
 

 

Genetic and epigenetic mechanisms 
underlying the regulation of flowering 

time 

Lejon Kralemann 
Faculty of Natural Resources and Agricultural Sciences 

Department of Plant Biology 

Uppsala 
  

Doctoral thesis 

Swedish University of Agricultural Sciences 

Uppsala 2019 



 

 

Acta Universitatis agriculturae Sueciae 

2019:54 

ISSN 1652-6880 

ISBN (print version) 978-91-7760-426-6 

ISBN (electronic version) 978-91-7760-427-3 

© 2019 Lejon Kralemann, Uppsala 

Print: SLU Service/Repro, Uppsala 2019

Cover image: Young Ambrosia artemisiifolia plant (Lejon Kralemann) 

 

 



 

 

Developmental transitions and responses to the environment have a tight epigenetic 

control. Especially the switch to flowering is important for plants because it allows 

(sexual) reproduction, and should not occur unless the conditions are right. External and 

internal signals are relayed via FT/TFL1 genes; genes with a great impact on flowering 

time. The PRC1/PRC2 system plays an important role in the repression of flowering, 

indicated by the aberrant flowering phenotype of its mutants. Via deposition of histone 

modifications H2Aub1 and H3K27me3 it keeps genes stably silenced, so that transitions 

and responses do not happen as a result of random fluctuations in the internal or external 

environment. 

In the first manuscript we focussed on PRC2-component MSI1 in Arabidopsis. MSI1 

is the nucleosome-binding core component of PRC2 and other chromatin-modifying 

complexes. We found that MSI1 is also a core part of a histone de-acetylase complex 

together with histone de-acetylase HDA19. We further found that this complex represses 

the ABA-mediated salt stress response by de-acetylating the ABA receptors.  

The second manuscript focused on flowering time in the invasive species Ambrosia 

artemisiifolia. During the last couple of centuries it invaded Europe, where it currently 

thrives mostly in the south-east. Earlier flowering populations have since been found in 

the north, suggesting local adaptation. We studied this early-flowering trait and found 

that it is inherited dominantly, and that it is maladaptive under long vegetation periods. 

We also identified the FT/TFL1 genes in this species, and found that a combination of 

expression changes in the FT-like floral activator and TFL1-like floral repressor likely 

underlies the altered flowering time. 

In the third manuscript we tried to shed light on repressive H2A de-ubiquitination in 

Arabidopsis. Previously, it has been observed that loss of UBP12/13-mediated H2A de-

ubiquitination causes loss of H3K27me3 and re-activation of some PRC2 targets. We 

show now that this holds true on a genome-wide level, and that the genes targeted by 

UBP12/13 are those affected in H3K27me3 maintenance and expression. We also 

showed that H2Aub1 not only recruits PRC2, but likely also recruits H3K27 demethylase 

REF6. We show that H2Aub1 therefore puts genes in a state responsive to stimuli, and 

that stable repression requires its removal.  

Keywords: Arabidopsis, Ambrosia, FT, TFL1, epigenetics, histone modifications, PRC1, 

PRC2, UBP12, UBP13  
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Ontwikkelingstransities en responsen op de omgeving worden sterk in toom gehouden 

door epigenetische mechanismen. Met name de omschakeling naar het bloeien is 

belangrijk voor planten omdat het de voortplanting mogelijk maakt; deze omschakeling 

mag niet gebeuren tenzij de condities juist zijn. Interne en externe signalen worden 

doorgestuurd via FT/TFL1 genen; genen met een grote invloed op de bloeitijd. Het 

PRC1/2 systeem speelt een grote rol in de remming van (bloei-) genen, via de depositie 

van histon modificaties H2Aub1 en H3K27me3, zodat transities en reacties niet gebeuren 

als resultaat van willekeurige fluctuaties in de interne en externe omgeving. 

In het eerste manuscript hebben we ons gericht op PRC2-onderdeel MSI1 in 

Arabidopsis. MSI1 is het nucleosoombindende kerneiwit van PRC2 en andere 

chromatinebindende complexen. Wij ontdekten dat MSI1 ook een belangrijk onderdeel 

van een histon de-acetylatiecomplex is, samen met histon de-acetylase HDA19. We 

ontdekten verder dat dit complex de ABA-gemediëerde zoutstressrespons remt door de 

ABA-receptoren te de-acetyleren. 

Het tweede manuscript richtte zich op de bloeitijd in de invasieve soort Ambrosia 

artemisiifolia. In de laatste paar eeuwen heeft het zich gevestigd in Europa, voornamelijk 

in het zuidoosten. Vroeg bloeiende populaties zijn sindsdien gevonden in het noorden, 

wijzend op locale adaptatie. Wij bestudeerde deze vroege bloeiwijze en ontdekten dat 

het dominant overgeërfd wordt, en dat het niet adaptief is met lange vegetatieperiodes. 

Wij identificeerden ook de FT/TFL1 genen in deze soort, en ontdekten dat een 

combinatie van expressiewijzigingen in de FT-achtige bloeiactivator en TFL1-achtige 

bloeirepressor waarschijnlijk de gewijzigde bloeitijd veroorzaakten. 

In het derde manuscript wierpen wij licht op de repressieve H2A de-ubiquitinatie in 

Arabidopsis. Eerder had men gevonden dat op enkele genen een tekort aan UBP12/13 

gemediëerde de-ubiquitinatie een vermindering van H3K27me3 en gen re-activatie 

veroorzaakt. Wij laten hier zien dat dit ook gebeurd op een genoom-wijd niveau. Wij 

ontdekten dat dit komt doordat H2Aub1 niet alleen PRC2 rekruteerd, maar ook REF6. 

Wij stellen een model voor waarin depositie van H2Aub1 leidt tot een responsieve staat, 

en dat voor stabiele remming dit verwijderd dient te worden. 
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PRC1, PRC2, UBP12, UBP13 
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To the universe, without you I would not be where I am today. 

 

 

 

 

 

 

 

 

 

 

 

We live at a very special time . . . the only time when we can observationally 

verify that we live at a very special time! 

 

Lawrence Krauss 

 

 

They are in you and me; they created us, body and mind; and their 

preservation is the ultimate rationale for our existence. They have come a long 

way, those replicators. Now they go by the name of genes, and we are their 

survival machines. 

 

Richard Dawkins 
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1.1 Flowering time 
 

Flowering plants begin their life with a vegetative phase, characterized by the 

production of organs (leaves, roots) that are only indirectly involved in 

reproduction by allowing the accumulation of resources. In the reproductive 

phase much of the accumulated resources are channelled to the offspring. The 

later plants flower, the more time they have to accumulate resources, and 

increasing the number or size of offspring per parental plant. However, delaying 

flowering bears risks, since there are ubiquitous threats like herbivory, storms, 

flooding, drought, and especially frost-bearing winters. Early flowering bears 

lower risk, but lowers resources for the offspring. And it’s not just a matter of 

creating a balance between the risk-avoidance and resource-maximizing 

strategies. Biotic factors can promote flowering, for instance, many angiosperms 

rely on animal pollinators (Ollerton et al., 2011), and so flowering should be 

synchronized with their availability (Elzinga et al., 2007). Thus, regulation of 

the time until the onset of flowering (i.e. flowering time) is of fundamental 

importance for plant reproduction.  

 

1.1.1 The PEBP gene family 
 

Central to the regulation of flowering time are proteins from the 

phosphatidylethanolamine-binding protein (PEBP) gene family, members of 

which have been found in all kingdoms of life (Karlgren et al., 2011; Palmieri 

et al., 2008; Serre et al., 2001; Banfield et al., 1998; Schoentgen & Jollès, 1995). 

So far, the function of the ancestral gene in the last universal common ancestor 

(LUCA) is unknown; however, considering the roles of PEBPS in LUCAs 

1 Introduction 
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descendants it seems reasonable to assume that it had a role in transducing 

environmental signals and regulating mitotic activity accordingly. Binding of 

phospholipids and phosphorylated proteins as predicted by their crystal structure 

and confirmed by chemical studies indicates a role in (membrane-bound) signal 

transduction (Nakamura et al., 2014; Banfield & Brady, 2000; Banfield et al., 

1998; Bernier et al., 1986). PEBPs may also bind and inhibit certain proteases, 

which has been observed for PEBPs in archaea (Palmieri et al., 2010) and 

animals (Hengst et al., 2001). Outside of the plant kingdom PEBPs are called 

RAF1 KINASE INHIBITOR PROTEINs (RKIPs), based on the role of 

PEBP1/RKIP-1 in the inhibition of the MAPK/Raf-MEK-ERK pathway (Yeung 

et al., 1999), though the GRK2 (Lorenz et al., 2003) and NFκB (Yeung et al., 

2001) signal transduction pathways are inhibited as well. In addition, RKIP is a 

positive regulator of GSK3β (Al-Mulla et al., 2011). In mammals, PEBPs appear 

to have roles in sperm (Moffit et al., 2007; Frayne et al., 1998) and neuron 

development (Ojika et al., 2000), the latter partly through cleavage of the full 

protein to yield the 11-amino acid HIPPOCAMPAL CHOLINERGIC 

NEUROSTIMULATING PEPTIDE (HCNP) (Otsuka & Ojika, 1996). In 

nematodes, PEBPs are involved in protection against host immune response 

(Morgan et al., 2006), and in flies in protection against bacterial infection 

(Reumer et al., 2009). In plants, PEBPs integrate internal and external signals to 

regulate developmental transitions and plant architecture (Blumel et al., 2015). 

Early plants started with a PEBP gene now called MOTHER OF FLOWERING 

LOCUS T AND TERMINAL FLOWER 1 (MFT). The MFT clade in early plant 

lineages has not been studied thoroughly, but there is evidence that they have a 

role in the regulation of germination of clonal propagules (gemmae) in the 

bryophyte Marchantia polymorpha (Eklund et al., 2018), a role in the 

development of gamete-producing structures in the bryophyte Physcomitrella 

patens (Hedman et al., 2009), and the initiation of spore-producing structures 

(sori) in lycophytes (Hou & Yang, 2016). By the time the last common ancestor 

to seed plants appeared, MFT had likely evolved a function in the regulation of 

seed germination (Nakamura et al., 2015; Li et al., 2014; Karlgren et al., 2011; 

Xi & Yu, 2010). Around the same time, a duplication of MFT had produced the 

FT/TFL1 clade (Liu et al., 2016). This clade was likely tasked with the regulation 

of reproductive tissues, because FT/TFL1 are involved in the regulation of 

reproductive buds in gymnosperms (Liu et al., 2016; Karlgren et al., 2011). 

Before the divergence of gymnosperms and angiosperms the FT/TFL1 clade 

split further into separate FT and TFL1 clades (Liu et al., 2016). In angiosperms 

most FT/TFL1 genes kept their role as regulators for reproductive onset 

(flowering time), but gained other (lineage-specific) regulatory functions (e.g. 

tuberization time in potato (Gonzalez-Schain et al., 2012; Navarro et al., 2011), 



17 

 

bulbing time in onion (Lee et al., 2013), and stomata opening in Arabidopsis 

(Ando et al., 2013)).   

