

2.7 Future perspectives in gadoids: available tools 

2.7.1 Back-calculation of size at previous age and hatch date 

Back-calculation is an important method of obtaining estimates of the length-at-age 

prior to capture of an individual fish (Panfili et al., 2002). Specifically, the dimensions 

of one or more marks in some hard structures of the fish, together with its current body 

length, can be used to estimate a fish’s length at the time of formation of each of the 

marks. The hard parts used are otoliths, opercular bones, vertebrae, fin rays, or spines 

(Francis, 1990). The marks are often annual rings associated with growth checks, but 

back-calculation has also been used in association with marks caused by the stress of 

liberation of hatchery fish (Davies and Sloane, 1986) and tetracycline injections in 

tagged fish (Panfili and Tomàs, 2000). 

In order to carry out a back-calculation correctly, three main assumptions have to be 

met: 

1. The size of the calcified structure (CS) mark remains unchanged from the 

time of formation (no resorption or degeneration). 

2. The assumed time of formation is correct. 

3. The back-calculation method accurately relates body size to CS size for each 

fish. 

Back-calculation of previous size-at-age is an inexpensive tool, but cannot stand alone. 

This method should preferably be coupled to a length frequency distribution from a 

survey carried out in the period of the hyaline ring formation or size distributions of 

individual age classes. 
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2.7.2 Simulation tools for otolith macrostructure modelling 

Improving the reliability of otolith-based individual and population data is critical to 

population dynamics and ecology. In this respect, the numerical model of otolith for-

mation recently developed and validated by Fablet et al. (2011) deserves particular at-

tention. Based on a general bioenergetic theory, it disentangles the complex interplay 

between metabolic and temperature effects on otolith growth and opacity patterns, re-

solves controversial issues, and explains poorly understood observations of otolith for-

mation. It represents a unique simulation tool to improve otolith interpretation and 

applications. Scenario-based model simulations (where temperature and food series 

are forcing variables) are of primary interest to interpret and predict otolith character-

istics in response to environmental features (e.g. Figure 2.5). Besides, they provide new 

means for the discrimination of seasonal vs. non-seasonal otolith structures, a crucial 

issue for the improvement of the accuracy of individual age estimation. 

  

Figure 2.5. Resolving the non-synchronous seasonality of opacity patterns of Barents Sea (BS) and 

southern North Sea (NS) cod otoliths: feeding and temperature conditions (A) that explain otolith 

opacity patterns observed for southern North Sea (NS, black lines) and Barents Sea (BS, red lines) 

cod (B and C). Observed seasonal patterns (dashed lines), given as the relative proportions of opaque 

edges in the monthly sampled otolith sets (21), are compared to normalized simulated opacity pat-

terns (solid lines). Model simulations reproduce both the opposite seasonal opacity patterns (B) and 

the remarkable differences in the contrast of the otolith images of the two populations (C). From 

Fablet et al. (2011). 

2.7.3 Raman microspectrometry 

Raman microspectrometry could be another useful tool to achieve a better understand-

ing and validation of otolith growth patterns. This technique allows a quantitative 

characterization of the mineral and organic fractions of otolith structures (micro- 

and/or macro-structures). Recent studies (Jolivet et al., 2008, 2013) have provided new 
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insights into understanding otolith biomineralization mechanisms, as well as for the 

interpretation and discrimination of otolith macrostructures. 

2.7.4 Microchemistry as a supportive tool for age validation 

Age estimation for most stocks is hampered by the fact that the process is based on 

counting annual growth increments (rings or annuli), whereas it is not certain that one 

ring is formed each year. The timing of the deposition of annuli is not verified and 

pseudoannuli, i.e. rings that can appear at any time during the year, induced possibly 

by stress, are a common problem. Using corroborative methods for validation of an-

nual rings, such as elemental or isotopic cycles, could potentially support the counting 

of rings. This would be a correlative way of corroborating the age of the fish, primarily 

by confirming the identity of true annuli (Campana, 2001). It is necessary to be aware 

that the use of microchemistry as a supportive tool for age validation requires funda-

mental knowledge about the chemical environment of the species. While growth rate 

and metabolism can affect the deposition of chemical elements in the otolith, recent 

studies show that uptake directly from surrounding water is a main source of certain 

chemical elements found in otoliths (Walther and Thorrold, 2006). 

Techniques commonly used for microchemistry analysis (elemental fingerprint) in-

clude: 

 Laser ablation inductively coupled mass spectrometry (LA-ICPMS) 

 Electron probe microanalysis (EPMA) 

 Proton-induced X-ray emission (PIXE) 

 Scanning X-ray fluorescence microscopy (SXFM) 

Although microchemistry is not widely used for the purpose of validating age, the field 

has the advantage of being in rapid development (Campana, 2005). Methods have ma-

tured and are now more widely used for identifying natural tags. This also means that 

methods are becoming more affordable to use on a routine basis. The concept of ele-

mental fingerprinting in otoliths is very attractive, telling a story about how to interpret 

the life history of fish and constructing environmental history. The use of elemental 

fingerprints is becoming more widely used for separation populations, migration, 

stock mixing, and map connectivity between habitats (Gillanders, 2005). The various 

uses of elemental finger printing implies that more effort will be invested in making 

elemental maps of otoliths, something that can also prove useful for age estimation 

purposes. 

In a recent study of cod and hake (DGXIV Study Project 96-075), it was shown that 

opaque and translucent zones were generally different in composition during the early 

stages of development, although the variation declined toward the edge of the otolith. 

Sr/Ca ratios were generally higher in translucent zones than in opaque zones. Na/Ca 

ratios were inversely related to Sr/Ca ratios. The decreasing variations in Sr/Ca ratios 

between translucent and opaque bands towards the otolith edge could be a result of 

either the decreasing width of the bands or an ontogenetic effect. Because there was 

such a close coupling of the visual pattern of otolith zone formation and the chemical 

composition, it seemed unlikely that simple cyclic seasonal temperature fluctuations 

were responsible for all of the variations in the Sr/Ca signal. Therefore, it was not pos-

sible to use the Sr/Ca variations to validate which zones correspond to annual otolith 

increments in many of the hake otoliths. There is increasing evidence in the literature 

that the Sr/Ca ratio in fish otoliths responds only indirectly to ambient temperatures. 

The elemental ratio may be more of a reflection of physiological processes, and these 
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may simultaneously induce visual changes in the otolith. Thus, the Sr/Ca ratio is not 

independent of otolith growth and cannot be used as an independent validation tool. 

Chemical elements suitable for corroboration of age will be highly variable, depending 

on species and even on stock level, and will reflect the environment. Investigations 

show that elemental fingerprints in cod otoliths based on the elements Li, Mg, Mn, Sr, 

and Ba are physically stable. The elemental ratio Sr:Ca is mainly connected with 

changes in salinity and is popular for tracking anadromous fishes (Walther and Lim-

burg, 2012). Other elemental ratios that have shown variation in otoliths in offshore 

and coastal waters are Ba:Ca and Mg:Ca (Thorrold et al., 1997). Additional ratios re-

cently identified as promising in exhibiting seasonal patterns are Mg:Ca, Zn:Ca, Cu:Ca, 

and Rb:Ca (Hüssy et al., 2015; Limburg et al., 2018). 

Experiments were made with the Sr:Ca content in cod and hake; however, this ele-

mental ratio proved not to be useful in the marine environment where the variation in 

concentration is connected to temperature and is not independent of otolith growth. 

Another example is the findings from microchemistry analysis of cod in the Baltic Sea. 

An experiment hypothesized that the incorporation of Mn:Ca and Sr:Ca showed a po-

tential of being related to seasonal events (Limburg et al., 2011). Mn:Ca was found to 

have a strong correlation with hypoxic events (Itai et al., 2012), which was also found 

in the experiment of Limburg et al. (2011). 

Figure 2.6 maps variations in otoliths over a temporal scale of four historical periods 

of time. A seasonal pattern was detected when the ratio Mn:Ca was high in the summer 

months of young fish (1–2 years), which can be related to dwelling in shallow, rela-

tively warmer nursery areas and with exposure to seasonal hypoxia. This pattern dis-

appeared in later life when Sr:Ca was elevated (Figures 2.6 and 2.7). Sr:Ca is related 

both to temperature and salinity, and cod are known to migrate to deeper, more saline 

and colder water after their juvenile period to either feed or spawn. 

 A B C D 

 

Figure 2.6. Transverse sections of eastern Baltic Sea cod otoliths from four different time periods: 

the Neolithic (A), late Iron Age/Middle Age (B), early 1990s when the areal extent of hypoxia was 

low (C), and 2001 when it was high (D). Regions in the core correspond to the juvenile stage. Note 

that Mn is high in the Neolithic and Iron Age otoliths in small cracks as well as along the edge, where 

it was in contact with soil pore water. The 1991 otolith is portrayed in a partial map. (Scale bar: 

1 mm. Reproduced from Limburg et al., 2011.) 
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Figure 2.7. Otolith of a young-of-the-year eastern Baltic cod, length = 100 mm, captured 17 Novem-

ber 2008 in a special trawl survey. Scale bar = 1 mm. (a) Photo of a transverse section through the 

otolith. (b) Manganese elemental map (left) and Mn:Ca ratios (× 103, right) parsed out by season. 

(c) Strontium elemental map (left) and Sr:Ca ratios (× 103, right) parsed out by season. The red line 

represents transects of data that were extracted by GIS for preparing the graphs. Examination of 

daily increments (not visible) indicated the fish was born in May (Images: K. Limburg). 

2.8 Ongoing and future work 

For anglerfish (Lophius piscatorius) and hake (Merluccius merluccius), a European project 

(EASME/EMFF/2016/1.3.2.7/SI2.762036, Validating age-determination of anglerfish 

and hake) will investigate if calcified structures (otoliths and illicium) contain seasonal 

otolith microchemistry patterns that can be used for age estimation. A combination of 

analytical approaches (LA-ICPMS, IR-MS, SIMS) are employed to establish the most 

effective method for measuring age-related maxima and minima in elements and iso-

topes. The results will be used to develop the tools for otolith macrostructure model-

ling. 

For Baltic cod (Gadus morhua), the seasonality of chemical element patterns occurring 

in otoliths is being validated through a large-scale tagging project “Tagging Baltic 

Cod” (TABACOD), funded by BalticSea2020. For further information visit the TABA-

COD home page at: http://www.tabacod.dtu.dk/  

2.8.1 Validation of life history events – juvenile check 

In some demersal species, several of the macrogrowth increments in the central part of 

the otolith confuse the attribution of the first seasonal increment. The growth of these 

increments during the early life phases may be related to one or several factors, such 

as changes in habitat (i.e. from pelagic to demersal settlement), feeding patterns 

(changes in diet), or metamorphosis (i.e. termination of cutaneous respiration and os-

sification). Any of these changes can result in changes in otolith formation, leading to 

http://www.tabacod.dtu.dk/
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changes in otolith shape and increment pattern. Changes in optical density and spacing 

of daily growth increments may also accompany metamorphosis. The most frequent 

change in the otolith shape observed in gadoids is due to the formation of accessory 

growth centres (Figure 2.8). In a study of European hake settlement (Arneri and Mo-

rales-Nin, 2000), the duration of the pelagic life phase was established at approximately 

2 months, which was validated in other studies. 

 

Figure 2.8. Juvenile hake otoliths, showing the changes in shape and increment structure (Arneri 

and Morales-Nin, 2000). 

2.8.2 Validation of life history events – spawning check 

Background 

Age, size, and growth at the onset of maturation are important stock assessment pa-

rameters (Godø and Haug, 1999). So-called spawning checks or “spawning zones” in 

otoliths may form an integral part of these otolith readings, especially in gadoids 

(Rollefsen, 1935). Spawning zones in Northeast Arctic cod were first described by 

Rollefsen (1933, 1935), and were later used to estimate age at maturation and to con-

struct maturity ogives for individual cohorts in the time-period 1946–1981, although 

gonad staging is normally the main source of information in these types of analyses 

(ICES, 2001). At present, the Institute of Marine Research (IMR) in Norway uses otolith 
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spawning checks for saithe north of 62°N (Pollachius virens) to determine the proportion 

of mature vs. immature saithe in assessments (ICES, 2005). The background here is that 

this survey cruise takes place in autumn, i.e. at a time of the year when gonad staging 

is not helpful in adequately separating maturing from immature individuals. In assess-

ments of Northeast Arctic haddock (Melanogrammus aeglefinus), spawning checks are 

also currently being used, but only to confirm maturation stages already determined 

by gonad inspection during the so-called “winter survey”. Moreover, otolith spawning 

checks may also be useful to studies on evolutionary changes in maturation-at-age re-

lated to commercial fishing, which may be of particular interest to institutions with 

large historical otolith archives. 

Previous work 

Despite many years with use of spawning checks in otoliths, direct validation of these 

assumed spawning indicators has only been brought to our attention in recent years. 

Previous work to validate “spawning zones” in cod otoliths began with the NFR (Re-

search Council of Norway) project “Timing and determination of fecundity and 

skipped spawning” (2006–2009), followed by a second project to include haddock 

(“The occurrence of skipped spawning and its importance for population dynamics in 

Northeast Arctic gadoids”, 2009–2012). The first project included isotope and chemical 

comparative analyses to validate or corroborate visible “spawning zones” and to com-

pare these in fish with and without gonad indicators of spawning (post-ovulatory fol-

licles [POFs]; Witthames et al., 2010; Skjæraasen et al., 2012). The second fecundity pro-

ject addressed, among other things, growth trajectories of fish before and after the 

“spawning zones” as a further method of validating these features. 

The rationale for incorporating data from otolith composition analysis into the deter-

mination of fecundity projects was to determine whether the physiological processes 

during gonad development would cause permanent, detectable features in the otoliths. 

There were two objectives: 

1. to validate the so-called spawning checks by comparing these, in appropri-

ate samples, with the presence of POFs; and 

2. to use the isotope and element data to distinguish among individuals with 

regular or irregular annual reproductive patterns (skip spawners). 

Future work 

It is still unclear when spawning checks are being recorded in gadoid otoliths (e.g. 

which months) relative to the actual time of spawning. It is also necessary to investigate 

whether spawning checks are recorded in the otoliths of individuals that skip spawn-

ing after one or several years of spawning. An experimental method of direct valida-

tion of spawning checks is now being conducted at Matre Research Station, Institute of 

Marine Research, Norway. Cod will be reared from hatching to age 3 under two dif-

ferent feeding regimes (low and high), whilst individual growth, time of first matura-

tion, and spawning will be monitored. Half-way through the experiment, 50% of the 

fish from each feeding regime will be switched to the other feeding regime. During the 

experiment, otoliths will be regularly stained by alizarin to determine the timing of 

spawning checks relative to time of spawning. The results of this experiment are not 

yet ready. Otolith growth and spawning checks will finally be analysed in transversal 

sections, using a fluorescence microscope to detect the alizarin stain marks. A disad-

vantage to such an experimental approach is the potential deviations that may occur 

in the otolith pattern from wild fish, although the husbandry protocols are designed to 

reflect the natural environment as far as possible. 
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Nevertheless, it should be expected that the appearance of spawning checks is species- 

and stock-dependent, as spawning behaviour, migrations, and environment may vary 

among different gadoid fish stocks. Unfortunately, for some gadoid fish stocks, spawn-

ing checks may be difficult, if not impossible, to detect by conventional age estimation 

methods. Deciding which species are suitable for future validation studies, and the im-

portance of such studies to the respective stock assessment should, therefore, be dis-

cussed. Direct validation of age or at least high agreement in age estimation among 

involved age estimation institutions is a recommended prerequisite before undertak-

ing further studies of spawning-zone validation in any specific gadoid stock. If indi-

vidual age-at-maturation is not known, this type of spawning validation study has less 

value in the aspect of stock management. 

The use of post-ovulatory follicles (POFs) is another good candidate for validating 

spawning. POFs persist for about a year in gadoid ovaries post-spawning, i.e. they can 

be used to justify the presences of an otolith spawning check produced within the last 

year. In an ongoing study at IMR (Norway), otoliths and ovarian samples from North-

east Arctic saithe captured along the Norwegian coast in October 2010, 2011, and 2012, 

are being analysed. Otolith transversal sections are being analysed for spawning 

checks, and gonad samples are being histologically processed (in resin) and stained 

with periodic acid-Schiff stain (PAS), before being analysed under a microscope for 

POF prevalence as well as ovarian morphology (method: see Witthames et al., 2010). 

So far, results show good agreement between spawning zones and the presence of 

POFs among older individuals that had spawned more than once. However, little cor-

respondence was found between POFs present and spawning zones in the otoliths of 

younger individuals. As an example, no spawning zones were found among individ-

uals between two and four years old in 2012. Nevertheless, half of these ovarian sam-

ples showed evidence of POFs, 40% had POFs defined as “almost certain”, and only 

10% had no POFs. Hence, our data suggest that Northeast Arctic saithe spawn at a 

younger age than expected from traditional otolith analyses. 
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3 Flatfish 

Mark Etherton, Sally Songer, Joanne Smith, and Barbara Bland 

3.1 Introduction 

Flatfish form a large part of both the commercial fisheries and the stock assessment 

effort within ICES. The majority of category 1 stocks (defined as those stocks where a 

full analytical assessment and short-term predictions can be made) have age-based as-

sessments. Accordingly, it is vital to obtain ages that are as accurate and precise as 

possible. 

At least 18 flatfish species, comprising numerous stocks, have current age estimation 

programmes in marine institutes around Europe (Table 3.1). Many of these species are 

common in most sea areas within the Northeast Atlantic, Baltic, and Mediterranean, 

with a number of institutes doing age estimations. For others there is little age estima-

tion effort; in some cases only a single laboratory has a flatfish age estimation pro-

gramme. A list of the known flatfish species with age estimation programmes as cov-

ered by the EU Data Collection Framework is given in Table 3.2. A total of 22 institutes 

across Europe have flatfish age estimation programmes. Common sole (Solea solea) and 

European plaice (Pleuronectes platessa) are the most commonly read species and proba-

bly those that have the greatest commercial importance. 

 

Table 3.1. Flatfish species with age programmes in European institutes and the number of institutes 

involved in each species. 

Common name Scientific name No. of institutes 

Common sole (Dover sole/Black sole) Solea solea 10 

European plaice Pleuronectes platessa 10 

Turbot Scophthalmus maximus 9 

Brill Scophthalmus rhombus 7 

Flounder  Platichthys flesus 7 

Megrim Lepidorhombus whiffiagonis 7 

Dab Limanda limanda 6 

Lemon sole Microstomus kitt 5 

Witch (Witch flounder) Glyptocephalus cynoglossus 2 

Greenland halibut Reinhardtius hippoglossoides 2 

Long rough dab (American plaice) Hippoglossoides platessoides 2 

Scaldfish Arnoglossus laterna 2 

Four-spot megrim Lepidorhombus boscii 1 

Adriatic sole Pegusa impar 1 

Atlantic halibut Hippoglossus hippoglossus 1 

Sand sole Pegusa lascaris 1 

Solenette Buglossidium luteum 1 

Thickback sole Microchirus variegatus 1 
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Within the framework of ICES, there have been a number of flatfish age calibration 

workshops and exchanges in recent years. Most have included analysis of interlabora-

tory comparisons of a set or sets of otoliths. Table 3.3 summarizes the available results 

from these workshops and exchanges. 
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Table 3.2. Summary of age estimation methodologies by institute. 

Species Area Institute Whole Break/burn Break/polish Sections 
Section and 

stain 
Notes 

Adriatic sole W. Mediterranean CNR–IAMC, Italy       

Atlantic halibut Subarea 4 DTU Aqua, Denmark       

Brill 

Subarea 4 and di-

visions 7.a–7.d 
ILVO, Belgium       

Subarea 4 DTU Aqua, Denmark       

Subarea 4 Ifremer, France       

Subarea 4 Thünen Institute, 

Germany 
      

Subarea 4 Imares, Netherlands       

Subareas 4 and 7 Cefas, England      Currently read by ILVO 

Subarea 7 AFBI, Northern Ireland       

Dab 

Division 3.a and 

Subarea 4 

Thünen Institute, 

Germany 
     Only large fish are sectioned 

Subareas 4 and 7 Cefas, England       

Subareas 3 and 4 DTU Aqua, Denmark       

Subarea 5 MRI, Iceland       

Subarea 7 AFBI, Northern Ireland       

Subarea 4 Imares, Netherlands       
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Species Area Institute Whole Break/burn Break/polish Sections 
Section and 

stain 
Notes 

Flounder 

Subarea 3 BIOR, Latvia       

Subareas 4 and 7 Cefas, England       

Subarea 3 DTU Aqua, Denmark       

Subarea 3 FGFRI, Finland       

Subarea 3 Fishery Service, Lithuania       

Subarea 4 Imares, Netherlands       

Subarea 3 SLU-Aqua, Sweden       

Four-spot 

megrim 

Divisions 8.c and 

9.a 
IEO, Spain      Both otoliths used 

Greenland 

halibut 

Subareas 2 and 4 IMR, Norway       

Subareas 8 and 9 IPIMAR, Portugal       

Lemon sole 

Subareas 4 and 7 Cefas, England       

Subarea 4 DTU Aqua, Denmark       

Subarea 4 Ifremer, France 

 
      

Subarea 5 MRI, Iceland       

Subarea 4 Imares, Netherlands       

Long rough dab 
Subarea 5 MRI, Iceland       

Subareas 8 and 9 IPIMAR, Portugal       
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Species Area Institute Whole Break/burn Break/polish Sections 
Section and 

stain 
Notes 

Megrim 

Subareas 7–8 and 

Division 9.a 
IEO, Spain      Both otoliths used 

Subareas 4 and 6 Marine Institute, Scotland       

Subarea 7 Cefas, England      Method changing to 

break/burn 
Subareas 7 and 8 Ifremer, France       

Subarea 7 Marine Institute, Ireland       

Subareas 7 and 8 AZTI, Spain       

Subarea 7 AFBI, Northern Ireland       

Plaice 

Division 3.a and 

Subarea 4 

Thünen Institute, 

Germany 
     Only large fish are sectioned 

Subarea 4 and 

Division 7.a 
ILVO, Belgium      Sectioned only when in doubt 

Subareas 4 and 7 Cefas, England      Stock-specific method 

Subareas 3 and 4 DTU Aqua, Denmark       

Subarea 4 Ifremer, France       

Subarea 5 MRI, Iceland       

Subarea 7 Marine Institute, Ireland       

Subarea 4 Imares, Netherlands       

Division 3.a and 

Subarea 4 
SLU-Aqua, Sweden      Only old fish are sectioned 

Subarea 7 AFBI, Northern Ireland       

Sand sole W. Mediterranean CNR–IAMC, Italy       

Scaldfish 
Subarea 4 Imares, Netherlands       

Subarea 7 AFBI, Northern Ireland       
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Species Area Institute Whole Break/burn Break/polish Sections 
Section and 

stain 
Notes 

Sole 

Division 3.a and 

Subarea 4 

Thünen Institute, 

Germany 
      

Subarea 4 and 

Division 7.a 
ILVO, Belgium       

Division 3.a SLU-Aqua, Sweden      Currently read by ILVO 

Subareas 4 and 7 Cefas, England       

Subareas 3 and 4 DTU Aqua, Denmark       

Subareas 4, 7, and 

8 

Ifremer, France       

Subarea 7 Marine Institute, Ireland       

W. Mediterranean CIBM, Italy       

Adriatic Sea Coispa, Italy       

Subarea 4 Imares, Netherlands       

Subarea 7 AFBI, Northern Ireland       

Solenette Subarea 4 Imares, Netherlands       

Thickback sole Subareas 7 and 8 IEO, Spain       

Turbot 

Subarea 3 BIOR, Latvia       

Subarea 3 RKTL, Finland      Very rare in the area 

Subarea 4 and 

Division 7.a 
ILVO, Belgium       

Subarea 4 Ifremer, France       

Subarea 4 Thünen Institute, 

Germany 
      

Subarea 4 Imares, Netherlands       

Black Sea NIMRD, Romania       

Subarea 3 SLU-Aqua, Sweden       

Subareas 4 and 7 Cefas, England      Currently read by ILVO 
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Species Area Institute Whole Break/burn Break/polish Sections 
Section and 

stain 
Notes 

Witch 

Subarea 4 DTU Aqua, Denmark      Mainly read by Sweden 

Subarea 5 MRI, Iceland       

Subarea 7 IEO, Spain       

Division 3.a and 

Subarea 4 
SLU-Aqua, Sweden       

Subarea 4 Marine Institute, Scotland       



 

 

Handbook of fish age estimation protocols and validation 

methods 
|  43 

 

Table 3.3. Flatfish workshops and exchanges since 2000. 

Year Species W/E Area 
No. of 

fish 
Preparation 

No. of  

institutes 

No. of  

readers 
Agreement (%) CV 

2002 
Sole Workshop  157  4 10 90 4 

Plaice Workshop  112 Section 4 11 70 14 

2003 Plaice 

Exchange Division 7.d 245 Section 6 19 61.6 23 

Exchange Division 7.d 245 Whole 3 7 74.1 19 

Workshop Division 7.d 81 Section 6 14 86.8 12 

Workshop Division 7.d 81 Whole 6 11 86.0 8 

2004 Megrim Workshop Subareas 7 and 8 39 Whole 6 8 54.9 21.5 

2006 Flounder 

Exchange 
Subarea 4 and 

Division 3.a 
 Whole NA 4–6 62.5 19.7 

Exchange 
Subarea 4 and 

Division 3.a 
 Section NA 4–6 53.0 21.6 

2008 

Flounder Workshop 
Subarea 4 and 

Division 3.a 
 Section and stain 10 17 70.4 - 

Turbot 
Workshop Subarea 4 110 Section and stain 6 13 82.8 - 

Workshop Division 3.a 96 Section and stain 6 13 71.6 - 

2010 

Dab Exchange Subarea 4 160 Whole 6 12 79.3 12 

Plaice 

Exchange Subarea 4 112 Section (experienced readers only) 9 20 88 5 

Exchange Subarea 4 112 Whole (experienced readers only) 9 20 84 8 

Exchange Division 3.a 92 Section (experienced readers only) 9 20 73 12 

Exchange Division 3.a 96 Whole (experienced readers only) 9 20 76 7 

2011 Sole Exchange Subarea 8 120 Section, and section and stain 3 5 88.65 4.7 

2015 Dab 

Workshop 
Divisions 4.b and 

4.c 
50 Whole 6 8 79 12 

Workshop 
Divisions 4.b and 

4.c 
50 Section 6 8 63 10 

2016 Sole Exchange Subarea 4 160 Section and stain 9 16 90 3 
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Year Species W/E Area 
No. of 

fish 
Preparation 

No. of  

institutes 

No. of  

readers 
Agreement (%) CV 

Plaice 

Exchange Subdivision 22  50 Whole 4 7 68.7 19.6 

Exchange Subdivision 22 50 Section 4 7 73.2 19.9 

Exchange Subdivision 23 48 Whole 4 7 73.2 16.7 

Exchange Subdivision 23 48 Section 4 7 64.3 21.8 

Exchange Subdvisions 24 50 Whole 4 7 67.5 17.8 

Exchange Subdvisions 24 50 Section 4 7 77.2 13.9 

Exchange Subdivision 25 45 Whole 4 7 79.1 10.3 

Exchange Subdivision 25 45 Section 4 7 78.8 14.3 

Exchange Subdivision 26 30 Whole 4 7 70.7 16.7 

Exchange Subdivision 26 30 Section 4 7 79 13 

NA = not available. 
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3.2 Age estimation methodologies in flatfish 

Otoliths can be read using three different preparation methods (ICES, 2010c): 

1. Whole otolith method: Both otoliths are placed in a container (black or trans-

parent) filled with a clear fluid (water, oil, alcohol) or embedded in clear 

resin / microscopic medium. 

2. Break-and-burn method: This method involves breaking the otolith in half 

(as close to the nucleus as possible). The broken halves are burnt until the 

translucent rings appear dark grey. The burnt edge is covered with water or 

oil for viewing. 

3. Sectioned otolith method: Otoliths are embedded in resin (with or without 

added black stain) and then sectioned through the nucleus. The thickness of 

the slides range between 0.5 and 0.6 mm, with some using a glass coverslip 

as well. If sectioned otoliths are not covered with a glass coverslip, the sur-

face of sectioned otoliths is covered with a thin layer of oil before reading. 

Preference of source of light, transmitted or reflected, varies between laboratories. 

Some use both transmitted and reflected light; others only transmitted or only re-

flected. Features of the otoliths, especially at the edge, might look different using alter-

native light settings. 

Staining sectioned otoliths is a variation on method 3 and is employed by some insti-

tutes for some species. 

