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Potato mop-top virus (PMTV) causes an economically damaging disease called potato 

spraing. Despite being reported across the potato growing regions in the world, very little 

genetic variability has been reported for the virus. Also, the knowledge on how PMTV 

suppresses host defence mechanism, and how it interacts with the host during the cell-

to-cell and long-distance movement is still insufficient to develop successful preventive 

measures against the PMTV infection.  

This thesis work identified high diversity of the PMTV in the Andean region of 

Peru compared to the rest of the world. Among the PMTV genome, CP-RT and 8K 

genomic regions accumulated the largest number of mutations. Through phylogenetic 

analysis of the RNA-CP segment we identified two prevailing genotypes around the 

world. Based on the pathobiological differences, we named these lineages as S (severe), 

and M (mild) types. The phylogenetic relationship determined in this study helped us to 

propose a novel classification of PMTV isolates.  

Our analysis to address the selection pressure on the PMTV genome revealed that 

the ORF encoding the 8K protein, a viral suppressor of RNA silencing (VSR) is under 

strong positive selection. Characterization of the RNA silencing suppression activity of 

the 8K protein from seven highly diverse isolates revealed that the 8K encoded by a 

Peruvian isolate, P1 exhibits stronger RNA silencing suppression activity compared to 

that of other isolates. Through mutational analysis, we identified that Ser-50 is necessary 

for these differences. Through deep sequencing for sRNAs, we identified that VSRs 

reduce the sRNA accumulation. We observed lower amount of siRNAs with U residue 

at the 5’-terminus suggesting that P1 8K might affect AGO1-mediated RNA silencing. 

The present work also identified key host factors necessary for the cell-to-cell and 

long distance movement of the virus. We showed that the actin network and certain class 

VIII myosins motors are important for the cell-to-cell movement of PMTV. The 

dependency on the acto-myosin network for PMTV movement was further demonstrated 

by the fluorescence recovery after photo bleaching experiments that resulted in 

compromised delivery of the TGB1 at the plasmodesmata upon disrupting actin and 

inhibiting two class VIII myosins. In contrast, class XI myosins did not have a significant 

effect on the cell-to-cell movement of the PMTV, although they appear to be important 

viral long-distance movement. 

Analysis of PMTV TGB1 interactions the with host proteins revealed that TGB1 

interacts with Nicotiana benthamiana HIPP26 protein, a vascular expressed, 

metallochaperone that acts as a plasma membrane to nucleus stress signalling relay. 

PMTV infection upregulated the expression of HIPP26 and altered its subcellular 

localization from plasmodesmata to the nucleus. Knockdown of NbHIPP26 expression 

resulted in inhibition of virus long-distance movement, but not the cell-to-cell movement. 

Together, this data suggests that PMTV hijacks NbHIPP26 to facilitate the long-distance 

movement of the virus. 
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Vetenskaplig sammanfattning 

Potatismopptoppvirus (PTMV) orsakar sjukdomen rostringar i potatis vilket kan ha stora 

ekonomiska konsekvenser. Trots att viruset har rapporterats från områden runt om hela 

världen där potatis odlas har endast en mycket liten genetisk variation rapporterats för 

viruset. Dessutom är kunskapen om hur PMTV undertrycker värdens 

försvarsmekanismer och hur det interagerar med värden under förflyttning mellan celler 

och över längre avstånd inom växten fortfarande inte tillräcklig för att kunna utveckla 

framgångsrika förebyggande åtgärder mot PMTV-infektion. 

I detta avhandlingsarbete identifierades en hög diversitet för PMTV i peruanska 

Anderna jämfört med övriga delar av världen. Regionerna CP-RT och 8K accumulerade 

det största antalet mutationer i PMTV-genomet. Med fylogenetisk analys av segmentet 

RNA-CP identifierade vi två genotyper som var allmänt utbredda runt om i världen. 

