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Abstract: This study estimated national and regional-level gasoline and diesel demand elasticities in 

Sweden using county-level panel data obtained between 2001 and 2015, which were used to estimate 

regional effects of a cost effective achievement of the Swedish targets for CO2 emissions in the transport 

sector. The national-level elasticities were estimated by employing fixed effect (FE) and general method 

of moments (GMM) estimators, while county-level elasticities were calculated by considering the 

weight of each fuel type share at regional and national levels. Results from the national level indicated 

that per capita income, own and substitute prices, and per capita vehicle stocks were statistically 

significant in determining gasoline demand, while per capita income and own price were statistically 

significant in determining diesel demand. The calculated regional elasticities showed a variation 

between counties, with the highest being approximately 40 % higher than the lowest in absolute terms. 

A simulation of fuel taxes to achieve the Swedish 2030 emission target for the transport sector indicated 

considerable differences between counties in demand responses and private costs in relation to 

disposable income.  

Keywords: Fuel demand, carbon tax, elasticity, dynamic panel data, region, Sweden 
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1. Introduction  

Gasoline and diesel consumption account for 35 % of total CO2 emissions by OECD countries (IEA, 

2017). For this reason, various climate policy instruments have been recommended in order to reduce 

emissions from the transport sector. For instance, the implementation of a fuel tax is regarded as an 

effective policy to limit CO2 emissions from gasoline and diesel (Bruvoll and Larsen, 2004; Sterner, 

2007, 2012; Lin and Li, 2011). In this regard, countries such as Finland, Netherland, Sweden and 

Norway have been pioneers in adopting taxes on fuel consumption (Lin and Li, 2011; Sumner et al., 

2011). Subsequently countries such as the United Kingdom, United States and Canada have introduced 

a carbon tax to reduce emissions of greenhouse gases (GHG) (Sumner et al., 2011). Developing 

countries, such as Costa Rica, Indonesia and Chile, have also implemented carbon taxes to reduce 

pollutant emissions and ease urban traffic congestion (Blackman et al., 2010; Parry and Strand, 2012; 

Yusuf and Resosudarmo, 2015). 

Several studies have examined the incidence of fuel taxes, in particular on gasoline, using homogenous 

elasticity estimates obtained from nationally aggregated data (Sterner, 2007; Kim et al., 2011; Lin and 

Li, 2011). However this approach may not be effective at achieving the desired emission reduction for 

a number of reasons. First, pooled estimates may not represent cross-sectional or regional heterogeneity. 

For instance, the study by Wadud et al. (2009) demonstrates that elasticities from aggregate data are 

limited in capturing detailed cross-sectional heterogeneity. Second, the assumption of identical slopes 

for all cross-sectional units in a dynamic panel data model could overestimate the speed of adjustment 

parameters, while the mean effects of exogenous covariates could be underestimated (Robertson and 

Symons, 1992; Maddala et al., 1997). The implication is that a tax-based climate policy using elasticities 

from pooled models may be inappropriate when looking at regional distributional effects (Verde and 

Tol, 2009; Grainger and Kolstad, 2010; Jiang and Shao, 2014; Vandyck and Van Regemorter, 2014). 

The objective of this paper was threefold: to estimate gasoline and diesel demand elasticity in Sweden 

using both national and regional-level elasticity estimates,  to derive the national tax required to achieve 

a CO2 emission reduction target for the transport sector in Sweden, and to calculate regional 

distributional effects of the tax. A balanced panel dataset on gasoline and diesel consumption, real per 

capita income, real gasoline prices and fleet size from 21 Swedish counties over the period of 2001-

2015 was used. Fixed effect (FE) and generalized method of moment (GMM) estimators were employed 

to derive national homogenous elasticity estimates, which were used to calculate a cost effective CO2 

tax to reach the emission target for the transport sector in Sweden. A framework to derive regional 

elasticity estimates at a national level, developed by Graham and Glaister (2006), was used in this study. 

Regional level gasoline and diesel demand elasticities were then computed for each region represented 

by the counties of Sweden, which were used to calculate regional effects in terms of demand responses 
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and private costs of the CO2  tax. The same methodology was employed by Crôtte et al. (2010) in 

Mexico to estimate gasoline per vehicle demand elasticities, and a significant variation was found in 

terms of magnitude between national and local levels.  

The main contribution of this study is to estimate consistent gasoline and diesel demand elasticities in 

Sweden and derive the corresponding regional level elasticities considering the relative variation in the 

share of each fuel type in total fuel consumption at a national and regional level. In this regard, most of 

the previous studies estimated gasoline and diesel demand elasticities for Sweden based on nationally 

aggregated time series data (e.g. Dahl, 2012; Brännlund, 2013), which may not capture the potential 

effect of spatial heterogeneity. In addition, results from the study provide a contribution to policy by 

examining the distributional effects at the regional level to achieve the national emission reduction 

target in the transport sector. 

The remainder of this study is organized as follows In Section 2, data descriptions are presented.  