In fact, most of these methods have lab-specific variations, mostly minor in nature. Ge-

neric descriptions, advantages, disadvantages, and variations noted in the age estima-

tion manuals of specific institutes are found below. Figure 3.1 illustrates different in-

terpretations of age of the same individual as a result of different preparation methods. 

3.2.1 Whole otolith method 

This method has the advantage of speed of preparation and the versatility of being able 

to manipulate the otolith: turning it, lifting one side, etc. to change the angle and light-

ing. Different liquids have been experimented with and are currently used, including 

water, alcohol, baby oil, propylene glycol, and glycerine. Some institutes also read 

whole otoliths fixed in clear resin between two glass slides. This, however, deprives 

readers of manipulating otoliths under the microscope to find the optimum angle for 

interpretation. Otoliths are generally observed under a microscope using reflected light 

against a dark background. Some readers have remarked that immersion in liquid for 

up to 48 h (commonly 24 h) prior to reading helps to “clear” the otolith, making age 

estimation easier. This clearing effect is noted to vary with the length of immersion and 

the type of liquid used. However, other readers have noted that clarity actually reduces 

with prolonged immersion and that underageing can result. Species that are regularly 

age estimated from whole otoliths include megrim (Lepidorhombus whiffiagonis), dab 

(Limanda limanda), plaice (Pleuronectes platessa), and witch flounder (Glyptocephalus 

cynoglossus). 

Procedure 

The otoliths are generally stored in paper packets, envelopes, or plastic trays, prefera-

bly with the two sagitta otoliths from each fish. Otoliths are removed from the packet 

with forceps and placed on the microscope stage in a small black dish filled with a 

liquid. The otolith can be manipulated using the forceps to the ideal position for esti-

mating the age, which will generally be with the concave (distal) side uppermost. Some 
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tissue may remain on the otolith which may appear as a brown residue on the surface 

(Figure 3.2). This can be removed carefully using the forceps. 

The otolith is viewed using reflected light under low-power magnification. Sometimes, 

a blue filter is used in the path of the beam of light to remove the yellow cast from the 

tungsten lamp and to aid interpretation of the otolith. The general rule is that the mag-

nification should be such that the whole otolith is visible through the eyepieces at all 

times because this allows rings to be followed around the otolith. The otolith can be 

turned, flipped over, and freely rotated using the forceps to provide the reader with 

many angles of view. 

If there are two otoliths from the same fish in the packet, the second otolith can be 

viewed under the microscope to verify what the reader has seen on the first otolith or 

provide clarification if the first otolith proved difficult to interpret. As a general rule, 

the otolith with the asymmetrical nucleus should be viewed first because it provides 

the longest axis of growth and, therefore, should provide the clearest rings. This is not 

always the case, however, so caution should be used. 

In some instances, otoliths are aged using photographs, with the possibility of rou-

tinely marking each image using Photoshop for later reference, rather than using the 

physical calcified structures. However, using only pictures without the associated 

physical specimens for reference requires high-quality photographs and is not recom-

mended. 

 

 

Figure 3.1. Otoliths from a 14-year-old flounder caught in June, showing how easy it is to misinter-

pret whole otoliths when compared with stained sections. The “cliff-edge effect”, where the axis of 

growth changes in older fish, cannot usually be seen in the whole otolith, leading to underestimation 

of age. This fish was aged as part of an exchange, and no reader gave an age greater than 9 from the 

whole otolith. When it was sectioned and stained, the true age was much clearer.  
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Figure 3.2. A megrim (Lepidorhombus whiffiagonis) otolith viewed whole in water with attached 

membrane visible at the top. 

3.2.2 Break-and-burn method 

In this method, the whole otolith is broken transversally across its nucleus, and the 

broken surface is gently burned in a small flame. The flame has traditionally been from 

a spirit lamp, but in more recent times, tea-lights have been used due to their low tem-

perature flame, ready availability, and built-in metallic casing for safety. In this 

method, the annual protein bands are burned, producing a thin brownish–black line at 

the end of each translucent zone (Figure 3.3). This method is commonly used for spe-

cies such as plaice, common sole, lemon sole, and megrim. 

Procedure 

The margin between the opaque and translucent bands becomes dark, sometimes black 

after burning, making it easier to identify and count the annual rings. Often, a large 

number of very thin, unclear lines can be seen within the area bounded by two strong 

darker bands. These are not annuli and should be discounted. If the flame is not ap-

plied long enough or if insufficient heat is used, the bands will not show up. If the 

otolith is burnt for too long or using a flame that is too hot, the otolith will disintegrate. 

Once burnt, the otolith section is then mounted on a piece of adhesive gum on the 

microscope stage, and the burnt surface is viewed using reflected light. A thin layer of 

oil or water is used to clear the surface and aid in ring identification. Water is recom-

mended because the result is similar to oil; if the otolith then needs more burning, it 

can still be done, whereas with oil, further burning is impossible. This method requires 

practice, and inexperienced readers can produce quite variable burning, making age 

estimation more difficult. 
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Figure 3.3. A broken and burnt lemon sole (Microstomus kitt) otolith. 

3.2.3 Sectioned otolith method 

Otoliths are embedded in either black or clear resin. A thin slice is then cut transver-

sally through the nucleus, producing thin strips of resin containing several otoliths. 

The strip of otoliths is read with either reflected or transmitted light, or more likely a 

combination of both. The advantages of this method are that reading time is reduced, 

otoliths can easily be viewed in relation to each other, and different lighting techniques 

can give better overall understanding of ring patterns. Great care must be taken during 

the sectioning process to ensure that the centre of the nucleus is cut, because a cut to 

the side of the nucleus could lead to misinterpretation of later rings, and missing the 

nucleus altogether will result in underageing by one or more years. Many flatfish 

stocks are read in this way, although some also have the additional process of staining 

after the sectioning. 

Procedure 

The otoliths in this method are presented on very thin, narrow strips of cured resin. 

These strips are very fragile, so great care is needed when handling and storing them. 

The strips may be mounted on a glass slide and covered with a clear resin, and a glass 

coverslip is applied over the top, providing a stable, robust storage method. The reader 

places the strip on the microscope stage and reads from left to right on each strip. Either 

reflected (Figure 3.4) or transmitted light can be used to age estimate the otoliths. 

Transmitted light shone from underneath the strip will have the effect of making the 

opaque zones dark and the translucent zones bright, a reverse of what is seen under 

reflected light. 

 

Figure 3.4. A sectioned plaice (Pleuronectes platessa) otolith viewed under reflected light. 
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3.2.4 Sectioned and stained 

The process for sectioned and stained otoliths is the same as for sectioned otoliths, with 

the addition of a stain being applied to the otolith strips after the section has been taken 

(Figure 3.5). Neutral red stain is often used, although others have been used for specific 

projects and experiments. Strips are stained for 5–30 min depending on species and 

stock. The section is then rinsed in tap water and placed in a fume cupboard to dry. 

During the staining process, a decalcification takes place on the surface of the otolith 

and the protein bands are stained dark pink or red, making interpretation of the otolith 

structure easier in a similar way that darkening the protein bands does with a flame 

when using the break-and-burn method. The stained sections are then viewed under a 

microscope, using either transmitted or reflected light or, more likely, a combination 

of both. Common sole and dab are the main species for which this technique is used. 

The technique is described in detail by Easey and Millner (2008). 

The method for reading sectioned and stained otoliths is the same as identified for sec-

tioned otoliths above. 

 

Figure 3.5. A sectioned and stained common sole (Solea solea) otolith. 

 

3.3 Age estimation problems and features of specific flatfish stocks 

The problems and descriptive features mentioned in this section are derived from the 

age estimation manuals supplied by participating institutes. 

3.3.1 Plaice (Pleuronectes platessa) 

Most plaice stocks have few issues in the age estimation process. However, fish from 

the northern North Sea have a much slower growth rate than more southerly fish and 

exhibit split rings as well as narrow annuli. 

There can be considerable variation in the size of the first year’s growth. This can cause 

problems when sectioning the otoliths because a very small nucleus can occasionally 

be missed by the blade, with the result that the otolith seems to lack a nucleus when 

viewed, making accurate age estimation almost impossible. 

Plaice otoliths are prone to split rings, and the reader should gauge whether inclusion 

of a split as a true age ring maintains the integrity of the normal growth of the otolith 

with the age of the fish. A split is often repeated each year, and this is usually seen at 

the same position between the two annuli each time. 

Normally, a plaice otolith shows a good amount of growth in year 1, the largest growth 

in year 2, and then diminishing growth in subsequent years. At around age 4 or 5, the 

annual growth becomes uniform. The new annulus ring (the opaque zone) is formed 

once the feeding season starts and generally occurs around March or April (plaice in 

ICES divisions 3.a and 7.e and in Subarea 4; Figure 3.6). 
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Younger fish tend to begin laying down the opaque zone of new growth earlier than 

older fish. 

 

Figure 3.6. Whole plaice otolith (estimated age: 4, month of capture: April – western English Chan-

nel). A straightforward fish to age estimate, having a small nucleus with two strong and a third, 

smaller opaque growth zones. It is likely that the third, smaller opaque zone coincides with the first 

maturity of this fish. An opaque edge can just be seen forming on the edge of the otolith as the next 

summers’ growth begins after spawning in the spring. 

3.3.2 Sole (Solea solea) 

Growth rates vary widely between sexes. Spawning time also varies among areas, and 

this affects the timing of the new “annulus” ring being laid down. This species can 

reach ages of ca. 40 years and as a result, high-powered optics and eyepieces are nec-

essary to age otoliths accurately because the stained rings can be very close together. 

Sole otoliths from different sea areas absorb the red stain differently. Those otoliths 

that absorb the most stain generally require the application of a drop of water over the 

surface of the otolith. This can leech out any excess stain and make the otolith easier to 

read. Sole otoliths on slides should be handled with care because they are quite delicate 

structures (Figure 3.7). 

Otoliths on slides should be placed on the microscope initially and viewed using re-

flected light and 16× magnification eyepieces. 

 

Figure 3.7. Sole otolith (estimated age: 4, month of capture: April – location unknown). A wide nu-

cleus and first growth zone can be seen, with a slowing-down in growth in the final year. 

Sole otoliths are prone to split or false rings (Ian Holmes, pers. comm.), and the reader 

should gauge whether inclusion of a split as a true age ring maintains the integrity of 

the normal growth of the otolith, considering the age of the fish. Often, a split is re-

peated each year, and this is often seen at the same position between the two annuli 

each time. Splits occur more often in fish that live in sea areas, with less variation in 

water temperature between seasons (Ian Holmes, pers. comm.). Generally, this is more 
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likely to be the case the farther south the fish was living. Readers should be aware that, 

depending on the width of the section, the nucleus can be clearly visible on one side, 

but can sometimes be missing on the other. It must be remembered that when the nu-

cleus is visible on both sides of the section, it will differ in size, depending on which 

side is viewed. 

A sole otolith normally shows a reasonable amount of growth in year 1, the largest 

growth in year 2, and then diminishing growth in subsequent years. At ca. age 4 or 5, 

annual growth becomes uniform. The new annulus is formed once the feeding season 

begins, generally around April or May for ICES Division 7.e sole. When this new an-

nulus first becomes visible on the otolith, it will not be seen entirely around the edge 

of the otolith, but only at the extremes of the otolith at the dorsal and ventral edges. 

Younger fish tend to lay down the beginning of the opaque zone much earlier than 

older fish. 

3.3.3 Turbot (Scophthalmus maximus) and brill (Scophthalmus rhombus) 

Turbot and brill otoliths usually have a large nucleus and exhibit regular, strong 

opaque growth in the first two years. Thereafter, growth slows, and opaque zones nar-

row considerably. Due to the prolonged spawning season, nucleus size can be variable 

(Figure 3.8). The otolith takes the neutral red stain well, and good definition of annuli 

can be seen. 

 

Figure 3.8. Preparation of a turbot otolith (estimated age: 4, TL: 48 cm, sex: male, month of capture: 

December). 

3.3.4 Lemon sole (Microstomus kitt) 

The otoliths of lemon sole are some of the smallest that are routinely aged. This poses 

difficulties in the breaking of the otolith prior to burning, and also in the determination 

of the annual rings because they are narrower than for many other species. Care should 

be taken when considering the first ring. Lemon sole often lay a false ring which is 

more circular in shape than the usual oval pattern of a true ring. In addition, lemon 

sole sometimes lay a “shadow ring”, a false ring deposited soon after the true ring 

(Joanne Smith, pers. comm.), which is much fainter than a true ring (Figure 3.9). 

Problems have been noted with the nucleus due to the extended spawning season, 

leading to a range of sizes of nucleus (or first zone). Some fish appear to have a small, 

almost circular first hyaline ring, whilst others show a more typically shaped first hy-

aline ring surrounding a larger nucleus. Lemon sole otoliths seem to fall in two main 

groups: one with a small, circular first hyaline ring (assumed to be a fish spawned later 

in the season), and the other with a larger first hyaline zone which contains the opaque 

“bump” followed by more opaque growth (possibly from fish spawned earlier in the 

season). The circular “bump” in the centre is considered to be part of the first year’s 
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growth (i.e. age 0) that may be linked to some stage in metamorphosis rather than being 

a full year. 

Differences have been found in the formation of annual rings in fish from different sea 

areas. Zone formation in some areas can be quite blurred, whereas in others, the zones 

are very well defined and more easily read. It is theorized that this could be caused by 

different feeding patterns. 

The otoliths from juvenile (ages 0–4) female fish can be read whole in water, while for 

most of the older female and all of the male ones, burning is necessary to establish a 

reliable age. The formation of the rings is a lot clearer when they are burnt. The burnt 

otoliths are read mounted in plasticine, either under water or brushed with water. 

When using oil, the glare from the reflected light impedes the interpretation of the 

rings. Burning the otoliths for 3–4 s seems quite sufficient for clear ring definition; any 

additional burning will make them crumble. 

 

Figure 3.9. Otolith from lemon sole (estimated age: 7, TL: 33 cm, sex: female, month of capture: 

September – North Sea). This species often lays false first rings and shadow rings; these should not 

be counted as true rings when carrying out age estimations. 

3.3.5 Megrim (Lepidorhombus whiffiagonis) and four-spot megrim (Lepidorhombus 

boscii) 

Megrim can live to over 16 years of age, while four-spot megrim are shorter lived and 

do not grow to the same size. Otoliths from both species are routinely read whole. Split 

rings are relatively common, but pose no significant issue in interpretation. Otoliths 

from larger fish can become thick and difficult to interpret when whole (Figure 3.10). 

When possible, both otoliths should be viewed because the ring structure is not always 

clear in all parts of the otolith. The asymmetrical otolith generally provides the best 

chance of accurate age estimation because it has the longest axis of growth. However, 

this should not always be relied upon since the longest axis of growth is not always the 

“best” area on the otolith to estimate the age. Splits can, in fact, be more prevalent in 

this area of the otolith. The opaque zone of new growth can be observed to form earlier 

in fish from more southerly areas. The opaque zone also forms earlier in younger fish, 

and is wider and faster growing than in older fish. 

New growth on the edge is not uniform, and big differences are observed in different 

parts of the otolith, making it vital that the otolith is viewed as a whole and that age is 

estimated from several axes. An exchange of megrim whole-otolith images took place 

between 2010 and January 2011 with the participation of seven institutes around Eu-

rope. The overall percentage of agreement was relatively low and decreased with in-

creased modal age, reflecting the difficulty of the interpretation of megrim otoliths. 



Handbook of fish age estimation protocols and validation methods |  53 

 

 

Whole otoliths need to be studied carefully as annual rings close to the edge can be 

packed closely together, making them harder to interpret as the otolith thickens. It was 

thus recommended that alternative methods of reading (e.g. breaking and burning) 

should be investigated, especially for ages 6+. A new exchange using the break-and-

burn method should be carried out. 

Megrim usually mature at age 2 for males and at age 3 for females (Mark Etherton, 

pers. comm.). After this time, growth slows, which can be quite dramatic, particularly 

in fish from deeper waters. Since growth rates vary not only between sexes, but also 

vary quite widely geographically (Mark Etherton, pers. comm.), care should be taken 

with age estimation samples that may stem from trips spread over a wide area as 

growth rates could then be extremely problematic to interpret. 

 

Figure 3.10. Otolith from megrim (estimated age: 6, TL: 32 cm). This fish is 6 years old and shows 

a good first translucent winter ring, followed by a split-opaque summer growth. 

3.3.6 Flounder (Platichthys flesus) 

The diameter of the first annulus (first ring) varies considerably. One explanation is 

that settlement dates vary between individual fish. Early settlers will experience a 

longer growth season than late settlers. The length of the first summer growth may 

affect the width of the first winter growth (Figure 3.11). 

Another problem is the infrequent visibility of a very small innermost ring. This ring 

has sometimes been labelled as the “metamorphosis” ring and is attributed to the trans-

fer to the demersal stage of the life cycle. 

The age should be estimated from more than one axis of reading. 
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Figure 3.11. Flounder otolith (estimated age: 6, month of capture: June – location unknown). The 

stained section can clearly be seen to be age 6, whereas the whole otoliths can give ages of 4, 5, or 6, 

depending on location of the interpretation on the otolith or choice of otolith. This highlights the 

advantage of sectioned and stained otoliths for the age estimation of flounder. 

3.3.7 Witch flounder (Glyptocephalus cynoglossus) 

Performing age estimation on witch flounder can be quite challenging. There are three 

main reasons for this: 

1. The thickness of the nucleus. 

2. Older fish often show a broad hyaline edge in which several rings can be 

disguised. 

3. If the otoliths are dry, the hyaline rings are not discernable. 

Several techniques have been attempted to find the optimal one, including grinding 

the otolith whole, sectioning with or without staining, burning and breaking, as well 

as reading the otolith whole and wet preferably straight after removal from the fish. 

The best result was obtained by using a combination of two techniques, namely, read-

ing the otoliths right after the removal from the fish and, if need be, grinding them 

(Figure 3.12). 

The core of the otolith is asymmetrical (as in all flatfish), and usually the rings are easier 

to make out on the otolith with the central nucleus. 

As the core of the otolith is relatively thick and the first ring is sometimes difficult to 

discern, grinding has proved to be useful in revealing the inner ring. This inner ring 

has been verified by collecting witch flounder of the 0-group and comparing the dis-

tance from nucleus to edge/first ring. 

When collecting otoliths from witch flounder, it is recommended to place them in con-

tainers with water where they can be kept moist. If the otoliths are stored dry, one can 

try soaking the whole otoliths for a day in a 0.9% saline solution or in freshwater. This 

method gives satisfying results, although one should bear in mind that if the otoliths 

are kept in water for a long time, grinding the surface is usually needed. 
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Witch flounder otoliths are best read directly after removal from the fish. 

 

Figure 3.12. Whole witch flounder otoliths of different ages (0, 1, and 2), all caught during Septem-

ber 2009. 

3.3.8 Dab (Limanda limanda) 

The first ring causes problems with some readers, with widely different growth ob-

served in the first year. This may be due to the prolonged spawning of dab and differ-

ing growth rates in different sea areas (Figure 3.13). 

It is possible for very old individuals to exhibit the cliff-edge effect in the otoliths. This 

occurs when growth changes from the x-axis to the y-axis, with new growth beginning 

to manifest itself as a thickening rather than a widening of the otolith. This can lead to 

difficulties with interpretation and may potentially result in underageing. 

 

 

Figure 3.13. Dab otolith (estimated age: 4, TL: 22 cm, sex: female, month of capture: April – location 

unknown). A relatively small nucleus is followed by a strong first summer of growth. Subsequent 

growth is slower. 
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3.3.9 Greenland halibut (Reinhardtius hippoglossoide) 

Growth is slow, and interpretation of the otoliths can be challenging. A number of 

reading methods have been investigated, with sectioned otoliths considered to offer 

the best chance of accurate and precise age estimation (ICES, 2011b). 

3.4 Age validation case studies  

Several studies have used marginal increment analysis (MIA) to validate the age esti-

mation methodology, including Smith (2014) for lemon sole in the North Sea, English 

Channel, and Celtic Sea, and Rodriguez and Iglesias (1985) and Landa and Piñeiro 

(2000) for megrim in Subarea 7 and in divisions 8.a–c and 9.a. Etherton (2015) studied 

the results of mark–recapture experiments on plaice and sole in the 1970s and 1980s. 

Table 3.4 provides a summary of the validation studies performed on flatfish species. 
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Table 3.4. Summary of age validation methodologies, modified from Campana (2001), with methods used for flatfish.  

Method 
Annual/DG

I 
Age Advantages Limitations 

Flatfish for which 

this technique has 

been employed 

References 

Released marked fish 
Annual and 

DGI 
All 

Validates absolute age and periodic-

ity 

Source of fish at known age. Recap-

tures of old fish are null. 
Sole, plaice Etherton (2015) 

Mark–recapture chemi-

cally tagged fish 

Annual and 

DGI 
All Validates periodicity post release 

Low recapture rates, some markers 

may affect survival. 
N/A 

Cappo et al. (2000); 

Quinn et al. (1991) 

Captive rearing from 

batch 

Annual and 

DGI 
 

Validates absolute age and periodic-

ity 
Differences with wild fish. Yellowtail flounder Dwyer et al. (2003) 

Microstructure Annual 1 year Validation of first year Daily periodicity assumed. N/A 
Lee and Byun 

(1996) 

MLA 
Annual and 

DGI 

0–5 

years 
Validation of ages 1–2 

No overlapping length modes. No 

length-based migrations. 
Yellowtail flounder Dwyer et al. (2003) 

Marginal increment 

analyses 
Annual All Validates periodicity 

Not straightforward in 

older/slower growing individuals. 

Needs adequate sample sizes by 

month. 

Lemon sole Smith (2014) 

Daily increment analyses DGI All Validates daily formation As above. Sole 
Lagardere and 

Troadec (1997) 

Radiochemical dating Annual 
Plus 5 

years 
Validates absolute age 

Can only distinguish between di-

vergent estimates. 
Sole, halibut Kalish (1993) 

Micromilling 
DGI and 

annual 
 Validates periodicity 

Specialized equipment and skills 

needed. Once drilled, otoliths can-

not be used for age estimation. 

Plaice Geffen (2012) 
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3.4.1 Lemon sole (marginal increment analysis) 

Calculating the age of lemon sole has always presented otolith readers with difficulty. 

False first rings and shadows are frequently observed and can lead to over/underesti-

mation of ages if misinterpreted. 

Smith (2014) carried out marginal increment analysis on the otoliths from lemon sole 

collected from the North Sea, English Channel, and Celtic Sea. No incremental growth 

was observed between January and March for any size class. Incremental growth gen-

erally commenced earlier in younger fish (April for ages 3–5) and later in older fish 

(May for ages 6–10, June for ages 11+). The rate of growth increased gradually through-

out the year, with completed increment growth by most fish in December. The results 

clearly demonstrate that a single annulus represents one year of growth. 

3.4.2 Plaice and sole (mark–recapture) 

In Etherton (2015), plaice and sole were physically tagged and released in the North 

Sea, subsequently recaptured, and analysed. Specimens were selected to conform to a 

set of criteria: 

 Fish were tagged at a size small enough to ensure they were all the same age. 

 All the samples came from the same geographical area and the same month. 

 Each studied fish was at liberty for at least two years after release. 

For each fish, an age was calculated using the “known” age at release and the date of 

recapture. Readers then assigned an age to them with knowledge only of the final 

length of the fish and the month of recapture. The assigned ages were then compared 

to the “known” age to determine the accuracy of the age estimations. For sole, there 

was an almost perfect match in the ages among all four readers and the “known” age, 

thus validating the methodology used (section and stain). For plaice, there was a vari-

able result. Two readers who were accustomed to the method used in the study (sec-

tions) obtained good results, while the other two readers who were familiar with the 

break-and-burn method had poor results. It was thus concluded that employing the 

best method for each species/stock is vital to a successful age estimation programme. 

Furthermore, the familiarity of the method to the reader is equally important. Being 

accustomed to a preparation technique strongly influences both precision and accuracy 

(ICES, 2011c). 
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4 Small- and medium-sized pelagic species 

Begoña Villamor, Pierluigi Carbonara, Pablo Abaunza, Naroa Aldanondo, Loes 

Bolle, Gertrud Delfs, María Teresa García Santamaría, Tomas Gröhsler, Carmen 

Hernandez, Alba Jurado-Ruzafa, Maria Rosario Navarro, Eduardo Soares, Fer-

nando Ramos, Isabel Riveiro, Norbert Rohlf, Jorge Tornero, Jens Ulleweit, Andres 

Uriarte, Lotte Worsøe Clausen and Francesca Vitale 

4.1 Introduction 

This chapter presents a summary of the age estimation procedures used in European 

waters (Atlantic and Mediterranean areas) for some of the main commercial small- and 

medium-sized pelagic species: anchovy Engraulis encrasicolus, sardine Sardina pilchar-

dus, herring Clupea harengus, sprat Sprattus sprattus, Atlantic mackerel Scomber 

scombrus, chub mackerel Scomber colias, horse mackerel Trachurus trachurus, Mediterra-

nean horse mackerel Trachurus mediterraneus and blue jack mackerel (Trachurus pictu-

ratus). It provides information about the age estimation criteria and interpretation dif-

ficulties. A summary of the information related to the age accuracy, validation, and 

corroboration of each species is also presented, as well as that related to the age preci-

sion, quality control, and verification. The procedures included in this chapter are de-

rived from the age estimation protocols of some European institutes and from the co-

operation among institutions through the ICES exchanges and workshops about age 

interpretation; additional procedures can be found in relevant literature. 

4.2 Summary of age estimation methodologies 

Considerable efforts have been made by international committees to standardize age 

interpretation in European waters. During these exchanges and workshops, the sam-

ples used are rarely validated; therefore, the “true age” is not known. In this way, the 

calibrations demonstrate the precision of age estimation among readers, but not the 

accuracy (Secor et al., 1995; Panfili et al., 2002). More than 30 reports on small- and me-

dium-sized pelagic species in ICES and GFCM waters are available in the ICES Data 

Quality Assurance Repository (ICES, 2018a). A summary of the results from the latest 

workshops or exchanges for estimation of annual age (ICES, 2008b, 2010b, 2010c, 2011c, 

2011d, 2014b, 2015b, 2016a, 2017c, 2018c) and daily age (ICES, 2013b, 2018c; Villamor 

et al., 2013) can be found in Tables 4.1 and 4.2. 
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Table 4.1. Summary of the last annual growth workshops and exchanges by species. GSA = Geo-

graphical Sub-Area of the General Fisheries Commission for the Mediterranean (GFCM). 