 

1.1.2 Regulation of flowering time by FT/TFL1 
 

The flowering inducing hormone ‘florigen’ that was described in 1937 

(Chailakhyan, 1937) is now known to be encoded by FT/TFL1 genes. In general, 

most FT-like genes are florigens / floral activators, and TFL1-like genes are anti-

florigens / floral repressors (Karlgren et al., 2011). Signals like ambient 

temperature, photoperiod, prolonged cold, and circadian clock are integrated to 

activate the FT gene at the appropriate time (Blumel et al., 2015; Tsuji et al., 

2011; Turck et al., 2008). The FT protein then moves through the phloem to the 

shoot apical meristem (SAM) where it activates genes that trigger the formation 

of floral meristems (Corbesier et al., 2007; Abe et al., 2005; Wigge et al., 2005). 

The FT protein does not have DNA-binding activity, and relies on the bZIP 

transcription factor FLOWERING LOCUS D (FD, not to be confused with FLD) 

for targeting to the right loci (Taoka et al., 2011; Muszynski et al., 2006; Abe et 

al., 2005). FT binds FD indirectly via a 14-3-3 protein, together forming the so-

called florigen activation complex (FAC) (Taoka et al., 2011). 14-3-3 proteins 

are conserved readers of phosphorylated serine and threonine in eukaryotes (de 

Boer et al., 2013) and consistent with this is the finding that phosphorylation of 

FD is required for the formation of the FAC (Kawamoto et al., 2015; Taoka et 

al., 2011). TFL1-like proteins also form a complex with 14-3-3 and FD, but 

repress genes rather than activate them (Hanano & Goto, 2011; Simon et al., 

1996). TFL1-like proteins have two roles: they aid in the prevention of 

precocious flowering, and after flowering has started, they limit the activation of 

floral identity genes to certain regions so as not to convert the entire meristem to 

floral meristem (Pnueli et al., 1998; Bradley et al., 1997; Bradley et al., 1996).   

Apart from FT, Arabidopsis has another gene in the FT-clade: TWIN SISTER 

OF FT (TSF), and apart from TFL1 two more genes in the TFL1-clade: 

BROTHER OF FT AND TFL1 (BFT) and ARABIDOPSIS THALIANA 

RELATIVE OF CENTRORADIALIS (ATC). There is partial redundancy within 

clades (Yoo et al., 2010; Yamaguchi et al., 2005), with differences mostly in 

what signals the FT or TFL1-like genes respond to. Cytokinin can trigger 

flowering through TSF, but not through FT (D’aloia et al., 2011). BFT is induced 

during salt stress, and ATC during short-day photoperiods, preventing 

precocious flowering under suboptimal conditions (Ryu et al., 2014; Huang et 

al., 2012; Ryu et al., 2011). In other species, FT/TFL1 also regulate flowering, 

but may respond differently to environmental signals. For instance, the rice FT 
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homologs RFT and Hd3a are induced under short days (Komiya et al., 2008). 

And in poplar and apple age is the major floral inductive signal; decades may 

pass before flowering is initiated for the first time (Kotoda et al., 2010; 

Mohamed et al., 2010).  

Currently there is no evidence for stimulus-sensing by the FT/TFL1 proteins 

themselves, but rather the FT/TFL1 genes integrate a wide range of signals 

detected by other proteins. Important genes upstream of FT/TFL1 are 

FLOWERING LOCUS C (FLC), GIGANTEA (GI), and CONSTANS (CO). The 

archetypical A. thaliana germinates before winter, and ‘hibernates’ in its 

vegetative rosette phase (i.e. it's a winter annual). Then it initiates flowering at 

the first signs of spring. The MADS-box gene FLC prevents precocious 

flowering by repressing floral activators FT and the FT-target SOC1 (Bloomer 

& Dean, 2017). A prolonged exposure to cold (vernalisation) induces repressors 

of FLC, releasing its repression of floral activators (Bloomer & Dean, 2017). 

Another factor that changes from winter to spring is the daily photoperiod: the 

days get longer. When the daily photoperiod crosses a certain threshold GI and 

CO together activate FT (Mishra & Panigrahi, 2015). 

These two pathways of regulating flowering time are called the vernalisation 

and photoperiod pathways, respectively. A more detailed description of the two 

pathways is provided in the next paragraphs. Other pathways exist (autonomous, 

gibberellin, temperature (Blumel et al., 2015)), but are not discussed in this 

thesis. 

 

1.1.3 The vernalisation pathway  

 

Before vernalisation, FT is repressed by FRIGIDA (FRI) through the MADS-

box protein FLC. FRI activates FLC by binding to the FLC locus as part of the 

transcriptional activating FRI complex (FRI-C) (Choi et al., 2011; Kim et al., 

2006). FRI also recruits the nuclear cap-binding complex (CBC) (Geraldo et al., 

2009) and chromatin modifying factors that maintain a stable active state (Choi 

et al., 2011; Jiang et al., 2009). During vernalisation two mechanisms trigger 

silencing, both mediated by long non-coding RNAs. The early and seemingly 

non-essential silencing occurs through anti-sense transcripts collectively called 

COOLAIR that are produced from the 3’ end of the FLC locus (Csorba et al., 

2014; Helliwell et al., 2011; Swiezewski et al., 2009). Silencing through these 

COOLAIR RNAs involve 3’ RNA processing factors FLOWERING CONTROL 

LOCUS A (FCA), FLOWERING PROTEIN A (FPA), FLOWERING LOCUS 

Y (FY), CLEAVAGE STIMULATING FACTOR 64 and 77 (CSTF64 and 77), 

and alternative splicing factor PRE-MRNA PROCESSING 8 (PRP8) 
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(Marquardt et al., 2014; Hornyik et al., 2010; Liu et al., 2010). These factors 

target only the COOLAIR transcripts, and by that trigger chromatin changes that 

affect FLC mRNA transcription (Marquardt et al., 2014; Hornyik et al., 2010; 

Liu et al., 2010). A delayed but essential silencing is achieved by a sense 

transcript called COLDAIR. During vernalisation COLDAIR expression is 

induced and has a trans-acting repressive effect on the FLC locus (Kim et al., 

2017; Sheldon et al., 2002). This repressive effect requires the action of a 

vernalisation-related variety of the chromatin-modifying Polycomb repressive 

complex 2 (PRC2), which contains the cold-induced PHD-finger protein 

VERNALIZATION INSENSITIVE 3 (VIN3) (De Lucia et al., 2008; Wood et 

al., 2006; Sung & Amasino, 2004). 

Silencing of FLC is a binary, cell-autonomous process and is a low-

probability event (Berry et al., 2015; Angel et al., 2011). Individual cells may 

switch their FLC loci from active to repressed early during the vernalisation, but 

in the majority of the cells FLC will remain active. As the period of cold persists, 

FLC will switch to the silenced state in an increasing number of cells, eventually 

passing a threshold that releases FT from repression (Berry et al., 2015; Angel 

et al., 2011).  

Vernalisation evolved independently in several lineages of angiosperms, but 

the underlying molecular mechanisms are not well conserved (Ream et al., 

2012). FLC belongs to an angiosperm-specific MADS-box clade, and while FLC 

is involved in vernalisation in cereals and Amaranthaceae (sugar beet), it does 

not appear to play a major role there (Sharma et al., 2017; Vogt et al., 2014; 

Ruelens et al., 2013). In Arabidopsis most of the variation in flowering time is 

contributed by the FRI locus (Johanson et al., 2000). Arabidopsis summer 

annual varieties that pass through the winter as seeds (e.g. the common accession 

Columbia-0), often have a null mutation in FRI (Johanson et al., 2000). 

 

1.1.4 The photoperiod pathway 
 

Similar to how various environmental and internal signals converge on FT/TFL1 

genes to trigger flowering, various signals converge on GI to trigger a variety of 

responses, including flowering via FT/TFL1 (Mishra & Panigrahi, 2015). In the 

regulation of FT by daylength, GI has emerged as a master regulator that 

regulates FT in a CO-independent and CO-dependent manner (Mishra & 

Panigrahi, 2015). The expression of GI is controlled by the circadian clock, 

creating an mRNA peak in the late afternoon (Mizoguchi et al., 2005). 

Stabilization of the GI protein by the blue light sensor ZEITLUPE (ZTL) 

depends on light (Kim et al., 2007), causing the GI protein to accumulate to 
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higher levels under long photoperiods than under short (Sawa et al., 2007). The 

GI protein is present at the FT promoter and interacts with transcriptional 

repressors stationed there: SHORT VEGETATIVE PHASE (SVP), 

TEMPRANILLO 1 (TEM1) and TEM2,  interfering with their repressive 

function (Sawa & Kay, 2011). Because there is more GI present under long-day 

photoperiods than under short, FT will be more strongly relieved from repression 

under long-day photoperiods, potentially allowing flowering. 

The main activation of FT, however, happens in a CO-dependent manner. 

CO is repressed by CYCLING DOF FACTOR proteins (CDFs) (Imaizumi et al., 

2005) and especially under long photoperiods GI opposes this repression 

together with the light sensitive protein FLAVIN BINDING, KELCH REPEAT, 

F-BOX 1 (FKF1) (Fornara et al., 2009; Sawa et al., 2007). FKF1 and its close 

homologs ZTL and LOV KELCH PROTEIN 2 (LKP2) mark the CDFs for 

proteasomal degradation by poly-ubiquitination (Fornara et al., 2009; Imaizumi 

et al., 2005). Like GI, FKF1 is also controlled by the circadian clock and 

stabilized in the light, resulting in a similar but narrower protein expression 

pattern (Fornara et al., 2009; Sawa et al., 2007). The stabilization of FKF1 and 

its homologs is mediated by the light sensitive LOV domain that GI can bind in 

the light (Fornara et al., 2009). This allows CO mRNA to accumulate more under 

long photoperiods than under short, but it does not fully explain the CO protein 

levels. CO protein levels peaks around the light to dark transition under long-

day photoperiods, but not under short-day photoperiods (Valverde et al., 2004). 

This is achieved by the regulation of CO stability by the poly-ubiquitinating 

CONSTITUTIVE PHOTOMORPHOGENIC 1 – SUPPRESSOR OF PHYA 

105 – 1 (COP1-SPA1) complex, marking CO for degradation (Liu et al., 2008). 