Section 3 elaborates the empirical strategy used to estimate national elasticities, while the corresponding 

results are presented in Section 4. Section 5 derives the regional price elasticities for the 21 counties of 

Sweden and illustrates the regional implication of cost-effective national fuel taxes in order to reach the 

Swedish 2030 emission reduction targets for the transport sector. Finally, Section 6 presents a brief 

discussion and the conclusions of this study.   

  

2. Data description  

Following the literature, this study used annual aggregated data on the quantity of gasoline and diesel 

consumption, real per capita income, gasoline and diesel prices, and per capita vehicle stock to estimate 

the gasoline and diesel demand function (see Dahl 2012 for a review). The data consist of a panel 

comprising 21 Swedish counties between 2001 and 2015, which were collected from multiple sources. 

County-level deliveries of annual gasoline and diesel products to final consumers (1000 m3) were 

obtained from the SCB (2016). Annual real prices for gasoline and diesel (SEK/litre) were collected 

from the SEA (2016). Data on county level per capita income at current prices (1000 SEK) (1 Euro = 

9.36 SEK in average in 2015) were obtained from the SCB (2016). These were then converted into 2015 

prices using the consumer price index. Table 1 presents summary statistics for variables used in the 

regression equations.  
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Table 1: Summary of descriptive statistics for the variables in the regression  

Variables        Obs. Mean Std. Dev. Min Max 

Per capita gasoline consumption (m3/year) 315 0.808 0.168 0.400 1.189 

Per capita diesel consumption (m3/year) 315 0.838 0.248 0.321 1.838 

Per capita income (1000 SEKa/year) 315 320 52.40 233.3 584.9 

Real price of gasoline (SEKa/L) 315 12.90 1.341 10.69 14.98 

Real price of diesel (SEKa/L) 315 12.30 1.863 8.950 14.81 

Per capita vehicle stock (number) 315 0.491 0.040 0.381 0.600 

a 1 Euro = 9.36 SEK in average in 2015 

The consumption pattern of gasoline and diesel in the Swedish economy has undergone substantial 

change in the past fifteen years. Gasoline consumption in the transport sector fell by an average of 3 % 

per year, whereas diesel consumption increased by 4 % between 2001 and 2015 (SEA, 2016). The 

relatively rapid fall in gasoline consumption has largely been attributed to tax-incentivised dieselisation 

of EU regulations regarding CO2 emissions for new cars, which favours diesel vehicles and thus reduces 

the relative diesel price (e.g. IEA, 2013). Following an approach similar to Brännlund (2013), this trend 

was captured in the regression by including substitute prices as an additional explanatory variable. 

Efficiency improvements in the thermodynamic performance of diesel engines may also have made 

diesel cars more attractive to consumers (see Pock, 2010).  

Real prices of gasoline and diesel increased between 2001 and 2015, with an annual average rise of 2 

% for each fuel type (SEA, 2016). The average price of gasoline was higher than diesel during the study 

period (SEA, 2016).  

 

3. Econometric strategy 

For the national estimates, two methods were used and compared: a fixed effect model and a partial 

adjustment model, with the latter estimated using a general method of moment (GMM) estimator. The 

fixed effect model was implemented as a baseline model that shows the expected sign and magnitude 

of elasticity estimates. However, estimates from the GMM model were considered the ultimate results 

due to its robustness with regard to the issue of endogeneity, which is a concern with lagged dependent 

variable as an explanatory variable. In addition, the GMM estimator allows short-run and long-run 

elasticity estimates to be derived. 

3.1. Fixed effect model 

The analysis stated by estimating the baseline model through applying fixed effect estimator as follows:  
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log log log log log logk o s

it it it it it i itf p p y pv T                                    (1)     

where k

itf is a per capita fuel consumption for k fuel type, i.e. gasoline and diesel, o

itp is the own real 

fuel price, s

itp is the real substitute price, ity is real per capita income, and itpv denotes the per capita 

vehicle stock. The term i represents a county-specific time-invariant individual specific component.  

In recent years, technological progress has increasingly been made to vehicle engines, which has 

potentially contributed to the reduction in gasoline demand in most European countries. This effect was 

captured in equation (1) by adding a time trend, T, as an additional covariate. The term it denotes the 

stochastic error term. The parameters 𝛼, 𝛽, 𝜃, and 𝜆 can be interpreted as elasticities for own price, 

substitute price, per capita income and vehicle stock respectively. The subscripts i and t represent county 

and year respectively. The variable representing own price is expected to have a negative effect on fuel 

demand, whereas per capita income and substitute price are expected to have a positive effect. The 

average vehicle stock is expected to have either a positive or negative effect on per capita fuel 

consumption.  

Equation (1) can consistently estimate the parameter of interest if the idiosyncratic errors it are 

uncorrelated with the regressors (Cameron and Trivedi, 2009). However, the presence of any potential 

unobserved factors, such as inter-county mobility that varies over time, could make the elasticity 

estimates inconsistent. In addition, estimates based on equation (1) may not provide reliable elasticity 

estimates if, for instance, there is a relatively high level of adjustment by consumers to supply shocks 

in the gasoline and diesel market. To overcome this limitation, elasticity estimates are presented based 

on the partial adjustment model. 