Species 
WK/ 

Exchange 
Area 

Mode of 

prepara-

tion 

Agreement 

(%)* 
CV* APE 

Anchovy 

Exchange 

2014/ 

WKARA2 

(ICES, 2016b) 

Bay of Biscay 

(ane.27.8) 

Whole 

otolith, in 

resin 

74.3/80.8/90.9 45.1/22.4/11.4 - 

English Channel 

(ane.27.7) 
66.7/80.4/- 127.6/73.9/- - 

Gulf of Cadiz 

and Portuguese 

coast (ane.27.9a) 

68.5/76.4/75.7 49.1/34.7/33.0 - 

Alboran Sea 

(GSA 01) 
58.9/63.5 58.7/71.1 - 

Western Mediter-

ranean Sea 

(GSA 06) 

60.9/59.6/- 49.9/59.2/- - 

Gulf of Lion 

(GSA 07) 
73.4/75.1/- 31.3/30.3/- - 

Southern Tyrrhe-

nian Sea 

(GSA 10) 

62.9/62.0/67.3 67.2/86.7/58.1 - 

Strait of Sicily 

(GSA 16) 
58.5/59.9/85.6 78.7/73.8/11.2 - 

Western Ionian 

Sea (GSA 19) 
61.9/60.2/73.5 60.9/73.3/55.3 - 

Aegean Sea 

(GSA 22) 
70.0/78.3/97.1 55.7/42.8/6.7 - 

Exchange 

2018 (ICES, 

2018a)** 

Bay of Biscay 

(ane.27.8) 
Whole 

otolith, in 

resin 

71.1/82.9/90.7 41.1/25.6/9.3  

Strait of Sicily 

(GSA 16) 
56.1/59.2/96.3 58.5/56.5/8.8  

Sardine 

WKARAS 

2011 (ICES, 

2011d) 

Bay of Biscay 

North (Division 

8.a) 

Whole 

otolith, in 

resin 

73.1 17.3 - 

Portuguese coast 

(Division 9.a) 
76.5 18.1 - 

Gulf of Cadiz 

(Division 9.a) 
77.4 10.9 - 

Exchange 

2018 (ICES, 

2018a)** 

Northeast Atlan-

tic (divisions 8.a–

c and 9.a) 

Between 

60 and 80 

Between 

20 and 60 

Between 

10 and 35 

Mediterranean 

Sea (GSAs 01, 03, 

06, 07, 09, 16, and 

22) 

Between 

60 and 80 

Between 

40 and 100 

Between 

30 and 60 
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Species 
WK/ 

Exchange 
Area 

Mode of 

prepara-

tion 

Agreement 

(%)* 
CV* APE 

Herring 

WKARBH 

2008 

(ICES, 2008b) 
Baltic Sea 

Whole 

otolith, in 

resin 

86.9 6.4 - 

Exchange 

2008 (ICES, 

2008b) 

Stained 

otolith 

slices 

76.3 8.7 - 

Exchange 

2005 

(ICES, 2008b) 

Atlantic 

Whole 

otolith, in 

resin 

83.3 7.9 - 

Exchange 

2016 (ICES, 

2017c) 

Baltic Sea (Subdi-

vision 26) 

Whole 

otolith, in 

resin 

88–94  

(sample S1) 

1.9–7.5  

(sample S1) 
- 

52–85  

(samples S2 

and S3) 

1.9–20 (sam-

ples S2 and 

S3) 

- 

Baltic Sea (subdi-

visions 30 and 

32) 

Stained 

otolith 

slices 

87–96  

(sample S4) 

4.0–8.1  

(sample S4) 
- 

Sprat 

WKARBS 

2008 

(ICES, 2008c) 

Baltic Sea 

Whole 

otolith, 

with nail 

polish 

76.1 17.1 - 

Exchange 

2016/WKAR-

SPRAT, 2016 

(ICES, 

2017d) 

Division 3.a 

Whole 

otolith, in 

resin 

68.6/67.8/- 22.8/22.3/- 16.9/16.9/- 

North Sea (divi-

sions 4.b–c) 
81.5/81/- 15.4/21.7/- 20.4/16.2/- 

Celtic Sea (divi-

sions 6.a, 7.b, 7.g, 

and 7.j) 

94.9/94.4/- 12.1/12.5/- 7.9/9.3/- 

Exchange 

2016 (ICES, 

2018a) 

North Sea and 

Celtic Sea 

Whole in 

alcohol 
79.6 21.7 16 

Mackerel 

Exchange 

2014 (ICES, 

2015b) 

Northeast Atlan-

tic (Subarea 2 

and divisions 

4.a–b, 6.a, and 

7.b) 
Whole 

otoliths, 

fixed in 

resin/loose 

sub-

merged in 

water (im-

ages only) 

68.2/75.5 15.4/-  

Exchange 

2018 pre-

workshop 

(ICES, 2018a) 

Northeast Atlan-

tic (divisions 2.a, 

4.b–c, 5.a–b, 7.b, 

7.j, 7.d, 8.b–c, and 

9.a) 

59.4/65.2 37.3/17.6 - 

Exchange 

2018 WKAR-

MAC2 

(ICES, 2019a) 

Northeast Atlan-

tic (divisions 2.a, 

4.b–c, 5.a–b, 7.b, 

7.j, 7.d, 8.b–c, and 

9.a) 

66.5/73.2 30.4/16.4 - 
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Species 
WK/ 

Exchange 
Area 

Mode of 

prepara-

tion 

Agreement 

(%)* 
CV* APE 

Chub  

mackerel 

Exchange 

2015 pre-

workshop 

(ICES; 2016a) 

Division 8.c Whole 

otoliths 

fixed in 

resin (im-

ages only) 

53.5 27.4 - 

Division 9.a 55.3 22.8 - 

Western Mediter-

ranean Sea 

(GSA 06) 

62.1 35.2 - 

Exchange 

2015 

WKARCM 

(ICES; 2016a) 

Division 8.c 

Whole 

otoliths, 

fixed in 

resin/loose 

sub-

merged in 

water (im-

ages only) 

66.7 36.2 - 

Division 9.a 55.6 37.3 - 

CECAF-Maurita-

nia 
60.2 41.6 - 

Western Mediter-

ranean Sea 

(GSA 06) 

65.3 29.3 - 

Ligurian and 

North Thyrre-

nian Sea 

(GSA 09) 

46.4 64.6 - 

Southern Adri-

atic Sea (GSA 18) 
68.2 65.8 - 

Exchange 

2017 (ICES; 

2018a) 

Division 8.c 56.6/65.5/- 61.7/24.1/- - 

Division 9.a 56.8/62.4/- 35.6/31.3/- - 

CECAF-Canaries 70.3/80.3/- 68.0/24.3/- - 

Ligurian and 

North Thyrre-

nian Sea 

(GSA 09) 

52.4/63.4/- 111-3/67.8/- - 

Aegean Sea 

(GSA 22) 
64.7/70.5/- 35.3/28.1/- - 

Northwest Atlan-

tic 
51.7/52.1/- 39.6/34.6/- - 
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Species 
WK/ 

Exchange 
Area 

Mode of 

prepara-

tion 

Agreement 

(%)* 
CV* APE 

Horse 

mackerel 

(Trachurus 

trachurus) 

Exchange/ 

Workshop 

2012 (ICES, 

2016c) 

Ireland waters 

(Subarea 7) 

Sectioned 

otolith 

36.4 26.9 - 

North of Spain 

(divisions 8.c and 

9.a) 

53.2 42.3 - 

Portuguese wa-

ters (Division 9.a) 
44.7 54.7 - 

South of Spain 

(Division 9.a 

South) 

43.9 43.8 - 

Western Ireland 46.4 21 - 

Exchange/ 

Workshop 

2015 (ICES, 

2015b)  

Division 7.d Sectioned 

otolith 

55.7 16.8 - 

Division 7.h 63.8 25.9 - 

Northern Al-

boran Sea 

(GSA 01) 
Whole 

otolith 

50.1 69.7 - 

Corsica Island 

(GSA 08) 
44.6 32.1 - 

Corsica Island 

(GSA 08) 

Sectioned 

otolith 
44 28.9 - 

Exchange/ 

Workshop 

2018 (ICES, 

2018c) 

Division 8.c Sectioned 

otolith 
50.05 19  

Division 7.d 

Division 8.c 

Whole 

otolith 
49.45 31.9  

Division 7.d 

Ligurian and 

North Thyrre-

nian Sea 

(GSA 09) 
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Species 
WK/ 

Exchange 
Area 

Mode of 

prepara-

tion 

Agreement 

(%)* 
CV* APE 

Mediterra-

nean horse 

mackerel 

(Trachurus 

mediterra-

neus) 

Exchange 

2012 

Mediterranean 

Sea (Italian  

waters) Whole 

otolith 

56.6 28.7 - 

North of Spain 

(divisions 8.c and 

9.a) 

57.5 30.5 - 

Exchange/ 

Workshop 

2015 (ICES, 

2015b)  

Division 8.c 

Sectioned 

otolith 

39.3 40.2 - 

Division 9.a 41.2 41.7  

Southern Adri-

atic Sea (GSA 18) 
53.6 46.7 - 

Exchange/ 

Workshop 

2018 (ICES, 

2018c) 

Division 8.c 

Whole 

otolith 
48.35 66.35  Division 9.a 

Ligurian and 

North Thyrre-

nian Sea 

(GSA 09) 

Blue jack 

mackerel 

(Trachurus 

picturatus) 

Exchange/ 

Workshop 

2015 (ICES, 

2015b)  

Azores 

Sectioned 

otolith 

35.3 36 - 

Tenerife 60.1 89.3  

Southern Adri-

atic Sea (GSA 18) 
79.3 168.8 - 

Exchange/ 

Workshop 

2018 (ICES, 

2018c) 

Tenerife 
Whole 

otolith 
56.8 69.85  

*All readers/Expert readers/Stock readers. 

** Preliminary results. 
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Table 4.2. Summary of daily growth workshops and exchanges by species. 

Species WK/exchange Area 
Live 

stage 

Mode of 

preparation 

Agreement 

(%) 
CV APE 

Anchovy 

Exchange 

2013/WKMIAS 

2013 (ICES, 

2013b) 

Bay of Biscay 

(Subarea 8) 

Larvae & 

juveniles 

Whole and 

sectioned 

otolith 

- 15.3 10.4 

Western 

Mediterranean 
Larvae 

Whole 

otolith 
- 18.6 14.1 

Strait of Sicily Juveniles 
Sectioned 

otolith 
- 34.9 23 

Adriatic Sea 
Larvae & 

juveniles 

Whole and 

sectioned 

otolith 

- 24 18.9 

North Aegean 

Sea 

Larvae & 

juveniles 

Whole and 

sectioned 

otolith 

- 9 7.8 

Overall 
Larvae & 

juveniles 

Whole and 

sectioned 

otolith 

- 18.9 13.3 

Sardine 

Exchange 

2013/WKMIAS 

2013 (ICES, 

2013b) 

Bay of Biscay 

(Subarea 8) 
Larvae 

Whole 

otolith 
- 14.5 10.7 

Atlantic 

Iberian waters 
Juveniles 

Sectioned 

otolith 
- 18 13.5 

Western 

Mediterranean 
Larvae 

Whole 

otolith 
- 11.7 8.6 

Adriatic Sea 
Larvae & 

juveniles 

Whole and 

sectioned 

otolith 

- 14.3 11.6 

North Aegean 

Sea 

Larvae & 

juveniles 

Whole and 

sectioned 

otolith 

- 9.4 7.4 

Aquaculture Juveniles 
Sectioned 

otolith 
- 24.6 12.2 

Overall 
Larvae & 

juveniles 

Whole and 

sectioned 

otolith 

- 13.7 10.6 

Herring 
Exchange 2018 

(ICES, 2018a) 

North Sea and 

Western Baltic 
Juveniles 

ground and 

polished 
82   

 



66  | ICES Cooperative Research Report No. 346 

 

 

4.3 Summary of general age estimation methods and problems 

4.3.1 Anchovy (Engraulis encrasicolus) 

Annual age estimation criteria 

The procedure for age estimation of European anchovy is the one adopted in WKARA 

2009 (ICES, 2010d) and prior workshops according to the available validations by Uri-

arte et al. (2007, 2016), Aldanondo et al. (2016), and ICES (2010d). Anchovy otoliths are 

presently aged whole, immersed in a clarifying medium (seawater, glycerin, alcohol) 

with reflected light against a black background. The otoliths are also read mounted in 

individual cavities on black plastic slides, using a transparent resin as glue. For analysis 

the otolith is placed with the distal surface face up and the proximal surface (sulcus 

acusticus) face down. The method is based first on the interpretation of otoliths accord-

ing to prior biological knowledge on the annual growth pattern of the anchovy otoliths, 

on the seasonal growth of otolith edge by age, and on the most typical checks. The 

selected interpretation would be the one that best complies with prior biological 

knowledge. According to the interpretation achieved, the number of past winter (trans-

lucent) zones is used to apply the rules for allocating ages according to the assumed 

birthdate for the population being studied. Base knowledge on the anchovy growth 

pattern is described in detail in the latest workshop report (WKARA2 – ICES, 2016b). 

A set of opaque and hyaline zones corresponds to an annual growth zone (annulus), 

as reported in Uriarte et al. (2016) for anchovy in the Bay of Biscay (Figure 4.1, top 

panel) and in ICES (2010d) for anchovy in Alboran Sea (Figure 4.1, bottom panel). The 

younger the fish, the earlier in the year the opaque growth is resumed; in spring, the 

edge of age 1 otoliths is typically opaque, while it is hyaline for older ages. Readers 

should a priori be aware of the expected type of edge, monthly and by age. 



Handbook of fish age estimation protocols and validation methods |  67 

 

 

 

 

 

Figure 4.1. Percentages, by age, of otoliths from the Bay of Biscay showing an opaque edge formation 

(Uriarte et al., 2016 – top panel) and in the Alboran Sea (ICES, 2010d – bottom panel). 

 

The date of birth is conventionally assumed to be 1 January in all Atlantic areas and in 

the Gulf of Lion, and the fish is assigned to a year class on this basis. In the Mediterra-

nean Sea, the date of birth is 1 June or 1 July, based on reproductive traits such as gonad 

development cycle and the gonado-somatic index followed throughout the year. 

The age estimation scheme is shown in Figure 4.2 and described in detail in WKARA2 

(ICES, 2016c).
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Figure 4.2. Synoptic representation of the anchovy otolith development in time and the different age allocation according to the two conventional birth dates at 1st of January 

and at 1st of July. 
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Annual age-interpretation difficulties 

Interpretation difficulties are often explained by: (i) the first annulus position; (ii) the 

otolith edge identification (opaque or hyaline); or (iii) the presence of false growth in-

crements (checks). In general, anchovy otoliths are not difficult to interpret, although 

there are geographic areas where growth pattern structures are more difficult. How-

ever, across areas/stocks, the main problem reported is to determine the position of the 

true first annual ring. Since anchovy is a short-lived species, faulty allocation to year 

class will influence the estimate and quantification of the recruitment. High precision 

in estimating recruitment is important in determining the status of these stocks, since 

the stocks are mainly composed of juveniles and 1-year-old fish. 

Except for anchovy in the Bay of Biscay, precision in age estimation for anchovy is quite 

low (Table 4.1). This difference may be related to the fact that otoliths from the Bay of 

Biscay appear to have the clearest structures with a high percentage of easily readable 

otoliths (ICES, 2010d, 2016b). However, it is also worth noting that, contrary to other 

areas/stocks, exchanges and workshops have been conducted in this area since 1990, 

and there are sufficient criteria for the interpretation of anchovy otoliths. In the same 

time period, only one or two exchanges and workshops have taken place in the other 

areas. 

In terms of structures, a well-defined true hyaline ring is determined by the following 

features (ICES, 2010d): 

1. it must be continuous all around the otolith; 

2. it remains clearly visible even when the focus changes;  

3. the relative distances between adjacent rings is proportional to the expected 

growth pattern in the otoliths from that particular area. 

The first annulus (opaque and transparent ring) consists of a wider opaque zone (some-

times interrupted by a false ring) compared to the successive annuli. Following this, 

the distances between the rings decrease with age (Figure 4.3). 

Around the nucleus before the first winter ring (ICES, 2010d, 2016b), a false ring is 

frequently observed at a distance of about 0.8 mm to the core. This ring appears less 

marked than the true annual zones; it is thus fairly easy to omit it from the age estima-

tion (Figure 4.3, panels a, f, and g). 
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Figure 4.3. [Top panels a–e] Images of typical anchovy otoliths (types I–V) found in spring (May) 

with increasing numbers of white opaque growth zones: (a) Type I (age-1, caught 29 May 1990); (b) 

Type II (age-2, caught 31 May 1985); (c) Type III (age-3, caught 23 May 1985); (d) Type IV (age-4, 

caught 15 May 1986); and (e) Type V (age-5, caught 6 May 1987). [Bottom panels f–j] Images of 

otoliths showing the most typical checks. (f) age-1 showing check C08 (05 July 1990); (g) age-2 show-

ing checks C08 and C12/15 (22 May 1991); (h) age-3 showing a double first hyaline zone (split ring) 

and check C12/15 (11 April 1985); (i) age-4 showing a double first hyaline zone (split ring) and check 

C12/15 (22 May 1986); and (j) age-5 showing check C12/15 (22 April 1987). Arrows indicate succes-

sive winter hyaline zones; different coloured stars indicated different checks: yellow, C08; red, 

C12/15; blue, C18. Scale: the area of the images is 2447 × 4344 μm. (From Uriarte et al., 2016.) 

 
Daily-increment-definition criteria 

For daily increment interpretation, two different criteria have been suggested. Using 

what is commonly referred to as “the group band reading (GBR)” criterion, the reader 

counts every repetitive cyclic set of growth bands (usually two, but occasionally more) 

as a single daily increment, assuming that they are subdaily marks. In the other 

method, known as “individual mark reading (IMR)”, each increment, regardless of its 

appearance, is counted as a single daily increment. According to Cermeño et al. (2008), 

the GBR criterion is the most reliable method for age estimation of European anchovy. 

For the Bay of Biscay, western Mediterranean, and northern Aegean Sea, it has been 

agreed to apply the GBR method for anchovy, irrespective of the season and geograph-

ical area (Morales-Nin et al., 2010; SARDONE, 2010; ICES, 2013b). Contrary to this, no 

agreement has been reached on interpretation criteria in the Strait of Sicily and Adriatic 

Sea (ICES, 2013b). 

Daily-increment-interpretation difficulties 

Diverging counts of daily increments are often rooted in two main disagreements: (i) 

difficulties in the interpretation of subdaily increments, double structures, or band 

zones; and (ii) preparation flaws such as unclear images where it is difficult to interpret 

correctly the daily growth pattern caused by under- or overpolishing, poor image ac-

quisition, or calibration problems. Thus, effort should be put into achieving the best 

possible images for any reading of daily increments in anchovy (Nava et al., 2018). 
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4.3.2 Sardine (Sardina pilchardus) 

Annual age estimation criteria 

Sardine age estimation criteria were recommended at the 2011 ICES sardine age esti-

mation workshop in Portugal (ICES, 2011d). The method can be summarized as fol-

lows: (i) a set of opaque and hyaline zones corresponds to an annual growth zone (an-

nulus); and (ii) the date of birth is conventionally assumed to be 1 January and the fish 

is aged on this basis (if an otolith is collected during the first semester, the age corre-

sponds to the number of hyaline zones; if the otolith is collected from a fish caught 

during the second semester, the hyaline edge is not considered). In cases where the 

edge is opaque in the first semester, which mostly happens around June when the dep-

osition of the opaque zone has started, the age corresponds to the number of annuli 

(opaque zone and transparent ring). Estimating age of otoliths with an opaque edge 

collected in the second semester follows the same rule and is equal to the number of 

annuli.. 

A reference diameter of ≈2 mm (radius ≈1 mm) should be used to guide the identifica-

tion of the first annual ring. This reference should be used in a flexible way, since the 

diameter of the first annual ring is proportional to the fish growth up to its formation. 

Annual age-interpretation difficulties 

The main discrepancies in sardine age estimation occur in the identification of the oto-

lith edge type and the first annulus. Two problems related to the edge type were dis-

cussed at the 2011 workshop: (i) difficulty in identifying the edge type (hyaline or 

opaque); and (ii) variation in the seasonality of the edge type. 

Also for the sardine, a false ring may be deposited before the first winter at a distance 

of about 0.5 mm from the core on the postrostrum side (Figure 4.4). The sardine and 

anchovy otoliths have similar growth patterns, with a big opaque zone in the first an-

nulus. A further characteristic of a true winter ring is that it can be found on the entire 

perimeter of the otolith, i.e. it can be followed all the way around the outline of the 

otolith (Figures 4.5 and 4.6). 
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Figure 4.4. Otolith of S. pilchardus (TL: 8 cm, sex: F, month of capture: June). X indicates the false 

ring (Carbonara and Follesa, 2018). 

 

 

Figure 4.5. Otolith of S. pilchardus (TL: 17 cm, sex: F, month of capture: August). The red dots 

indicate the winter rings, X indicates the false ring (Carbonara and Follesa, 2018). 
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Figure 4.6. Otolith of S. pilchardus (TL: 18 cm, sex: F, month of capture: January). The red dots 

indicate the winter rings, X indicates the false ring (Carbonara and Follesa, 2018). 

Daily increment-estimation criteria 

For daily increment interpretation of sardine otoliths, the same recommendations are 

followed as those suggested for anchovy by ICES WKMIAS (ICES, 2013b; see Section 

4.3.1). In the Bay of Biscay, Atlantic Iberian Peninsula, western Mediterranean, and the 

northern Aegean Sea, the agreement was to apply the GBR criteria for sardine, irre-

spective of the season and geographical area (Morales-Nin et al., 2010; SARDONE, 

2010; ICES, 2013b), except for the Adriatic Sea where IMR is adopted (ICES, 2013b). 

Discrepancies in interpretation of daily increments 

Discrepancies in the interpretation of daily increments are most often along two lines: 

(i) difficulties in the interpretation of subdaily increments, double structures, or band 

zones; and (ii) unclear images where it is difficult to interpret correctly the daily growth 

pattern due to under-or overpolishing, poor image acquisition, or calibration prob-

lems. Thus, effort should be put into achieving the best possible images for any reading 

of daily increments. 

4.3.3 Herring (Clupea harengus) 

Age estimation criteria 

The herring age estimation criteria were recommended in the most recent workshops 

for Atlantic and Baltic stocks (Raitaniemi and Halling, 2005; ICES, 2008c). A birth date 

of 1 January is assumed for all herring for which age is reported; however, the date of 

capture and spawning type affiliation must be known. One year’s growth is defined as 

one opaque zone and one hyaline zone. For younger fish, the age structures are visible 

over the entire perimeter; for older fish, they are mostly discernable in the rostrum. 

This makes the rostrum the most preferred part for age estimation. 

Age-interpretation difficulties 

In general, herring otoliths are relatively easy to read, and the annuli can easily be rec-

ognized. Misleading false rings caused by starvation, diseases, spawning, or abrupt 

changes in environmental conditions, etc. are not frequently observed. However, prob-

lems are encountered by mixing of stocks, which spawn at different times of the year 
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and may cause bias in age estimations. Given the quite broad spawning period for her-

ring, where some populations/stocks spawn during autumn, some during spring, and 

others during winter, the appearance of the otoliths and the age structures herein also 

vary. Herring spawning later in the second half of the year produce larvae, which by 

definition should be 1 year old, once they have grown into January of the following 

year. These larvae would, therefore, be of the same age as young fish which have been 

spawned early in the year and are considerably larger. Thus, from the same year class, 

some individuals will form a winter ring during their first winter while others 

(spawned later) do not. Because of this, herring are classified as “ringers”, i.e. the total 

number of annuli is not set equal to years, but to the number of rings. 

4.3.4 Sprat (Sprattus sprattus) 

Age estimation criteria 

The sprat age-estimation criteria were recommended in the last ICES sprat age estima-

tion workshops for both Atlantic and Baltic stocks (Torstensen et al., 2004; ICES, 2008b, 

2017d). The hyaline zones in the otolith are counted as age structures (= winter rings). 

For sprat older than two years, the first two inner annuli at least should be traceable 

throughout the whole otolith. For older individuals, the rostrum is the primary struc-

ture for age estimation; however, readers tend to try to find the age structure through-

out the otolith. 

Age-interpretation difficulties 

In general, sprat otoliths are not easy to read and the annuli cannot be easily recog-

nized. False rings are not frequently observed, but differences in growth patterns be-

tween populations/stocks are often given as the cause for diverging age interpretations. 

This is particularly a problem in the Baltic where fast-growing sprat from the western 

Baltic mix with slower-growing sprat from the more eastern areas (east of the Arkona 

Basin). The otoliths of sprat from the east are generally more difficult to read because 

of the slower growth and the higher age at a given size. 

4.3.5 Mackerel (Scomber scombrus) 

Annual age estimation criteria 

Mackerel age estimation criteria were recommended by ICES (2010e, 2019a). The 

method, adopted explicitly in the Workshop on Mackerel Otolith Reading in 1995 

(ICES, 1995), is based on the age validation of this species by reading otoliths of known 

age (obtained from a tagging programme). The date of birth is conventionally assumed 

to be 1 January, and age is estimated on this basis (as described for anchovy and sar-

dine). 

Otoliths of mackerel are observed whole, under a binocular microscope with a reflect-

ing light against a black background. However, the preparation technique differs by 

laboratory. In some laboratories (Portugal, Spain, Germany, Ireland, Norway, Iceland, 

the Netherlands, and England) the otoliths are mounted in transparent resin inside on 

black trays. In other laboratories (Scotland, Denmark, Greece, Greenland, and recently 

also Iceland) otoliths are observed loose immersed in fresh water or alcohol. The ori-

entation for the analysis is with the distal surface up and the proximal surface (sulcus 

acusticus) down. The age structures appear clearer in the post-rostrum compared to the 

remaining otolith areas. However, ring continuity should be checked on the anterior 

part of the otolith (rostrum and antirostrum) and, where possible, on the dorsolateral 

edge. 
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The timing of the formation of the opaque zone on the edge of the otolith is heavily 

dependent on the area from which the sample was taken; the opaque zone is formed 

earlier in southern areas (ICES divisions 9.a and 8.c). 

Annual age-interpretation difficulties 

As with many other migrating fish, the age structures of individual mackerel can vary 

quite a lot. The duration of the period with opaque zone formation in the first year of 

life may differ among areas; in some areas, a false ring is formed during this first year 

of growth (Figures 4.7 and 4.8). Onset of maturity may also introduce false annuli (Fig-

ure 4.9) and, as growth diminishes in older individuals, the opaque and translucent 

zones become increasingly difficult to distinguish (Figure 4.8). The interpretation of the 

otolith edge often differs among readers, one of the main causes of the low percentage 

of agreement in calibration exercises. 

 

 

Figure 4.7. Otolith of S. scombrus (estimated age: 0, TL: 17 cm, sex: F, month of capture: November) 

(Carbonara and Follesa, 2018). 
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Figure 4.8. Otolith of S. scombrus (estimated age: 9, TL: 40 cm; sex: F, month of capture: March). 

The red dots indicate the winter rings. 

 

 

Figure 4.9. Otolith of S. scombrus (estimated age: 3, TL: 32 cm; sex: F, month of capture: January). 

The red dots indicate the winter rings; X indicates the false ring. 

Daily age estimation criteria 

Enumeration of daily increments should start at the hatch check. Daily age estimations 

are not frequently done on mackerel. However, the deposition of daily growth incre-

ments in mackerel larvae, post-larvae, and juveniles has been validated by Migoya 

(1989) and D’Amours et al. (1990) in the Northwest Atlantic, and by Mendiola and Al-

varez (2008) in the Northeast Atlantic.  
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Daily age-interpretation difficulties 

Such difficulties could be explained by difficulties related to the definition of subdaily 

increments, double structures or band zones, and difficulties in the interpretation of 

intermediate areas without growth increments in juvenile otoliths. 

4.3.6 Chub mackerel (Scomber colias) 

Age estimation criteria 

The criteria for the age estimation of Scomber colias in European waters are those rec-

ommended by the Workshop on age reading of chub mackerel, WKARCM (ICES, 

2016a).  

Chub mackerel otoliths have an irregular shape (Fig. 4.10), which is more accentuated 

in otoliths of older individuals. This shape differs slightly between individuals. 

 

Figure 4.10. Shape of chub mackerel otoliths; differences by age (Photo from Jurado-Ruzafa et al., 
2017). 

For age estimation, chub mackerel otoliths are orientated with the distal surface turned 

up and the proximal surface (sulcus acusticus) turned down. Annuli are more clearly 

observed in the post-rostrum and the edge near the rostrum areas. Unlike for Atlantic 

mackerel otoliths, the rostrum sometimes offers little help in age estimation of chub 

mackerel otoliths, specially for older individuals, whose annuli are usually not clear in 

this area (Figure 4.10.). It is recommended that a complete observation is made before 

an otolith is rejected, as some otoliths with a high presence of false rings may offer an 

area where interpretation is possible, even when this is not possible in other areas. 
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Figure 4.11. Scomber colias otoliths. The green circles show areas where the annuli are best ob-

served; the red ones show areas where the annuli are usually less clear (WKARCM 2015 – ICES, 

2016a). 

Otoliths are observed whole under a binocular microscope with reflected light against 

a black background. However, the preparation technique differs by laboratory. In la-

boratories from Portugal and Spain (the northeastern and central-eastern Atlantic and 

the western Mediterranean), otoliths are mounted in clear resin inside black plastic 

slides covered with a transparent resin. In laboratories from Italy and Greece, otoliths 

are observed loose immersed in seawater. 

One annulus includes one opaque zone and one hyaline zone, this being counted as a 

year. Annuli width decreases with age, being more evident in the first three years of 

life. Checks or false rings are frequent during the first years, which can be identified 

following this pattern of width decrease (checks does not follow the pattern). The mean 

radius of the first annuli for Bay of Biscay otoliths is 1.2 mm (ICES, 2016a). This meas-

urement is presently studied in the other areas. 

The adopted birth date is 1st January for all Atlantic and western Mediterranean areas 

(Figure 4.12A). In the Ligurian and Adriatic Sea as well as in the central and eastern 

Mediterranean, the adopted birth date is 1st July (Figure 4.12B). 
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Figure 4.12. Approach of chub mackerel age from otoliths reading in A) Atlantic and western Med-

iterranean areas and B) Ligurian and Adriatic Sea and central and eastern Mediterranean. N indi-

cates the number of translucent areas. Conventionally, the birth date is fixed at the 1st January as 

the birth date for all individuals (**), as explained in the main text.  (From WKARCM 2015 – ICES, 

2016a.) 