Blue light photoreceptors CRYPTOCHROME1 (CRY1) and CRY2 however 

interact with SPA1 to prevent this poly-ubiquitination, so that CO is only 

eliminated by COP1 during the dark (Liu et al., 2011; Zuo et al., 2011). Other 

factors regulating CO protein level are light sensors PHYTOCHROME A 

(PHYA) and PHYB, stabilizing CO under far-red light, or destabilizing CO 

under red light, respectively (Valverde et al., 2004). The three FKF1-like 

proteins (FKF1, ZTL, and LKP2) that regulate CO expression also interact with 

CO and may affect CO stability (Song et al., 2014; Song et al., 2012). Another 

layer of regulation involves the AP2-like TARGET OF EAT1 (TOE1) that binds 

to the transcriptional activation domain of the CO protein, interfering with its 

activating function (Zhang et al., 2015). GI counteracts this inhibition by 

inducing the production of miR172, which in turn targets the TOEs by 

translational silencing (Zhang et al., 2015; Jung et al., 2007; Aukerman & Sakai, 

2003), thus activating FT and triggering flowering. 
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Homologs of proteins that in Arabidopsis induce flowering under long days, 

induce flowering under short days in rice. Like GI, the rice protein OsGI is an 

activator of CO-like HEADING DATE 1 (HD1) (Hayama et al., 2003). Unlike 

Arabidopsis CO, HD1 is not always an activator of FT-like floral activators 

HEADING DATE 3a (HD3A) and RICE FT 1 (RFT1), but its activator/repressor 

nature depends on the presence of light and the length of the photoperiod 

(Nemoto et al., 2016; Tsuji et al., 2011). The monocot specific EARLY 

HEADING DATE 1 (EDH1) is an activator of the FT-like genes, and it is 

repressed by another monocot specific protein GRAIN NUMBER, PLANT 

HEIGHT AND HEADING DATE 7 (GHD7) (Nemoto et al., 2016). The latter 

requires in part the function of HD1, which explains partially why HD1 is 

sometimes a floral repressor (when GHD7 is present), and at other times an 

activator (when GHD7 is not present) (Nemoto et al., 2016). As in Arabidopsis, 

PHYs regulate flowering through genes upstream of FT/TFL1 (Lee et al., 2016; 

Osugi et al., 2011). The similarities in the regulation of FT/TFL1 genes by GI 

and CO between rice and Arabidopsis indicate that the general mechanism of 

flowering control by the photoperiod pathway is conserved in flowering plants, 

even though different lineages have evolved the usage of new proteins on top of 

the conserved system. 

 

1.2 Cellular memory 
 

Because flowering is such an important event in the life of a plant, it should not 

be triggered by random fluctuations in the environment, but requires to be tightly 

controlled. In Arabidopsis,  stable expression and repression of FLC and FT, 

respectively, prevents floral initiation before or during the winter (Kim et al., 

2009). Stable expression states are also required to prevent germination of seeds 

still attached to the mother plant (Footitt et al., 2015; Liu et al., 2007), or to 

prevent activation of costly stress responses when not required (Alexandre et al., 

2009). The ability for cells to maintain expression states can be referred to as 

cells having a kind of “memory”. In the case of FLC, the gene is switched off 

upon sensing of cold. But after the cold period, the cells “remember” that they 

passed through a cold period, i.e. FLC stays switched off, even though the 

original repressive trigger is no longer present (Sheldon et al., 2008; Bastow et 

al., 2004; Gendall et al., 2001). Complex mechanisms exist to maintain the 

“memory” as long as it is required, even allowing the “memory” to be passed on 

to daughter cells. Important elements maintaining this “memory” are nucleobase 

modifications, incorporation of variants of histone proteins, and post-
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translational modifications of histone proteins. These modifications and variants 

can occur in virtually any DNA context, and change properties of the chromatin, 

making the DNA more or less accessible to the transcriptional machinery. DNA 

tends to be more accessible in the open conformation called euchromatin, and 

less accessible in the compact heterochromatin. 

Histones are basic proteins that stably associate with the acidic DNA 

molecules, allowing organized compaction into higher order structures. They 

assemble into nucleosomes: heterogeneous octameric complexes, each with 147 

bp of DNA wrapped around. Histones originate in the common ancestor of 

archaea and eukaryotes (Sandman & Reeve, 2006), and within the eukaryotic 

domain 5 classes of histones are well conserved: H1, H2A, H2B, H3, H4. A 

nucleosome always contains two H3-H4 dimers and two H2A-H2B dimers, 

though the exact amino acid sequence of the histones as well as the number of 

variants within a class may vary between species (Talbert & Henikoff, 2010). 

Nucleosomes are present everywhere in the genome, and often have well-

defined positions relative to the transcription start site (Radman-Livaja & Rando, 

2010). Histone 1, called the linker histone, is not part of the nucleosome core 

particle but binds the DNA at the entry/exit sites of the nucleosome. As such H1 

is involved in nucleosome spacing and chromatin compaction (Hergeth & 

Schneider, 2015). While the nucleosome in general presents a barrier to 

transcription (Hodges et al., 2009; Bondarenko et al., 2006), histone 

modifications (and variants) can confer both active and repressive expression 

states.  

 

1.2.1 Histone post-translational modifications 
 

Histones consist of parts that are involved in histone-histone interactions, 

histone-DNA interactions, and 'tails' that stick out of the nucleosome. Post-

translational modifications can occur in all three of these areas, but are more 

common in the tail regions (Zhao & Garcia, 2015). The modifications can affect 

chromatin structure and dynamics directly:  modifications in the histone-histone 

interfaces affect the stability of the nucleosome, while modifications in areas 

where the DNA enters affect wrapping dynamics (Bowman & Poirier, 2014). 

Modifications of the histone tails may contact other nucleosomes and have an 

effect on higher order structures (Collepardo-Guevara et al., 2015; Pepenella et 

al., 2014). Two common modifications are lysine acetylation and 

phosphorylation. These modifications increase the positive charge and steric size 

of the histones, making interactions between histones and DNA less 

energetically favourable (Bowman & Poirier, 2014). Nucleosomal DNA is 
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constantly spontaneously wrapping and unwrapping, with higher frequency at 

the ends than in the middle (Li et al., 2005; Anderson & Widom, 2000). 

Acetylation and phosphorylation promote unwrapping, increasing the 

probability of transcription factor binding (Bowman & Poirier, 2014). They may 

additionally promote nucleosome sliding and disassembly, all favouring 

transcription (Bowman & Poirier, 2014). Another modification that has a direct 

effect is mono-ubiquitination, specifically at the C-terminus of H2B (H2Bub1), 

because it interferes with higher order packing of chromatin (Fierz et al., 2011). 

Many modifications on the histone tails, however, are not directly affecting 

nucleosome stability and motion, but are more like tags. A tag by itself does not 

do anything until the appropriate reader comes along and binds the tag. A 

common modification is the methylation of lysine residues. For example, 

trimethylated lysine 4 of histone 3 (H3K4me3) is associated with transcriptional 

activation (Fromm & Avramova, 2014), while trimethylation of lysine 27 

(H3K27me3) is associated with transcriptional repression (Mozgova & Hennig, 

2015). Histone modifications are read by proteins containing specific domains. 

For instance, bromo or tandem PHD domains recognize acetylated lysine 

residues (Zeng et al., 2010; Lange et al., 2008; Zeng & Zhou, 2002; Dhalluin et 

al., 1999). And methylated lysine residues are recognized by WD40, TUDOR, 

and CHROMO domains, amongst others (Yun et al., 2011). Readers interact 

with amino acid residues around the modification, allowing site specificity. Even 

so, many readers recognize multiple modifications, especially readers of 

acetylated lysines (Filippakopoulos & Knapp, 2012; Kaustov et al., 2011; Yun 

et al., 2011; Vermeulen et al., 2010). Readers may directly affect transcription, 

for instance H3K4me3 and H4 acetylation are recognized by the transcription 

preinitiation complex (Vermeulen et al., 2007; Jacobson et al., 2000). Readers 

can also recruit chromatin remodelling complexes to displace nucleosomes 

(Cavellán et al., 2006). Finally, readers could also lead to the deposition of 

secondary marks, which may be the case for mono-ubiquitinated H2A (H2Aub1) 

(Dorafshan et al., 2017; Zhou et al., 2017a), or may cause removal of marks with 

opposing roles (van der Vlag & Otte, 1999).  

 

1.2.2 The Polycomb repressive complex system 
 

The main epigenetic repressive system involves two histone tail modifications: 

H2Aub1 and H3K27me3, deposited by Polycomb repressive complex 1 (PRC1) 

and PRC2, respectively. The mono-ubiquitin mark on H2A occurs on different 

(but analogous) positions in different species: K121 in Arabidopsis, K118 in 

Drosophila, and K119 in humans. Considering that animals (unikonts) and plants 
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(bikonts) both possess PRC1 and PRC2, PRC1&2 must have originated before 

the rise of multicellularity, and must have been present in the last eukaryotic 

common ancestor (LECA) (Shaver et al., 2010). Millions of years of evolution 

have given rise to variant and accessory complexes, but the core functions of the 

repressive complexes have been maintained. Below I discuss complex 

composition and subunit function, focussing on what is conserved between 

lineages. 

 

PRC2 

 

PRC2 perhaps originated as a way to silence transposons (Shaver et al., 2010), 

and later became co-opted to regulate differentiation and phase changes in 

multicellular organisms (Mozgova & Hennig, 2015). While PRC2 was present 

in LECA, it has subsequently been lost several times in separate unicellular 

lineages (Shaver et al., 2010). For instance, it is absent in the Opisthokont 

Saccharomyces cerivisiae (budding yeast), the Chromalveolate Plasmodium 

falciparum (malaria parasite), and the Amoebozoan Entamoeba histolytica 

(amoebiasis parasite) (Shaver et al., 2010). One component of PRC2 is present 

in all eukaryotes, presumably because it is a core component of multiple 

chromatin modifying complexes (Hennig et al., 2005; Martínez-Balbás et al., 

1998; Tyler et al., 1996). It is a nucleosome-binding protein that is called 

MULTICOPY SUPPRESSOR OF IRA 1 (MSI1) in Arabidopsis, 

NUCLEOSOME REMODELING FACTOR SUBUNIT 55 KDA (NURF55) in 

Drosophila, and RETINOBLASTOMA BINDING PROTEIN 4 and 7 (RBBP4 

& RBBP7) in humans (Hennig et al., 2005). The enzymatic function of PRC2 is 

housed in the SET domain containing proteins SWINGER (SWN), CURLY 

LEAF (CLF), and MEDEA (MEA) in Arabidopsis, ENHANCER OF ZESTE 

(E(Z)) in Drosophila, and ENHANCER OF ZESTE HOMOLOG 1 and 2 (EZH1 

and EZH2) in humans (Chanvivattana et al., 2004; Czermin et al., 2002; 

Kuzmichev et al., 2002; Grossniklaus et al., 1998; Goodrich et al., 1997). A third 

component of PRC2 is the WD40 domain containing protein called 

FERTILISATION INDEPENDENT ENDOSPERM (FIE) in Arabidopsis, 

EXTRA SEX COMBS and EXTRA SEX COMBS-LIKE (ESC and ESCL) in 

Drosophila, and EMBRYONIC ECTODERM DEVELOPMENT (EED) in 

humans (Wang et al., 2006; Ohad et al., 1999; Faust et al., 1998; Gutjahr et al., 

1995). Animal and yeast EED can recognize H3K27me3, which triggers a 

conformational change that activates the methyltransferase (Justin et al., 2016; 

Jiao & Liu, 2015; Margueron et al., 2009; Hansen et al., 2008), aiding in the 

spreading and maintenance of H3K27me3. The fourth core component of PRC2 
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is represented by EMBRYONIC FLOWER 2 (EMF2), VERNALISATION 2 

(VRN2), FERTILISATION INDEPENDENT SEED 2 (FIS2) in Arabidopsis 

(Gendall et al., 2001; Yoshida et al., 2001; Luo et al., 1999), SUPPRESSOR OF 

ZESTE 12 (SU(Z)12) in Drosophila (Birve et al., 2001), and SUZ12 in humans 

(Pasini et al., 2004). SUZ12 is essential for PRC2 function by bridging other 

core proteins (Chen et al., 2018b; Jiao & Liu, 2015; Nekrasov et al., 2005). 