3.2. Partial adjustment model  

One of the key features of the partial adjustment model is related to the consistent estimation of long-

run and short-run elasticities. This is based on the assumption that consumers are expected to adjust 

their consumption level over time by taking into account various shocks, such as a change in real 

income, price level and technology (Baltagi and Griffin, 1983; Dahl and Sterner, 1991; Pock, 2010). 

This implies that the observed k fuel type consumption level at a time t is adopted to the desired level

*k

itf through the familiar adjustment mechanism (see Houthakker and Taylor, 1966) as:  

 

*

1 1

,  
k k

it it

k k

it it

f f

f f



 

 
  
 

         0 1                                            (2) 

After combining equations (1) and (2), the log-linearised dynamic fuel demand equation that includes 

the lagged dependent variable is given as (Appendix A): 
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 
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                   (3) 

where the total error term, itu is defined in three distinct error components as:                                                       

     it i t itu                                                                                  (4) 

with 𝜂𝑖 representing a county-specific fixed effect, 𝜈𝑡 a time-specific effect and 𝜀𝑖𝑡 a white noise 

component. Dynamic specification allows a differentiation between short-run and long-run fuel demand 

elasticity estimates. Accordingly, the parameters 𝜓𝛼, 𝜓𝛽, 𝜓𝜃, 𝜓𝜆 and 𝜓𝜔 represent the short-run 

elasticities for own fuel price, substitute price, per capita income and average vehicle stock respectively. 

The corresponding long-run elasticities, i.e. 𝛼, 𝛽, 𝜃 and 𝜆, are derived by considering the speed of 

adjustment parameter given by the coefficient of lagged dependent variable 1 − 𝜓. This parameter is 

supposed to be statistically significant and positive in the case where there is a dynamic process. 

 

3.3. Identification strategy  

The analysis started by applying the FE estimator on equation (1), which can provide a reliable elasticity 

estimate controlling for any potential individual specific time invariant unobserved heterogeneities. 

This occurs when the observed covariates in the model are exogenous. Similarly, the existence of 

unobserved individual specific heterogeneities that vary over time could make the FE model 

inconsistent. The implication is that estimating the dynamic specification of equation (3) using the FE 

estimator gives inconsistent fuel demand elasticities because the included lagged dependent variable is 

correlated with the error term 𝑢𝑖𝑡 and becomes endogenous (Blundell and Bond, 2000; Drukker, 2008; 

Cameron and Trivedi, 2009).  

However, theoretically consistent fuel demand elasticity can be obtained by applying the two-step 

general method of moment (GMM) estimator put forward by Arellano and Bond (1998). There are a 

number of advantages to using the GMM estimator. First, it corrects endogeneity caused by the 

inclusion of the lagged dependent variable by constructing an internal instrument. Second, the estimator 

addresses the issue of Nickell bias1 in the estimation. Third, it provides robust estimates given that the 

study covers a short time (T=15) and a large cross-section (N=21). Finally, it considers the issue of 

finite sample correction to the reported standard errors, which are no longer downward biased (see 

Windmeijer, 2005). Essentially, the GMM estimates are required to satisfy the Arellano-Bond test for 

no autocorrelation in first-differenced errors and the Hansen test of overidentifying restriction, which 

                                                      

1 Nickell bias is an important concern in the estimation since a correlation between the lagged dependent variable 

and country fixed effect cannot be ruled out given that the study only covers a short period of time (T=15). 
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complements the required theoretical and statistical properties of dynamic panel data estimation 

(Roodman, 2006).   

4. Regression results  

Table 2 presents gasoline and diesel demand elasticity estimates for the whole of Sweden. The 

implemented baseline estimates, i.e. FE estimates, showed the expected coefficient sign for the 

variables in the regression. In order to obtain more consistent estimates, the GMM estimator was 

employed in equation (3). The result showed that both the short-run and long-run estimates had the 

expected signs, with higher long-run estimates in absolute terms. Essentially, the model passed the 

AR(2)2 test for autocorrelation and the Hansen test for instrument validity where the null hypotheses 

were not rejected, indicating an absence of autocorrelation and validity of the internal instruments 

respectively. 

Table 2: Gasoline and diesel demand elasticity estimates in Sweden 

 Gasoline demand 

FE              GMM: 

                   Short run        Long run 

Diesel demand 

FE                GMM: 

                     Short run        Long run 

Log of per 

capital GDP 

0.394*** 

(0.050) 

0.104*** 

(0.023) 

0.406*** 

(0.064) 

0.048 

(0.226) 

0.269*** 

(0.127) 

0.984 

 (0.618) 

Log of gasoline 

price 

-0.271 

(0.196) 

-0.322*** 

(0.032) 

-1.260*** 

(0.216) 

-0.330* 

(0.171) 

0.648 

(0.396) 

2.373** 

(1.195) 

Log of diesel 

price 

0.102 

(0.111) 

0.054*** 

(0.018) 

0.212*** 

(0.074) 

1.430*** 

(0.412) 

-0.555* 

(0.285) 

-2.034*** 

(0.871) 

Log of vehicle 

stock per 

capita 

-1.311*** 

(0.004) 

-0.061*** 

(0.009) 

-0.238*** 

(0.018) 

0.935** 

(0.426) 