Interpretation difficulties 

The most frequent reasons for difficulties in age estimation of this species are (i) iden-

tification of the first annulus (Figure 4.13); (ii) difficulties in differentiating between 

true annuli and false rings (checks); (iii) insufficient annual growth pattern recognition; 

and (iv) disagreement in interpretation of otolith edge nature, depending on season 

and (v) different growth pattern in otoliths of different areas. 
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Figure 4.13. Otoliths of an Atlantic chub mackerel caught in November in the Adriatic Sea (central 

Mediterranean). Upper specimen (age class: 3+, TL: 28.5 cm); lower specimen (age class: 0+, TL: 

16 cm). (Carbonara and Follesa, 2018.) 

4.3.7 Horse mackerel (Trachurus trachurus) 

Age estimation criteria  

Horse mackerel age estimation criteria have been established by ICES (1999, 2016b, 

2018c), based on direct age validation studies (Kerstan and Waldron, 1995) and on in-

direct validation studies (ICES, 1999; Waldron and Kerstan, 2001; Abaunza et al., 2003). 

Horse mackerel age is presently estimated through sectioned, broken, and burnt or 

whole otoloths. The interpretation of growth zones varies among readers. Despite ef-

forts to standardize preparation techniques and interpretation of growth zones with 

numerous workshops and otolith exchanges, precision in age estimates is still very low. 

This may negatively influence the quality of the assessment.  

When performing age estimation using a whole otolith, one of the pair of sagittae (usu-

ally the left one) is immersed in seawater or alcohol and glycerin as a clarification me-

dium before the analysis. The otoliths are analyzed whilst immersed in the clarification 

medium, using a binocular microscope with reflecting light against a black back-

ground. The orientation for analysis is with the distal surface face up and the proximal 

surface (sulcus acusticus) face down (Figure 4.14).  
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Figure 4.14. Otolith from Atlantic horse mackerel (Carbonara and Follesa, 2018). 

In whole otoliths, annuli are counted on the posterior part of the otolith (post-rostrum). 

However, ring continuity should be checked on the anterior part of the otolith (ros-

trum) and, wherever possible, on the dorsolateral edge (Figure 4.15). 

 

Figure 4.15. Whole otolith of T. trachurus immersed in seawater in which the preferred sites for 

counting rings are shown. 

The dark rings are counted as the translucent growth zone (slow growth). The opaque 

(white – fast growth) zone plus a dark ring is considered as an annual growth (annu-

lus). Age estimation of Atlantic horse mackerel is based on 1 January being the conven-

tional birthday. This is in line with the spawning period (Abaunza et al., 2003; Car-

bonara et al., 2012) that is prolonged almost all year, but with a peak during winter. 

Interpretation of growth structures follows the scheme outlined in Table 4.3; for the 

specimens caught in the first part of the year, a transparent ring on the otolith edge is 

counted as an annual ring. If a transparent ring is observed at the edge of the otolith in 

the second semester of the year, it is not considered an annual ring, and the age is equal 

to the number of transparent rings excluding the edge (N–1). Opaque zone formation 

should, in general, have started in June, so in otoliths from individuals caught before 

June, every structure should be interpreted as being equal to a year. For otoliths col-

lected from the specimens caught in the second part of the year with an opaque edge, 

the age corresponds to the completed annulus (n).  

When performing age estimation on larger individuals, (> 25 cm), the otoliths are em-

bedded in epoxy or polyester resin, and thin sections (about 550 µm) are made along 
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the dorsal–ventral axis through the nucleus. The thin slices are mounted on the glass 

slide in resin and read under a binocular microscope with reflected light (making trans-

parent rings dark and opaque zones white; Figure 4.16), or with an optical microscope 

with transmitted light (transparent rings appear light and opaque zones dark). The 

winter rings are usually counted on the dorsal side. 

 

Figure 4.16. Thin section of an Atlantic horse mackerel otolith (estimated age: 7, TL: 34.5 cm, month 

of capture: September). The red dots represent winter rings. 

Break-and-burn technique 

Before reading, one of the otoliths is broken transversely across the dorsal–ventral axis 

through the nucleus. The fractured surface of the anterior half of the broken otolith is 

polished using wet sandpaper (no. P600). The rostrum is broken off, and the polished 

part is then burnt over a Bunsen burner for a few seconds while constantly in motion. 

To clarify the ring structure, these otoliths are carefully charred until darkish brown 

(Møller Christensen, 1964). The treated otolith is mounted in plasticine and brushed 

with baby oil on the break. The otoliths are read under a stereomicroscope using direct 

light, preferably an intensive cold-light source. The translucent rings in the burnt oto-

lith are counted in the large ventral lobe near the sulcus acusticus (Figure 4.17). 

 

Figure 4.17. Example of a broken and burnt otolith from a horse mackerel (TL: 27.8 cm). 

 

Interpretation difficulties 

Horse mackerel otoliths are notoriously difficult to age estimate (Fariña Perez, 1983; 

Kerstan, 1985; Arruda, 1987; Abaunza et al., 2003), with otoliths from specimens of Eu-

ropean waters having particularly complicated ring structures (Karlou-Riga and Sinis, 

1997). False rings may be similar in appearance to true annual rings (Karlou-Riga and 
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Sinis, 1997) and may be erroneously interpreted as annual rings. The potential for in-

accurate age estimation of this species is high and can result in a wide variation of age 

estimates for horse mackerel (Abaunza et al., 2003). 

In general, the age of horse mackerel otoliths is very difficult to estimate in older fish 

because the otoliths thicken with age. The first annuli interpretation in both young and 

older fish appears to be the major cause of differences. The dissimilarity of the false 

rings and the variety of the true annuli make it difficult to follow the formation of true 

annuli. Interpretation of the edge causes problems in some otoliths. 

The determination of annual increments is difficult because the presence of false rings 

can mislead the pattern of annuli formation. In fact, this is a major cause of age estima-

tion errors, including the age estimation of Trachurus trachurus. The zones are non-sea-

sonal and two major types can be distinguished: 

1. False rings appear as translucent zones within an opaque zone. They are 

common in the first year of life of the fish and in many cases are easily 

confused with the first annual increment. 

2. Split rings are double structures composed of two unusually thin translu-

cent bands separated by a very thin opaque band. 

The causes of their formation are not clear, although some factors such as temperature, 

food intake, other environmental conditions, and developmental transitions have been 

suggested. 

The interpretation of the first annulus is a matter of concern because of the difficulties 

in distinguishing false juvenile rings from the true seasonal marks (Figures 4.18 and 

4.19). In the case of sliced otoliths in T. trachurus, examining the whole otolith (the un-

treated one of the two otoliths) beside the sliced otolith helps in distinguishing this 

common juvenile false annulus. In addition, the slices are sometimes not made through 

the centre of the otolith, leading to a modification in the usual perception of the dis-

tance between the centre of the otolith and the first true translucent mark. This pro-

duces a difficulty in interpreting the first true mark or annual increment in the otolith. 
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Figure 4.18. A probable false juvenile ring in a thin section from T. trachurus (TL: 36 cm, month of 

capture: February). 

 

Figure 4.19. True and false juvenile rings in a whole otolith from T .trachurus (TL: 18.8 cm, month 

of capture: August). 

These juvenile rings may separate from the first translucent ring or join with it to form 

a broad translucent zone. The completion of the first translucent zone is usually de-

tected on the rostrum (Karlou-Riga and Sinis, 1997). 

Some criteria to help in the identification of these secondary structures (false rings) are 

described in ICES (1999, 2016b, 2018c): 

 Annulus extension in the otolith: A true annulus, ring, or mark should gen-

erally be traceable on the whole otolith or the section (ICES, 1999). This is 

more difficult to observe in the last annuli as the fish is getting older, result-

ing in a thickening of the otolith.  

 Distance between annuli: The widths of consecutive annual growth zones 

should decrease with increasing age. In horse mackerel, the decrease in the 

increment widths with age is most obvious between ages 1 and 5. After age 

5, the rates of decrease are slow, but rather constant.  
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 Contrast between seasonal marks: Annual growth zones (annuli, marks) 

could be distinguished from false rings by their sharper images and the high 

contrast to the subsequent opaque (= white) increment of the next annual 

growth zone. Thus, it can be distinguished by the brightest contrast between 

the preceding translucent and the subsequent opaque zone.  

4.3.8 Mediterranean horse mackerel (Trachurus mediterraneus) 

Age estimation criteria 

Age estimation criteria were recommended by ICES (2016b and 2018c), as in the case 

of horse mackerel. Similarly to T. trachurus, the interpretation of the age estimation of 

T. mediterraneus otoliths is difficult, mostly for older specimens where age estimation 

is particularly imprecise. For the otoliths of T. mediterraneus, there are also specific 

problems in estimating age in younger specimens, particularly in interpreting the first 

two true annuli (Karlou-Riga, 2000). Indeed, the characteristic of the detection of a ring 

around the otolith also on the rostrum zone is not always helpful. 

Otoliths of Mediterranean horse mackerel are aged whole; one otolith from each pair 

(usually the left one) is immersed in seawater prior to age estimation. The otoliths do 

not require a clarification phase before the age analysis except for bigger specimens 

(> 30 cm), where a very short immersion period in seawater (5–10 min) may be neces-

sary. 

The otoliths are analysed in seawater under a binocular microscope using reflected 

light against a black background. The best otolith orientation for the analysis is with 

the distal surface face up and the proximal surface (sulcus acusticus) face down (Figure 

4.20). In this way, the dark rings may be counted in the anti-rostrum area (radius) as 

translucent growth rings (slow growth). The opaque zone (white – fast growth) plus a 

dark ring is considered to be an annual increment (annulus). 

 

Figure 4.20. Otolith of Mediterranean horse mackerel (Carbonara and Follesa, 2018). 

The conventional birthday of horse mackerel in the Mediterranean is set at 1 July, con-

sistent with a spawning period between April and September (Vietti et al., 1997; Kar-

lou-Riga, 2000). The age estimation criteria, as outlined in Table 4.3, take into account 

the time of annulus formation (generally a transparent ring during winter and spring 

and an opaque area during summer and autumn), the capture date, the otolith edge, 

and the spawning period. In individuals caught during the first period, it is highly 

likely to detect a hyaline edge. In such cases, the age will be the number of transparent 

rings, excluding the edge (N–1). This is also the case if a transparent edge appears in 
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otoliths from individuals caught in the second semester of the year because the otolith 

can form a transparent ring around December. In these cases, the age should be N–1. If 

individuals caught in July have otoliths with a hyaline edge, this ring corresponds to 

the growth during the most recent winter; thus, the age will be the number of trans-

parent rings including the edge (N). The age in the otolith collected from a fish caught 

during the second semester with an opaque edge will be the number of completed an-

nulus (n). If the opaque edge is present in the first semester, especially around June, 

the edge should not be counted as an age structure; consequently, the age is equal to 

the number of the annulus less one (n–1). 

Table 4.3. The age estimation scheme for T. mediterraneus with a birthday of 1 July. n is the number 

of transparent rings, excluding the edge (annulus); N is the number of transparent rings, including 

the edge. For samples taken around July the estimated age is in brackets. 

Date of capture Otolith edge Age 

1 January–30 June 
Transparent N–1 

Opaque n–1 

1 July–31 December 
Transparent N–1 (N) 

Opaque n 

In the Atlantic areas, the date of birth is 1 January, as described above for T. trachurus. 

Interpretation difficulties 

Mediterranean horse mackerel otoliths are also difficult to interpret, similar to that de-

scribed in the previous section. However, because of diverging interpretation of the 

first annulus specific problems with Mediterranean horse mackerel otoliths arise when 

estimating the age of younger individuals. Karlou-Riga (2000) reported a formation of 

false rings before the first winter ring. Indeed, otoliths from small specimens (5–8 cm) 

caught during summer and autumn from the spring–summer spawning often have a 

transparent edge (Figure 4.21). This is a false ring, probably formed when the juveniles 

change environment and diet. 

 

Figure 4.21. Otoliths from small specimens. (A) TL: 5 cm, caught during summer (29/07/2011). and 

(B) TL: 7.5 cm, caught in autumn (06/10/2011) (Carbonara and Follesa, 2018). 

The size of these otoliths is about 2 mm (0.95 mm radius), which corresponds to the 

false inner ring observed in older specimens (Figures 4.22–4.24). 
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Figure 4.22. Specimen of T. mediterraneus (TL: 14.5 cm, caught in summer). The open black circles 

show a false ring, the red circles the first winter ring (Carbonara and Follesa, 2018). 

The first true winter ring follows immediately after the false ring. Specimens caught in 

winter and early spring and with a total length (TL) of ca. 12–14 cm have otolith edges 

with a more pronounced transparent ring compared to the early false ring that appears 

with a radius of ca. 1.5 mm (a whole otolith measures ca. 3.5 mm; Figure 4.23). 

 

Figure 4.23. Otolith of a T. mediterraneus specimen (age: 0, TL: 12.5 cm, caught in early spring). 

The open black circle is a false ring; the red circle is the first winter ring (Carbonara and Follesa, 

2018). 

The check before the first true ring sometimes appears joined with the first true annulus 

in one wide transparent ring or area (Figure 4.24). 
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Figure 4.24. Otolith of a T. mediterraneus specimen (estimated age: 4, TL: 29 cm, sex: female, month 

of capture: May). The first winter ring appears as a transparent zone because the false rings are 

joined with the first true ring. The red dots represent the winter rings; the red line represents the 

first winter (Carbonara and Follesa, 2018). 

After the first winter ring, another false ring may be formed during the second year of 

life (Figure 4.25). This could be a check related to the first onset of maturity. Vietti et al. 

(1997) reports the onset of first maturity at two years of age, corresponding to a length 

of 15.6 and 16 cm for smaller mature male and female specimens, respectively, in the 

northern Adriatic Sea. 

 

Figure 4.25. Otolith of a T. mediterraneus specimen ( estimated age: 2, TL: 20.5 cm, caught during 

early winter) and the gonads in a post-reproductive stage. The open black circle is a false ring, the 

red circles are the true winter rings (Carbonara and Follesa, 2018). 

After the second winter ring, the deposition pattern of the winter band (the transpar-

ent–black one) appears regularly, with decreasing distances between rings (Figure 

4.26). 
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Figure 4.26. Otholith of T. mediterraneus (estimated age: 9, TL: 35.5 cm, sex: male, month of cap-

ture: March). The open black circles represent the false rings, while the red dots represent the true 

winter rings (Carbonara and Follesa, 2018). 

4.3.9 Blue jack mackerel (Trachurus picturatus) 

The age determination technique for T. picturatus utilizes whole otoliths. Annuli are 

counted preferentially from the nucleus to the posterior margin axis (Figure 4.27). Dis-

tilled water was used as clarification medium and the otolith was observed under re-

flected light and dark background with sulcus acusticus placed downwards, so dark 

(translucent/late summer-winter ring) and white (opaque/spring-beginning summer 

ring) rings could be seen in alternate positions. The direction of the light relative to the 

otolith surface also needs to be varied (ICES, 2015b). 

 

Figure 4.27. Preferred reading axis in the otolith of T. picturatus. 

 

It is commonly agreed that one opaque and one translucent zone constitute an annual 

growth zone (AGZ) in blue jack mackerel otoliths (Vasconcelos et al., 2006; Jurado-Ru-

zafa and Santamaría, 2018; Garcia et al., 2015). 

General adopted criteria for the otolith increments interpretation of T. picturatus are: 
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 Birth date: 1st of January. 

 Growth pattern scheme: Age assignment depends not only on the number 

of annuli, but also on the edge type related to the catch date and the birth 

date considered. Based on the translucent edge analysis, the pattern annuli 

deposition is shown in Figure 4.28. 

 

Figure 4.28. Scheme of the growth pattern considered for otolith age assignment for T. picturatus. 

(*) is explained in the text. 

 

 For fish caught during the year having an opaque zone on the otolith edge, 

the age assigned will be equal to the number of rings observed minus one. 

 For fish caught in the first quarter having a translucent ring on the otolith 

edge, the age assigned will be equal to the number of annual rings ob-

served. 

 Otoliths with a translucent edge from fish caught in the second quarter of 

the year (*) have to be examined carefully and assessed by the reader, 

based on the width of this increment. It has to be determined whether this 

translucent ring corresponds to the finalization of the annulus of the previ-

ous year, or to the new translucent ring of the year. 

 For fish caught in the second semester having a translucent otolith edge, 

the age assigned will be equal to the number of annual rings observed mi-

nus 1. 

Interpretation difficulties 

In the age estimation process, the position of the first annual ring should be the major 

point of the agreement procedure (FAO, 2002). Especially for the first annulus, AGZ 

should be traceable on the whole otolith, with the exception of the dorso-medial sur-

face of the rostrum. However, in most cases, it does not occur. 

In general, the widths of consecutive AGZ decrease with increasing age. Counting an-

nuli in specimens older than three years (when the growth rate decreases) is more dif-

ficult because the annuli overlap each other. 

A high frequency of false rings has been observed, mainly in the first annulus. Count-

ing each of these well visible rings will result in overestimation of the age (Figure 4.29). 
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Figure 4.29. Black dots indicate false rings in the first annulus of T. picturatus otoliths from the 

Canary Islands. The otolith on the left is three years old, and the one on the right is one year old. 

4.4 Age validation case studies 

Several methods exist for the validation of age estimations of calcified structures (Cam-

pana, 2001). A summary of age validation methods used for small and medium pelagic 

species in European waters is shown in Table 4.4. 

 

Table 4.4. Summary of age validation methodologies used for small and medium pelagic species in 

European waters. 

Method Annual/daily 
Pelagic species for which this validation 

technique has been employed 

Marginal increment analysis/ 

edge-zone analysis 
A 

Anchovy, sardine, sprat, chub mackerel, 

horse mackerel, Mediterranean horse macke-

rel, blue jack mackerel 

Progression of strong year  

classes 
A Anchovy, horse mackerel 

Length frequency analysis A 
Anchovy, sardine, chub mackerel, horse 

mackerel, Mediterranean horse mackerel 

Weight frequency analysis A Sprat 

Daily increments between annuli A Anchovy, sardine 

Daily increment widths A Herring, sprat 

Captive rearing D Anchovy, sardine, herring, sprat, mackerel 

 

The above studies will be described in detail in the following sections. The methods 

are classified as either indirect or direct validation methods (Panfili et al., 2002). With 

respect to the methodologies available for validating daily growth increments, the di-

rect validation methods take into account a precise temporal reference mark in the oto-

lith or a known age (i.e. marking otoliths or rearing experiments), whereas the indirect 

methods require the comparison of age estimates with statistical age estimated from 

length frequency distributions or other age data. 

4.4.1 Indirect validation methods 

Marginal increment analysis and edge-zone analysis 

Marginal increment analysis is the most commonly used of the validation methods and 

is used for validating the periodicity of growth increment formation (Campana, 2001). 

Two types of studies are possible; one uses qualitative data and the other uses quanti-

tative data (Panfili et al., 2002). The latter, quantitative approach measures the distances 

between the most recently formed marks at the edge of the otolith. In cases where there 

is low contrast between growth zones, an edge-zone analysis (qualitative study) may 

be used to achieve similar, but less accurate, results. Edge-zone analysis does not assign 
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a state of completion to the marginal increment, but instead records its presence as 

either an opaque or translucent zone (Campana, 2001). Expressing the results in per-

centage through time is then used as a validation of temporal resolution of the marks 

observed. 

The majority of studies attempting to validate annuli of pelagic species apply the qual-

itative method, one of the least rigorous methods (Table 4.5). Relative marginal incre-

ment analysis (quantitative method) was applied to to anchovy in the Bay of Biscay 

(Uriarte et al., 2016), sprat in the Baltic Sea (Torstensen et al., 2004), to chub mackerel in 

the Madeira Islands, Hellenic seas, and in the southern Bay of Biscay (Kiparissis et al., 

2000; Vasconcelos, 2006; Navarro et al., 2018), to horse mackerel in the Northeast At-

lantic and Hellenic seas (Karlou-Riga and Sinis, 1997; Waldron and Kerstan, 2001), to 

Mediterranean horse mackerel in the Hellenic seas (Karlou-Riga, 2000), and to blue jack 

mackerel in the Azores, Madeira, and Canary islands (García et al., 2015; Jurado-Ruzafa 

and Santamaría, 2018; Vasconcelos et al., 2018). 

 

Table 4.5. Summary of species where marginal increment analysis has been applied. 

Species Area Method 
Time- 

series 

Age/size 

range 
References 

Anchovy 

Bay of Bis-

cay 

Quantitative 2004–2009 Ages 1–4 

Uriarte et al. (2016) 

Supplementary ma-

terial 

Qualitative 

1984–1992 Ages 0–3+ 

Galician wa-

ters (Divi-

sion 9.a N) 

2015–2016 Ages 0–2+ ICES (2016c) 

Gulf of Ca-

diz 
2005–2008 Ages 1–4 ICES (2010d) 

Alboran Sea 
Oct 1989–

Dec 1992 

All ages to-

gether 
ICES (2010d) 

Northern 

Adriatic Sea 

Jan–Dec 

2007 

All ages to-

gether/ 10.5–

16.5 cm 

ICES (2010d) 

Sardine 

Bay of Bis-

cay 

Qualitative 

2006–2009 Ages 1–4 ICES (2011d) 

Atlantic Ibe-

rian waters 

2000–2008 Ages 1–4 ICES (2011d) 

1979–1980 Ages 1–2 

Alvarez and 

Porteiro (1981); 

Porteiro and Alva-

rez (1983) 

Jan–Dec 

1979 
Ages 1–5 

Jorge and Costa 

Monteiro ( 1980) 

Sprat 
Skagerrak 

and Kattegat 
Quantitative 

Feb 2003–Jan 

2004 
Ages 0–2 

Torstensen et al. 

(2004) 
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Species Area Method 
Time- 

series 

Age/size 

range 
References 

Mackerel 

Portuguese 

coast 
Qualitative 1981 

All ages to-

gether 
Gordo et al. (1982) 

North and 

northwest of 

the Iberian 

Peninsula 

Qualitative 2013-2017 Ages 0–7+ 
Villamor et al. 

(2018) 

Chub 

mackerel 

North and 

northwest of 

the Iberian 

Peninsula 

Quantitative 2011-2012 Ages 0–5 
ICES (2016a); 

Navarro et al. (2018) 

Qualitative 

2011-2017 Ages 0–5 Navarro et al. (2018) 

Portuguese 

coast 
1981–1982 

All ages to-

gether 
Martins et al. (1983) 

Azores Is-

lands 
1996–2002 

All ages to-

gether/ Carvalho et al. 

(2002) 
9.6–53.5 cm 

Madeira Is-

lands 

Qualitative 2002–2003 
Ages 0–4/ 

15–37 cm 

Vasconcelos et al. 

(2011) 

Quantitative 2002–2004 

All ages to-

gether / Vasconcelos (2006) 

19–41 cm 

Gulf of Ca-

diz 

Qualitative 

1977–1978 
All ages to-

gether 

Rodriguez-Roda 

(1982) 

Canary Is-

lands 

Mar 1988–

Jul 1990 

All ages to-

gether/ Lorenzo et al. (1995) 

19.2–41.1 cm 

Southwest-

ern Mediter-

ranean (Al-

boran Sea) 

Oct 2003–

Sep 2004 

All ages to-

gether/ Velasco et al. (2011) 

17–40 cm 

Northwest-

ern Mediter-

ranean (Cat-

alan coast) 

Apr–Jul 1992 

and Dec 

1997 

All ages to-

gether 
Perrota et al. (2005) 

Eastern 

Mediterra-

nean (Hel-

lenic seas) 

Quantitative 
Jan–Dec 

1996 
Ages 1–3 

Kiparissis et al. 

(2000) 

Horse  

mackerel 

Northeast 

Atlantic 

Quantitative 

Sep 1982–

Sep 1984 
Ages 0–5 Kerstan (1985) 

 Ages 0.6–4.3 
Waldron and 

Kerstan  (2001) 

Eastern 

Mediterra-

nean (Hel-

lenic seas) 

Oct 1989–

May 1991 

Ages 1–5/ 
Karlou-Riga and 

Sinis (1997) 
6.5–33.9 cm 

Southern 

Adriatic Sea 
Qualitative 2014–2016 Ages 1–7 

Carbonara and Cas-

ciaro (2018) 
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Species Area Method 
Time- 

series 

Age/size 

range 
References 

Mediterra-

nean horse 

mackerel 

Eastern 

Mediterra-

nean (Hel-

lenic seas) 

Quantitative 
Aug 1989–

Nov 1991 
Ages 0–3 Karlou-Riga (2000) 

Blue jack 

mackerel 

Azores  

Islands 

Quantitative 

1998-2011 Ages 0–18 García et al. (2015) 

Madeira  

Islands 
1984–1986 Ages 0–9 

Vasconcelos et al. 

(2006) 

Canary  

Islands 
2005–2006 Ages 0–5 

Jurado-Ruzafa and 

Santamaría (2018) 

Canary  

Islands 
Qualitative 2005–2006 Ages 0–5 

Jurado-Ruzafa and 

Santamaría (2018) 

 

Length frequency analysis 

Length frequency analysis subsumes a variety of different length-based methods, all 

of which produce estimates of growth rate. The corroboration occurs when the result-

ing growth estimate is compared to that of the age estimation method. 

The length frequency analysis method has been used for anchovy, sardine, chub 

mackerel, horse mackerel, and Mediterranean horse mackerel in European waters (Ta-

ble 4.6). This method was thus applied to validate the otolith interpretation and growth 

model parameters for anchovy in the northwestern Mediterranean Sea (Pertierra, 1987; 

Morales-Nin and Pertierra, 1990). In the case of sardine in the same area, Pertierra and 

Morales-Nin (1989) and Morales-Nin and Pertierra (1990) estimated the age by means 

of otolith interpretation, which was validated for the younger age classes by length 

frequency analysis. The method was also applied to chub mackerel of the Madeira Is-

lands at ages 0–5 and of South of the Bay of Biscay (Vasconcelos, 2006; Navarro et al., 

2018). The comparison between age estimation and the length frequency distributions 

of horse mackerel in the Northeast Atlantic confirmed the age estimations of the first 

years of life (up to age 4: Letaconnoux, 1951; Ramalho and Pinto, 1956; Barraca, 1964; 

Polonsky and Tormosova, 1969; Sahrhage, 1970; Macer, 1977). In the eastern Mediter-

ranean (Hellenic seas), the first annulus formation of horse mackerel was detected by 

comparing the progression by month of the smaller modal fish length with the respec-

tive otolith appearance during the year (Karlou-Riga and Sinis, 1997). In horse macke-

rel of the Adriatic Sea, the length frequency analysis method was applied to corrobo-

rate the otolith interpretation and growth model parameters (Alegria Hernandez, 

1984), and annuli were validated until age 5. Arneri and Tangerini (1984) studied the 

growth of Mediterranean horse mackerel by otoliths and length frequency in young 

individuals (ages 0–4) in the Adriatic Sea. The same method was applied for older ages 

(0–6) in a recent study of this species in the southern Adriatic (ICES, 2018c). 

In the Gulf of Salerno (southern Tyrrhenian Sea), an analysis of modal progression in 

the larval length frequency distribution was used for sardines in the 20–40 mm size 

range in order to validate larvae growth estimates based on otolith examination 

(Romanelli et al., 2002). 
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Table 4.6. Summary of species where length frequency analysis has been applied. 

Species Area 
Annual/ 

daily 
Time–series 

Age/size 

range 
References 

Anchovy 

Northwestern 

Mediterranean 

Sea 

A 

Apr 1984– 

Oct 1985 

Ages 0–4/  

5–18.5 cm 
Pertierra (1987) 

Jan 1987– 

Jun 1989 

Ages 0–4/ 

6.5–20 cm 

Morales-Nin and 

Pertierra (1990) 

Sardine 

Northwestern 

Mediterranean 

Sea 

A 
Jan 1987– 

Jun 1989 

Ages 0–5/ 

6.5–20 cm 

Pertierra and Mo-

rales-Nin (1989); 

Morales-Nin and 

Pertierra (1990) 

Central Medi-

terranean Sea 

(Gulf of Salerno 

– west of Italy) 

D 1996–1997 
Age 0/  

20–40 mm 

Romanelli et al. 

(2002) 

Chub 

mackerel 

Madeira Islands A 2002–2004 
Ages 0–5/  

13–41 cm 
Vasconcelos (2006) 

North and 

northwest of the 

Iberian Penin-

sula 

A 2011–2017 Ages 0–5 
Navarro et al. 