Additionally, mammal and plant SUZ12 homologs are involved in the 

recognition of active histone marks to inhibit PRC2 activity (Chen et al., 2018b; 

Schmitges et al., 2011). Finally, PRC2 may contain less conserved components, 

for instance the animal-specific ADIPOCYTE ENHANCER BINDING 

PROTEIN 2 (AEBP2), also known as JING in Drosophila (Grijzenhout et al., 

2016; Liu & Montell, 2001).  

While there are different homologous genes encoding specific PRC2 

subunits, each PRC2 complex contains only one variant of each subunit. Thus, 

there are different variants of PRC2 complexes, likely with different functions. 

For example, Arabidopsis MEA and FIS2 occur exclusively in the gametophyte 

specific FIS2-PRC2 complex, and prevent development of the endosperm in 

absence of fertilization (Chanvivattana et al., 2004; Guitton et al., 2004; Kohler 

et al., 2003; Kiyosue et al., 1999). VRN2-PRC2 (either with SWN or CLF) 

maintains the silenced state of FLC after vernalisation (De Lucia et al., 2008).  

Two main variants of PRC2 in animals are distinguished by the presence of 

JUMONJI FAMILY ARID DOMAIN CONTAINING PROTEIN 2 (JARID2) 

and POLYCOMB-LIKE (PCL, multiple homologs in mammals), though both 

seem to promote H3K27me3 deposition by increasing the chromatin residence 

time of PRC2 (Youmans et al., 2018; Choi et al., 2017; Herz et al., 2012; 

Hunkapiller et al., 2012; Li et al., 2010; Walker et al., 2010; Sarma et al., 2008; 

Nekrasov et al., 2007).  

 

PRC1 and related complexes 

 

PRC1 is less well conserved compared to PRC2: it has not been discovered in 

any unicellular species, and has undergone significant divergence between 

lineages. As such, the function of the original PRC1 is currently unknown. The 

enzymatic core is conserved between plants and animals: it contains proteins 

from two subfamilies of REALLY INTERESTING NEW GENE (RING)-

domain containing proteins that together ubiquitinate histone 2A: RING1-class 

and B-LYMPHOMA MOLONEY MURINE LEUKEMIA VIRUS INSERTION 

REGION-1 (BMI1) class. The first protein (RING1-class) is called SEX 

COMBS EXTRA (SCE) in Drosophila, and has two homologs in Arabidopsis 



26 

 

and animals: RING1A and RING1B (Sanchez-Pulido et al., 2008; Xu & Shen, 

2008; Gorfinkiel et al., 2004; Fritsch et al., 2003; Schoorlemmer et al., 1997). 

The second component (BMI1-class) has several homologs in all species: 

BMI1A, BMI1B, BMI1C in Arabidopsis, POSTERIOR SEX COMBS (PSC), 

SUPPRESSOR OF ZESTE 2 (SU(Z)2), and LETHAL (3) 73AH (L(3)73AH) in 

Drosophila, and POLYCOMB GROUP RING FINGER PROTEINS 1 to 6 

(PCGF1 - 6) in mammals (Gao et al., 2012; Lo et al., 2009; Sanchez-Pulido et 

al., 2008; Elderkin et al., 2007; Cao et al., 2005; Kyba & Brock, 1998; Irminger-

Finger & Nöthiger, 1995). The RING1-class possesses ubiquitin ligase activity 

in both animals and plants, but the BMI1-class only has this activity in plants 

(Bratzel et al., 2010; Elderkin et al., 2007; Buchwald et al., 2006). In animals, it 

has been shown that the BMI1-class proteins stimulate the ubiquitination activity 

of the RING1 class proteins (Elderkin et al., 2007; Buchwald et al., 2006; Cao 

et al., 2005), and in invertebrates they cause chromatin compaction (Francis et 

al., 2004; Francis et al., 2001).  

In animals, the enzymatic core proteins can associate with sets of different 

proteins forming different complexes. The canonical PRC1 complex contains an 

H3K27me3-binding protein that allows H3K27me3 spreading/maintenance, and 

connects the PRC2 output to chromatin compaction: POLYCOMB (PC) in 

Drosophila, and CHROMOBOX 2 (CBX2), CBX4, CBX6, CBX7, and CBX8 

in humans (Santanach Buxaderas et al., 2017; Cao et al., 2002; Czermin et al., 

2002; Bárdos et al., 2000; Satijn et al., 1997; Pearce et al., 1992). Second, it 

contains a homolog of the Drosophila protein POLYHOMEOTIC (PH) (Isono 

et al., 2005; Levine et al., 2002; Franke et al., 1992), a protein that functions in 

clustering of PRC-bound loci (Wani et al., 2016). And thirdly, it contains a 

homolog of Drosophila SEX COMBS ON MIDLEG (SCM) (Berger et al., 1999; 

Montini et al., 1999; Bornemann et al., 1996) that can interact with chromatin 

(Wang et al., 2010; Grimm et al., 2009) and can act as a platform to which other 

proteins can bind (Lecona et al., 2015; Grimm et al., 2009). The variants of 

PRC1 in mammals are named after the PCGF protein that is present; e.g. PRC1.2 

and PRC1.4 are the canonical PRC1 complexes, and contain PCGF2 and 

PCGF4, respectively (Gao et al., 2012). There is a non-canonical PRC1 in 

mammals that can have any PCGF protein, but does not have the PC, PH, and 

SCM components. This complex is characterized by the presence of either 

RING/YY1-BINDING PROTEIN (RYBP) or its homolog YY1-ASSOCIATED 

FACTOR 2 (YAF2), and like canonical PRC1 is involved in mono-

ubiquitination of H2A and chromatin compaction (Gao et al., 2012). In fact, this 

component is a more potent mono-ubiquitinase than the canonical PRC1, similar 

to the alternative dRING associated factors complex (dRAF) in Drosophila 

(containing the two enzymatic core proteins SCE and PSC, and additionally the 
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F-box protein and H3K36 demethylase dKDM2) (Gao et al., 2012; Lagarou et 

al., 2008). RYBP/YAF2 interact with YIN YANG 1 (YY1) (García et al., 1999), 

which is the mammalian homolog of Drosophila PLEIOHOMEOTIC (PHO) and 

PHO-LIKE (PHOL). PHO/PHOL forms a PRC1-recruiting complex together 

with SCM-RELATED CONTAINING FOUR MBT DOMAINS (SFMBT) 

(Klymenko et al., 2006; Wang et al., 2004), though it's unlikely that YY1 has 

this role too (Kahn et al., 2014). 

Plants possess a plant-specific EMBRYONIC FLOWER 1 (EMF1) complex 

(Wang et al., 2014), which is necessary for H3K27me3 maintenance and 

spreading and consequently for stable repression of the PRC target loci 

(Veluchamy et al., 2016; Derkacheva et al., 2013; Kim et al., 2012). Unlike 

EED, an H3K27me3-binding activity for FIE has not been reported, and plant 

PRC1 lack a PC homolog. However, research has uncovered three H3K27me3 

readers (LIKE HETEROCHROMATIN PROTEIN1 (LHP1), SHORT LIFE 

(SHL), and EARLY BOLTING IN SHORT DAYS (EBS)), all of which interact 

mutually exclusively with EMF1 (Li et al., 2018; Wang et al., 2014; Turck et 

al., 2007; Zhang et al., 2007). The spreading and maintenance function is made 

possible by the direct interaction of EMF1c with PRC2 (Derkacheva et al., 2013; 

Calonje et al., 2008). Loss of individual H3K27me3-readers has a mild effect on 

H3K27me3, but loss of EMF1 is more dramatic (Li et al., 2018; Veluchamy et 

al., 2016; Kim et al., 2012). In addition to an H3K27me3 reader, EMF1c 

contains an eraser of the active H3K4me3 mark: JUMONJI 14 (JMJ14), JMJ15, 

or JMJ18 (Wang et al., 2014; Lu et al., 2010; Yang et al., 2010; Jeong et al., 

2009). Thus, EMF1c may further promote silencing via counteracting deposition 

of active marks.  
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Table 1. PRC2 and PRC1 components conserved between plants and animals 

 Arabidopsis Drosophila Human Function 

PRC2 MSI1 NURF55 RBBP4 

RBBP7 

Binds 

nucleosomes 

 SWN 

CLF 

MEA 

E(Z) EZH1 

EZH2 

Methylates 

H3K27, 

H1K26 (dep. on 

EED isoform) 

 FIE ESC 

ESCL 

EED (4 isoforms) Binds 

H3K27me3, 

Activates 

methylase 

 EMF2 

VRN2 

FIS2 

SU(Z)12 SUZ12 Protein bridging, 

activates 

methylase  

PRC1 RING1A 

RING1B 

SCE RING1A 

RING1B 

Deposits H2Aub1 

 BMI1A 

BMI1B 

BMI1C 

PSC 

SU(Z)2 

L(3)73AH 

PCGF1 

PCGF2 

PCGF3 

PCGF4 

PCGF5 

PCGF6 

Compacts 

chromatin 

(invertebrate 

only), 

Stimulates RING, 

Deposits H2Aub1 

(plants only) 

 

 

1.2.3 Recruitment and hierarchy 
 

In animals, PRC2 and PRC1 are both targeted to HOMEOBOX (HOX) genes, 

amongst others, and are both required for the maintenance of repression of these 

genes (Kwong et al., 2008; Cao et al., 2005; Wang et al., 2004; Müller et al., 

2002; Wang et al., 2002; Akasaka et al., 2001). That, together with the fact that 

PRC1 contains the H3K27me3 reader PC (in animals), indicated that PRC2 is 

recruited first, deposits H3K27me3, in turn recruiting PRC1, leading to the 

deposition of H2Aub1, and finally chromatin compaction. This was later shown 

to be not correct (Zhou et al., 2017a; Kahn et al., 2016). Firstly, in both mammals 

and plants PRC1/H2Aub1 occur at more than a thousand loci that aren't marked 

with PRC2/H3K27me3 (Zhou et al., 2017a; Tavares et al., 2012; Schoeftner et 

al., 2006). Secondly, the non-canonical RYBP/YAF2-PRC1 in mammals and 

dRAF in flies do not have an H3K27me3 reader, but they do deposit H2Aub1 
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and cause chromatin compaction (RYBP-PRC1) and repression (dRAF) (Gao et 

al., 2012; Lagarou et al., 2008). Thirdly, both in fly and plant PRC1 mutants 

about two-thirds of the genes with H3K27me3 lose this mark, while in PRC2 

mutants hardly any gene loses H2Aub1 (Zhou et al., 2017a; Kahn et al., 2016). 