0.016 

(0.182) 

0.058 

(0.660) 

Time trend -0.031*** 

(0.004) 

0.009*** 

(0.002) 

  -0.006** 

(0.002) 

 

Lagged dep. 

variable 

 0.744*** 

(0.030) 

  0.727*** 

(0.054) 

 

Constant 6.897* 

(3.545) 

-0.972*** 

(0.262) 

 -1.371*** 

(4.317) 

-3.776*** 

(0.504) 

 

Adj R2 0.91   0.558   

AR(2)  1.560   0.477  

Hansen test  18.55   16.81  

Observations 315 294  315 294  
Note: The standard errors for the long-run elasticities were calculated from the short-run estimates using the delta 

method. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

                                                      

2 The Arellano-Bond test was applied to the residuals in differences and a check carried out to identify serial 

correlation of order i in levels by looking for correlation of order i + 1 in differences (see Roodman (2006)). Thus 

the test for AR (2) in first differences became more important because it could detect an autocorrelation in levels. 
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The effect of per capita income on gasoline demand was positive and statistically significant at the 1 % 

level in all models. The effect of real gasoline and diesel price was also statistically significant at 1 % 

level for the GMM estimates, where an increase in gasoline price by 1 % leads to approximately a 0.32 

% decrease in gasoline demand. This estimate was close to the price elasticity reported in the study by 

Dahl (2012). In addition, the estimate for per capita vehicle stock had a negative effect on gasoline 

demand, which was similar to the estimates reported in previous studies (e.g. Baltagi and Griffin, 1997; 

Pock, 2010). A unit rise in average per capita vehicle stock reduced gasoline demand by 0.06. The speed 

of adjustment parameter became statistically significant at 1 % significance level with a value of 0.74. 

This indicated a high level of persistence with consumers adjusting their long-run consumption by 

approximately 26 % within the first period.  

With respect to diesel demand, the baseline model (FE) showed expected signs of the estimates for real 

per capita income, real diesel price, per capita vehicle stock and gasoline price. The corresponding 

short-run and long-run estimates showed the expected sign. The diesel price was statistically significant 

at 1 % and 5 % level in the short run and long run respectively. Accordingly, a 1 % increase in diesel 

price could lead to 0.56 % and 2 % reduction in diesel demand in the short and long run respectively. 

The larger long-run diesel price elasticity estimate could be linked to the increasing number of 

alternative vehicle types in the transport sector, shifting consumer choice towards public transport or 

other vehicle types for a small diesel price change (e.g. see Lim et al., 2012).  Similarly, the gasoline 

price becomes positive and statistically significant in the long run. Estimates for real per capita income 

were statistically significant in the short run, with a 1 % increase in per capita income resulting in a 

0.27 % increase in short-run diesel demand.  

The estimates representing per capita vehicle stock were positive and statistically significant in the case 

of the FE model, but statistically insignificant in the partial adjustment model. The effect of time trend, 

which is expected to capture technological progress, was positive and statistically significant at a 5 % 

level. This could be linked to the potential rebound effect where diesel consumption has been increasing, 

although there was an indication of improvement in vehicle technology. Importantly, the speed of 

adjustment parameter was statistically significant at a 1 % level with a value of 0.73. This indicates that 

consumers are expected to adjust their consumption level to the long-run equilibrium at the rate of 

approximately 27 % within the first period. Furthermore the GMM estimates were robust as they passed 

the Arellano-Bond test for zero autocorrelation and the Hansen test for instrument exogeneity. 
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5. Regional effects of national carbon fuel taxes 

The national fuel taxes are calculated from the Swedish climate policy framework in which emissions 

from transport, excluding domestic aviation3, are to be reduced by at least 70 % from the 2010 level by 

2030 (MEE, 2017, IEA, 2013). This regulation is part of the EU’s priority to create a fossil fuel-free 

transport fleet by 2030. This study calculated the necessary carbon dioxide tax and national price 

increases for gasoline and diesel required to achieve this target based on estimated price elasticities. It 

was then assumed that the price increases were introduced in 2015.  

Calculated total emissions from consumption of fuels amounted to 25783 kton in 2015 based on the 

consumption of fuels presented in Table C1 and an average emission per 1000 m3 of 2.67 kton CO2 and 

2.81 kton CO2 for gasoline and diesel respectively (Miljöfordon, 2015). This is close to the reported 

emission of 26233 kton from domestic and foreign transports in 2015, which correspond to almost half 

of the total territorial emissions in Sweden (SEPA, 2018).   Emissions of CO2 from transports in 2015 

were reduced by 17 % compared to emissions in 2010 (SEPA, 2018), which implies an emission 

reduction of 64 % in 2015 emissions to obtain the 2030 target. Furthermore, reductions in emissions 

from the transport sector will occur between 2015 and 2030 due to expected population growth, GDP 

growth, technology development and recent developments in fuel prices. According to Capros et al. 

(2016) the annual rate of decrease in emissions is 0.0156 for the period 2015-2020 and 0.0081 for the 

years between 2020 and 2030. If these projected emission reductions take place, the required reduction 

from the 2015 emission level would be 58 %.  