(2018) 

Horse 

mackerel 

Northeast  

Atlantic 

A 

– Ages 0–4 Letaconnoux (1951) 

Jul 1954– 

Feb 1955 
Age 0 

Ramalho and Pinto 

(1956) 

Jul 1954– 

Dec 1961 
Ages 0–2 Barraca (1964) 

1967–1970 Ages 1–3 Macer (1977) 

Hellenic seas 
Oct 1989–

May 1991 
Age 1 

Karlou-Riga and 

Sinis (1997) 

Adriatic Sea 
Jul 1980– 

Nov 1981 
Ages 1–5 

Alegria Hernandez 

(1984) 

Mediterra-

nean horse 

mackerel 

Adriatic Sea A 
May–Nov 

1982 
Ages 0–4 

Arneri and Tange-

rini (1984) 

Southern  

Adriatic Sea 
A 2009–2016 Ages 0–6 

Carbonara and 

Casciaro (2018) 

 

Otolith weight frequency distribution (OWFD) was applied to sprat from the Skager-

rak and Kattegat areas (Torstensen et al., 2004) at a meeting in February 2003 on age 



96  | ICES Cooperative Research Report No. 346 

 

 

groups 0–4 (OW 0.22–2 mg). This method is a variant of the length frequency distribu-

tion analysis (LFD; Campana, 2001) and assumes that the expected modes of the otolith 

weight frequency would correspond to the population age classes. 

Progression of strong year classes 

In a validation based on the tracking of strong and weak year classes, comparison of 

the interval between yearly samples and the increase in the apparent modal age of a 

recruitment pulse is determined through annulus counts (Campana, 2001). This 

method, also considered an “indirect validation” method, indicates that an age estima-

tion method is accurate if the age composition of exceptionally good or weak year clas-

ses can be tracked over a long period of time (Panfili et al., 2002).  

This method has been used only for anchovy and horse mackerel in European waters 

(Table 4.7). The age estimation criteria of Bay of Biscay anchovy were also corroborated 

(or indirectly validated) by successive modal lengths in the catches 1982–1992 (Uriarte 

and Astudillo, 1987; Uriarte et al., 2002) and by tracking year class abundance indices 

for 1982–1992 in research surveys in the Bay of Biscay (Uriarte et al., 2016). In the case 

of horse mackerel, age estimation criteria were tested by following identifiable year 

classes through the age compositions of successive years in the catch in number. For 

the western horse mackerel fishery, the extremely strong 1982 year class could be fol-

lowed from 1984 to 1996 (Eltink and Kuiter, 1989; Abaunza et al., 2003).  

 

Table 4.7. Summary of species where the progression of strong year classes was applied. 

Species Area Time-series Age/size range References 

Anchovy Bay of Biscay 

1983–1986 Ages 1–4 
Uriarte and Astudillo 

(1987) 

1982–1992 8–20 cm Uriarte et al. (2002) 

1987–2013 Ages 1–3 Uriarte et al. (2016) 

Horse mackerel Northeast Atlantic 1981–1987 
Age 5 and 

older 

Eltink and Kuiter 

(1989); Abaunza et al. 

(2003) 

 

Daily increments between annuli 

Daily increment counts between presumed annuli can provide strong corroboration of 

the frequency of formation of annuli (Campana, 2001). In this method, all increments 

are examined and counted, presupposing knowledge of dates of hatch and annulus 

formation.  

Based on different daily growth studies, the formation of the first annulus was vali-

dated and the position of the first false ring or check was corroborated in anchovy in 

the Bay of Biscay (ICES, 2013b). The method has also been applied for validating an-

nual increment deposition in the otoliths of young-of-the-year European anchovy (Al-

danondo et al., 2013). Early anchovy juveniles were maintained in captivity from Octo-

ber 2012 until April 2013, and the first annulus was validated using daily increment 

counts. According to this study, the first opaque band is completed in October–No-

vember, whereas the translucent band is formed by March–April. The position of the 
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first check for anchovy in the Bay of Biscay was also corroborated (Hernández et al., 

2013). Two methods were used for this purpose: (i) age was estimated by identifying 

and measuring growth rings formed on sagitta otoliths, and (ii) age corroboration was 

obtained by means of the otolith microstructure, with fish ages being estimated by 

daily increment counts. 

The position of the first false ring (or check) formed before the first winter ring was 

identified through micro-increment counts of the otoliths of sardine in the Adriatic Sea 

(ICES, 2013b) and in Portuguese waters (Silva et al., 2012). This study was done with 

offset in the previous validation of daily increments in these two species (anchovy – 

Cermeño et al. 2003; Aldanondo et al., 2008; sardine – Ré, 1984; and larvae and juveniles 

– Alemany and Álvarez, 1994). See summary in Table 4.8. 

 

Table 4.8. Summary of species where daily increments between annuli were applied. 

Species Area Method Time–series Age/size range References 

Anchovy Bay of Biscay 

Validation of first 

annulus 

Oct 2012–

Apr 2013 

Age 1/  

8.5–13.6 cm 

Aldanondo et 

al. (2013) 

Corroboration of 

first check 
2010–2011 

Age 1/  

11.7–20.5 cm 

Hernández et 

al. (2013) 

Sardine 

Atlantic Ibe-

rian waters 
Corroboration of 

first annuli 

Oct 2008–

Apr 2009 
Age 1 

ICES (2011d); 

Silva et al. 

(2012) 

Northern 

Adriatic Sea 

Oct–Dec 

2012 

Age 1/  

11.5–13 cm 
ICES (2013b) 

Daily increment widths 

The method is based on a random sample of daily increment widths along an uninter-

rupted growth axis of the otolith which, when integrated over the observed length of 

the growth radius, must yield the daily age of the otolith and fish (Campana, 2001). 

This can be used to identify the timing of growth zones by linking the occurrence of 

translucent checks to the time of occurrence. 

Studies of microstructures in sprat and herring otoliths (sagittae) have demonstrated 

structural differences between what are defined as true and false translucent (winter) 

rings (Mosegaard and Baron, 1999; ICES, 2008c). When the translucent ring is depos-

ited, the width of the daily increments gradually reduces in width (Figure 4.30). 
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Figure 4.30. A polished sprat otolith (upper panel) where the false winter ring is indicated with a 

red dot. Analysis of the daily increment structure (lower panel) shows that no decrease in increment 

width is visible on either side of the transparent zone. 

This pattern can be found in true winter rings in the sagittae of sprat aged 0–2 years 

old (Torstensen et al., 2004). A false winter ring has no gradual reduction in the width 

of the daily rings, neither in front of it nor immediately after the translucent zone. The 

characteristic of the winter ring in the sagitae of herring (ICES, 2008c) is illustrated in 

Figure 4.31. The width of the daily rings decrease prior to the winter ring; no daily ring 

formation during the winter ring formation is seen, and then progressively wider daily 

rings appear after the winter ring. These characteristics make it possible to detect false 

winter rings. Such false rings often appear within the first couple of years as narrow 

rings close to the center. Thus, in otoliths where the age reader is in doubt as to whether 

a translucent zone is true or false, the validity of the ring can be examined by reading 

the otolith microstructure if it is among the first 1–3 rings. 
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Figure 4.31. Micro-increment validation of wintering formation in Atlantic herring (Mosegaard and 

Baron, 1999). 

Tag–recapture analysis 

Tag–recapture analysis is part of a suite of methods that provide growth rate estimates 

comparable with those derived from annulus counts (Campana, 2001). 

Unfortunately, because of the costs associated with these analyses and the usual logis-

tical difficulties (too early recapture of individuals, low return rates, etc.), such studies 

are very rare. 

Other methods 

Other validation methods, such as back-calculation of length, should not be consid-

ered, neither as validation nor as corroboration (Campana, 2001). Back-calculated 

length across several age estimation structures merely shows consistency in the inter-

pretation of the sequence of growth increments, independent of whether the interpre-

tation is correct or not. 

The back-calculation of length method has, however, been used for anchovy, sardine, 

chub mackerel, horse mackerel and Mediterranean horse mackerel in European waters 

(Table 4.9). In the Strait of Sicily, the back-calculation method was applied to anchovy 

in order to compare results from a growth model (Basilone et al., 2004). Sardine in At-

lantic Iberian waters have also been analysed applying these methods (Costa Monteiro 

and Jorge, 1982; Porteiro and Alvarez, 1983). In the Gulf of Cadiz, Canary Islands, and 

Madeira Islands, backcalculated length analysis methods have been seen applied for 

comparison of the otolith interpretation of age and growth model parameters of chub 

mackerel (Rodriguez-Roda, 1982; Lorenzo et al., 1995; Vasconcelos, 2006). In the eastern 

Mediterranean (Hellenic seas), the back-calculation method was applied to horse 

mackerel to compare results from a growth model estimation (Karlou-Riga and Sinis, 

1997). The same method was also applied to Mediterranean horse mackerel in the 

southern Adriatic Sea (Carbonara and Casciaro, 2018). 
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Table 4.9. Summary of species where back-calculated length analysis was applied. 

Species Area Time-series Age/size range References 

Anchovy Strait of Sicily 
May 2000–

Oct 2001 

Ages 0–3/ 

7–16 cm 

Basilone et al. 

(2004) 

Sardine 
Atlantic Iberian 

waters 

1979–1981 Ages 0–7 
Costa Monteiro 

and Jorge (1982) 

1979–1980 Ages 0–6 
Porteiro and  

Alvarez (1983) 

Chub mackerel 

Canary Islands 
Mar 1988–

Jul 1990 

Ages 1–7/ 

19.2–41.1 cm 

Lorenzo et al. 

(1995) 

Madeira Islands 2002–2004 
Ages 1–4/ 

20–40 cm 

Vasconcelos 

(2006) 

Gulf of Cadiz 1977–1978 Ages 0–2 
Rodriguez–Roda 

(1982) 

Horse mackerel 

Hellenic seas 
Oct 1989–

May 1991 

Ages 1–5/ 

6.5–33.9 cm 

Karlou–Riga and 

Sinis (1997) 

Southern  

Adriatic Sea 
2009–2016 

Ages 0–6/ 

3–38 cm 

Carbonara and 

Casciaro (2018) 

 

4.4.2 Direct validation methods 

Captive rearing 

This method validates both absolute age and periodicity of growth structures (Cam-

pana, 2001). 

The daily periodicity of micro-increment deposition was validated in early life stages 

of European anchovy, sardine, herring, sprat, and mackerel (Table 4.10). These valida-

tions were done in rearing experiments; they are thus applicable to the whole species 

and not only to the respective stock. 

As far as anchovy is concerned, validation studies were carried out on individuals from 

the Bay of Biscay. Daily increment deposition was validated in hatched eggs and larvae 

reared in the laboratory under different temperature conditions (Aldanondo et al., 

2008). Analysis of otoliths from wild juveniles, marked by immersion in oxytetracy-

cline hydrochloride (OTC) and reared until reaching adulthood over a period of two 

years (Cermeño et al., 2003), has also been carried out for validation purposes. Further-

more, Aldanondo et al. (2008) demonstrated that increment deposition in anchovy 

starts at hatching. 

In the Bay of Biscay, the daily deposition was validated in sagittal otoliths of reared 

and wild sardine larvae, from hatching to complete yolk-sac absorption (Ré, 1984; Al-

emany and Alvarez, 1994). Similarly, the validation of daily otolith increment for-

mation was carried out in a mesocosm experiment on wild sardine larvae in the Adri-

atic Sea (Panfili et al., 2012). 

The production of daily increments in sagittae of larval sprat has been validated, from 

6 to 29 d under laboratory conditions (Alshuth, 1988a). Daily increments have been 
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validated for larval herring under lab, mesocosm, and field conditions (Moksness and 

Fossum, 1991; Moksness, 1992; Johannessen et al., 2000; Fox et al., 2004). 

The deposition of daily growth rings in larvae, post-larvae, and juveniles of mackerel 

was validated by Migoya (1989) and D’Amours et al. (1990) in several areas in the 

Northwest Atlantic, and by Mendiola and Álvarez (2008) in the Northeast Atlantic. 

Migoya (1989) and Mendiola and Álvarez (2008) incubated mackerel eggs in the labor-

atory and showed that the deposit of the first increment in the otolith occurred on the 

hatching day and that the increments were formed daily. In addition, D’Amours et al. 

(1990) performed a validation experiment on mackerel juveniles in captivity, marking 

their otoliths with a fluorescent substance and showing that the increments were de-

posited on a daily basis. 

 

Table 4.10. Summary of species where captive rearing has been applied. 

Species Area Rearing conditions Age/size range References 

Anchovy Bay of Biscay 

Laboratory Age 0/larvae 
Aldanondo et al. 

(2008) 

Laboratory/immersion in 

oxytetracycline 
Age 0/juveniles 

Cermeño et al. 

(2003) 

Sardine 

Atlantic Iberian 

waters 

Field conditions (larval 

caught every hour during 

20 h) 

Age 0/larvae Ré (1984) 

Laboratory Age 0/larvae 
Alemany and 

Álvarez (1994) 

Northern 

Adriatic Sea 
Mesocosm Age 0/larvae Panfili (2012) 

Herring Norwegian Sea 

Laboratory and 

mesocosm 

Age 0/larvae (from 

spring spawning) 
Moksness (1992) 

Laboratory 

Age 0/larvae (from 

spring and autumn 

spawning) 

Johannessen et al. 

(2000) 

Laboratory/immersion in 

alizarin-complexone solu-

tion 

Age 0/larvae Fox et al. (2004) 

Sprat North Sea Laboratory Age 0/larvae Alshuth (1988a) 

Mackerel Bay of Biscay Laboratory Age 0/larvae 
Mendiola and 

Álvarez (2008) 



102  | ICES Cooperative Research Report No. 346 

 

 

4.5 Future perspectives in terms of validation of age for small and medium-sized 

pelagic species 

4.5.1 Tag–recapture and use of chemical agents for otolith marking 

Otoliths from tag–recapture experiments (i.e. the Norwegian programme for mackerel) 

are potential “philosophers stones” that could iron out many subjective assumptions 

related to the age estimation of mackerel. It is of the utmost importance that the dimen-

sions and availability of such material is clarified and that efforts are made to reach 

agreement on potential availability for coordinated validation studies. Alternatively, 

chemical marker substances can be used in the tag–recapture experiments. 

4.5.2 Validation of life history events 

Daily ring structures have been validated in otoliths of anchovy, sardine, herring, 

sprat, and mackerel (Alshuth, 1988b; Moksness, 1992; Alemany and Álvarez, 1994; Jo-

hannessen et al., 2000; Fox et al., 2004; Aldanondo et al., 2008; Mendiola and Álvarez, 

2008). These studies offer validation of the first years of growth, making standards (L1, 

etc.), and ruling out double structures in the first years of life. 

4.5.3 Other validation methods  

Indirect validation methods may be applied to check the accuracy of the age estimation 

of a given species. For example, catch in numbers of mackerel in the fishery allows the 

tracing of weak and strong year classes in successive years (ICES, 2013b). 

Corroborative methods for validation of annual rings, such as elemental or isotopic 

cycles, could potentially support age estimation (Campana, 2001). However, this re-

quires knowledge about the chemical environment in which the given species is found. 

Other age verification methods, e.g. bio-chronology studies of growth increment 

widths in the otoliths as a supportive tool for age validation, can be useful for long-

lived pelagic species such as horse mackerel and mackerel. 
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5 Deep-water species 

Ole Thomas Albert, Christoph Stransky, Jorge Landa, and Rafael Duarte 

5.1 Introduction 

The assessment of deep-water fish stocks using age-structured models has proven use-

ful in establishing a diagnosis on stock status (ICES, 2013c). However, the approach 

has several limitations and shortcomings when stock structure, natural mortality, and 

growth are not adequately known. Age data provided by different countries are often 

based on age estimation criteria that have not been validated. Therefore, several work-

shops have been carried out recently on deep-water species in order to conduct a gen-

eral methodological review, evaluate available information on otolith growth patterns 

and age estimation issues, and ultimately pave the way for solid input data to age-

based assessments. This chapter is based on four ICES workshops on age estimation of 

deep-water fish (Table 5.1) and describes common problems and agreed guidelines for 

best practice. 

Table 5.1. Recent ICES age estimation workshops on deep-water species. 

Workshop Dates Location Chairs Species 

Anglerfish Illicia/Oto-

liths Ageing Workshop 

(Duarte et al., 2005) 

8–12 

November 

2004 

Lisbon, 

Portugal 
Rafael Duarte 

White anglerfish Lo-

phius piscatorius, black 

anglerfish Lophius 

budegassa 

Workshop on Age De-

termination of Redfish 

(WKADR; ICES, 2009b) 

02–05 

September 

2008 

Nanaimo, 

Canada 

Fran Saborido-

Rey and 

Christoph Stran-

sky 

Beaked redfish Sebastes 

mentella, golden 

redfish Sebastes 

norvegicus 

Workshop on Age 

Reading of Greenland 

Halibut (WKARGH; 

ICES, 2011b) 

14–17 

February 

2011 

Vigo, Spain 

Ole Thomas Al-

bert and  

Margaret Treble 

Greenland halibut 

Reinhardtius hippoglos-

soides 

Workshop on Age Esti-

mation Methods of 

Deep-water Species 

(WKAMDEEP; ICES, 

2013c) 

21–25 Octo-

ber 2013 

Mallorca Is-

land, Spain 

Ole Thomas Al-

bert, Beatriz Mo-

rales Nin, and 

Gróa Pétursdot-

tir 

Tusk Brosme brosme, 

ling Molva molva, blue 

ling Molva dypterygia,  

roundnose grenadier 

Coryphaenoides 

rupestris, greater silver 

smelt Argentina silus, 

black scabbardfish 

Aphanopus carbo, black-

spot seabream Pagellus 

bogaraveo 

Workshop on Age Esti-

mation Methods of 

Deep-water Species 

(WKAMDEEP; ICES, 

2019b) 

17–21 

September 

2018 

Cadiz, 

Spain 

Ole Thomas Al-

bert, Juan Gil 

Herrera, and 

Kelig Mahe 

Blackspot seabream 

Pagellus bogaraveo, tusk 

Brosme brosme, greater 

argentine Argentina si-

lus, blue ling Molva 

dypterygia, ling Molva 

molva, greater fork-

beard Phycis blennoides, 

black scabbardfish 

Aphanopus carbo 

 



104  | ICES Cooperative Research Report No. 346 

 

 

5.2 Background (precision and accuracy) 

Accuracy of an age estimation procedure is generally difficult to ascertain. Several tra-

ditional validation methods are not applicable to deep-water fish due to the low sur-

vival rates after capture as a result of barotrauma. Instead, other approaches, generally 

referred to as age corroboration or verification methods, are applied for these species. 

Such methods include modal progression analyses and tracing of strong year classes 

over many years, but there are also examples of tag–recapture analyses with or without 

chemical markers. 

To date, the focus has mostly been devoted to improving the precision of age estima-

tions of individual species. This includes experiments with different calcified struc-

tures, different preparation of samples, different reading axes, and different interpre-

tation of annual zones along those axes. Between-reader comparisons have been con-

ducted both within and between labs with the aim of reaching a common agreement 

on interpretation of otolith growth zones. Within ICES, the precision of age estimates 

has generally improved by means of otolith exchange schemes and age estimation 

workshops, though these have been infrequent for deep-water species in ICES waters. 

Even with exchanges and workshops, the achieved precision within deep-water spe-

cies is usually quite low. A summary of the previous results from these workshops is 

provided in Table 5.2. 

The reported precision varied considerably with coefficients of variation (CVs), from 

8.3% to 22.6%. There is no defined target for this measure, but based on simulations, 

Powers (1983) found that a CV of ≤ 10% would be acceptable when age estimates are 

used to calculate the population rate parameters (i.e. growth and mortality) needed for 

stock assessments. Reference to a target CV of 10% for the most common age groups is 

made in Quinn and Deriso (1999). Only one of the previous exchanges listed in Ta-

ble 5.2 has reported this level of precision. 

In addition to these dedicated between-reader comparisons for single species, a small-

scale exchange of 50 otolith images for each species was initiated through WebGR 

(http://webgr.azti.es) prior to the Workshop on Age Estimation Methods of Deep-Wa-

ter Species (WKAMDEEP; ICES, 2013c). The calibrated images consisted of sagitta oto-

liths, processed using the protocols employed in individual laboratories. The purpose 

of the exchange was largely to familiarize all participants with the otoliths from each 

species to allow everyone to partake in the discussions leading to the agreed recom-

mendations for age estimation protocols. However, owing to the scarcity of precision 

measures for these species, the results are included here (Table 5.3). For each species, 

4–12 age readers interpreted all the otolith images, and the spreadsheet programme by 

Eltink (2000) was used to compare the age estimates among readers and relative to the 

modal age for each sample. 

In this small-scale exchange, the precision of the age estimates varied considerably be-

tween species (Table 5.3). Greater silver smelt was considered the easiest one by all age 

readers, and the mean CV for all 12 age readers was only 7.5%. Also, for ling and round-

nose grenadier, the mean CV was relatively low compared to many other exchanges of 

long-lived species. For these three species, the precision is probably high enough to 

support age-structured analytical assessments. 

The mean CV was much higher for tusk, black-spotted sea bream, and particularly for 

black scabbardfish. If this exchange is representative of the present age estimation re-

sults of these species, care should be taken when interpreting estimated year-class 

strength and population rates. However, for some of the age readers, the CV was mod-

erate for these species (9.7–12.9%). Only a few of the age readers were trained in age 
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estimation of these species; therefore, it is possible that the CV will improve with more 

training. More exchanges and between-reader comparisons for these species are still 

needed. 

Based on the previous work realized during the WKAMDEEP1 (2013), a second Work-

shop on age estimation methods of deep-water species (WKAMDEEP2 – ICES, 2019b) 

was organized. During this workshop, the ageing of several deep-water species were 

reviewed: blackspot seabream (Pagellus bogaraveo), tusk (Brosme brosme), greater silver 

smelt (Argentina silus), blue ling (Molva dypterygia), ling (Molva molva), greater fork-

beard (Phycis blennoides), and black scabbardfish (Aphanopus carbo). The aims of the 

WKAMDEEP2 were to assemble this group of experts in order to further develop the 

ageing protocol for all species and to estimate the precision of readings. For each spe-

cies, a standard ageing protocol was realized with the agreement of all participants and 

afterwards the exchange of 50 images by species was organized using the SmartDots 

tool to evaluate the level of precision by species. Results (Table 5.2) showed that, for all 

deep-sea species, otolith reading is difficult, with a low percentage of agreement be-

tween readers and a high coefficient of variation (CV) as a consequence of low precision 

between readers (i.e. results show a difference of several years among readers for the 

same otolith). The third workshop WKAMDEEP3 is scheduled for 2023 to continue 

investigations into differences of readings for deep-water species and so to decrease 

the bias between readers for these difficult species. 

Table 5.2. Summary of workshops and exchanges by species. 

Species ICES area n 

Preparation 

of age esti-

mation proce-

dure 

No. of 

readers 

Agree-

ment (%) 

CV 

(%) 

APE 

(%) 

Workshop/ 

exchange 

Ling 

Division 5.a 100 
Whole in  

glycerol 

3 

 8  

WK 1997 

(Bergstad et al., 

1998)  

Divisions 3.a, 

4.a, and 5.a, 

and Subarea 6 

79 

Whole in  

water 
 14  

EX 2012 

(Øverbø Han-

sen, 2012) 

Sectioned 12 45.7 21.5  

WK 2018 

(WKAMDEEP2 

– ICES, 2019b) 
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Species ICES area n 

Preparation 

of age esti-

mation proce-

dure 

No. of 

readers 

Agree-

ment (%) 

CV 

(%) 

APE 

(%) 

Workshop/ 

exchange 

Roundnose 

grenadier 

Division 6.a 64 

Transversal 

slide 

11 30 12  

EX 2006/ 

WK 2007 (ICES, 

2007) 

Division 6.a 64 6 29 15  
EX 2011 (Mahé 

et al., 2012a) 

Division 3.a 63 7 31 23  
WKARRG 2007 

(ICES, 2007) 

Tusk 

Division 5.a 300 
Whole in  

glycerol 

3    

WK 1997 

(Bergstad et al., 

1998) 

Division 2.a 50 

4 34 21  
EX 2010 (ICES, 

2013c) 

Whole 11 48.4 11.5  

WK 2018 

(WKAMDEEP2 

– ICES, 2019b) 

Black  

scabbard-

fish 

Madeira 50 
Whole left + 

right 
10  27  EX 1998–1999 

(Morales-Nin, 

1999) Rockall 

Trough 
20 

Sectioned 

11  22  

Division 5.b 

Faroe Ground 
50 11 36.7 25.6  

WK 2018 

(WKAMDEEP2 

– ICES, 2019b) 

Greenland  

halibut 

Canada 

(Flemish Cap) 

100 Whole in  

glycerol, 

whole-baked, 

or transected 

  4–18  
Treble and 

Dwyer (2008); 

ICES (2011b) 184   11–13  

Golden 

redfish 

Division 5.a; 

NAFO 3M 
90 

Break-and-

burn, break-

and-bake 

7–8 

12–35 20–26 15–20 
EX 2007–2008 

(ICES, 2009b) 

42–57 9–18  
WKADR 2008 

(ICES, 2009b) 

Beaked  

redfish 

Subareas 2 

and 12, Divi-

sion 14.b;  

NAFO 1–2, 

3M 

273 

Break-and-

burn, thin 

sections, 

break-and-

bake 

7–8 

9–34 15–22 11–16 
EX 2007–2008 

(ICES, 2009b) 

42–57 9–18  
WKADR 2008 

(ICES, 2009b) 

Blackspot  

seabream 

Mediterra-

nean Sea 
50 Whole 12 34.7 30.8  

WK 2018 

(WKAMDEEP 

– ICES, 2019b) 

Greater  

argentine 

Northeastern 

Atlantic 
50 Whole 12 68.7 8.7  

WK 2018 

(WKAMDEEP 

– ICES, 2019b) 

Blue ling 

Division 5.b 

and subareas 

6 and 7 

50 Sectioned 12 34.7 17.1  

WK 2018 

(WKAMDEEP 

– ICES, 2019b) 
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Species ICES area n 

Preparation 

of age esti-

mation proce-

dure 

No. of 

readers 

Agree-

ment (%) 

CV 

(%) 

APE 

(%) 

Workshop/ 

exchange 

Greater  

forkbeard 
Division 2a 50 Sectioned 12 54.5 33.9  

WK 2018 

(WKAMDEEP 

– ICES, 2019b) 

White  

anglerfish 

Divisions 7.g–

h, 8.a–b, and 

8.d 

53 

Illicia sections 

5 - - 20 
WK 1991 

(Anon., 1997) 

Divisions 7.g–

h, 8.a–b, and 

8.d 

45 8 - - 17 
WK 1997 

(Anon., 1997) 

Divisions 7.a–

b, 7.d, 8.c, and 

9.a 

147 6–8 - 21–25 16–19 

EX 1998; WK 

1999 (Anon., 

1999) 

Divisions 7.a–

b, 7.d, 8.c, and 

9.a 

86 8 47 25 - 

EX 2001; WK 

2002 (Landa et 

al., 2002) 

Subarea 7 50 15 40 21 16 

EX 2004; WK 

2004 (Duarte et 

al., (2005) 

Divisions 5.b, 

7.b–c, and 7.k 
100 11 45 27 18 

EX 2002 

(Landa, 2011) 

Divisions 7.g–

h, 7.a–b, and 

7.d 

53 

Otolith  

sections 

5 - - 29 
WK 1991 

(Anon., 1997) 

Subarea 7 50 11 12–15 41–46 33 

EX 2004; WK 

2004 (Duarte et 

al., 2005) 

Divisions 5.b, 

7.b–c, and 7.k 
100 

Whole  

otoliths 
12 20 24 22 

EX 2011 

(Landa, 2011) 
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Species ICES area n 

Preparation 

of age esti-

mation proce-

dure 

No. of 

readers 

Agree-

ment (%) 

CV 

(%) 

APE 

(%) 

Workshop/ 

exchange 

Black  

anglerfish 

Divisions 7.g–

h, 8.a–b, and 

8.d 

54 

Illicia sections 

5 - - 21 
WK 1991 

(Anon., 1997) 

Divisions 7.g–

h, 8.a–b, and 

8.d 

44 8 - - 13 
WK 1997 

(Anon., 1997) 

Divisions 7.a–

b, 7.d, 8.c, and 

9.a 

138 6–8 - 18–45 10–36 

EX 1998; WK 

1999 (Anon., 

1999) 

Divisions 7.a–

b, 7.d, 8.c, and 

9.a 

76 7 44 17 - 

EX 2001; WK 

2002 (Landa et 

al., 2002) 

Division 9.a 50 13 26 27 22 

EX 2004; WK 

2004 (Duarte et 

al., 2005) 

Divisions 7.g–

h, 8.a–b, and 

8.d 

53 

Otolith  

sections 

5 - - 30 
WK 1991 

(Anon., 1997) 

Subarea 7 50 11 9–13 41–47 34 

EX 2004; WK 

2004 (Duarte et 

al., 2005) 
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Table 5.3. Summary of the small exchanges made before and during the Workshop on Age Estima-

tion Methods of Deep-water Species (WKAMDEEP; ICES, 2013c). CV: coefficient of variation; PA: 

percent agreement; RB: relative bias; “Length-at-age 5” etc.: mean length-at-age (in cm) of each 

species in 5-year increments (up to 20 years), often expressed as a range across age readers. 