This indicates that in general PRC1 presence and/or action is a requirement for 

PRC2 recruitment, while the reverse is not true (Zhou et al., 2017a; Kahn et al., 

2016). Indeed, this hierarchy is made possible by the finding that the accessory 

PRC2 components JARID2 and AEBP2 can bind H2Aub1 (Kalb et al., 2014), 

even though PRC1-independent recruitment mechanisms exist too (Kahn et al., 

2016). Furthermore, a time course experiment showed that H2Aub1 is deposited 

before H3K27me3 in the process of X-chromosome inactivation (Almeida et al., 

2017).  

So far, we have seen that in animals PRC1 has multiple functions. It serves 

to recruit PRC2 initially, it enforces PRC2 recruitment via H3K27me3 

recognition to spread and maintain the mark, and it causes chromatin 

compaction. In plants these functions appear split between PRC1 and EMF1c. 

Spreading and maintenance appears more dependent on EMF1c (Li et al., 2018). 

In addition, the BMI1-class proteins of invertebrate PRC1 contain an 

intrinsically disordered domain (IDD) that mediates chromatin compaction 

(King et al., 2005). Mammal and plant BMI1-class proteins lack this region, but 

a functionally analogous region is present in CBX2 and EMF1, respectively 

(Beh et al., 2012; Grau et al., 2011). Thus, chromatin compaction in plants is 

likely mediated by EMF1c instead of PRC1 (Beh et al., 2012; Kim et al., 2012). 

 

PRC1 recruitment 

 

Because PRC1 usually arrives first, it is likely that locus specificity of PRC2 is 

determined (at least in part) by PRC1. The great variation and low conservation 

in PRC1 complexes supports this idea, and indeed different variants have 

different modes of recruitment.  First of all, canonical PRC1 is recruited by the 

SCM subunit. In Drosophila, SCM targets PRC1 to the so-called Polycomb 

response elements (PRE), DNA elements that are sufficient for PRC recruitment 

(Xiao et al., 2017; Kassis & Brown, 2013; Wang et al., 2010). There is evidence 

that also mammalian PRC1 can be recruited via its SCM homologs by non-

coding RNA and by DNA elements (Maezawa et al., 2018; Bonasio et al., 2014). 

A second general mechanism for recruitment of canonical PRC1 in Drosophila 

is through the action of PhoRC. The component PHO/PHOL has been shown to 

possess DNA-binding activity that targets it to PREs (Brown et al., 2003; Fritsch 
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et al., 1999; Brown et al., 1998), and recruits PRC1 via the interaction between 

PhoRC subunit SFMBT and PRC1 subunit SCM (Kahn et al., 2014; Grimm et 

al., 2009). Mammalian variant complex PRC1.1, also called the BCOR complex, 

is recruited in two different ways. One way is via its subunit KDM2B, which 

binds unmethylated CpG islands (CG rich areas of DNA, often found at 

promoters in mammals) (Zhou et al., 2017c; Blackledge et al., 2014; Farcas et 

al., 2012). Loss of KDM2B leads to loss of H2Aub1 and H3K27me3 and leads 

to embryo lethality (Blackledge et al., 2014). Flies also possess a homolog of 

this protein in their dRAF complex, however this protein has not been reported 

as a PRC1 recruiter and appears non-essential (Zheng et al., 2018). The other 

way PRC1.1 is recruited is via the DNA-binding protein B-CELL LYMPHOMA 

6 (BCL6) (Beguelin et al., 2016; Hatzi et al., 2013), targeting PRC1.1 to a 

different set of genes (Beguelin et al., 2016). PRC1.3 and PRC1.5 are recruited 

to the X-chromosome by the Xist RNA, via their PSCF subunits (Almeida et al., 

2017). Recruitment of RYBP/YAF2-PRC1 occurs by binding to H2Aub1, 

presumably as a reinforcing mechanism (Almeida et al., 2017; Gao et al., 2012; 

Arrigoni et al., 2006). Different complexes can also be recruited by the same 

factor, for instance by RE1 SILENCING TRANSCRIPTION FACTOR (REST) 

(Arnold et al., 2013; Dietrich et al., 2012; Ren & Kerppola, 2011), though in this 

case PRC1 appears to function without PRC2 (McGann et al., 2014). In contrast 

to the afore-mentioned plethora of recruitment pathways in animals, we know 

very little about PRC1 recruitment in plants. Only the VP1/ABI3-LIKE (VAL) 

proteins are so far candidates for PRC1 recruitment, as well as for the 

recruitment of EMF1c  (Merini et al., 2017; Qüesta et al., 2016; Yang et al., 

2013). 

 

PRC2 recruitment 

 

Most studies focus on the final product of PRC2, H3K27me3, but the 

intermediate H3K27me2 (and to a lesser degree H3K27me1) is actually more 

prevalent in the genome (Lee et al., 2015; Ferrari et al., 2014; Park et al., 2012; 

Peters et al., 2003). The affinity of the enzymatic core of PRC2 to its substrate 

is higher to K27me1 than to K27me2 (McCabe et al., 2012), suggesting that 

stable chromatin association is required to achieve the catalysis to H3K27me3. 

In flies, mutations in PRC1 or PRC2 accessory factor PCL cause a reduction in 

H3K27me3, but an increase in H3K27me2 (Kahn et al., 2016; Nekrasov et al., 

2007). The same is observed in the case of removal of H3K27me3 reader HP1 

in Neurospora crassa (Jamieson et al., 2016). This suggests that H3K27me1 and 

subsequent H3K27me2 are randomly deposited in a hit-and-run mode plausibly 
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to prevent random, spontaneous transcription (Lee et al., 2015). But in genes, 

where transcription is facilitated by transcriptional activators, stronger 

repression is required. H3K27me3 may be a stronger repressor than H3K27me2, 

but does require stabilization of PRC2 first. This stabilization can be mediated 

by PRC1, by recognizing the H2Aub1 mark with JARID2 and AEBP2 

(Youmans et al., 2018; Kalb et al., 2014). PRC2 may also bind to PRC1 directly, 

albeit transiently (Kang et al., 2015; Poux et al., 2001). EMF1c can interact with 

both PRC1 and PRC2 (Li et al., 2018; Bratzel et al., 2010; Xu & Shen, 2008), 

and so could be the main factor mediating PRC1-dependent PRC2 recruitment 

in plants. PRC1-independent recruitment happens through transcription factors. 

For instance, via the zinc fingers SNAI1 (Herranz et al., 2008) and ZNF518B 

(Maier et al., 2015). In Arabidopsis, various transcription factors have been 

identified that recruit PRC2 to PREs containing GA repeats and teloboxes (Jing 

et al., 2019; Chen et al., 2018a; Sasnauskas et al., 2018; Xiao et al., 2017; Zhou 

et al., 2017b; Molitor et al., 2016; Yuan et al., 2016; Hecker et al., 2015; De 

Lucia et al., 2008). Recruitment can occur via direct interaction with a PRC2 

subunit, though often also indirectly via LHP1 (Zhou et al., 2017b; Molitor et 

al., 2016; Yuan et al., 2016; Hecker et al., 2015). Long non-coding RNAs have 

also been implicated in PRC2 recruitment in animals and plants (Heo & Sung, 

2011; Tsai et al., 2010; Rinn et al., 2007), though more recent studies showed 

that PRC2 binds nascent RNA rather unspecifically, and that RNA binding 

inhibits PRC2 activity (Beltran et al., 2016; Cifuentes-Rojas et al., 2014; Kaneko 

et al., 2014). 
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Figure 1. Conserved PRC function. A) PRC1 is targeted to specific loci by DNA (or RNA) binding 

non-core components like SCM (-like) in animals, or VAL1 in plants, and then deposits H2Aub1 

(small blue circle).  B) PRC2 has autonomous nucleosome binding activity, binding chromatin 

randomly and briefly, and depositing H3K27me1 and H3K27me2 (small red circles). C) Increased 

residence time on the chromatin allows deposition of H3K27me3. In animals, residence time is 

increased by the recognition of H2Aub1 by accessory subunits AEBP2 and JARID2. In plants, such 

a PRC2-associated H2Aub1 reader has not been identified. PRC2 can also be recruited by DNA-

binding factors, allowing targeting independently of PRC1. D) H3K27me3-readers allow spreading 

of the H3K27me3 mark beyond the nucleation site, and to maintain it during DNA replication. The 

blue complex is PRC1 in animals (recognizing H3K27me3 through PC), or EMF1c in plants 

(through LHP1, EBS, and SHL), which interacts with PRC2 to deposit H3K27me3 on an adjacent 

nucleosome. In mammals the PRC2 subunit EED can recognize H3K27me3, allowing PRC2 to 

spread the mark without any additional complex. E) Nucleosomes of near and distant places can 

cluster together, compacting the chromatin. Local compaction depends on intrinsically disordered 

domains (IDD) present in invertebrate BMI1-class proteins, in CBX2 in mammals, and in EMF1 

in plants. IDDs have the potential to form polymers, providing a mechanism for the compaction 

mediated by PRC1. Similarly, PH was reported to form polymers and to cluster together (distant) 

PRC1-bound loci. 
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1.2.4 Histone de-ubiquitination 
 

Like all histone marks, H2Aub1 has its erasers. Genes kept repressed by the PRC 

system do not necessarily need to stay repressed for ever, but require to be 

reactivated in response to environmental or developmental signals. For 

reactivation, the action of the PRCs needs to be reversed. It has been well 

established that reactivation requires H3K27me3 demethylation (Van der 

Meulen et al., 2015; He et al., 2012b), and so one could imagine the same for 

H2Aub1 erasers. However, the relationship between H2Aub1 and expression is 

not straightforward. Both in animals and in plants erasers have been described 

that remove the H2Aub1 mark, and yet this removal is not associated with gene 

activation, but rather with repression and increased levels of H3K27me3 

(Derkacheva et al., 2016; Scheuermann et al., 2010).  