It is further assumed that the Swedish government minimizes total social cost for achieving the target 

where costs are measured by reductions in consumer surplus. The decrease in consumer surplus from 

the tax at the cost effective consumption level is then excluded since it is regarded as a transfer. To 

simplify calculations, linear demand functions are derived by means of the elasticity estimate at the 

price and demand levels in 2015. Logarithmic functions are difficult to evaluate for relatively large 

reductions in fuel demand. Given these assumptions, the cost-effective carbon dioxide charge amounts 

to .5.6 SEK/kg CO2 emission (Appendix B). The cost effective charges on gasoline and diesel are 15.1 

SEK/l and 15.8 SEK/l, respectively, which imply increases in the 2015 price corresponding to 116% 

and 132% (Appendix B). 

Estimates of regional price elasticities are needed in order to assess the regional effects in terms of 

reductions in fuel demand and private costs of the national fuel taxes. Graham and Glaister (2006) 

introduced a method to derive local-level elasticity estimates from the national level that can reflect 

regional differences. Using spatially disaggregated data in the UK’s cities and towns, the study 

                                                      

3 Domestic aviation is not included in the goal because it is included in the European Union Emissions Trading 

System. 
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examined the spatial implications of road user charging and how road users may respond to a change 

in the price of travel according to a variety of different charging regimes. The crucial assumptions in 

the analyses by Graham and Glaister (2006) were that prices are constant between regions, the 

symmetry condition hold on the compensated cross price derivatives, and that the relationship in impact 

between two transport modes is proportional to their shares of total transport demand. In this study, the 

prices are constant among regions and gasoline and diesel fuel were the transport modes. Given that the 

assumptions hold, the relationship between county-level and national elasticities is written as:  

,

, ,

/

/

N N

i iR N i

i j i R R

i j i ji

Q Q

Q Q
 

 
  

 
 




                                                               (5) 

where ,

R

i j and 
N

i represent the regional and national-level elasticity estimates respectively, Qi refers 

to the consumption of fuel i where i=gasoline, diesel. According to eq. (5), the regional elasticity of fuel 

i is determined by the national elasticity weighted by the relationship in the shares of fuel i of total fuel 

consumption at the national and regional level. The regional elasticity is high when the share of fuel i 

of total fuel consumption is low at the regional level and vice versa.  

In this study, regional elasticities were calculated for the 21 counties in Sweden (Figure C1), and the 

weights were evaluated based on the consumption of the fuel types in 2015 (Table C1). The shares of 

gasoline and diesel at the national level amounted to 0.383 and 0.617 respectively. The calculated 

weight for gasoline ranged between 0.824 (Stockholm) and 1.582 (Norrbotten) for the counties. 

Counties with a relatively low weight because of the high share of gasoline had a high weight for diesel. 

The corresponding weight for diesel then shows a similar range, with the lowest weight for Norrbotten 

(0.814) and the highest for Stockholm (1.152). 

Regional calculations were made for the own price elasticities since these estimates were more robust 

than the estimates of the cross price elasticities, as discussed in Section 4 (Table 2). The reductions in 

gasoline and diesel consumption from the introduction of the fuel taxes range between 37% and 65% 

for gasoline and between 58% and 80% for diesel (Table 3). When calculating the distributional effects 

of these changes, total costs are calculated which include the total reduction in consumer surplus.  
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Table 3: Calculated regional short-run price elasticities, percent reductions in fuel consumption and 

costs of the fuel taxes, and total costs in percent of disposable income, 2015 weights. 

County Absolute value of 

price elasticities: 

Gasoline     Diesel 

% reduction in 

fuel consumption: 

Gasoline    Diesel 

Private cost of fuel 

taxes. MSEK: 

Gasoline   Diesel 

Tot. private 

cost in % of 

disp. income 

Blekinge 0.290 0.596 37 74 860 942 6.23 

Dalarna 0.321 0.556 41 68 1479 2080 6.60 

Gävleborg 0.382 0.506 48 60 1428 2949 8.31 

Gotland 0.291 0.594 37 73 340 378 6.63 

Halland 0.349 0.530 44 64 1463 2481 5.85 

Jämtland 0.331 0.545 42 66 691 1044 7.17 

Jönköping 0.348 0.530 44 64 1657 2803 6.64 

Kalmar 0.356 0.524 45 63 1157 2047 7.10 

Kronoberg 0.292 0.593 37 73 915 1021 5.24 

Norrbotten 0.509 0.452 65 52 968 3643 9.33 

Örebro 0.348 0.530 44 64 1237 2091 6.08 

Östergötland 0.337 0.540 43 65 1855 2920 5.52 

Skåne 0.298 0.585 38 72 5605 6577 4.67 

Södermanland 0.295 0.588 38 72 1392 1603 5.56 

Stockholm 0.265 0.640 34 80 8050 6990 2.93 

Uppsala 0.315 0.563 40 69 1420 1903 4.67 

Värmland 0.356 0.524 45 63 1323 2354 7.01 

Västerbotten 0.409 0.490 52 58 1008 2402 6.92 

Västernorrland 0.388 0.502 49 60 1108 2372 7.43 

Västmanland 0.317 0.561 40 68 1282 1744 5.87 

Västra Gotaland 0.317 0.560 40 68 6815 9324 4.87 

National 0.322 0.555 42 68 42055 59667 5.06 

 

The results in Table 3 show that the total private cost of the fuel taxes corresponds to 5.06% of 

disposable income for Sweden as a whole. Stockholm county faces the highest total cost but the 

disposable income in this county is high, and the cost in percent of disposable income (2.93%) is lowest 

for this county. On the other hand, the percentage is higher for the northern counties and amounts to 

9.33% for the Norrbotten county where disposable income is relatively low compared with the private 

cost of the fuel taxes.   