Measure 

Greater 

silver 

smelt 

Tusk Ling 
Blackspot 

seabream 

Black 

scabbardfish 

Roundnose 

grenadier 

Mean CV 7.5 16.9 10.3 15.3 31.6 10.9 

CV per reader 4.2–9.2 12.9–23.7 8.0–14.3 11.1–17.7 9.7–26.0 9.0–11.4 

Mean PA 60 37 60 45 33 51 

PA per reader 32–86 20–57 28–80 41–49 5–62 32–67 

Mean RB 0.09 –0.18 –0.09 0.18 –0.3 –0.54 

RB per reader 
–0.3 to 

0.6 

–1.1 to 

1.2 

–0.9 to 

0.4 

–0.6 to 

0.9 
–4.0 to 3.6 –1.5 to 0.9 

Length-at-age 5 36–36 43–51 55–67 21–34 101–106 6–7 

Length-at-age 10 40–42 54–64 72–103 44–47 96–120 9–12 

Length-at-age 15 45–48 –  50–53 101–110 12–14 

Length-at-age 20      15–16 

No. of age readers 12 10 9 4 6 4 

5.3 General recommendations for age estimation of deep-water fish 

The preferred methods for age estimation of individual deep-water species are listed 

in Table 5.4. For routine age estimation of the majority of the species considered in 

WKAMDEEP, it is often considered sufficient to count annuli on the surface of the 

whole otoliths. The otoliths should be immersed in distilled water for 24 h prior to ob-

servation with a compound microscope. For some species, transversal sections at core 

level are used for the whole length range, while for others, only for the largest speci-

mens. However, it has been observed that transversal sections do not improve the age 

interpretation for some species (e.g. ling). 

A summary of the age estimation procedure using illicia (extraction, preparation, and 

the standardized age estimation criteria) for both white and black anglerfish species is 

available (Duarte et al., 2005). Modifications in the methodology of illicia preparation 

and in the age estimation criterion for white anglerfish are included in Landa et al. 

(2013). 

 

Table 5.4. Summary of preferred age estimation procedures by species.  

Species Structure Preparation Observation 
Preferred 

reading axis 
Comments 

Tusk  
Whole 

otolith 

In water for 

24 h 
Water 

No preferred 

reading axis 
 

Ling  
Whole 

otolith 

In water for 

24 h 
Water 

Towards 

rostrum 

Difficult for 

L > 90 cm 
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Species Structure Preparation Observation 
Preferred 

reading axis 
Comments 

Blue ling  

Transverse 

sectioned 

otolith 

(0.4 mm) 

Unclear effects 

of polishing 
Oil 

Longest axis and 

close to the sul-

cus acusticus 

Some use TNPC 

software to guide 

the interpretation 

Greater 

silver smelt  

Whole 

otolith 

In water for 

24 h or 

mounted in 

Eukitt on black 

plastic plates 

Water 
Towards 

rostrum 
 

Roundnose 

grenadier  

Transverse 

sectioned 

otolith 

(0.2 mm) 

 Oil 

Start with the 

longest axis and 

continue on the 

sulcus acusticus 

side 

Some use TNPC 

software to guide 

the interpretation 

Blackspot 

seabream  

Whole 

otolith 
 Water 

Towards ros-

trum or post-ros-

trum 

Some use Image-

Pro Plus software 

to guide the inter-

pretation 

Black 

scabbardfish  

Transverse 

sectioned 

otolith 

(0.5 mm) 

In 1:1 glycerin-

alcohol for 24 h 

1:1 glycerin-

alcohol 

Start with the 

ventral axis and 

bend towards 

the sulcus acusti-

cus side 

Some use TNPC 

software to guide 

the interpretation 

Greenland 

halibut 

Whole right 

otoliths or 

sectioned 

left otoliths 

Whole otoliths: 

stored frozen 

and read before 

drying, or dried 

and submerged 

in glycerine for 

24 h 

Whole oto-

liths usually 

observed in 

water; sec-

tioned with 

oil or water 

Either longest 

growth axis of 

the whole right 

otolith, or to-

wards the proxi-

mal edge axis of 

the sectioned left 

otolith 

Some use image 

analyses software 

to improve appear-

ance of zones and 

to make annota-

tions 

Golden 

redfish 
Otolith 

Break-and-

burn, thin-sec-

tions 

Oil (when 

break-and-

burn) 

Start with the 

longest axis and 

continue on the 

sulcus acusticus 

side 

 

Beaked 

redfish 
Otolith 

Break-and-

burn, thin-sec-

tions 

Oil (when 

break-and-

burn) 

Start with the 

longest axis and 

continue on the 

sulcus acusticus 

side 

 

White an-

glerfish and 

black an-

glerfish 

Sectioned 

illicium 

0.5 mm 

Section fixed in 

glass micro-

scope slide 

 
No preferred 

reading axis 

Recommended 

only up to ages 6–8 

(< L~80 cm in 

white anglerfish) 

due to the presence 

of multi-checks 

and opacity that 

increases with age 

Whole 

otolith 
 

Water or 1:1 

glycerin-

water 

 

In order to avoid age overestimation, it is generally recommended to use the same 

magnification for otolith reading, irrespective of the otolith size. Not all laboratories 

use image analysis systems, but it was generally agreed that they are very useful for 
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measuring annuli and for checking precision among readers. WKAMDEEP also rec-

ommended that all laboratories should build up a register of calibrated and annotated 

otolith images, both for documentation purposes and for training of new age readers. 

With regard to age interpretation of the species considered, it was clear that several 

issues were common for most, if not all, of the species. A summary of the discussions 

regarding issues associated with identification of the first zone, the occurrence of tran-

sition zones, and the characteristics of the slow growth zones of older specimens is 

provided below. 

5.4 Identification of the first true annulus 

For the greater part of the species, the location of the first annulus is a matter of diffi-

culty. Most species have a complex zonation pattern in the central area, with rings that 

may or may not correspond to life history events (i.e. hatching, settlement marks) that 

obscure the annuli identification. Due to the lack of knowledge on the early lives of 

most deep-water fish, the interpretation of these initial rings is usually not clear. More-

over, some species have multiple or extended spawning periods (e.g. greater silver 

smelt) that may cause different ring patterns, depending on the birth date and envi-

ronmental conditions. 

If feasible, it is recommended to measure otolith dimensions from juvenile fish, prefer-

ably down to 0- and 1-groups, and to construct a growth curve of an easily recognizable 

growth axis (Figure 5.1). By interpolation to the assumed time when the first annulus 

is formed, the expected size of this annulus is estimated. For species with multiple or 

extended spawning seasons, it is important to capture the variability in otolith size at 

juvenile ages. Use of expected size to identify the first annulus may be justified if the 

frequency histogram of otolith sizes shows clear modal groups attributable to both 0- 

and 1-groups. 

 

Figure 5.1. Mean otolith length of Greenland halibut at ages 1–5 in September (solid diamonds) and 

mean zone diameter at ages 1–5 for fish age estimated at more than 10 years (open circles). The bars 

indicate ± 2 s.d. Age is plotted as a fraction of a year and the annual zones are assumed to be laid 

down on 1 January (from Albert et al., 2009). 
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5.5 Changing growth patterns along the fish lifespan 

In several species, the otolith growth pattern (increment spacing, increment appear-

ance) may change in the intermediate otolith zone, i.e. in an area consisting of several 

annual zones between the juvenile fast-growth zones and the often regular, distinct 

and narrow zones of older ages. The pattern is well described for redfish (ICES, 2009b) 

and is also recognized for Greenland halibut (Albert et al., 2009; ICES, 2011b; Albert, 

2016) and for several of the species dealt with in WKAMDEEP. These changes may be 

related to sex change (e.g. Pagellus spp.), sexual maturity, migrations, and/or diet 

changes. 

In many cases, it is recommended to count annuli along a curved or broken axis, with 

the bend or kink occurring within or at the end of the intermediate zones. The prob-

lematic “checks” are usually more pronounced in the juvenile phase, while in the older 

years, the problem of zones being vague or discontinuous becomes more serious. Con-

sequently, there is often a danger of overestimating annuli along the first axis or read-

ing direction, and a danger of underestimating annuli along the second axis or reading 

direction. The actual place where the shift in reading direction occurs is usually not 

well defined. It is advised that, whenever possible, validation studies with chemical 

marks should be used to clarify how zones should be interpreted around the inflection 

point of the reading axis. 

5.6 Marginal otolith area 

The last annuli formed in old specimens tend to be very narrow and incomplete around 

the otolith perimeter. Generally, they are first laid down in the area of the longest 

growth axis. Their narrowness may hinder their identification as annuli; also, they can 

be confused with checks within the growth zones. For older individuals of some spe-

cies (e.g. redfish), these zones may become so narrow that they require microscopes of 

higher quality (or with higher magnification) than those usually available in age esti-

mation labs. 

The otolith edge observation and the age-class estimation procedures are summarized 

in Table 5.5. The age attribution may depend on the spawning period and the time of 

the opaque zone formation (Morales-Nin and Panfili, 2002). A birth date of 1 January 

is established for all the studied species. There has been no edge analysis for most spe-

cies, and the following general rule is considered adequate and is furthermore illus-

trated in Figure 5.2. 

 Captured in quarter 1: A translucent zone is formed at the edge; this should 

be counted. 

 Captured in quarter 2: On very young fish, an opaque zone may be seen at 

the edge. All translucent zones should be counted. 

 Captured in quarter 3: The opaque zone forms and should be visible. If only 

a thick translucent zone can be seen, it is most likely last winter’s growth 

and should be counted. 

 Captured in quarter 4: The opaque zone is mostly formed. The translucent 

zones can be seen, especially in younger fish. The translucent zone on the 

edge should not be counted until 1 January. 
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Table 5.5. Summary of otolith edge and age-class attribution procedures by species. 

Species Spawning period Opaque edge 

Tusk April–July No information 

Ling March–August No information 

Blue ling February–May No information 

Greater silver smelt 
Extended or multiple periods 

throughout the year 
No information 

Roundnose 

grenadier 
May–November August–March 

Blackspot seabream Throughout the year May–September 

Black scabbardfish September–December 
July–December (Madeira) 

April–September (Mainland Portugal) 

Greenland halibut October–December No information 

Golden redfish March–May No information 

Beaked redfish March–May No information 

White anglerfish 
Varies among areas; mainly 

November–July 
May–September 

Black anglerfish 
Varies among areas; mainly 

November–July 
May/June–August/September 

 

 

Figure 5.2. Figure describing the general rule on how to count the edge. N = number of complete 

annual zones (from Morales-Nin and Panfili, 2002). 

5.7 Use of supplementary information 

The use of daily growth increments (albeit not validated) may help identify the tem-

poral meaning of the first rings and also locate the true annuli. A subsample of otoliths 

could be prepared, and the enumeration of their daily growth increments may be used 

to estimate at which age each check was laid down. Once the growth pattern is identi-

fied, measuring the distances from the otolith core to the true first annulus could be 

used to establish an age estimation protocol. 

Length frequency analysis is feasible for fast-growing species with short spawning sea-

sons (Pauly, 1983); therefore, its use for deep-water species is limited to the fast-grow-

ing juvenile phase. Moreover, in most cases, the small sizes are not present in the land-

ings or surveys, precluding the use of this method. The method may potentially be 
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used to identify the first modal lengths and to clarify whether the first age is correctly 

estimated. 

However, modal analyses of groups of otolith weights could help in identifying more 

juvenile age classes. Since otoliths tend to grow even when the fish itself does not 

(Campana and Casselman, 1993; Cardinale et al., 2000; FAbOSA, 2002), the cubic root 

of otolith weight will be linearly related to age for a longer age span than the relation-

ship between fish length and age. Previous studies of otoliths from a wide range of 

long-lived, deep-water species have shown that the relative weight of an otolith in re-

lation to the somatic weight increases with age (Talman et al., 2003). It is, therefore, 

recommended to study the otolith weights for species where representative sampling 

of juveniles is feasible. Modal progression analyses may also be applied to the otolith’s 

annuli diameters or radius to assist identification of the true annuli. 

When possible, mark–recapture validation experiments are recommended. To solve 

interpretation issues, it is recommended to have the otolith to hand. For instance, in 

Pagellus mark–release experiments (ICES, 2013c), the length was collected, which 

helped determine the growth rate, but not the otolith structure. Therefore, it is recom-

mended to mark the fish both externally and internally in order to have a check point 

on the otolith growth pattern, and to collect the otoliths. This method, although requir-

ing an extensive marking programme, was applied as an aid to solve age interpretation 

issues in European hake and Greenland halibut (Albert et al., 2009; Mellon-Duval et al., 

2010; Albert, 2016). For many deep-water species, tagging programmes will only be 

feasible with the application of new technological solutions. One example is the under-

water tagging equipment (UTE), developed by Star-Oddi and applied as a tagging pro-

gramme for deep-water redfish (Sigurdsson et al., 2006). 

It is strongly recommended to use radiometric methods (i.e. bomb radiocarbon or lead-

radium) to validate the ages interpreted for old fish. These methods have proven useful 

in validating age interpretation of Sebastes species (Andrews et al., 2002; Stransky et al., 

2005a). 

The use of image analysis software might help both with interpretations of seasonal 

zones and in comparisons of individual interpretations. During WKAMDEEP 2013 

(ICES, 2013c), some calibrated images from the small exchange with the best percent-

age of agreement among readers were interpreted with the TNPC software (Figure 5.3; 

ICES, 2013c). This is an example of several image analysis software packages support-

ing the interpretation, e.g. by displaying the gray-scale pattern along the reading axis. 

Such analysis programs can also be used to establish individual growth trajectories and 

to compare interpretation of annual zones between readers. 

5.8 Age and growth of individual deep-water species 

For most deep-water species, sufficiently validated age estimation protocols do not ex-

ist. Still, for several species, plausible interpretations have been established and agreed 

upon through exchange programmes and workshops. In many cases, there is support-

ing evidence from, e.g. length frequency or marginal increment analyses. For a few 

species, validation of part of the age span has been achieved, while other stocks still 

lack general validation of a complete protocol. The available corroboration and valida-

tion work for each species is reported on here, together with an example of age inter-

pretation with the recommended protocol. Shown is also the resulting length-at-age 

for selected areas and age groups in tabular form. 
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Figure 5.3. TNPC software to help interpret annual zones. The right panel shows the preferred read-

ing axis and interpreted annual zones on a whole otolith of greater silver smelt. The left panel shows 

the greyscale profile of the image along the chosen reading axis, as well as the position of the anno-

tations. 

5.8.1 Tusk (Brosme brosme) 

There has been no direct validation of age estimation for tusk. Analysis of Icelandic 

length frequencies, for age groups 2–4 years, showed good correspondence between 

modes and the length of successive age groups obtained by age estimation of otoliths 

(Bergstad et al., 1998). A mode found at 15 cm represented the 2-group (Bergstad et al., 

1998). Table 5.6 shows the mean length at various ages in samples taken from three 

different areas (Iceland, Norway, and the Faroes). 

Tusk otoliths are viewed whole and submerged in water for at least 24 h prior to age 

estimation. They are read directly under a microscope, sulcus acusticus side up, using 

reflected light against a black background (Figure 5.4). The zonation pattern is gener-

ally considered blurred and difficult to interpret. Both otoliths are examined, and the 

one with the clearer annuli is used. The areas of the otolith where the annuli are most 

distinct are used for counting. A more detailed description of best practice regarding 

reading axes is not available at present. An illustrated manual for age estimation of 

tusk otoliths has been assembled by Bergstad and Hareide (1997). 

 

 

Figure 5.4. Images of otoliths with annotations originating from a tusk 48 cm long, interpreted as 

being age 6. The first narrow translucent zone is not counted, as recommended by ICES (2013c). 
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Table 5.6. Mean length (s.d. = standard deviation, n = number of observations) of different age 

groups of tusk. Data compiled by the WKAMDEEP 2013 (ICES, 2013c). 

Area Age 1 Age 5 Age 10 Source 

Iceland 
12.9 cm 

(s.d. = 2.3, n = 22) 

37.0 cm 

(s.d. = 7.0, n = 1 015) 

58.7 cm 

(s.d. = 6.9, n = 1 040) 
HAFRO 

Norway  
33.5 cm 

(s.d. = 3.5, n = 2) 

57.0 cm 

(s.d. = 4.4, n = 57) 

Norwegian 

IMR 

Faroe Islands  
36.9 cm 

(s.d. = 4.0, n = 11) 

49.0 cm 

(s.d. = 4.6, n = 781) 
FAMRI 

5.8.2 Ling (Molva molva) 

There has been no direct validation of age estimation for ling. Based on agreed proto-

cols, growth is rapid, with lengths of 37–62 cm at age 3 and ca. 100 cm at age 10, and it 

can reach at least 25 years of age (Jónsson and Pálsson, 2013; Table 5.7). Ling otoliths 

are commonly viewed whole and submerged in water for at least 12 h prior to age 

estimation. They are read under a microscope, with the sulcus acusticus side down, 

against a black background using reflected light. The zones are difficult to distinguish 

in older specimens (Figure 5.5). 

 

Table 5.7. Area, mean length of ling at ages 3, 5, and 10 (n = number, s.d. = standard deviation), and 

source. Data compiled by the WKAMDEEP. 

Area Age 3 Age 5 Age 10 Source 

Iceland 

(Division 5.a) 

37.5 cm 

(s.d. = 8.5, n = 31) 

60.2 cm 

(s.d. = 12.9, n = 619) 

101.7 cm 

(s.d. = 62.6, n = 284) 
MRI Iceland 

Norway 

(Division 2.a) 
62.8 cm 74.5 cm 95.4 cm 

Norwegian 

IMR 

Shetland 

(Division 4.a) 

51 cm 

(n = 168) 

66 cm 

(n = 140) 

102 cm 

(n = 43) 
Angus (2011) 

Faroe Islands 

(Division 5.b) 

53.9 cm 

(s.d. = 9.0,  

n = 168) 

62.3 cm 

(s.d. = 6.9, n = 140) 

99.4 cm 

(s.d. = 7.9, n = 43) 

FAMRI 

Faroe Islands 
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Figure 5.5. Ling otoliths from a fish captured in February and interpreted as being age 6. 

 

5.8.3 Blue ling (Molva dipterygia) 

There has been no direct validation of age estimation for blue ling. Bergstad et al. (1998) 

carried out an indirect validation with length frequency distribution analysis. The Ice-

landic data from groundfish surveys conducted every year in March showed modes 

among the smallest fish (from fish at TL < 60 cm). The 1-group fish in March were 

mostly < 20 cm, with the 2-group varying between 20 and 40 cm. It was possible to 

achieve reasonable consistency among readers, but only for otoliths from juveniles of 

up to 3–4 years old (Bergstad et al., 1998). Mean lengths of different age groups from 

various areas are shown in Table 5.8. 

Blue ling has been aged by counting the rings on broken surfaces or thin sections 

(Ehrich and Reinsch, 1985; Thomas, 1987; Bergstad, 1991; Magnusson et al., 1997; 

Bergstad et al., 1998; Magnussen, 2007; Figure 5.6). Transverse, thin, and sectioned oto-

liths are generally considered the best structures for age estimation of this species. 

 

Table 5.8. Mean length of different age groups of blue ling.  

Area Age 10 Age 15 Age 20 Source 

Faroese waters 93 cm 109 cm 127 cm Ehrich and Reinsch (1985) 

ICES Division 6.a 91 cm 132 cm 117 cm French data 2010 

Iceland 87 cm 112 cm 137 cm Magnussón and Magnussón (1995) 
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Figure 5.6. Broken interpretation axis for a blue ling otolith, interpreted as being age 8. 

5.8.4 Roundnose grenadier (Coryphaenoides rupestris) 

There has been no direct validation of age estimation for roundnose grenadier, but an 

indirect validation was carried out with marginal increment analysis which concluded 

that rings in the otoliths were formed annually (Gordon et al., 1996; Gordon and Swan, 

1996; Swan and Gordon, 2001). 

The preferred structures for estimating the age of the roundnose grenadier are otoliths 

that are transverse-sectioned through the nucleus (Figure 5.7). Two reading axes are 

used for the first several annuli and later annuli, respectively. Previously, age estima-

tion of roundnose grenadier was done with whole otoliths, sectioned otoliths, and 

scales, but Bergstad (1990) indicated that scales may be unsuitable, and Kelly et al. 

(1997) showed that whole otoliths can only be read for very small individuals. 

To help identify the first zone, a recent workshop (ICES, 2013c) measured the distance 

between the nucleus and the end of the first translucent ring in a sample of 40 otoliths. 

The results showed very little differences among readers, with a mean distance of 

1.7 mm (s.d. = 0.2 mm) and a range of 1.1–2.1 mm. Table 5.9 shows the length range at 

various ages from two different areas. 

 

Figure 5.7. Left: interpretation axes for roundnose grenadier otoliths, together with one age reader’s 

interpretation of 16 annual zones. Right: measurement of first radius to help identify the first annual 

zone in another otolith. 
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Table 5.9. Length range (pre-anal length, cm) for various age groups of roundnose grenadier. 

Area Age 20 Age 25 Age 30 Source 

Division 6.a 12–17.5 13–17.5 15–18.5 
Modal age from European exchange in 

2011 

Division 3.a 14.5–17.5 14.5–19 17–21 
Modal age from European exchange in 

2011 

5.8.5 Greater silver smelt (Argentina silus) 

There has been no direct validation of age estimation for greater silver smelt. Based on 

agreed protocols, maximum age can be up to 40 years. Whole otoliths are usually 

mounted on black plastic plates or submerged in water (for at least 24 h), and inter-

preted, sulcus acusticus side down, using reflected light against a black background. It 

is best to read the otoliths along the axis from the nucleus to the rostrum (Bergstad, 

1995; Figure 5.8). The age estimation is generally considered relatively easy and with 

good precision. Mean length-at-age for ages 1, 5, 10, and 15 differ by only 4 cm between 

the institutes of Iceland, Norway, and Faroe Islands (Table 5.10). 

The interpretation of the first annual zone, defining the end of the 0-group, varies to 

some extent between readers. It is believed that due to the prolonged spawning season 

of greater silver smelt, the first fast-growth zone can vary in size and may sometimes 

appear small compared with the subsequent opaque zones. 

 

Figure 5.8. Image of greater silver smelt otoliths from a 42-cm long fish caught in February, display-

ing clear patterns in the translucent and opaque zones. The age is estimated at 12 years. 
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Table 5.10. Mean length (n = number, s.d. = standard deviation) of various age groups of greater 

silver smelt. 

Area Age 1 Age 5 Age 10 Age 15 Source 

Iceland 
19.1 cm 

(s.d. = 3.1, n = 239) 

33.9 cm 

(s.d. = 2.7, n = 578) 

40.5 cm 

(s.d. = 2.4, n = 1 472) 

43.9 cm 

(s.d. = 2.9, n = 410) 
MRI 

Faroe 

Islands 

15.4 cm 

(s.d. =2.1, n = 49) 

31.0 cm 

(s.d. = 2.0, n = 146) 

38.5 cm 

(s.d. = 2.3, n = 95) 

42.3 cm 

(s.d. = 2.2, n = 39) 
FAMRI 

Norway  
29.9 cm 

(s.d. = 1.9, n = 132) 

36.1 cm 

(s.d. = 2.7, n = 88) 

39.4 cm 

(s.d. = 3.6, n = 43) 

Norwegian 

IMR 

5.8.6 Black scabbardfish (Aphanopus carbo) 

There has been no direct validation of age estimation for black scabbardfish. The an-

nual deposition of increments has been corroborated by marginal increment analysis 

(Morales-Nin and Sena-Carvalho, 1996; Vieira et al., 2009) showing that, in specimens 

from Madeira, opaque increments were formed mostly between July and December 

and that the highest occurrence of opaque margins was in October. 

The preferred structure for estimating the age of black scabbardfish is thin sections of 

otoliths (0.5 mm) through the nucleus (Figure 5.9). The sections are observed under a 

stereomicroscope using transmitted light, and the best axis for age estimation is along 

the ventral side (Vieira et al., 2009). In older fish, the growth axis in the last years is 

oblique to the axis in the first years. The first translucent zone is expected to appear at 

0.73 ± 0.01 mm and 0.56 ± 0.02 mm from the nucleus on the ventral and on the dorsal 

side of the otolith, respectively (Vieira et al., 2009). Table 5.11 shows the length range 

of selected age groups of black scabbardfish from various localities. 

There are many false increments (checks) along the growth axis, mostly in the area 

corresponding to the juvenile growth area. Hence, the agreed way to identify incre-

ments is to consider thicker opaque bands instead of individual rings. 
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Figure 5.9. Transversal section of the right otolith of a black scabbardfish at 118 cm TL. The esti-

mated age for this specimen is 12 years. 

 

Table 5.11. Length range (cm) of selected age groups of black scabbardfish. NA = not available. 

Area Sex Age 1 Age 5 Age 8 Age 12 Reference 

Mainland 

Portugal 

F NA 87–97 105–113 120–130 

Vieira et al. (2009) 

M NA 85–95 100–115 NA 

Azores 

F NA NA 175–113 140–130 

M NA NA 85–95 115–120 

Madeira 

F NA NA 107–112 120–137 

M NA NA 107–115 120–132 

F 58–70 104–138 114–150 NA 
Morales-Nin and Sena-Carvalho 

(1996) 
M 58–94 100–130 130 NA 

Canary 

Islands 
Both NA NA 105 125 Delgado et al. (2013) 

 

5.8.7 Blackspot seabream (Pagellus bogaraveo) 

There has been no direct validation of age estimation for blackspot seabream. A few 

tag–recapture experiments were conducted along the southern coast of Spain and in 

the Strait of Gibraltar, giving some guidance to annual length increment of the stock. 

Daily increment analysis on young individuals was also carried out in order to detect 

and clarify the position of the first annual ring. The initial results indicated that all 

specimens in the range of 14–15 cm in length had completed the first annual ring. 

Age estimation of blackspot seabream is commonly done by counting the annuli on the 

whole otolith surface (Ramos and Cendrero, 1967; Sánchez, 1983; Alcazar et al., 1987; 
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Krug, 1989; Castro, 1990; Sobrino and Gil, 2001; Gil, 2006, 2010; Figure 5.10). The oto-

liths are observed under a binocular microscope with reflected light against a black 

background. Defined annuli are usually most easily found along the fast-growth axis 

of the otoliths, particularly along the post-rostrum. Table 5.12 shows the length range 

of various age groups of blackspot seabream from various localities. 

 
 

Figure 5.10. Whole otolith of blackspot seabream. The estimated age for this specimen is 5 years. 

 

Table 5.12. Length range (cm) of selected age groups of blackspot seabream.  

 

5.8.8 Greenland halibut (Reinhardtius hippoglossoides) 

Age estimation protocols for Greenland halibut have been partly validated by bomb 

radiocarbon analyses (Treble et al., 2008; Dwyer et al., 2016) and by mark–recapture 

experiments using chemical tags (Treble et al., 2008; Treble and Dwyer, 2008; Albert et 

al., 2009; Albert, 2016). The validations are also corroborated from comparisons with 

modal progression analyses, with growth increments from traditional tag–recapture 

experiments, and with morphometric analyses (Treble et al., 2008; Albert et al., 2009; 

Albert, 2016). 

Area Sex Age 1 Age 5 Age 8 Reference 

Ionian Sea 

M - 22–27 30–35 

Chilari et al. (2006) 

F - 22–28 30–34 

Strait of Gibraltar 

All 15–19 29–43 43–54 Sobrino and Gil (2001) 

All - 29–43 43–51 J. Gil (pers. comm.) 

Azores All 12–18 23–36 34–44 Krug (1989) 

Ionian Sea All 19 29–35 37–39 A. Anastasopoulou (pers. comm.) 

Asturian waters All 15–20 24–38 36–44 Alcazar et al. (1987) 

Cantabrian Sea All 8–15 24–36 42–46 Guéguen (1969) 
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Based on present knowledge, identification of annual zones in Greenland halibut oto-

liths should preferably be done either along the longest growth axis of the whole right 

otolith or towards the proximal edge of the sectioned left otolith (ICES, 2011b). In both 

cases, the age interpretation is often made on digital images, as readers often find it 

helpful to visualize the growth history to help identify checks from annual zones. 