It is unclear whether H2Aub1 is truly a repressive mark. Loss of H2Aub1 has 

been implicated in the release of RNA polymerase II from its poised state in 

mammals, though the concomitant (but milder) loss of H3K27me3 could have 

caused this de-repression instead (Stock et al., 2007). On the other hand, several 

studies in animals showed that enzymatically inactive PRC1 is still able to confer 

gene repression and chromatin compaction (Illingworth et al., 2015; Pengelly et 

al., 2015; Eskeland et al., 2010). As mentioned before, PRC2 can be recruited 

by H2Aub1 via JARID2 and AEBP2 (Kalb et al., 2014), though this does not 

mean that H2Aub1 has to remain at a locus after PRC2 recruitment. Once 

H3K27me3 has been established, H3K27me3 can act as a PRC2 recruiting signal 

via EED and PCL in animals, and via EMF1c in plants. At that point H2Aub1 

could become dispensable. In Arabidopsis, loci with H3K27me3 and H2Aub1 

have a higher average expression than loci without H2Aub1, indicating that 

H2Aub1 rather interferes with repression (Zhou et al., 2017a). Together this 

suggests that H2Aub1 is not just required to push the PRC system in the direction 

of repression and chromatin compaction, but that it has another role. It is possible 

that H2Aub1 or an H2Aub1-binding factor is limiting, and release of H2Aub1 

from a locus that is already repressed makes it available to allow repression of 

another locus (Scheuermann et al., 2012). Alternatively, H2Aub1 interferes with 

the repression downstream of PRC2 recruitment, and requires to be removed 

after deposition for proper repression (Scheuermann et al., 2012). 

In flies, the repressive de-ubiquitination is mediated by the Polycomb 

repressive de-ubiquitinase complex (PR-DUB) (Scheuermann et al., 2010). It is 

comprised of the de-ubiquitinase CALYPSO and the chromatin-binding 

ADDITIONAL SEX COMBS (ASX), that both are required for H2A de-

ubiquitination and HOX gene repression (De et al., 2019; Scheuermann et al., 

2010; Sinclair et al., 1998). The human homolog of CALYPSO, BRCA1-
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ASSOCIATED PROTEIN 1 (BAP1), and the ASX homologs ASXL1, ASXL2, 

and ASXL3 could similarly interact and de-ubiquitinate H2A (Srivastava et al., 

2015; Lai & Wang, 2013; Scheuermann et al., 2010). In plants a similar system 

was found, albeit with non-homologous proteins (Derkacheva et al., 2016). 

UBIQUITIN SPECIFIC PROTEASES 12 and 13 have been identified as 

interactors of LHP1, and mutation of the genes encoding these de-ubiquitinases 

causes loss of H3K27me3 and de-repression of some PRC2 targets (Derkacheva 

et al., 2016).  Research in mammals showed that loss of the ASXLs also causes 

loss of repression and H3K27me3 (Lai & Wang, 2013; Abdel-Wahab et al., 

2012). However, loss of BAP1 has the opposite effect (Campagne et al., 2019; 

LaFave et al., 2015). Genome-wide analyses of the consequences of loss of H2A 

de-ubiquitination on expression and H3K27me3 in flies and plants is required to 

determine whether the reported repressive H2A de-ubiquitination truly exists. 

 

1.2.5 PRC-mediated gene repression 

 

The role of the PRC system is to provide repression stability. In general the PRCs 

do not cause the initial repression, but rather ensure that genes do not get 

spontaneously reactivated (Helliwell et al., 2011; Eskeland et al., 2010; Schubert 

et al., 2006; Gendall et al., 2001). This stable repressive state is achieved through 

a combination of different mechanisms. Firstly, animal PRC1 interferes with the 

assembly of the pre-initiation complex of RNA polymerase II (Lehmann et al., 

2012). The PRCs also interfere with transcriptional elongation at bivalent genes 

(Stock et al., 2007). In addition to affecting transcription directly, the PRC 

system counters the deposition of active histone marks. For instance, the 

presence of H3K27me3 prevents deposition of H3K27Ac because the two marks 

cannot coexist, and because PC inhibits the acetylase CBP directly (Tie et al., 

2016; Pasini et al., 2010). And in mammals PRC2 recruits the H3K4me3 

demethylase RBP2 (Pasini et al., 2008), while in plants the EMF1 complex 

possesses H3K4me3 demethylase activity.  

However, the main mechanism of repression is chromatin compaction (Lau 

et al., 2017; Shao et al., 1999). In vitro studies have shown that animal PRC1 

can compact nucleosomal arrays, a process that does not require histone 

modifications (Eskeland et al., 2010; Francis et al., 2004). This compaction is 

dependent on an IDD that resides in BMI1-class proteins in invertebrates, in 

CBX2 in mammals, and in EMF1 in plants (Beh et al., 2012; Grau et al., 2011; 

King et al., 2005). In addition to PRC1, mammalian PRC2 has also been reported 

to compact chromatin in vitro through EZH1, a process that does require histone 
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tails (Margueron et al., 2008). EZH1 is only a weak H3K27 methylase, but a 

strong chromatin compactor, while the opposite is true for EZH2 (Margueron et 

al., 2008). However, since EZH1 is often associated with the active H3K4me3 

mark, and has been shown to stimulate RNA polymerase II elongation (Mousavi 

et al., 2012), it is unclear whether EZH1 has a major role in repression. 

Compaction and repression might require H3K27me3 together with PRC1 or 

EMF1c (Kim et al., 2012; Eskeland et al., 2010; Schubert et al., 2006), as well 

as recruitment of variant histone H1.2 in mammals (Kim et al., 2015a). In 

addition, PRC2 has been shown to methylate H1K26, which is required for 

L3MBTL1-mediated chromatin compaction (Trojer et al., 2007; Kuzmichev et 

al., 2004). PRCs do not only cause local condensation of the chromatin, but also 

cause higher order reorganization of the chromatin by creating clusters of PRC-

bound loci (reviewed in (Entrevan et al., 2016)). A critical factor for clustering 

in animals is PH, though this clustering has also been observed in plants which 

do not have a PH homolog (Wani et al., 2016; Rosa et al., 2013). The mode of 

action of PH is through polymerisation, linking multiple chromatin-bound PRC1 

complexes together (Robinson et al., 2012). Recently it has been found that the 

mode of chromatin compaction of CBX2 is also by polymerization through its 

IDD (Tatavosian et al., 2019), indicating that the same may be true for EMF1.  

In the transition to flowering, the PRC system plays an important role as 

evidenced by the early flowering phenotype of PRC2 and EMF1c mutants 

(Wang et al., 2014; Gaudin et al., 2001; Yoshida et al., 2001; Goodrich et al., 

1997), and late flowering phenotype of PRC1 mutants (Shen et al., 2014). In the 

vegetative phase of Arabidopsis, FT repression is maintained by FLC through 

recruiting EMF1c (Wang et al., 2014). PRC2 may then be recruited via EMF1 

or LHP1 interactions (Derkacheva et al., 2013; Calonje et al., 2008). There is no 

direct evidence for PRC1 recruitment to FT. FT repression also requires the 

action of H3K4me3 demethylases (Yang et al., 2010; Jeong et al., 2009). During 

vernalisation, FLC becomes silenced and targeted by VAL1 recruiting a de-

acetylase complex (Qüesta et al., 2016). VRN2 is already present at the locus 

before vernalisation, but the VRN2-PRC2 complex only becomes constituted 

during vernalisation, resulting in H3K27me3 deposition (Heo & Sung, 2011; De 

Lucia et al., 2008). VAL1 interacts with BMI1A/B/C, LHP1, and MSI1 (Chen 

et al., 2018a; Yuan et al., 2016; Yang et al., 2013), so there are multiple ways 

PRC1 and PRC2 can be recruited to the locus. In addition, long non-coding 

RNAs have been suggested to directly (Heo & Sung, 2011), and indirectly (Tian 

et al., 2019) recruit PRC2 at FLC. After PRC targeting, the two FLC loci on both 

chromosomes move together, indicating the formation of PRC clusters (Rosa et 

al., 2013). After FLC is silenced, FT can be activated by the photoperiod 
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pathway. The induction of FT involves the removal of the H3K27me3 mark by 

REF6 (Lu et al., 2011). 
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1. The PRC2-component MSI1 functions in several chromatin modifying 

complexes. Previously, we found that it interacts with HISTONE 

DEACETYLASE 19 (HDA19) (Derkacheva et al., 2013), indicating it 

might be part of a histone deacetylase complex too. An earlier study 

implicated MSI1 in regulating the ABA-response (Alexandre et al., 

2009). We aimed to determine whether MSI1 was part of an HDA19 

complex, and whether it regulates the ABA response through this 

complex. 

 

2. Recently, early flowering invasive populations of Ambrosia 

artemisiifolia have been discovered in Northern Europe (Scalone et al., 

2016; Leiblein-Wild & Tackenberg, 2014). We aimed to determine 

whether changes in FT/TFL1 expression caused the early flowering 

phenotype and contributed to its spread northward. 

 

3. Histone 2A de-ubiquitinases UBP12/13 have been shown to maintain 

H3K27me3 levels and the repressive state on certain PRC2 targets, just 

like CALYPSO in Drosophila (Derkacheva et al., 2016; Alexandre et 

al., 2009). However, the mechanism of UBP12/13 function in 

repression was unclear, which I aimed to unravel in this thesis. 

  

2 Aims of the study 
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3.1 PRC2-component MSI1 is part of a histone de-
acetylase complex (I) 

 

Previously, our lab identified interaction partners of MSI1 by 

immunoprecipitation followed by mass spectrometry (IP-MS) (Derkacheva et 

al., 2013). One of the interactors is HISTONE DEACETYLASE 19 (HDA19), 

homologous to REDUCED POTASSIUM DEFICIENCY 3 (RPD3) in yeast and 

animals. As mentioned before, MSI1 and related proteins are a core part of 

multiple chromatin modifying complexes and present in all eukaryotes. In 

addition to being part of PRC2 and chromatin assembly factor 1 complex 

(CAF1) (Kaya et al., 2001), this interaction indicates it might also be part of an 

RPD3 complex, also known as a SWI-INDEPENDENT 3 histone deacetylase 

(SIN3-HDAC) complex. Indeed, previous studies found an interaction between 

HDA19 and two SIN3-like proteins (Wang et al., 2013; Song et al., 2005). In 

animals, the complex also contains SIN3-ASSOCIATED POLYPEPTIDE OF 

18 KDA (SAP18) (Zhang et al., 1997), and like-wise, an interaction between 

HDA19 and the Arabidopsis SAP18 has been found (Hill et al., 2008; Song & 

Galbraith, 2006). The large RPD3 complex in yeast (RPD3L) contains RXT3, a 

protein with an early eukaryotic origin that has been lost in animals (Perrella et 

al., 2013). Partial homology has been found in Arabidopsis protein HISTONE 

DEACETYLASE COMPLEX 1 (HDC1), a protein that also interacts with 

HDA19 (Perrella et al., 2013). Here we confirmed the interaction between MSI1 

and HDA19 by performing an IP-MS experiment using HDA19 as bait, as well 

as the interaction with all six SIN3-like proteins and HDC1 (Paper I - Table 1). 