6. Discussion and conclusions  

This study estimated gasoline and diesel demand elasticities in Sweden at a national level, which were 

then used to obtain regional estimates of private costs to reach the Swedish emission targets of CO2 for 

the transport sector in 2030. Fixed effects and GMM estimators where used and robust results were that 

per capita income, own and cross prices, and per capita vehicle stock had the expected sign in the fuel 

demand models, with a relatively higher magnitude for gasoline price in absolute terms. The estimated 

short-run and, in particular,  long-run price elasticities of gasoline were in the same order of magnitude 

as several other studies, but the corresponding price elasticities of diesel were in the upper range (in 

absolute values).   
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As a member of the EU’s comprehensive climate change mitigation plan, Sweden has developed 

emission reduction goals where a key target is a 70 % reduction in emissions from the transport sector 

by 2030 from the 2010 level. The calculations in this study showed that the necessary national fuel taxes 

for a cost-effective achievement of the target correspond to 116% and 132% of the consumer prices of 

gasoline and diesel, respectively. Private costs at the county level were calculated by deriving regional 

price elasticities from the national level estimates. The calculations showed that the private costs in 

percent of disposable income ranged between 2.93% and 9.33%, being lowest in the Stockholm county, 

where the capital of Sweden is located, and highest in the northern region with relatively low population 

density and disposable income.  

The results rest on several crucial assumption. One is the choice of short run price elasticities for 

evaluating the national tax and regional effects because of the relatively high (in absolute value) levels 

of the long run elasticities. If the long price elasticities were used, the necessary tax would amount to 

1.80 SEK/kg CO2 emission and the price on gasoline and diesel would increase by 26% and 41% 

respectively. The private cost would in average amount to 1.42% of disposable income but the relative 

differences between the counties would remain the same  (Table C2).  

The weights used for calculating regional price elasticities were calculated at the fuel consumption 

levels in 2015. It could be argued that they should reflect a longer time perspective. Calculations were 

therefore made with weights calculated at the average level (between 2003 and 2015) for the counties 

(Table C3). These weights had a minor impact on the average private cost in percent of disposable 

income, but reinforced regional distributional impacts where the cost of  a northern county (Norrbotten) 

increased by 0.21 percentage point and that of the Stockholm region decreased by 0.06 percentage point.  

Similar results were obtained with long run price elasticities and weights based on average consumption 

(Table C4).  

Another assumption was a cost effective achievement of the Swedish target for the transport sector and 

not for total emissions in Sweden. Depending on the marginal cost of reductions in CO2 compared with 

other sectors, such as agriculture and carbon sink enhancement in forestry, the level of the fuel charges 

may be either higher or lower. This is partly accounted for in this study by evaluating national carbon 

taxes and associated regional effects based on different national price elasticities, which amounted to 

SEK 1.8/kg CO2 emission or SEK  5.6/kg CO2 under the long and short run price elasticity, respectively. 

A common result of all simulations was that the private costs in relation to disposable income in 

northern regions with relatively low population density were more than twice as large as that of the 

densely populated regions. The regressive effects of carbon pricing is a well-known phenomenon in the 

literature (e.g. Dorband et al. 2019). Without any policies combatting these effects, they could mitigate 

the implementation and enforcement of cost-effective climate policies in the transport sector. 
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Appendix A: Derivation of dynamic fuel demand equations 

Suppose the log-linearised demand function for k fuel type in region i at time t is given as follows: 

   
*log logk

it itf X                                                                      (A1) 

where 
*k

itf denotes a 1xN vector of the desired fuel consumption,  is a 1xK vector of parameters to be 

estimated, X is a KxN vector of variables explaining fuel demand, and   a 1xN vector representing 

the error term. Following Houthakker and Taylor (1966), the desired level of k type fuel demand in 

county i at time t, 
*k

itf , through the familiar adjustment mechanism, is also given as:  
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Combining equations (A1) and (A3) gives the dynamic fuel demand equation as follows:  

1

1

1 1
log log log

1 1
log log log

k k

it it it

k k

it it it

f f X

f f X


 

 


 

 





 
   
 

 
   
 

    

  1log 1 log logk k

it it itf f X                                             (A4) 

Equation (A4) represents the dynamic fuel demand equation, i.e. similar to equation (3).  