Baserat på patobiologiska skillnader benämnde vi dessa linjer som typerna S (allvarlig) 

och M (mild). Baserat på de fylogenetiska släktskap som bestämts i denna studie föreslår 

vi en ny klassificering av PMTV-isolat. 

Vår analys för att studera selektionstrycket på PMTV-genomet visade att den öppna 

läsram (ORF) som kodar för 8K-proteinet, vilket är ett virusprotein som undertrycker 

RNA-interferens (VSR), är under stark positiv selektion. Karaktäriseringen av 8K-

proteinets förmåga att undertrycka RNA-interferens för sju vitt skilda isolat visade att 

8K som kodas av ett peruanskt isolat, P1, visade starkare förmåga att undertrycka RNA-

interferens jämfört med det från andra isolat. Med mutationsanalys kunde vi identifiera 

Ser-50 som nödvändigt för dessa skillnader. Genom djup sekvensering av sRNA fann vi 

att VSR-proteiner minskar ackumuleringen av sRNA. Vi såg en lägre mängd av siRNA 

med kvävebasen U vid 5’-änden vilket tyder på att P1 8K skulle kunna påverka AGO1-

medierad RNA-interferens. 

Det föreliggande arbetet identifierade också nyckelfaktorer hos värden för 

virusförflyttning från cell till cell eller över längre avstånd inom växten. Vi visade att 

nätverket av aktin och vissa myosinmotorer av klass VIII är viktiga för PMTVs 

förflyttning från cell till cell. Beroendet av aktomyosin-nätverket för förflyttning av 

PMTV demonstrerades vidare genom experiment med metoden fluorescens efter 

ljusblekning vilka resulterade i störd transport av TGB1 till plasmodesmata efter 

upplösning av aktin och inhibering av två klass VIII-myosiner. Däremot hade klass XI-

myosiner ingen signifikant effekt på förflyttning av PMTV från cell till cell även om de 

verkade vara viktiga för förflyttning av virus över längre avstånd inom växten. 

Analys av interaktionerna mellan PMTVs TGB1 och värdproteiner visade att 

TGB1 interagerar med proteinet HIPP26 från Nicotiana benthamiana, vilket är ett 

Potatismopptoppvirus:Variabilitet, förflyttning och undertryckande 

av värdens försvar 
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metallchaperon som uttrycks i ledningsvävnad och verkar vid överföringen av stress-

signaler från cellmembranet till cellkärnan. Vid PMTV-infektion uppreglerades uttrycket 

av HIPP26 och ändrade dess lokalisering i cellen från plasmodesmata till cellkärnan. 

Nedreglering av uttrycket av NbHIPP26 med virusinducerad genavstängning resulterade 

i inhibering av virusförflyttning över längre avstånd i växten, men inte förflyttningen från 

cell till cell. Sammantaget tyder dessa data på att PMTV kapar NbHIPP26 för att 

möjliggöra virusets förflyttning över längre avstånd i växten. 