Native PAGE, co-IP, and yeast-two-hybrid (Y2H) further confirmed their 

interaction (Paper I - Figure 1). A strong correlation between expression patterns 

3 Results and Discussion 
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of MSI1 and HDA19 expression showed that they can also interact in vivo (Paper 

I - Figure S1). 

MSI1, HDA19, HDC1, and SAP18 have all been implicated in ABA-

mediated drought stress response (Perrella et al., 2013; Chen & Wu, 2010; 

Alexandre et al., 2009; Song & Galbraith, 2006; Song et al., 2005), and so we 

hypothesized that they affect this response via histone de-acetylation. We tested 

this by analysing the response to ABA of known ABA-responsive genes in wild 

type, an msi1 anti-sense (as) line, and an hda19 mutant. We showed that the 

expression increased more strongly in the as-line/mutant, indicating that the 

MSI1-HDA19 complex attenuates the ABA response (Paper I – Figure 2). We 

then tested the expression level of ABA-receptor genes, and found that in the as-

line/mutant this expression level was increased (Paper I – Figure 3). This 

indicates that the attenuation of the ABA response happens through repression 

of ABA-receptors. To test whether this repression was a consequence of de-

acetylation of the genes encoding the ABA-receptors, we performed chromatin 

immunoprecipitation followed by quantitative polymerase chain reaction (ChIP-

qPCR). We indeed found that MSI1 and HDA19 bound at the chromatin of the 

ABA-receptors (Paper I – Figure 4), and that the as-line/mutant had higher 

acetylation levels here (Paper I – Figure 5), showing that the HDA19 complex 

attenuates the ABA-response via de-acetylation of the ABA-receptors. Finally 

we show that the as-line/mutant plants were more tolerant to salt stress, and that 

general histone-de-acetylation inhibition improves salt tolerance of wild type 

plants, but not of hda19 mutant plants (Paper I – Figure 6). The as-line did not 

lack the HDA19 complex completely, and as such was still responsive to the de-

acetylation inhibitor. But the level of tolerance was similar to that of the hda19 

mutant, indicating that another MSI1-containing complex, perhaps PRC2, also 

plays a role in inhibiting the salt stress response.  

Histone de-acetylation can contribute to the PRC1/2 repressive system, and 

as such can be required for the regulation of developmental transitions and stress 

responses (Basta & Rauchman, 2017; Barnes et al., 2014; Jung et al., 2010b; 

Zhou et al., 2005; Ahringer, 2000). Histone de-acetylation is required for PRC2 

function since an acetylated lysine residue cannot get methylated (Kim et al., 

2015b; Reynolds et al., 2012; Jung et al., 2010a). In turn, H3K27me3 and PC 

prevent histone acetylation (Tie et al., 2016; Pasini et al., 2010). However, this 

does not mean all PRC2 and histone deacetylase complexes work towards the 

same end. EMF2-PRC2 has a floral repressive function as it targets floral 

activators FT and AGL19, while VRN2-PRC2 activates flowering by repressing 

FLC (Jiang et al., 2008; Schonrock et al., 2006; Gendall et al., 2001; Chandler 

et al., 1996). HDA5 and 6 target FLC, and as such are floral activators (Luo et 

al., 2015; Gu et al., 2011), while the de-acetylation of AGL19 makes HDA9 a 



41 

 

floral repressor (Kim et al., 2013). And HDA19 is both a floral activator and 

repressor, depending on the photoperiod (Ning et al., 2019). 

 

 
Figure 2. The HDA19-MSI1 complex inhibits the ABA mediated salt stress response. The complex 

containing MSI1, HDA19, HDC1, and (presumably one of six) SIN3-like proteins (‘SNL’ in the 

figure) removes acetylation from H3K9 from PYL4, PYL5, and PYL6 (‘PYL’ in the figure). This 

leads to repression of the genes, presumably via chromatin compaction. As a result few ABA-

receptors are being produced, preventing the salt stress response. 

3.2 Changes in FT/TFL1 expression are associated with 
invasion (II) 

Plants recognize certain environmental signals to flower on time. Outside of 

their native habitat the same signals may not trigger timely flowering. The 

invasive species Ambrosia artemisiifolia, native to North America, has a 

European distribution that is mainly restricted to the south-east. It is a short day 

plant: it flowers when the daily photoperiod falls below a certain value in the 

summer. In Northern Europe the daily photoperiods in the summer are longer, 

which makes the plant flower later in the year than in the south. This, combined 

with earlier damaging cold at higher latitudes restricted the distribution of 
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Ambrosia to the south. However, small populations with earlier flowering time 

have been found recently in the North (Scalone et al., 2016; Leiblein-Wild & 

Tackenberg, 2014). 

We grew plants from (Northern) invasive and native populations under 

controlled conditions inductive to flowering for the native population, and found 

that the invasive population flowered about a month earlier (Paper II – Figure 

1). By also growing offspring of crosses between invasive and native 

populations, we determined that the early flowering trait is dominant or over-

dominant for female or male flowers, respectively. Under flowering conditions 

inductive for native populations, early flowering was clearly maladaptive: it 

resulted in a smaller final size, and a subsequent lower seed production (Paper 

II – Figure 2). A dominant, maladaptive allele would likely be rapidly purged, 

indicating that it probably originated recently. Because FT/TFL1 genes are likely 

candidates through which early flowering would be achieved, we attempted to 

identify the homologs in this species. Using 5' and 3' RACE and sequencing we 

identified two FT/TFL1 genes that were named FTL1 and FTL2. A third 

potential FTL gene was highly divergent and possibly non-coding, so it was not 

further analysed. To determine the function of these genes we performed a 

phylogenetic analysis with the predicted amino-acid sequences of 172 PEBP 

proteins from 33 species/16 families of plants. We found that FTL1 belongs to 

the FT-clade, and FTL2 to the TFL1 clade (Paper II – Figure 3). While most FT-

like proteins were activators and most TFL1-like protein were repressors, 12% 

did not follow this pattern. We therefore predicted the function of the FT/TFL1 

proteins within the two clades using the amino acid sequences of FT/TFL1 

proteins with known function. Our method called 92 out of 95 proteins with 

known function correctly, revealing that the method is reliable (Paper II – Table 

S3, Table S4). Using this method we confirmed our initial prediction of FTL1 

and FTL2 function (Paper II – Figure S7, Table S3, Table S4). A final 

confirmation was made by heterologous expression of FTL1 and FTL2 in 

Arabidopsis (Paper II – Figure 4), which supported the in silico prediction. We 

next investigated whether the floral activator FTL1 and floral repressor FTL2 

were differentially expressed in native and invasive plants, and so we performed 

a time-course gene expression analysis. We found both an earlier increase in the 

expression of the floral activator, and a decrease in the expression of the 

repressor (Paper II – Figure 5). We concluded that probably a recent dominant 

mutation changed the expression of FT/TFL1 genes, and that this allowed the 

species to spread further northward. 

 

 



43 

 

3.3 H2A de-ubiquitination is required for stable PRC1/2-
mediated repression (III) 

 

As is the case for PRC2 mutants, ubp12 ubp13 double mutants display early 

flowering and short stature (Cui et al., 2013). UBP12/13 interact with LHP1, and 

are required for H3K27me3 maintenance and repression of some PRC2 targets, 

akin to the Drosophila protein Calypso. However, neither the studies on 

UBP12/13 nor on Calypso were genome-wide, so the possibility remained that 

what was observed were indirect effects of histone 2A de-ubiquitination. In fact, 

no mechanism was yet identified of how removal of H2Aub1, the product of 

PRC1, could support PRC1/2 mediated repression. Neither study addressed what 

happened to the H2Aub1 mark on the tested PRC2 target genes, which sparked 

the hypothesis that perhaps H2Aub1 is removed from other genes or genomic 

regions, releasing either ubiquitin or an H2Aub1-binding factor that can then 

bind at the tested PRC2 target genes. Alternatively it was hypothesized that 

H2Aub1 needs to be deposited and then later removed from the same locus, 

though no evidence was present to warrant hypothesizing about why the removal 

should be required. In our study we wanted to test these hypotheses, and if the 

second hypothesis was true, to test what mechanism could explain the 

requirement for H2Aub1 removal. 

Firstly, I generated RNA-seq data of single and double ubp12 and ubp13 

mutants. The gene deregulation reflected the phenotypes of the mutants in the 

sense that the single mutants were wild type-like (Paper III – Figure S1), while 

the double mutants had a strong abnormal phenotype. The double mutants were 

enriched for genes related to stimulus response (Paper III – Table S2). I 

furthermore found that genes upregulated in ubp12 ubp13 mutants were in 

general also upregulated in PRC1, PRC2, and EMF1c mutants, further lending 

credence to the hypothesis that they work together to repress genes (Paper III – 

Figure 1). I then wanted to determine which loci were targeted by UBP12/13, 

and generated H2Aub1 and H3K27me3 ChIP-seq data. I found that most 

UBP12/13 targets contain H3K27me3, and that in the mutant these genes tend 

to be upregulated (Paper III – Figure 1).  

As previously discussed, H2Aub1 may not be a repressive mark. And 

certainly, it being a repressive mark would make it more difficult to envision a 

model where removal of H2Aub1 would have a repressive effect on the same 

locus. I therefore tested the hypothesis that H2Aub1 is not a repressive mark by 

using previously published ChIP-seq and RNA-seq data. I found that genes with 

H2Aub1 tended to have a higher expression than genes without (Paper III – 

Figure 2). I also discovered that genes that were upregulated in PRC1 mutants 

were those marked with PRC1-dependent H3K27me3, not those with only 



44 

 

H2Aub1 (Paper III – Figure 2). I thus concluded that PRC1/H2Aub1 causes 

repression via recruiting PRC2, but beyond that H2Aub1 does not have a 

repressive effect. Furthermore, I addressed the question why some loci require 

PRC1 to recruit PRC2, while other loci do not. I analysed previously published 

data, and found that both PRC1-dependent and independent genes were equally 

repressed, but that in the absence of PRC2 only the PRC1-dependent genes were 

upregulated (Paper III – Figure 2). This indicated that PRC1-independent genes 

are pre-repressed, in contrast to PRC1-dependent genes. 