 

Appendix B: Calculations of cost-effective national fuel price increases 

 

The cost in terms of decreases in consumer surplus for each fuel f=gasoline, diesel with a linear demand 

function is defined 
, ,( )( ) / 2f f f BAU f BAU fC P P Q Q    where f=G,D for gasoline and diesel 
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respectively. Recognizing that 
f f f fP A b Q  when disregarding cross price elasticities, the 

decision maker can choose the cost effective levels of Qf for reaching the emission target E  according 

to: 

. .f f f

f f
f

Min C C s t e Q E

Q

                                                                      (B1) 

where Pf and Qf are the prices and quantities, respectively, of,  the superscript BAU reflects the actual 

prices and quantities in 2015, and ef are the conversion factors of fuels into CO2 emissions .  

The first-order conditions are: 

, ,2 ,f f f f BAU f f BAU f

f

C
b Q b Q A P e for f G D

Q



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
                                        (B2)                                              

Expressions for bf and Af are found from the own price elasticity estimates and BAU levels of Pf and Qf 

according to: 

,
, ,

,
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Solving for the cost effective level of QG gives: 
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where 
, , , ,G G D D BAU G BAU G G BAU D D BAUH A A P P b Q b Q       and 2

G D D G
G

G D

b e b e
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e e
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 
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The optimal level of QD is obtained from the emission constraint in eq. (B1). 

 

Inserting the estimated values of short-run elasticities εG=0.322, εD=0.555, PG,BAU=13, PD,BAU , 

QG,BAU=3578, QD,BAU=5776, eG =2.67, eD=2.81, E =10829 (a reduction by 58%), gives the optimal 

levels QG=2149 and QD=1811.  The cost effective CO2 tax as shown by the Lagrange multiplier  λ 

amounts to SEK 5.6/ kg CO2 emission. The necessary tax on gasoline is then 15.1 SEK/l and that on 

diesel is 15.8 SEK/l, which imply price increases of 116 % and 132 % of the BAU prices of gasoline 

and diesel, respectively. 
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Appendix C: Figure C1 and Tables C1-C4 

 

Figure C1: Counties in Sweden. Source: www.lansstyrelsen.se 
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Table C1: Fuel consumption in 2015 and average fuel consumption (2001-2015) and regional weights 

for different counties 

County Consumption in 

2015. 

Gasoline     Diesel 

Consumption 

average. 

Gasoline    

Diesel 

Price elasticities 

at 2015 weights 

Gasoline   Diesel 

Price elasticities at 

average weights 

Gasoline  Diesel 

Blekinge 70.90 95.60 87.3 72.2 0.899 1.075 0.922 1.094 

Dalarna 125.7 201.6 173.8 165.9 0.997 1.002 0.986 1.015 

Gävleborg 129.1 270.7 159.9 196.4 1.186 0.911 1.124 0.899 

Gotland 28.1 38.3 35.9 36.6 0.905 1.070 1.018 0.982 

Halland 127.8 233.7 175.7 174.5 1.083 0.954 1.005 0.995 

Jämtland 59.3 100 83.2 91.7 1.029 0.983 1.060 0.946 

Jönköping 144.7 264.1 193.1 207.0 1.082 0.955 1.045 0.958 

Kalmar 101.8 191.7 136.4 156.9 1.104 0.945 1.084 0.927 

Kronoberg 75.6 103.3 104.7 113.6 0.906 1.069 1.052 0.952 

Norrbotten 101.1 316.4 138.4 223.2 1.582 0.814 1.318 0.803 

Örebro 108 197 146.5 147.1 1.082 0.955 1.011 0.989 

Östergötland 160.2 278 212.0 203.5 1.048 0.973 0.988 1.012 

Skåne 465.6 658.6 603.4 534.6 0.925 1.053 0.951 1.055 

Södermanland 115.4 161.1 151.2 118.9 0.918 1.059 0.901 1.126 

Stockholm 648.5 747.4 781.5 586.9 0.824 1.152 0.883 1.156 

Uppsala 119.9 186 161.5 136.9 0.977 1.015 0.932 1.080 

Värmland 116.5 220.2 161.9 181.5 1.107 0.943 1.070 0.938 

Västerbotten 93.8 217 131.8 168.7 1.269 0.884 1.150 0.883 

Västernorrland 100.9 216.8 145.3 168.9 1.206 0.904 1.090 0.922 

Västmanland 108.5 170 138.5 120.6 0.983 1.011 0.943 1.065 

V. Götaland 577 908 809.3 864.4 0.986 1.009 1.043 0.960 

National 3578.4 5775.5 4730.9 4669.7     
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Table C2: Calculated regional long run price elasticities, percent reductions in fuel consumption and 

costs of the fuel taxes, and total costs in percent of disposable income, 2015 weights 

County Absolute value of 

long-run price 

elasticities: 

Gasoline     Diesel 

% reduction in 

fuel consumption: 

Gasoline    Diesel 

Private cost of fuel 

taxes, MSEK: 

Gasoline   Diesel 

Total 

private cost 

in % of disp. 