It is essential to use only the right otoliths when reading whole otoliths of this flatfish, 

and to count the zones along the longest growth axis (Figure 5.11). Analyses of chemi-

cally marked individuals have shown that, for older, slow-growing fish, additional 

growth may not be visible in other parts of the whole otoliths (Albert, 2016). To help 

identify the narrow zones of older fish, it is further recommended to store the otoliths 

frozen until imaging and to use transmitted light. For transverse sections, the left oto-

liths are usually chosen, since they grow more in thickness. Some readers prefer stain-

ing, while others find this unnecessary. 

The inner edge of the first translucent zone defines a shape with a longest diameter of 

2.0 (± 0.5) mm; the following zones usually decrease gradually in zone width. For the 

slowest-growing fishes, annual zones may be very thin or not visible at all on the sur-

face of the whole right otolith (Albert, 2016). It is still unresolved if these missing zones 

may be found on the transverse sections of the left otoliths. Table 5.13 shows the length 

range of various age groups of Greenland halibut from various localities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11. Age estimation of the same Greenland halibut individual by two recommended proce-

dures: the sectioned left otolith (top) and the whole right otolith (bottom). The two methods result 

in an age estimate for this 70-cm fish of 20 and 24 years, respectively. 
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Table 5.13. Length range (cm) of selected age groups of Greenland halibut.  

 

 

5.8.9 Golden redfish (Sebastes norvegicus) 

Several of the typical growth patterns in redfish otoliths may aid age estimation to a 

certain degree. WKADR has recommended the identification of reference distances 

from the nucleus to indicate the position and size of the first annulus (ICES, 2009b); 

however, these have not yet been established. It is advised that otolith reference collec-

tions of known age and with clear annuli patterns are used instead. For redfish the 

transition zone has been defined as the region of change from juvenile to mature 

growth (after ca. 10–12 years). The juvenile annual growth zones are relatively larger 

than those of later adult zones. The reading axis from the nucleus to the transition zone 

follows the longest axis (distal edge to dorsal or ventral tip) and changes after the tran-

sition zone to reading towards the proximal edge, often along the sulcus acusticus edge 

(for details see ICES, 2009b). Old specimens only show thickness growth after the tran-

sition zone, requiring careful identification of edge zones with high magnification 

(100–200×). Though the common preferred otolith preparation method is break-and-

burn, other methods such as thin sections (Figure 5.12) and break-and-bake are also 

being used (ICES, 2009b). 

Golden redfish can reach ages of ca. 40 years. Nedreaas (1990) and Saborido-Rey et al. 

(2004) were able to follow strong cohorts in the length distributions and indirectly val-

idate the slow growth of golden redfish. For the Iceland area, Stransky et al. (2005b) 

compared age estimation results that confirmed slow growth and ages up to 30 years. 

As part of a radiometric validation study based on radium–lead isotope ratios (Stran-

sky et al., 2005a), the age and growth of golden redfish from the Iceland–Greenland 

area has been validated. Table 5.14 shows the length range for various age groups of 

golden redfish from various localities. 

 

 

Figure 5.12. Example picture of a golden redfish (Sebastes norvegicus, 25 cm TL, caught around 

Iceland, March 1997) otolith thin section, including age estimation marks of four age readers (10–

12 years). 

 

Area Sex Age 1 Age 10 Age 20 Reference 

Barents Sea All 10–19 40–60 58–83 Albert et al. (2009); ICES (2011b) 

West Greenland All 11–17   Sünksen et al. (2010) 

Pacific All  59–75 66–97 Gregg et al. (2006) 
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Table 5.14. Length range (cm) of selected age groups of golden redfish (Sebastes norvegicus). NA = 

not available. 

5.8.10 Beaked redfish (Sebastes mentella) 

For information on the identification of the first annulus, the transition zone, reading 

axes, and preparation methods, see golden redfish above. Beaked redfish reach ages of 

at least 60 years. 

Nedreaas (1990) and Saborido-Rey et al. (2004) were able to follow strong cohorts in the 

length distributions and indirectly validate the slow growth of beaked redfish. 

As part of radiometric validation studies based on radium–lead isotope ratios (Cam-

pana et al., 1990; Stransky et al., 2005a), the age and growth of beaked redfish has been 

validated (Figure 5.13). Table 5.15 shows the length range for various age groups of 

beaked redfish from various localities. 

 

 
Figure 5.13. Example picture of a beaked redfish (S. mentella, 30 cm TL, caught in the Irminger 

Sea, June 1999) otolith thin section, including age estimation marks of four age readers (11–

18 years). 

Area Sex Age 5 Age 10 Age 15 Age 20 Age 30 Age 40 Reference 

Norway/Barents 

Sea 
Both 18–22 33–35 38–42 45 48 50 Nedreaas (1990) 

Flemish Cap 

F 21 30 39 44 51 NA 
Saborido-Rey et al. 

(2004) 
M 21 30 37 41 45 NA 

Iceland 

Both 16 30 38 42 48 NA Stransky et al. (2005b) 

Both NA 26–30 NA 46–50 51–55 NA Stransky et al. (2005a) 
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Table 5.15. Length range (cm) of selected age groups of beaked redfish (Sebastes mentella). NA = 

not available. 

Area Sex Age 5 Age 10 Age 15 Age 20 Age 30 Age 40 Reference 

Norway/Barents Sea Both 17 27 33 38 42 NA Nedreaas (1990) 

Flemish Cap 

F 21 30 36 40 42 NA 
Saborido-Rey et al. 

(2004) 
M 21 30 36 39 41 NA 

Irminger Sea 

Both 23 28 32 34 37 39 Stransky et al. (2005b) 

Both NA NA 26–30 31–35 36–40 41–45 Stransky et al. (2005a) 

5.8.11 White anglerfish (Lophius piscatorius) 

Improving the precision in the absence of accuracy cannot, under any account, guar-

antee data quality (de Pontual et al., 2006); the age estimation of white anglerfish and 

black anglerfish may serve as an example of that. Traditionally, age estimation for both 

species has been performed using two different calcified structures (CS): (a) the illicium 

(first dorsal fin ray), used by the majority of European readers for stock assessment 

because the growth pattern is easier to distinguish, and sampling with collection of the 

CS is also easier (Dupouy et al., 1986; Duarte et al.,1997; Quincoces et al., 1998a, 1998b; 

Landa et al., 2001; García-Rodríguez et al., 2005; Jónsson, 2007; Carlucci et al., 2009; Of-

stad et al., 2013); and (b) the sagitta otolith, used only in two countries (Tsimenidis and 

Ondrias, 1980; Crozier, 1989; Tables 5.16 and 5.17). Several age estimation workshops 

and exchanges for both species have taken place (Table 5.2) and, in general, illicia have 

shown better precision (CV and APE), agreement, and relative accuracy among readers 

than otoliths. Even so, illicia have not shown very high precision values when all read-

ers were compared: CV (21–27%) and APE (16–20%) for white anglerfish, and CV (18–

27%) and APE (10–36%) for black anglerfish (Table 5.2). However, in the Anglerfish 

Illicia/Otoliths Ageing Workshop in 2004 (Duarte et al., 2005), illicia expert readers 

showed a CV of ~10% for both species, and their readings were used in the stock as-

sessment. A standardized age estimation criterion based on illicia was also established 

(Duarte et al., 2002). The presence of multichecks in the otolith, the increasing opacity 

with age (otolith age estimation was recommended only for specimens ≤ 6 years old; 

Crozier, 1989), and the lack of a standardized age estimation criterion for the readers 

(Duarte et al., 2005) have all hindered the use of otoliths as the basis for age estimation 

in the stock assessment process. Nevertheless, otoliths have been taken into account in 

the last exchange and workshop (Table 5.2). Despite efforts made to improve precision 

and agreement, and to have an illicia-standardized age estimation criterion, inconsist-

encies found in the cohort tracking of the catch-at-age time-series provide evidence 

that the traditional criterion based on illicia was not accurate for the two southern shelf 

stocks of each anglerfish species (Azevedo et al., 2008). Since then, both the stock and 

the species have not been assessed using age estimates based on the traditional crite-

rion, while greater effort has been made to provide more accurate and corroborated 

growth patterns. 

There has been no direct validation of age estimation for white anglerfish, but semi-

direct validation has been performed in both CS, using marginal increment analysis 

(Woodroffe et al., 2003), and in edge-state analysis (Dupouy et al., 1986; Crozier, 1989; 

Woodroffe et al., 2003; Ofstad et al., 2013). Growth corroboration studies, such as tag–

recapture (Laurenson et al., 2005; Landa et al., 2008), microincrement analyses (Wright 
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et al., 2002), and length frequency distributions of catches (Fulton, 1903; ICES, 2006; 

Jónsson, 2007), presented a faster growth rate and were fundamental in proving that 

the growth pattern estimated using the traditional criterion based on illicia (~19 and 

50 cm for ages 1 and 5, respectively) was not accurate (Landa et al., 2008) and showed 

inconsistencies in cohort tracking (Azevedo et al., 2008). With the recent modifications 

in the methodology of illicia preparation and in the traditional age estimation criterion, 

faster growth has been estimated, enabling good cohort tracking of catch-at-age data 

(Landa et al., 2013; Figure 5.14). The latest studies that use illicia, by Jónsson (2007), 

Landa et al. (2013), and Ofstad et al. (2013), have all presented similar growth patterns 

(~29 and 65 cm for the ages 1 and 5, respectively) in Iceland and in Porcupine Bank and 

Faroese waters, respectively (Table 5.16). These results are also consistent with growth 

estimates from length frequency analyses and tag–recapture results. Advances in re-

search on white anglerfish growth, corroborating the illicia age estimates, could allow 

future use of illicia in the stock assessment process. 

 

 

Figure 5.14. Illicium of L. piscatorius (89 cm, estimated age 8 years old). The annuli are marked 

with numbers, and the two structures marked in the central area, lineal and oval in shape, are both 

considered checks (false annual increment; Landa et al., 2013). 
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Table 5.16. Mean length (cm) for selected age groups of white anglerfish. 

Area 
Calcified 

structure 
Sex Age 1 Age 5 Age 8 Reference 

Aegean Sea 

(Mediterranean) 
Otoliths F 17.5 86.7 102.2 Tsimenides and Ondrias (1980) 

Irish Sea Otoliths Both 22.5 62.5  Crozier (1989)  

Celtic Sea and 

northern Bay of 

Biscay 

Illicia F 13.2 53.2 81.1 Dupouy et al. (1986) 

Southern Bay of 

Biscay 
Illicia Both 17.5 50.5 71.5 Duarte et al. (1997) 

Northern Bay of 

Biscay 
Illicia Both 20.0 50.2 73.0 Quincoces et al. (1998b) 

Iberian Atlantic 

waters 
Illicia Both 19.0 46.5 66.7 Landa et al. (2001) 

Icelandic waters Illicia Both 26.7 67.3  Jónsson (2007) 

Faroe waters Illicia Both 29.1 63.1 85.9 Ofstad et al. (2013) 

Porcupine Bank Illicia Both 31.9 69.4 93.4 Landa et al. (2013)  

5.8.12 Black anglerfish (Lophius budegassa) 

There has been no direct validation of age estimation for black anglerfish, but semi-

direct validation has been attempted by edge-state analysis in illicia (Dupouy et al., 

1986; see also the previous section for issues relevant to both anglerfish species). The 

tag–recapture programme for black anglerfish in Atlantic European waters provided 

limited evidence on the actual annual growth rate (Landa et al., 2002; ICES, 2006). The 

otolith microincrement analyses in Mediterranean (La Mesa and De Rossi, 2008) and 

Atlantic waters (Hernández et al., 2015) showed faster growth rates in early stages, and 

the first hypothetical annual increment in illicia that is usually included in the count of 

annuli is considered not to be really annual. Thus, specimens up to 20 cm found in 

autumn belong to age class 0 (Hernández et al., 2015), and the growth rate for the first 

age estimated in the studies based on CS seems to be underestimated. García-

Rodríguez et al. (2005),Carlucci et al. (2009) and Landa and Barcala (2017) also obtained 

higher growth rates using length frequency analysis than those estimated using CS, 

allowing better cohort tracking of the catch-at-age of black anglerfish in Spanish Med-

iterranean waters in the last study (Table 5.17). The results of such studies that use al-

ternative techniques to estimate the age of CSs (such as microincrement, length fre-

quency analysis) advance the understanding of the accurate growth pattern of these 

populations. 

Validation of age estimation would be particularly important for black anglerfish, 

where age estimations between two CSs of the same fish have hitherto not been con-

sistent. Workshop results show that ages from illicia readings are generally higher than 

otolith readings from the same fish and that this difference is particularly important 

for black anglerfish (as an example, see Figure 5.15). 
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Figure 5.15. Illicium and otolith of L. budegassa (37 cm TL, Atlantic Iberian coast), estimated at 

5 years old based on the illicium (left image, annuli marked in blue) and 4 years old based on the 

otolith (right image, annuli marked in blue). (Duarte et al., 2005.) 

 

Table 5.17. Mean length (cm) for selected age groups of black anglerfish. 

Area Methodology Sex Age 2 Age 5 
Age 

8 
Reference 

Aegean Sea 

(Mediterranean) 

Otolith age 

estimation 
Both 15.7 36.4 49.1 

Tsimenides and 

Ondrias (1980) 

Celtic Sea and north-

ern Bay of Biscay 

Illicia age 

estimation 
F 13.7 31.3 46.4 Dupouy et al. (1986) 

Portuguese waters 
Illicia age 

estimation 
Both 16.4 34.6 48.9 Duarte et al. (1997) 

Northern Bay of 

Biscay 

Illicia age 

estimation 
Both 15.6 30.7 48.6 

Quincoces et al. 

(1998a) 

Iberian Atlantic wa-

ters 

Illicia age  

estimation 
Both 16.6 33.3 48.4 Landa et al. (2001) 

Spanish Mediterra-

nean 

Length  

frequency 

analysis 

Both 32.4 57.6 73.7 
García-Rodríguez et 

al. (2005) 

Ionian Sea 

(Mediterranean) 

Length 

frequency 

analysis 

Both 36.3 55.0 62.9 Carlucci et al. (2009) 

Spanish 

Mediterranean 

Length 

frequency 

analysis 

Both 
32.7-

35.8 

58.9-

61.1 

75.3-

76.2 

Landa and 

Barcala-Bellod 

(2017) 
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6 Statistical handling of uncertainty in age estimations 

Lotte Worsøe Clausen and Ernesto Jardim 

6.1 Introduction 

Inaccurate age estimations are widespread and negatively impact the accuracy of pop-

ulation dynamics studies and stock assessment outcomes. There are numerous cases in 

which age estimation errors have contributed to the overexploitation of a population 

or species (Campana, 2001). Underestimation of age results in overly optimistic esti-

mates of growth and mortality rates, while overestimation of age results in underesti-

mation of growth. Some levels of bias and imprecision can be accounted for in the as-

sessment, but even when possible, this requires measurement of the age estimation 

error and application of an age estimation matrix within the assessment (Punt et al., 

2008). 

The nature of whether true age is known affects the terminology used herein. The term 

“accuracy” is reserved for describing a comparison of the true age with that generated 

by age readers, but true age is rarely known. More commonly, age estimations are 

made after testing against a reference collection containing known-age or age-vali-

dated samples. As long as the interpretation criteria used in age estimation are the same 

for all of the samples, the unvalidated sample ages should be accurate, at least on av-

erage (Campana, 2001). In the absence of a known-age reference collection, consistency 

in age estimation is the best that can be achieved (Campana et al., 1995). The “bias” that 

is often reported from age calibration workshops where validated ages are not availa-

ble is more an expression of the “skewness” of data around a modal or likely value. 

The term “precision” is used to describe “agreement”, consistency, or variability 

among readings/annotations of the same specimen by the same or different readers. 

Reports from age calibration workshops generally give very thorough results and com-

mentary about the accepted interpretation of the age structures of a given species or 

stock. Stock assessment scientists can use these reports to evaluate the quality of the 

age distributions available for the assessment, but do they fully do so? And if not, how 

can these age calibration workshop reports be improved? This is the focus of this chap-

ter: to determine whether these reports reach the right audience, whether the reports 

include data with appropriate formats, and whether the stock assessment models are 

prepared in a manner that accounts for the information in the reports. 

6.1.1 Statistical methods for analysing output from calibrations 

A total of 31 ICES reports published between 1992 and 2012 on age estimation and 

calibration exercises were reviewed to identify the applied methods for analyses of cal-

ibration data (Annex 3). The majority used methods to compare age estimations, such 

as percentage of agreement (PA), average percentage error (APE), and coefficient of 

variation (CV). 

Of the 17 statistical methods reported in the literature used to analyse output from 

calibrations (Table 6.1), all can be classified as one of the following: (i) identification of 

bias among age readers or a reference collection; (ii) estimate of precision among or 

within age readers; (iii) diagnostic of age estimation differences; and (iv) preparation 

of an age estimation error matrix for use in stock assessment models. 

After 2000, the majority of reports used the “Guus Eltink” spreadsheet, i.e. the work-

book age estimation comparisons of Eltink (2000) and the guidelines and tools for age 

estimation comparisons (Eltink et al., 2000). These are useful tools for a general under-
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standing of the uncertainty in age estimations for a stock, or for an age reader. How-

ever, these estimates cannot be readily used when age estimation uncertainty is to be 

incorporated in stock assessments. Different approaches have been taken into account 

for age estimation error in stock assessments. Several studies compare stock assess-

ment results based on different age scenarios. These scenarios can reflect interreader 

variability or differences between observed and true ages. Most of the recent studies 

addressing this issue quantify an age error matrix (AEM) to use in the stock assessment 

model. The elements of the AEM are the probabilities that a fish of “true age” class is 

wrongly assigned to one of the observed age classes. The probabilities can be estimated 

using several functional forms and distribution. The “true age” is usually not really the 

true age. Examples include simulated true age, known age (based on mark–recapture 

studies), nearest integer to mean age across readers, “expert” or “consensus” age, 

modal age, otolith age (with observed age based on other calcified structures), or a 

preparation method where the observed age is based on other preparation methods. A 

readability score has been used as a factor in statistical models to estimate the proba-

bilities of the AEM (Candy et al., 2012). Readability score, such as the three-point grad-

ing system recommended by PGCCDBS and WKNARC 2011 or the five-class system 

used in Australia, is a (subjective) variable. It is not a probability or error estimate and, 

therefore, is not directly applicable in a stochastic assessment model. The readability 

score can be correlated with age (Candy et al., 2012) and is expected to be correlated 

with growth rate; thus, a readability score should not be applied as a selection criterion 

for age data included in the stock assessment because this may cause bias. 

Strengths and weaknesses of each listed method 

Identification of bias is one of the most important products of an age calibration exer-

cise, as it indicates to what degree age readers differ in their interpretation of the 

growth increments. Unless one of the age estimations is based on a validated reference 

collection, it can be difficult to determine which of the age estimations (if either) is more 

accurate. In Table 6.1, Method 1, the age-bias plot, is a widely used method for visually 

identifying bias. Methods 2–4 are statistical counterpoints to the age-bias plot. The sta-

tistical methods have the advantage of being quantitative, although attention should 

be paid to the output of the individual test, e.g. will the paired tests fail if there is an 

overestimation of age at one end, but underestimation of age at the other end of the 

age range as the differences will cancel each other out (Campana et al., 1995)? The age-

bias plot tends to be more sensitive: it represents readings and modal age and can also 

use “known age” or measured age, but provides a visual, not quantitative, interpreta-

tion. Both approaches to estimating bias are useful in an age calibration or quality con-

trol exercise; Method 1 is the most cost-effective and thus easily applied as a standard, 

whereas methods 2–4 provide a quantitatively better estimation of bias. The choice of 

method will probably depend on the available material and time for the analyses. If 

limited resources are available, Method 1 is recommended. 

Higher precision should be characteristic of experienced age readers, since they tend 

to be very consistent in their interpretations. There are, however, some grave excep-

tions, e.g. Baltic cod (Eero et al., 2015). Most of the methods reported in Table 6.1 are 

measures of precision (methods 5–14). Precision estimates can be expressed by a single 

number (e.g. CV = 5%; please note that for calibrations where mean and standard de-

viation have the same units, CV is usually reported as unitless) and are thus easily un-

derstood. CV (Method 6) and APE (Method 5) are widely used in the literature, being 

readily comparable among age calibration exercises. They also have the advantage of 

being relatively insensitive to the age range in the study, unlike the simple percentage 
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agreement. It is recommended to include at least one measure of precision, either CV 

or APE, as a useful product of an age calibration or quality control exercise. 
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Table 6.1. Methods which can be used to evaluate age calibration studies; characteristics of the methods, strengths, and weaknesses are given. The colour code 

highlights methods considered key products of an age calibration study. Yellow: assess bias; orange: assess precision; red: diagnostics; green: output for stock-

assessment. 

No. Method 

Descrip-

tive sta-

tistics 

Statis-

tical 

test 

One  

single 

number 

Visual 

method 

Model-

based  

approach 

Preci-

sion 
Bias Data requirements 

Diagnos-

tics 
Strength Weakness Observations 

1 ABP – age-bias plot            Age estimations   Easily inter-

preted 

Visual, not a statistical test   

2 TS – test of symmetry            Age estimations     Statistical test, not picking 

up non-monotonic age es-

timation problems 

  

3 PTT – paired t-test            Age estimations   Easily inter-

preted 

  Parametric test 

4 WPRT – Wilcoxon paired ranks 

test 

           Age estimations   Easily inter-

preted 

  Non-parametric test 

5 APE – average percentage error            Age estimations   Easily inter-

preted 

  Sensitive to outliers 

6 CV – coefficient of variation            Age estimations   Easily inter-

preted 

  Sensitive to outliers 

7 MSD – mean square deviation            Age estimations   Easily inter-

preted 

    

8 CCC – concordance correlation 

coefficient 

           Age estimations   Easily inter-

preted 

    

9 TDI – total deviation index            Age estimations   Easily inter-

preted 

    

10 MAD – modal age difference            Age estimations   Easily inter-

preted 

    

11 PA – percentage agreement            Age estimations   Easily inter-

preted 

Poor because it is sensitive 

to range of ages used in the 

analysis 

  

12 Rho – average Spearman’s rho            Age estimations   Easily inter-

preted 

  Just a correlation coef-

ficient 

13 W – Kendal’s coefficient of con-

cordance 

           Age estimations   Easily inter-

preted 
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No. Method 

Descrip-

tive sta-

tistics 

Statis-

tical 

test 

One  

single 

number 

Visual 

method 

Model-

based  

approach 

Preci-

sion 
Bias Data requirements 

Diagnos-

tics 
Strength Weakness Observations 

14 Tau – average tau            Age estimations   Easily inter-

preted 

    

15 MAOI – mode analysis of oto-

lith increments (e.g. with mixed 

effects models) 

           Data on individual 

rings of each oto-

lith as marked by 

readers are re-

quired (WebGR) 

   Complex output   

16 VAOI – visual analysis of oto-

lith increments (e.g. using Pho-

toshop) 

      1       Data on individual 

rings of each oto-

lith as marked by 

readers are re-

quired (WebGR) 

     Use layers in Pho-

toshop to visualize age 

estimations and re-

sults from the mixed-

effects model 

17 AOI – Analysis of otolith incre-

ments (e.g. using simple statis-

tics) 

           Data on individual 

rings of each oto-

lith as marked by 

readers are re-

quired (WebGR) 

 Summary 

across readers 

and otoliths 

  Requires further de-

velopment 

18 AREM – age reading error ma-

trix 

            Age estimations       Bridge towards stock 

assessment; matrix can 

use observed or mod-

eled data 
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It is important to note that all of the bias tests (both the age-bias plot and the statistical 

tests of symmetry) are limited to pair-wise comparisons of age estimations; it is not 

possible to compare more than two readings at a time. In contrast, the precision 

measures, diagnostics, and age error matrices can all be based on as many age estima-

tions as are available. 

Age readers are often most interested in determining the cause of any systematic dif-

ferences in age estimation (bias) with other age readers, since it may be possible to 

correct the error if the source is known. These methods may be referred to as diagnostic 

methods (methods 15–17). The use of multiple layers in Photoshop (or some other im-

aging program), with one layer per age reader, allows rapid comparison of growth 

increment interpretations across multiple age readers. This approach is visual and not 

quantitative. Alternatively, simple descriptive statistics can be computed and results 

analysed or mixed-effect models may be applied to growth-increment width data, 

providing a quantitative diagnostic of systematic growth-increment interpretation dif-

ferences. Although these methods likely provide too much detail for stock assessment 

experts, they represent useful products of an age calibration exercise. 

Age error matrices (Method 18) provide a quantitative summary of age estimation er-

ror. In such matrices, whether empirical or model-based (sensu Punt et al., 2008), mis-

reading errors are reported as the proportion of an age group that is erroneously mis-

aged as other ages. Empirical age error matrices are readily calculated from age fre-

quency tables, while model-based matrices require specialized software. Age error ma-

trices are of particular value to stock assessment clients, since they can be incorporated 

into age-structured stock assessment models to correct for systematic and unavoidable 

age estimation error. Thus, they are an important product of an age calibration exercise. 

6.1.2 Test of methods on a known dataset 

The quantitative parameters were tested on known datasets of two fish species. A set 

of haddock age test data was taken from an international age calibration study, involv-

ing experts from seven age estimation laboratories and a number of age-validated oto-

liths. Two subsets of data were used in the examples shown below; the first compares 

two very similar sets of age estimations (Dataset 1), while the second compares age 

estimations where one set of age estimations shows substantial bias (Dataset 2). A soft-

ware tool from NOAA (http://www.nefsc.noaa.gov/fbp/age-prec/) was used to per-

form this analysis. 

In Figure 6.1, the age-bias plot shows no appreciable bias between the two sets of age 

estimations, although the test age shows a very slight tendency to being underesti-

mated at ages 5–6 and overestimated at ages 7–8. The Bowker (1948) test of symmetry 

may detect this difference, since the test result is statistically significant (p = 0.00). As 

such, it indicates that this test is highly sensitive to very small differences. The CV of 

4.75% indicates that there is reasonably good precision between the two sets of age 

estimations, since CV values < 5% are considered relatively precise (Campana, 2001). 

The APE is not shown, but the CV is mathematically equal to 1.41 times the APE. 

Figure 6.2 shows the age frequency table that results from this comparison, which is 

later used to generate the age error matrix. In an additional test of symmetry (the Hoe-

nig test) significant differences also appear between the age estimations, but they are 

of smaller magnitude than in the Bowker test. The Hoenig test shows a close-to-signif-

icant difference between age estimations (p = 0.057) and is thus not as significant as the 

Bowker test (p = 0.001). This difference arises because the Hoenig test pools the values 

along the diagonal, whereas the Bowker test does not pool the cells, so some of the high 

http://www.nefsc.noaa.gov/fbp/age-prec/
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deviations create rather small p values (McBride, 2015). The final product is the age 

error matrix, which is shown in Figure 6.3. This matrix shows the proportion of each 

test age (the reference age) erroneously attributed to other ages. Therefore, the sum of 

each row is 1, equal to 100%. 

The second test set used data with considerable bias. Figure 6.4 illustrates how the age-

bias plot indicates that the test age is substantially underestimated relative to produc-

tion ages > 5 years. The Bowker test p value of 0.00 confirms that age underestimation 

is significant. The CV of 25.21% is also very high, but in this case, a measure of precision 

is much less important, given the very high bias between the two sets of age estima-

tions. In Figure 6.5, it is evident that the age frequency table as well as the highly sig-

nificant p value of 0.000 from the Hoenig test confirms such bias. Finally, Figure 6.6 

shows how the age error matrix from this comparison appears. 
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Figure 6.1. Age-bias plot for Dataset 1 without detectable bias. 
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Figure 6.2. Age frequency table from the comparison and an additional test of symmetry (Hoenig test) on the data without detectable bias (Dataset 1). 

Sample Type/date Species Haddock Age-frequency table: 

Aged 2X by ___ Date Production Age

Testee WHvsLH Test Age 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

0

1 3 3

Bowker's Test Evans-HoenigTest 2 1 1

Total Chi-sq 56.63 Total Chi-sq 9.16 3 1 61 9 5 76

d.f. 27 d.f. 4 4 77 13 2 92

P-value 0.001 P-value 0.057 5 3 14 6 1 24

6 4 5 3 12

7 4 38 11 1 1 55

DIRECTIONS 8 1 17 43 6 5 72

9 1 1 24 36 12 3 77

10 4 4 5 3 2 18

11 2 2 2 6 1 13

12 1 4 6 3 14

13 2 1 3

14 1 1 1 3

15 1 1

16

Total 3 1 62 89 36 19 60 84 50 30 20 8 2 464

http://www.nefsc.noaa.gov/fbp/age-prec/

This template was created by Sandy Sutherland at the NOAA Fisheries Service

10/14/14

1) Enter production ages in A and test ages in B, replacing sample ages.