This data revealing that H2Aub1 is not a repressive mark per se, is consistent 

with the idea that H2A de-ubiquitination is required for repression. To unravel 

the mechanism explaining the requirement of H2Aub1 removal for repression, I 

investigated the distribution of the H3K27me3 mark at UBP12/13 targets in 

ubp12/13 mutants. I found that in the mutants the level of the mark is decreased, 

agreeing with the fact that UBP12/13 targets are upregulated in the mutant 

(Paper III – Figure 3). To test a possible role of UBP12/13 in H3K27me3 

spreading, I tested whether H3K27me3 was preferably lost from the 3' end. Our 

results showed that this was not the case, in fact the loss was greater at the 5' 

end, but only mildly so (Paper III – Figure 3). I then tested whether de-

ubiquitination could prevent active removal of H3K27me3 by a demethylase. I 

first tested whether genes with H2Aub1 were enriched for the K27 demethylase 

REF6, and indeed this was the case (Paper III – Figure 3). And consequently, 

genes with H2Aub1 tended to be H3K27me3 hypermethylated in ref6 mutants 

(Paper III – Figure 3). I then wondered whether H2Aub1 could recruit REF6. 

Previous research showed that REF6 is recruited by CTCTGYTY motifs, but 

that presence of these motifs were not sufficient to explain REF6 binding. I 

showed that REF6 was enriched on H2Aub1 peaks and that the CTCTGYTY 

motifs were necessary for REF6 recruitment, but that the presence of H2Aub1 

is associated with increased binding (Paper III – Figure 3). Finally, previous 

research indicated that REF6 binds genes involved in stimulus response. Our GO 

analysis showed that genes marked with H2Aub1 but not H3K27me3 were 

enriched for stimulus response genes (Paper III – Table S7). I furthermore 

discovered that the expression of genes with H2Aub1 tended to change more 

frequently in response to stimuli than genes without H2Aub1, or with 

H3K27me3 (Paper III – Figure S7). Based on this data I created a model in which 

H2Aub1 serves as a recruiter for PRC2, but also for REF6. Genes with H2Aub1 

can therefore be quickly switched between active and repressive states in 

response to stimuli. Removal of H2Aub1 is thus required for stable repression. 

The finding that mammalian BAP1 is an activating H2A de-ubiquitinase has 

been advanced as evidence that repressive de-ubiquitination does not exist in 

mammals, and perhaps flies (Campagne et al., 2019). But the model that we 
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propose allows both repressive and activating H2A de-ubiquitination. If 

H2Aub1 is removed before PRC2 can be recruited, it will prevent PRC2 

recruitment in the future and hence appear to activate the locus. But if H2Aub1 

is removed after PRC2 recruitment, H3K27me3 has already been established, 

and feedback loops (through EED, PC, EMF1c) will ensure this mark is 

faithfully maintained. In this case removing H2Aub1 will prevent 

demethylation, and hence prevent reactivation. The timing then makes all the 

difference, and so it is easily possible that other de-ubiquitinases, even those 

homologous to BAP1 like CALYPSO, have a different role in the PRC-

repressive system. 

 
Figure 3. H2A de-ubiquitination is required for stable repression. PRC2 has two modes of 

recruitment: PRC1-dependent (PRC1 dep.) to active genes (top), and PRC1-indendent (PRC1 

indep.) to silenced genes (bottom). PRC1/H2Aub1 can not only aid in PRC2 recruitment, but also 

in REF6 recruitment. This means that genes carrying H2Aub1 are responsive: they can be quickly 

switched from active to repressed state and vice versa in response to a stimulus. Stable repression 

then requires removal of H2Aub1 by UBP12/13. This general mechanism is not incompatible with 

the finding that de-ubiquitination by BAP1 causes gene activation in mammals, since BAP1 may 

remove H2Aub1 before PRC2 recruitment. BAP1 is drawn using dashed lines to indicate that this 

merely a hypothesis, and a BAP1 equivalent has not been identified in plants. 
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1. MSI1 and HDA19, together with SIN3-like proteins and HDC1, form a 

histone de-acetylase complex that attenuates the ABA-response by de-

acetylating ABA-receptors. 

 

2. The early flowering trait of the invasive population of A. artemisiifolia 

is caused by an (over-) dominant genetic factor that likely works by 

activating the floral activator FTL1 earlier than normal, and by keeping 

the floral repressor FTL2 lowly expressed. Early flowering was 

accompanied by reduced reproductive output, which is evolutionarily 

disadvantageous under long vegetation periods. However, under short 

vegetation periods, only early-flowering plants can produce seeds, 

making the higher seed set of late-flowering plants irrelevant. I thus 

conclude that earlier flowering is likely a specific adaptation to the 

higher latitudes of northern Europe. 

 

3. PRC2 has two modes of recruitment: PRC1-independent recruitment on 

silent genes, and PRC1-dependent recruitment on active genes. In the 

second category, H2Aub1 is required for the recruitment of PRC2, but 

it also allows recruitment of REF6. H2Aub1 thus allows the gene to be 

switched quickly between active and repressive states. For stable 

silencing UBP12/13 are required to remove H2Aub1. 

  

4 Conclusions 
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The PRC1/2 repressive system has received much attention, but there are still 

many gaps in our understanding of its function, especially in plants. In 

Arabidopsis there are three BMI1-class proteins and two RING1-class proteins, 

which can form 6 different PRC1 complexes. It is likely that there is some degree 

of functional divergence, as is the case in mammals, but this has not been studied 

in detail. The proteins EMF1 and LHP1 are subunits of the EMF1 complex, but 

considering their many interaction partners it is possible that they are also 

(accessory) parts of PRC1, PRC2 or other complexes. We hypothesize that 

UBP12/13 are part of EMF1c because they interact with LHP1 and have a 

similar function in the maintenance of H3K27me3 like EMF1c, but this requires 

to be tested. Our finding that MSI1 functions in yet another complex shows the 

importance of resolving complex compositions, and so reciprocal IP-MS 

experiments like done for the mammalian PRC1 complexes (Gao et al., 2012) 

are required to disentangle the mechanisms controlling repressive memory. 

Another important aspect to be disentangled is the complexity of the 

substrates of the methylases, ubiquitinases, and de-ubiquitinases. For instance, 

in mammals, PRC2 can methylate transcription factor GATA4 to inhibit its 

function resulting in a repressive output that is not mediated by H3K27me3 (He 

et al., 2012a). Mammalian RING1B can add branched poly-ubiquitin chains to 

itself to stimulate its own activity (Lin et al., 2008; Ben-Saadon et al., 2006). 

USP7 is an eraser of the mono-ubiquitin mark on H2B (Sarkari et al., 2009; van 

der Knaap et al., 2005), and H3 (Yamaguchi et al., 2017), but also a stabilizer 

of RING1B by removing the poly-ubiquitin chain (Lecona et al., 2015; de Bie 

et al., 2010; Maertens et al., 2010), and an inhibitor by removing the activating 

branched poly-ubiquitin (de Bie et al., 2010). BAP1 not only removes the mono-

ubiquitin mark on H2A, but also stabilizes chromatin remodelling complex 

INO80 (Lee et al., 2014), amongst other things. UBP12/13 have been shown to 

5 Future Perspectives 
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be involved in protein stabilization too, in addition to H2A de-ubiquitination 

(Lee et al., 2019; An et al., 2018; Jeong et al., 2017). This means that in addition 

to identifying interacting factors and resolving the complexes, we need to study 

whether the interactors get post-translationally modified, because the functional 

output that we observe in mutants may not (all) be mediated by the enzymes’ 

canonical function.  
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In multicellular organisms, each cell adopts a specialized function during the 

course of differentiation. Genes are the blueprints for the characteristics of the 

cells, but generally do not change. Rather, it is the genetic program that changes: 

each gene can be switched on or off, and the sum of the activity states of all 

genes determines the characteristics of the cell. These states are not fixed, and 

internal or external signals, like hormones and light, may cause some genes to 

switch. Nevertheless, a certain degree of stability is important. Genes should not 

be switched on or off because of environmental “noise”. Accidental on-

switching may cause precocious developmental transitions like flowering during 

the winter, or seed germination before shedding. And in humans aberrant 

switching can trigger tumorous growths. To prevent these events from 

happening, a collection of systems has evolved which are now collectively 

referred to as “epigenetics”. Epigenetics involves modifications of the 

nucleobase ‘letters’ in the DNA, as well as modifications of DNA-associated 

proteins called histones. These modifications together act as an additional code, 

on top of the genetic code, containing information about whether the gene should 

be on or off. This thesis focused on repressive mechanisms (i.e. that keep genes 

off), especially in relation to the process that regulates when plants should flower 

or mount a stress response. We discovered a new role for the multi-tasked 

epigenetic factor called MSI1 in the inhibition of the salt-stress response in 

Arabidopsis. We slightly lifted the veil on the genetic mechanism behind the 

early flowering trait of a population of common ragweed, and found that this 

trait allows it to invade northern Europe. And we discovered that one particular 

histone modification (H2Aub1) is positively associated with the ability for a 

gene to switch its activity state, and removal of this modification is required for 

stable repression. 
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In multicellulaire organismen neemt elke cel een gespecialiseerde functie aan 

tijdens de loop van het differentiatieproces. Genen zijn de blauwdrukken voor 

de eigenschappen van de cel, maar veranderen doorgaans niet. Wat er verandert 

is het genetische programma: elk gen kan aan- en uitgezet worden, en alle 

aan/uit-standen gecombineerd bepalen de eigenschappen van de cel. Deze 

standen staan niet vast, en interne en externe signalen zoals hormonen en licht 

kunnen ervoor zorgen dat een gen omgeschakelt wordt. Desalniettemin, een 

zekere stabiliteit is belangrijk; genen mogen niet omgeschakelt worden door 

omgevings-“ruis”. Als genen per ongeluk aan gaan dan kunnen 

ontwikkelingstransities te vroeg plaatsvinden, bijvoorbeeld bloeien tijdens de 

winter, of ontkiemen van de zaden op de moederplant. En in mensen kunnen 

zulke verkeerde omschakelingen tumorgroei veroorzaken. Om deze 

gebeurtenissen te voorkomen is er een collectie van systemen geëvolueerd dat 

nu collectief “epigenetica” genoemd wordt. De epigenetica omvat modificaties 

van nucleobasen (letters) in het DNA, maar ook modificaties van DNA-

geassocieerde eiwitten genaamd histonen. Deze modificaties werken samen als 

een extra code bovenop de genetische code, en bevatten informatie over de 

aan/uit-standen van de genen. Deze thesis richt zich op repressieve mechanismen 

(die genen op de uit-stand houden), met name zij die regelen wanneer de plant 

moet bloeien, of reageren op een stressor. Wij ontdekten een nieuwe rol voor 

een reeds drukke epigenetische factor genaamd MSI1 in de remming van de 

zoutstressrespons in Arabidopsis. Wij belichtte het genetische mechanisme 

achter de vroege bloeitijd van een populatie van alsemambrosia, en vonden dat 

deze eigenschap het mogelijk maakt noord-europa te koloniseren. Daarnaast 

ontdekten wij dat een bepaalde histonmodificatie (H2Aub1) positief 

geassocieerd is met de neiging tot omschakelen, en het verwijderen van deze 

modificatie is noodzakelijk voor stabiele remming. 
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