income 

Blekinge 1.133 2.186 39 79 196 285 1.66 

Dalarna 1.257 2.037 43 67 338 661 1.85 

Gävleborg 1.494 1.853 51 52 329 989 2.50 

Gotland 1.140 2.176 39 78 77 115 1.77 

Halland 1.365 1.941 46 59 336 812 1.70 

Jämtland 1.296 1.999 44 64 158 336 2.04 

Jönköping 1.363 1.943 46 59 380 917 1.93 

Kalmar 1.391 1.921 47 57 266 674 2.08 

Kronoberg 1.142 2.173 39 78 208 310 1.40 

Norrbotten 1.993 1.656 68 35 229 1283 3.06 

Örebro 1.363 1.943 46 59 284 684 1.77 

Östergötland 1.320 1.978 45 62 425 945 1.58 

Skåne 1.165 2.142 40 76 1277 2018 1.26 

Södermanland 1.156 2.154 39 77 317 490 1.50 

Stockholm 1.039 2.344 35 92 1826 1983 0.74 

Uppsala 1.231 2.064 42 69 324 600 1.30 

Värmland 1.395 1.919 47 57 304 775 2.06 

Västerbotten 1.599 1.797 54 47 234 817 2.13 

Västernorrland 1.519 1.839 52 51 256 798 2.25 

Västmanland 1.239 2.056 42 68 293 551 1.64 

V. Götaland 1.242 2.052 42 68 1557 2949 1.36 

National 1.260 2.034 42 68 9614 18991 1.42 
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Table C3: Calculated regional short-run price elasticities, percent reductions in fuel consumption and 

private costs of the fuel taxes, and total costs in percent of disposable income, average weights. 

County Absolute value of 

price elasticities: 

Gasoline     Diesel 

% reduction in 

fuel consumption: 

Gasoline    Diesel 

Private cost of fuel 

taxes, MSEK: 

Gasoline   Diesel 

Total 

private cost 

in % of disp. 

income 

Blekinge 0.297 0.607 39 75 836 929 6.11 

Dalarna 0.317 0.563 42 69 1454 2062 6.52 

Gävleborg 0.362 0.499 47 59 1430 2970 8.35 

Gotland 0.328 0.545 43 66 322 400 6.65 

Halland 0.324 0.552 43 67 1470 2421 5.78 

Jämtland 0.341 0.525 45 63 670 1067 7.18 

Jönköping 0.336 0.532 44 64 1644 2798 6.62 

Kalmar 0.349 0.514 46 62 1142 2069 7.11 

Kronoberg 0.339 0.528 44 64 857 1098 5.29 

Norrbotten 0.424 0.446 55 51 1050 3666 9.54 

Örebro 0.325 0.549 43 67 1240 2048 6.01 

Östergötland 0.318 0.562 42 69 1852 2849 5.44 

Skåne 0.306 0.586 40 72 5445 6568 4.61 

Södermanland 0.290 0.625 38 78 1370 1534 5.39 

Stockholm 0.284 0.641 38 80 7741 6973 2.87 

Uppsala 0.300 0.600 40 74 1410 1825 4.54 

Värmland 0.344 0.521 45 63 1313 2361 7.01 

Västerbotten 0.370 0.490 48 58 1030 2403 6.97 

Västernorrland 0.351 0.512 46 61 1130 2347 7.42 

Västmanland 0.304 0.591 40 73 1272 1685 5.74 

V. Götaland 0.336 0.533 44 64 6558 9609 4.88 

National 0.322 0.555 42 68 41235 59683 5.02 
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Table C4: Calculated regional long run price elasticities, percent reductions in fuel consumption and 

costs of the fuel taxes, and total costs in percent of disposable income, average weights 

County Absolute value of 

long-run price 

elasticities: 

Gasoline     Diesel 

% reduction in 

fuel consumption: 

Gasoline    Diesel 

Private cost of fuel 

taxes, MSEK: 

Gasoline   Diesel 

Total 

private cost 

in % of disp. 

income 

Blekinge 1.379 2.226 47 82 195 276 1.63 

Dalarna 1.279 2.065 43 69 339 649 1.83 

Gävleborg 1.133 1.829 39 50 335 1001 2.53 

Gotland 1.238 1.998 42 64 75 128 1.88 

Halland 1.254 2.024 43 66 343 772 1.65 

Jämtland 1.191 1.923 41 57 157 351 2.10 

Jönköping 1.207 1.949 41 60 384 912 1.93 

Kalmar 1.168 1.885 40 54 267 687 2.11 

Kronoberg 1.200 1.937 41 59 200 359 1.52 

Norrbotten 1.012 1.633 34 34 248 1295 3.12 

Örebro 1.247 2.012 42 65 289 655 1.73 

Östergötland 1.275 2.059 43 69 432 898 1.54 

Skåne 1.330 2.146 45 76 1268 2011 1.26 

Södermanland 1.419 2.290 48 88 319 445 1.42 

Stockholm 1.456 2.351 50 93 1798 1972 0.73 

Uppsala 1.361 2.198 46 80 328 549 1.23 

Värmland 1.182 1.908 40 56 307 779 2.07 

Västerbotten 1.113 1.796 38 47 242 817 2.15 

Västernorrland 1.162 1.876 40 54 264 781 2.23 

Västmanland 1.342 2.166 46 78 296 512 1.57 

V. Götaland 1.209 1.952 41 60 1533 3129 1.41 

National 1.260 2.034 42 68 9620 18978 1.42 
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