Författarens adress: Pruthvi Balachandra Kalyandurg, SLU, Department of Plant 

Biology, P.O. Box 7080, 750 07 Uppsala, Sweden  
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సంక్షిప్తముగా: 
బంగాళాదంప్ ప్ంట ప్రప్ంచములోనే మూడవ ప్రధాన ప్ంటగా పేర్కొనబడినది. అయితె ఎన్నో సూక్ష్మ క్రిములు ఈ ప్ంట 
దిగుబడిని మరియు నాణ్యతనూ నష్టప్రుసూత ఉంటాయి. అందలో ప్రధానముగా వైరస్ మరియు వైరస్ వంటి వ్యయధి 
కారకమైనటువంటి క్రిములు చాలా నష్టము కలిగంచగలవు. అటువంటి కోవకు చందిన ఒక వైరస్ పొటాటొ మొప్-టాప్ 
వైరస్. ఈ వైరస్ పొటాటో స్ప ర్ంగ్ అను వ్యయధిని కలుగచేస్తంది. ఈ వైరస్ విర్గావిరిడె అను కుటుంబమునకు మరియు 
పొమొవైరస్ అను ప్రజాతి కి చందినది. ఈ వ్యయధి వలల బంగాళాదంప్లొ నలలటి చారలు ఎర్డి అమమటానికి 
ప్నికిర్గకుండా, చాలా నష్టమును కలిగస్తతయి. ప్రస్తతానికి ఈ వైరస్ జాతులను ఐరోపా, ఉతతర మరియు దక్షిన అమెరికా, 
ఆసియా (చైనా, జపాన్, పాకిస్తతన్, ద. కొరియా) లో కనుగొనబడినది. అయినప్్టికీ రస్తయన ప్దధతులతో వైరస్ లను 
నాశనము చేయి ప్దధతులు లేకపోవటచేత ఇటువంటి వైరసల ప్రభావము ప్ంట పైన ఎకుొవ అవుతోంది.  

ప్రప్ంచంలోని దాదాపు బంగాళాదంప్ స్తగు చేయబడుతునో అనిో ప్రంతాలలో నివేదించబడినప్్టికీ, ఈ 
వైరస్ జాతుల యొకొ జనుయ వైవిధ్యం చాలా తకుొవగా నివేదించబడింది. అంతేకాకుండా వైరస్ ఏ విధ్ంగా మొకొ యొకొ 
రక్ష్ణ్ వయవసథతో పోర్గడుతుందనో విష్యము మరియు ఏ విధ్ంగా మొకొ యొకొ కణాలలోని ప్రోటీనలను ప్రభావితం 
చేస్తనోది అనో విష్యప్రిజాానం వైరసలకు వయతిరేకంగా నివ్యరణ్ చరయలను ప్రస్తతం అభివృదిధ చేయడానికి సరిపోద. 

ఈ ప్రిశోధ్న దాార్గ ప్రప్ంచంలోని ఇతర ప్రంతాలతో పోలిస్తత పెరూదేశంలోని ఆండియన్ ప్రాత ప్రంతంలో 
పిఎమ్టటవి జాతుల  జనుయవులలో అధిక మొతతంలో వైవిధాయనిో గురితంచంది. అంతేకాకుండా ఫైలోజెనెటిక్ విశ్లలష్ణ్ దాార్గ 
ప్రప్ంచవ్యయప్తంగా రండు జనుయరూపాల ఉనికిని గురితంచంది. అవి కలిగంచే వ్యయధి తీవ్రత ఆధారంగా, S (తీవ్రమైన) 
మరియు M (తేలికపాటి) అను రండు సమూహాలు వునోటుటగా గురితంచడం జరిగంది. ఆసకితకరంగా, గతంలో 
ప్రప్ంచంలోని ఇతర ప్రంతాలతో గురితంప్బడిన అనిో పిఎమ్టటవి జాతులు, మరియు పెరూలోని కొనిో పిఎమ్టటవి జాతులు 
S-రకానికి చందినవి కాగా, పెరూదేశానికి చందిన పిఎమ్టటవి జాతులు ఎకుొవ భాగం M- సమూహం లోనికి వస్తతయి. ఈ 
ప్రిశోధ్న ఆధారంగా పిఎమ్టటవి జాతులుయొకొ కొతత వర్గాకరణ్ ప్రతిపాదించబడినది. అది మాత్రమె కాక ఆండియన్ ప్రాత 
ప్రంతంలోనే ఈ వైరస్ పుటిటంది అనో ప్రతిపాదనకు ఈ ప్రిశోధ్న మరింత బలం చేకూరిచంది. మరింత సమాచారం 
కోసం దయచేసి మొదటి ప్రచురణ్ కథనానిో చదవండి. 