2) Refresh  Pivot table (AR1).

3) Edit d.f. value for Hoenig-Evans test. The d.f. is the maximum age difference between the paired 

ages; the color scale can help in determining this.

4) Fill in labels (species, date, etc.) at top of printout (Cells D1-K3).

5) Save to a distinctive filename before printing.

**For more information, go to 
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Figure 6.3. The final outcome: the age error matrix on Dataset 1. 
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 ‘  

Figure 6.4. Analysis of the dataset with substantial bias (Dataset 2).  
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Figure 6.5. Symmetry test on the data with substantial bias (Dataset 2).
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Figure 6.6. The age error matrix on Dataset 2. 

Although the NOAA software tool was used to generate all of the output shown above, 

it should be possible to generate all of these products from SmartDots or other software 

after appropriate revision. 

6.1.3 Additional analysis based on distances between identified otolith structures 

The analysis of growth increments can be very informative about the reasoning behind 

the attribution of a specific age. As such, the comparative analysis across readers can 

be used to evaluate the age estimation process and detect severe differences in the in-

terpretation of the otolith. The information generated will be valuable in correcting 

errors or calling attention to problems detected in bias and precision analysis. 

An increment is the difference in distance between successive marks. Marks are poten-

tial rings in the otolith, which the reader identifies during the process of reading ages: 

𝐼𝑚 = 𝐷𝑚 − 𝐷𝑚−1 

where 𝐼 is an increment, 𝐷 is the distance to the otolith centre, and 𝑚 indexes the marks. 

Note that, if readers are correct, the distance between two successive marks represents 

the otolith growth, which, on average, should be similar across readers and otoliths. 

SmartDots stores information about the distance between marks, which constitutes the 

tool to identify the rings that form the basis for attributing a specific age to an individ-

ual. Using such information allows several analyses to be carried out, namely (i) visual 

analysis of the marks in each otolith using image editing tools; (ii) statistics to extend 

this analysis and allow a wider assessment of the consistency between readers; and/or 

(iii) mixed-effects models to test if readers are interpreting the otolith rings in a con-

sistent way. The present chapter is focused on the second analysis; an example of using 

mixed-effects models can be seen in the report of the Workshop on Scoping for Inte-

grated Baltic Cod Assessment (ICES, 2014c). 

Figure 6.7 presents the increments by mark for four readers (in lines) and four otoliths 

(in panels). This analysis is qualitatively similar to overlaying the images of each reader 

for a specific otolith to assess their consistency (as illustrated in Figure 6.8). It allows a 

visual perspective of consistency among readers in interpretation of the structures 

counted. By comparing the increments as identified by age readers, such an analysis 
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offers a better understanding of the differences detected among age readers when as-

signing a numerical value as “age” to a given otolith: 

𝐶𝑉𝑟𝑚 =
√

1

𝑛−1
∑ (𝐼𝑟𝑚𝑖−𝐼�̅�𝑚)2𝑛

𝑖

𝐼�̅�𝑚
 (3) 

with 

𝐼�̅�𝑚 =
1

𝑛
∑ 𝐼𝑟𝑚𝑖

𝑛
𝑖  (4) 

where n is the incremental value, 𝑟 indexes readers, and 𝑖 indexes otoliths. 

The analysis relates to a reader’s personal consistency. It shows the consistency of in-

dividual readers in the interpretation of rings. In this case, Reader 8 was off on the 

initial rings/marks while Reader 5 was off on the older ages. The other readers seem 

consistent and present an increasing precision for older ages (Figure 6.9). 

 

 

Figure 6.7. Width increments or distance to previous mark (y-axis: increments) for four readers 

(lines) and four otoliths (panels). The plots show the consistency across readers and otoliths in the 

identification of potential rings (x-axis: mark).  
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Figure 6.8. Matching otoliths (Molva molva) are shown as well as the markings made by each reader, 

overlaid in one picture. 

 

 

Figure 6.9. Coefficient of variation of the increment by mark (on the x-axis, 2–11 that each reader, 

identified by different symbols (5, 8, 11, and 14), set across otoliths. 

It is important to note that this analysis is based on a dataset that is not fully appropri-

ate for such an analysis. To carry out this type of analysis, distances between rings 

should be measured along the same axis, and this axis should be as close to linear as 

possible. The present workshops conducted with WebGR do not use this standard, 

thus increasing the variability by mark. Furthermore, the WebGR design does not use 

the centre of the nucleus. The first mark is counted as one age, which invalidates the 

analysis of the first increment, a recognized major source of error. All of these errors 

can be rectified, however, without having to heavily redesign WebGR. 
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6.2 Existing software 

Direct age estimation studies require specific software tools to be used in calibration 

exchanges and workshops. Nowadays, most of these studies are based on digital im-

ages of calcified structures where readers can annotate their readings. This procedure 

contributes to the standardization of age estimation interpretation criteria among read-

ers (e.g. the misinterpretation of false checks or the differences in the position of the 

first annulus) and, at the same time, the annotated images allow for measurement of 

age increments. 

Other tools that have been used are electronic forms or integrated databases that con-

tain sampling information as well as data on assigned ages or growth increments. 

When non-integrated software is used, these forms have been developed into spread-

sheets that are used for further statistical analysis in order to obtain precision, accuracy 

(relative or absolute), bias analysis, and other outputs. In the case of integrated data-

bases, none of the analysed programs implemented routines for statistical analysis, but 

all of them have extraction routines that allow data to be exported to statistical pro-

grams. 

Integrating images and age estimation data analysis in the same software may reduce 

processing time and avoid data handling errors; for the time being, however, available 

software is serving both requirements separately. 

The software currently available is characterized according to two categories: 

(a) imaging software for age or maturity calibration exercises, based on elec-

tronic images of calcified structures or gonads; 

(b) software for statistical analysis of the results of the calibration exercises. 

For category (a), existing software is described in Table 6.2. In all of this software it is 

possible to calibrate images, integrate annotated layers from different readers into each 

of the images, and measure true distances between consecutive marks. Table 6.2 also 

includes information about the interface, open-source availability, integration with da-

tabases, measurements of age increments, and, if the software is compatible, with the 

multilayer-TIF format, which is the format most commonly employed when working 

with various annotated layers in images. 
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Table 6.2. Image analysis software for age and maturity calibration exercises. In all of these pro-

grams the user can calibrate images, annotate, and measure. 

Software 

Characteristics 

Web-

based 

Type of  

licence 
Main purpose 

Integrated  

database 

Multilayer 

TIF format 

Ease for  

measuring age 

increments 

Smartdots Yes Open-source Calibration exercises Yes No Automatic 

Adobe Photoshop No Commercial Photo editor No Yes Time-consuming 

PaintShop Pro No Commercial Photo editor No Yes Time-consuming 

GIMP No Open-source Photo editor No No Time-consuming 

Image J (tree rings) No Open-source Image analysis Yes Yes Automatic 

Visilog (TNPC) No Commercial Image analysis Yes No Automatic 

NIS-Elements D No Commercial Image analysis 
Yes (only marked 

layers) 
No Automatic 

Image-Pro (otolith 

fish age estimation) 
No Commercial Image analysis Yes Yes Automatic 

Image-Pro (age and 

shape) 
No Commercial Image analysis Yes Yes Automatic 

The tools for statistical computing and graphics that were known and available at the 

time of writing this chapter are shown in Table 6.3, with a description of the statistical 

methods computed by software. 
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Table 6.3. Software for statistical analysis. 

Software Framework Source Data handling 

Computed statistics and graphics 

MSD CCC TDI CP MAD PA APE CV AREM 

Age-

bias 

plot 

Symmetry test Rho W Tau 

Mixed-

effects 

models 

Age estimation compari-

sons (Eltink, 2000; Eltink 

et al., 2000 spreadsheet) 

MS-Excel  
Easy to use, prone to 

errors 
Yes    Yes Yes  Yes  Yes 

Wilcoxon 

signed-ranks 

test 

    

NOAA–NEFSC Excel 

workbooks (templates for 

calculating age estima-

tion precision) 

MS-Excel 
http://www.nefsc.noaa.gov/fb

p/age-prec/index.html 

Easy to use, prone to 

errors 
     Yes  Yes  Yes 

McNemar; 

Evan and Hoe-

nig; Bowker 

    

Agreement R-package http://cran.r-project.org/ 
Knowledge of R  

required 
Yes Yes Yes Yes            

agRee R-package http://cran.r-project.org/ 
Knowledge of R  

required 
 Yes              

irr R-package http://cran.r-project.org/ 
Knowledge of R  

required 
 Yes           Yes   

KappaGUI R-package http://cran.r-project.org/ 
Knowledge of R  

required 
 Yes           Yes  Yes 

FSA R-package http://derekogle.com/fishR/ 
Knowledge of R  

required 
    Yes Yes Yes Yes  Yes 

McNemar; 

Evan and Hoe-

nig; Bowker 

    

nwfscAgeingError 

(AGEMAT.exe) (Punt et 

al., 2008)  

R-package 
https://github.com/nwfsc-as-

sess/nwfscAgeingError/ 

Knowledge of R  

required 
        Yes       

lme4 R-package http://cran.r-project.org/ 
Knowledge of R  

required 
               

MSD = mean square deviation, CCC = concordance correlation coefficient, TDI = total deviation index, CP = coverage probability, MAD = modal age difference, PA = percentage agreement, 

APE = average percentage error, CV = coefficient of variation, AREM = age reading error matrix, Rho = average Spearman’s rho, W = Kendall’s coefficient of concordance, Tau = average 

tau.



148  | ICES Cooperative Research Report No. 346 

 

 

6.3 Guidelines for data summaries and analysis outputs from calibration work-

shops 

A calibration workshop has the basic purpose, as part of the quality assurance proce-

dure, to identify sources of errors and inconsistencies among laboratories in stock-spe-

cific biological measurements, quantify these errors, and ultimately include them in 

stock assessments. It is the intention that the results of these exercises, as already pub-

lished in extensive ICES reports, shall reach both the personnel observing and classify-

ing the biological structures as well as the scientists involved in the estimation of stock 

biological parameters. 

Different output formats from age estimation workshops – from submitted tables of 

reader raw data over age estimation error matrices to summary statistics of variation 

and bias – are appropriate, depending on the audience of the report and results. 

Age estimation error matrices provide an additional level of detail useful for routine 

stock assessment exercises. However, disaggregated data at individual fish and reader 

levels, with additional spatially and temporally resolved covariates, would probably 

be preferable in many benchmark situations where modelling of data quality is an is-

sue. 

It is recommended that the following methods/analyses are run by age calibration 

workshops: 

 To access bias: 

o ABP – age-bias plot; 

o TS – tests of symmetry. 

 To access precision: 

o APE – average percentage error; or 

o CV – coefficient of variation. 

 As diagnostics for problems found by the previous analysis: 

o Analysis of otolith increments, both through image layers and statis-

tically. 

 As output to stock assessment groups: 

o AEM – age reading error matrix. 

It is important to note that, if validated material is unavailable, a true bias cannot be 

computed and the analysis is limited regarding its assessment of accuracy. It is thus 

recommended that regardless of the scope of the calibration workshop, an effort should 

be made to validate the age estimation of the species/stock under consideration. 

With regards to the software packages available, WebGR is the most suitable for run-

ning workshops, while FSA (fisheries stock assessment methods) is the most complete 

for the analysis of age estimation results. None of these packages can run all of the 

methods recommended here, although they can be further developed to accommodate 

most of them. WebGR in particular has the potential to develop and implement the 

methods recommended. 

6.4 Future perspectives 

Within ICES, the assessment and benchmark working groups have hitherto, in general, 

been less concerned with explicit age estimation errors, as age estimations were as-

sumed to be unbiased. Defining the best format for age estimation errors to be included 

in stock assessment and benchmarks has been indicated as a topic for further research. 
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Of immediate usefulness would be an estimate of the ages that may be confounded. 

Another modelling advantage would be the possibility to separate age estimation er-

rors from sampling errors in both catches and surveys. However, this separation would 

also have potential effects on estimates of weight-at-age and maturity-at-age in the 

stock assessment model fits. 

The ability to account for age estimation error is included in several stock assessment 

programs, such as Stock Synthesis (Methot, 2000, 2007), Coleraine (Hilborn et al., 2003), 

and CASAL (Bull et al., 2003). However, although all of these assessment programs 

include the ability to account for age estimation error, based on an age estimation error 

matrix, they do not include the facility to internally estimate age estimation error ma-

trices (Punt et al., 2008). Also, assessment models are not uniformly structured. For ex-

ample, in assessment programs used in southern Australia, it is possible to enter age 

estimation errors per individual reader (Punt et al., 2008), whereas Stock Synthesis 

(Methot, 2000) allows only a single vector of age estimation error as input to the model 

(Dorval et al., 2013). 

Use of the age error matrix in age-structured models has been well described. Methods 

for using and interpreting age error matrices outside of age-structured assessments 

should be explored. For instance, how age estimation error affects methods for as-

sessing data-limited stocks does not appear to be studied in equal detail. However, 

methods using the von Bertalanffy growth curve and its parameters L∞ and K, esti-

mated from reading hard structures from animals, probably suffer from age estimation 

error. 

The link between calibration workshops and stock assessment is very weak and not 

operational, which makes it very difficult to integrate these error sources. While age 

estimation error matrices could be the right output for age-calibration workshops to 

provide to stock assessment working groups, operational integration of age estimation 

errors and/or maturity-staging errors into stock assessment will require methodologi-

cal developments of available assessment models and calibration analysis tools. 
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Annex 2:  Annotated images of the species included in Chapter 2 

 

Saithe 

 

Figure A.2.1. Transversal section of a saithe otolith, viewed with transmitted light and with annota-

tions shown as red circles. Capture location = Barents Sea; sampling date = 10 October 2014; fish 

size = 46 cm; estimated age = 4 years (Source: ICES, 2015). 

Whiting 

 

Figure A.2.2. Transversal section of a whiting otolith, viewed with transmitted light and with anno-

tations shown as red circles. Capture location = North Sea; sampling date = 14 May 2010; fish size = 

31 cm; estimated age = 3 years (Image: Joanne Smith, CEFAS). 
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Cod 

 

Figure A.2.3. Transversal section of a North Sea cod otolith, viewed with transmitted light and with 

annotations as blue circles. Capture location = North Sea; sampling date = first quarter 2005/2006; 

estimated age = 6 years (Source: ICES, 2008a). 

 

Figure A.2.4. Transversal section of an eastern Baltic cod otolith, viewed with transmitted light and 

with annotations of four different readers represented by different colours. Capture location = ICES 

Subdivision 25; sampling date = 11 February 2013; fish size = 35 cm; estimated ages = 2, 3, 4, and 

6 years (Image: Karin Hüssy, DTU Aqua). 
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Blue whiting 

 

Figure A.2.5. Image of a whole blue whiting otolith with annotations of annuli (red circles). Capture 

location = ICES Subdivision 25; sampling date = first quarter 2009; fish size = 29 cm; sex = male; 

estimated age = 7 years (Source: ICES, 2013a). 
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Annex 3:  ICES age calibrat ion workshops (1992–2012) 

A total of 31 ICES reports on age estimation and calibration exercises, published between 1992 and 2012, were reviewed. Most of them used various 

methods to compare age estimations, such as percentage of agreement (PA), average percent error (APE), standard deviation (s.d.), and coefficient of 

variation (CV), referring to the guidelines and tools for age reading comparisons (Eltink et al., 2000). The age-bias plot is a graphical representation of the 

comparisons most commonly used among age readers. Since 2012 further calibration workshops have been held, for details please refer to the species-

specific chapters. The majority of the calibration workshops were using the methods described in this table. However, more recent workshops (2017 

onwards) have made use of SmartDots, applying associated statistical analysis tools. All reports are available on the Data Quality Assurance Repository 

(ICES, 2018a). 

 

Table A.3.1. ICES age calibration workshops reviewed during the meeting for the use of different analytical methods, software, and diagnostics. Abbreviations used are: ALK = 

age–length key, ANOVA = Analysis of variance (models), APE = average percentage error, CV = coefficient of variation, EDA = exploratory data analysis, EFAN = European 

Fish Ageing Network, GIMP2.6 = GNU Image Manipulation Program, MAD = modal age difference, MIA = marginal increment analysis, ORACLE = improved version of 

Eltink et al. (2000), OTC = oxytetracycline, PA = percentage agreement, QCapture = imaging software, TNPC = Numerical Treatment of Calcified Structures, WebGR = fish 

growth and reproduction software. 

Workshop Year Analysis Methods, software Age parameters Presentation type 

Second Workshop on Age Reading of 

Red Mullet and Striped Red Mullet 

(WKACM2; ICES, 2012b) 

2012 
CV; MAD; PA; relative bias; precision coef-

ficient; mean age; first/second reading 

TNPC software; Eltink et al. (2000) 

spreadsheet 

Marginal increment analysis; otolith dis-

tances from the nucleus to the edge and to 

each ring 

Histograms, bar plot, linear, box plot; tables; 

otolith photos; smart arts 

Roundnose Grenadier (Coryphaenoides ru-

pestris) Otolith Exchange Scheme 2011 

(Mahé et al., 2012a) 

2011 
PA; MAD; CV; relative bias; s.d.; precision 

coefficient 
Not mentioned 

Distance between the nucleus and the first 

translucent ring 

Bar plots, bias plots, linear graphs; otolith 

photos; tables 

Sole (Solea solea) in the Bay of Biscay Oto-

lith Exchange Scheme 2011 (Mahé et al., 

2012b) 

2011 PA; MAD; CV; relative bias Not mentioned Fish length; male/female 
Bar plots, bias plots, linear graphs; tables; oto-

lith photos 

Report on Otolith Exchange of European 

Hake (Piñeiro and Saínza, 2011) 
2011 PA; CV; APE 

WebGR; Eltink et al. (2000) 

spreadsheet 
Age 

Fish length histogram, box-whisker plots; oto-

lith photos; tables 

Report of the Workshop on Age Reading 

of Dab (WKARDAB; ICES, 2010f) 
2010 PA; CV 

Eltink et al. (2000) spreadsheet; 

TNPC software 
Otolith radius 

Fish length histogram, CV, PA, and s.d. were 

plotted against modal age; otolith photos, ref-

erence collection images; tables 

Report of the Workshop on Age Reading 

of North Sea (4) and Skagerrak–Kattegat 

(3.a) Plaice (WKARP; ICES, 2010c) 

2010 PA; CV; age bias; APE WebGR and TNPC software Age 

Reference collection images; age composition 

histogram; otolith photos; bar plots (type of 

edge), bias plots; tables 
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Workshop Year Analysis Methods, software Age parameters Presentation type 

Report of the Workshop on Age Reading 

of Red Mullet (Mullus barbatus) and 

Striped Mullet (Mullus surmuletus) 

(WKACM; ICES, 2009c) 

2009 

Agreement; CV; PA; standard deviation by 

modal age; bias; back-calculation of 

lengths; the Kruskal-Wallis test; marginal 

increment analysis  

TNPC; Eltink et al. (2000) 

spreadsheet 
Age estimation; ring radius; length frequency 

Tables; linear plots; histograms; box-and-

whisker plots 

Workshop on Age Reading of European 

and American Eel (WKAREA; 

ICES, 2009d) 

2009 Back-calculated growth rates Eltink et al. (2000) spreadsheet 
Age estimation; validation of age estimation; 

fish length 
Not available 

Report of the Workshop on Age Reading 

of Greenland Cod (WKARGC; 

ICES, 2009e) 

2009 
Modal length progression; deviations from 

modal age estimates; CV; s.d.; PA 

EFAN methodology (Eltink et al., 

2000; Eltink, 2000); the model was 

coded in Proc NLIN in SAS 

Fish size; age estimations; age group is de-

scribed by three parameters: the mean length 

(m), the standard deviation (s), and the abun-

dance (a); age–length key 

Histograms; age-bias plots, length distribution 

Report of the Workshop on Age Estima-

tion of European Hake (WKAEH; 

ICES, 2009a) 

2009 

Accuracy and precision; quality control 

and quality assurance (PA, APE, CV); Wil-

coxon signed ranks tests (Wilcoxon, 1945); 

transition matrix 

GIMP2.6 software; TNPC V4.1; 

Excel ad hoc Workbook, “AGE 

COMPARATIONS.XLS” (Eltink et 

al., 2000) 

ALKs; age estimation (blind and supervised); 

OTC validation; assumed a reference age for 

comparison 

Histograms (length frequency distribution); 

scatterplot; box-whisker plots (for age esti-

mate distribution analysis and ring-to-nucleus 

distances distribution analysis) 

Workshop on Age Reading of European 

Anchovy (WKARA; ICES, 2010d) 
2009 Von Bertalanffy growth equation 

Workbook age estimation compar-

isons of Eltink (2000) and guide-

lines and tools for age estimation 

comparisons (Eltink et al., 2000). 

Microincrement daily growth as validation 

for first annual ring; age estimation; MIA 
Tables; age-bias plots 

Report of the Workshop on Age Reading 

of Mackerel (WKARMAC; ICES, 2010e) 
2010 CV; PA; bias 

Age comparison worksheet 

(Eltink et al., 2000) 

Age estimation; otolith weight; length distri-

bution 
Tables; age-bias plots 

Report of the Workshop on Age Reading 

of Turbot (WKART; ICES, 2008d) 
2008 PA 

ORACLE, which is an improved 

version of the Eltink et al. (2000) 

spreadsheet 

  Tables, otolith photos 

Report of the Workshop on Age Determi-

nation of Redfish (WKADR; ICES, 2009b) 
2008 PA; CV; APE; von Bertalanffy QCapture software   

Age-bias plot, otolith schematic drawing, oto-

lith drawings showing growth timing 

Report of the Workshop on Age Reading 

of Baltic Herring (WKARBH; 

ICES, 2008c) 

2008 PA; CV 
Eltink et al. (2000) spreadsheet; 

validation (increment width) 
  

The grey tone profile (for validation), otolith 

photos; age-bias plot 

Report of the 2nd Workshop on Age 

Reading of Flounder (WKARFLO; 

ICES, 2008e) 

2008 
PA; s.d.; MAD; CV; APE; relative bias; one-

sample Wilcoxon rank sum test; t-test 
SPSS 15.0 Fish length/age; stained otoliths; male/female 

Scatterplots, age-bias plot; otolith photos; ta-

bles 

Report of the Workshop on Age Reading 

of North Sea Cod (WKARNSC; 

ICES, 2008f) 

2008 
PA; s.d.; CV; the Wilcoxon signed ranks 

test; relative bias; MAD 
Spreadsheet software 

Marking the identified age structures on an 

agreed axis on digital images; otolith weight; 

fish length/age 

Otolith photos; linear plots, histogram, Gantt 

chart; tables 
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Workshop Year Analysis Methods, software Age parameters Presentation type 

Report of the Workshop on Age Reading 

of Baltic Sprat (WKARBS; ICES, 2008b) 
2008 

PA; CV; the Wilcoxon signed ranks test; 

MAD; inter-reader bias 
Not mentioned Age estimation Tables; age-bias plot 

Report of the Workshop on Age Estima-

tion of Sprat (Torstensen et al., 2004) 
2004 PA; CV; relative bias; age bias Not mentioned 

Validation (MIA and otolith weight fre-

quency) 

Age-bias plots; tables; otolith photos (daily 

and annual rings); growth plot, histogram 

Workshop on Megrim Otolith Age Read-

ings (Egan et al., 2004) 
2004 

PA; CV; APE; exploratory data analysis 

(EDA) 
Eltink et al. (2000) spreadsheet Fish length frequency 

Box-whisker plots, age-bias plots, histogram; 

otoliths photos; tables 

Plaice Age Determination Exchange and 

Workshop, preliminary report  

(Easey, 2003) 

2003 PA; CV; relative bias Eltink et al. (2000) spreadsheet Age None 

Black Scabbardfish (Aphanopus carbo) 

Otolith Exchange (1998–1999) (Morales-

Nin, 1999) 

1999 
Age-bias plot; s.d.; PA; MAD; Bertalanffy 

curve 
Eltink et al. (2000) spreadsheet Fish length vs. age 

Linear, box plot, scatterplot, histogram 

graphs; tables 

Horse Mackerel Otolith Workshop 

(ICES, 1999) 
1999 APE; s.d.; CV; PA Eltink et al. (2000) spreadsheet Fish length vs. age 

Histogram, age-bias plot, linear, bar plot, 

notched box plot; graphs; otolith photos 

Report of the Workshop on Mackerel 

Otolith Reading (ICES, 1995) 
1995 

PA; CV; age-bias plot; s.d.; the Wilcoxon 

signed ranks test; modal age difference 
Not mentioned 

Marked–recaptured fish length/age; age from 

the reader/modal age 

Regression lines, whisker plots, notched box 

plot, age-bias plots; tables 

Report of the Workshop on Age Reading 

of Sebastes spp. (ICES, 1996) 
1995 

Age readers comparison; scale/otolith com-

parison 
Not mentioned Age of differently prepared otoliths Scatter plots; tables 

Final Results of the Mackerel (Scomber 

scombrus, L.) Exchange Programme for 

Otoliths 1994 (Villamor and Meixide, 

1995) 

1995 

PA; CV; APE; s.d.; age-bias plot; the Wil-

coxon signed ranks test 
Eltink et al. (2000) spreadsheet Fish length vs. age 

Linear, box plot, whisker plots, bar plots, his-

togram graphs; tables 

Average length by age; PA among readers; 

s.d.; the Wilcoxon signed ranks test 
Eltink et al. (2000) spreadsheet Age estimation 

Notched box and whisker plot, age-bias plots 

of each age reader against the modal age, his-

tograms 

PA; CV; APE; s.d.; age-bias plot; the Wil-

coxon signed ranks test 
Eltink et al. (2000) spreadsheet Fish length/age 

Linear, box plot whisker plots, bar plots, histo-

gram graphs, age-bias plot; tables 

Report of the Blue Whiting Otolith Read-

ing Workshop (ICES, 1993) 
1992 

PA; s.d.; CV Not mentioned 
Fish length/weight; otolith 

length/height/weight/diameter, ring diameter 

Linear, progression plot, box plot graphs; ta-

bles 

PA; s.d.; CV; ANOVA for differences in the 

mean ring diameter 
Not mentioned 

Age estimation; ring diameter; otolith diame-

ter 

Tables and graphs (scatterplots, regression 

line, box plots, linear plot) 

PA; s.d.; CV of mean age Not mentioned 
Fish length/weight; otolith 

length/height/weight/ring diameter 

Linear, progression plot, box plot graphs; ta-

bles 
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Annex 4:  Abbreviat ions and acronyms used in this publication  

 

AEM age error matrix 

ALK age-length key 

APE average percentage error 

Bowers zone A hyaline ring laid down in autumn, followed by a true hyaline 

winter zone 

CFP EU’s Common Fisheries Policy 

CS calcified structure 

CV coefficient of variation 

DCF EU’s Data Collection Framework 

DGI daily growth increments 

DST data storage tag 

EARF European Age Readers’ Forum 

EFAN European Fish Ageing Network 

GIMP software GNU Image Manipulation Program – open-source software 

IMR Norwegian Marine Institute 

INAB Irish National Accreditation Board 

ISO International Organization for Standardization 

LFA length frequency analysis 

LFD length frequency distribution 

MIA marginal increment analysis 

OTC oxytetracycline 

OWFD otolith weight frequency distribution 

PA percentage of agreement 

PGCCDBS Planning Group on Commercial Catch, Discards and Biological 

Sampling 

POF post-ovulatory follicle 

QA quality assurance 

QC quality control 

s.d. standard deviation 

TACADAR Towards Accreditation and Certification of Age Determination of 

Aquatic Resources (EU-funded project) 

TL total length 

TNPC software Traitement Numérique des Pièces Calcifiées (Numerical Treatment 

of Calcified Structures) 
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UKAS United Kingdom Accreditation service 

WDS wavelength dispersive spectrometer (or electron microprobe) 

WebGR Web service for support of Growth and Reproduction studies 

(open-source software) 

WGBIOP Working Group on Biological Parameters 

WKAEH Workshop on Age Estimation of European Hake 

WKAMDEEP Workshop on Age Estimation of Deep-water Species (2013) 

WKARBLU Workshop on Age Reading of Blue Whiting 

WKARNSC Workshop on Age Reading of North Sea Cod 

WKARP Workshop on Age Reading of Saithe (Pollachius virens) 

XSA Extended Survivors Analysis (stock assessment model) 
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