పిఎమ్టటవి జనుయవుపై ప్రిణామ ఒతితడి ప్రిష్ొరించడానికి చేసిన మా విశ్లలష్ణ్లో మొకొ యొకొ రక్ష్ణ్ వయవసథతో 
పోర్గడగలిగన ఒక ప్రోటీన్ బలమైన ప్రిణామ ఒతితడి లో ఉందని తెలిసింది. అందలో భాగంగా ఏడు వైవిధ్యమైన పిఎమ్టటవి 
జాతులు నుండి ఈ ప్రోటీన్ యొకొ పోర్గట లక్ష్ణానిో ప్ర్గక్షించటం జరిగంది. వీటిలో ఒక జాతి బలముగా మొకొ యొకొ 
రక్ష్ణ్ చరయను నిరోధించగలుగుతోందనిమేము కనుగొనాోము. ఆసకితకరంగా, దీని జనుయక్రమము లో మారు్ వలల కేవలం 
రండు అమైన్న ఆమాలల వయతాయసం ఈ బలమైన రక్ష్ణ్ నిరోధ్క చరయకు గల కారణ్ము అని తెలిసింది. ఈ రంటిలో ఏ 
అమైన్న ఆమలము చాలా ముఖ్యమైనదో కూడా జనుయమారి్డి ప్రిశోధ్నల దాార్గ కనుగొనటం జరిగంది. మరింత 
సమాచారం కోసం దయచేసి రండవ ప్రచురణ్ కథనానిో చదవండి. 

మూడవ ప్రిశోధ్నలో భాగంగా, వైరస్ ఒక మొకొ కణ్ం నుండి మర్కక కణానికి, మరియు ఆ కణ్జాలమును వీడి 
మొకొలోని వేర భాగమునకు ఎలా రవ్యణా అవుతుందో మేము అధ్యయనం చేస్తము. ఈ ప్రిశోధ్న ఫలితాలు మూడవ 
మరియు నాలావ ప్రచురణ్లుగా అందించబడాాయి. ఈ ప్రచురణ్లలో వైరస్ల మైయోసిన్ వంటి కొనిో మొకొ ప్రోటీనలను 
ఎలా హైజాక్ చేసి మొకొ యొకొ మర్కక భాగాలకు రవ్యణా అవుతాయో వివరణాతమక సమాచారం యివాబడినది. మర్గ 
ముఖ్యంగా, మొకొలలో కరువును తటుటకోవటానికి ఈ వైరస్ కారణ్మవుతుందని మేము కనుకుొనాోము. ఈ ఫలితాలు 
వ్యయధి తీవ్రతనే కాకుండా, భవిష్యతుతలో కరువు ప్రభావ్యనిో తగాంచడానికి కొతత మార్గాలను అనేాషంచడానికి కూడా 
దోహదప్డుతాయి. 
రచయిత చరునామా: ప్ృథ్వా బాలచంద్ర కళాయణ్దరాం, వృక్ష్ శాస్థథర విభాగము, స్వాడిష్ వయవస్తయ విశావిదాయలయము, 
పొస్ట బాక్్ సంఖ్య 7080, 750 07, ఉపా్ాల, స్వాడన్. 

పొటాటొ మొప్-టాప్ వైరస్ – జనుయ వైవిధ్యము, కదలికలు, మరియు స్వాయ రక్ష్ణ్ 
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“An inefficient virus kills its host. A clever virus stays with it” 

-James Lovelock 

Viruses are unique molecular biological entities that can infect any form 

of life from bacteria to humans. Plant viruses are known to cause significant 

agricultural losses around the world. However, the effect of viral infections in 

many wild plants is minimal because of natural selection and co-evolution of 

the viruses and their hosts (Bos, 1999). Viruses that kill their host are less likely 

to survive over evolutionary time than the ones that co-evolve with their hosts 

or the ones that cause moderate symptoms (Bos, 1999; Roossinck, 2015). 

However, intensive agricultural practices such as moving crop species to new 

countries lead to the spread of plant viruses to new regions and to indigenous, 

and/or cultivated plants (Matthews and Hull, 2002). This might result in the 

emergence of new genetic variants of the viruses with increased pathogenicity. 

As viruses have no metabolism of their own, they depend on the host for 

their replication and movement. Thus, the pathogenicity of the virus depends on 

the ability to replicate and spread in the hosts (Holt et al., 1990; Moreno et al., 

1997; Roossinck and Palukaitis, 1990; Watanabe et al., 1987). The complex 

molecular interactions between the hosts and the viruses during the process of 

infection lead to metabolic and cytological abnormalities in the host, which 

leads to symptom development.  

Potato mop-top virus (PMTV) is reported to infect potato crop across the 

majority of the potato growing regions in the world. The symptom development 

by PMTV varies depending on the potato cultivars, and the environmental 

conditions, also causing symptomless infections (Latvala-Kilby et al., 2009; 

Sandgren, 1995). However, when causing symptoms on the tubers, PMTV 

causes significant economic losses. In fact, PMTV is considered as one of the 

most harmful pathogens of potatoes (Solanum tuberosum) and is one of the most 

1 Introduction 
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important plant viruses in Scandinavia (Beuch, 2013; Latvala-Kilby et al., 

2009).  

1.1 Disease, symptoms and transmission of PMTV 

PMTV was first discovered as a causal agent of the disease called potato 

‘spraing’ by Calvert and Harrison in 1966 in the United Kingdom (Calvert and 

Harrison, 1966). The ‘spraing’ disease is characterized by slightly raised 

necrotic arcs and rings on the potato surface and flecks in the tuber flesh (Figure 

1A) (Calvert and Harrison, 1966). As a result of the severe quality problems, the 

tubers are rejected both for the chips production industry and the fresh potato 

market. 

 

Figure 1. Symptoms caused by Potato mop-top virus (A) inside potato tubers, and (B) on the leaves 

of potato. (Pictures: A, Sutton Bridge crop storage research; B, an extract from figure published in 

Kalyandurg et al., 2017) 

PMTV causes shortening of the internodes (‘mop-top’) in the infected 

plants. The primary infection of PMTV, i.e., when the virus infects the healthy 

tubers, results in the appearance of black coloured lines, arcs, rings on the 

surface of tubers, or internal brown arcs or flecks in the tubers (Figure 1A) 

(Kurppa, 1989a). The secondary infection, i.e., when new plants are grown from 

the infected tubers, sometimes leads to cracking and deformation of the tubers 

(Calvert and Harrison, 1966; Kurppa, 1989a; Tenorio et al., 2006), and may 

result in yield losses up to 63% depending on the cultivar (Kurppa, 1989b; 

Carnegie et al., 2010). The appearance of ‘spraing’ symptoms during the time 
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of harvest can be enhanced as a result of fluctuating temperatures during storage 

(Harrison and Jones, 1971; Kurppa, 1989a; Sandgren, 1995).  

Additional symptoms appear on the upper parts of the plant include V-

shaped chlorotic patterns on the leaves (Figure 1B) (Calvert and Harrison, 

1966). However, the occurrence of these foliar symptoms are often associated 

with cold climates (Calvert, 1968), and affected by the environmental conditions 

such as temperature and moisture (Carnegie et al., 2010). 

PMTV is transmitted by a plasmodiophorid vector called Spongospora 

subterranea (Jones and Harrison, 1969). S. subterranea causes powdery scab 

disease on potato tubers and was found to occur in potato-growing regions 

worldwide (Gau et al., 2013). PMTV virions enter the developing zoospores of 

the S. subterranea in an infected plant. These zoospores spread the PMTV to 

new host plants by penetrating into the root tissues or tubers (Jones and 

Harrison, 1969). The PMTV particles can survive in the resting spores of the 

vector for more than 15 years (Calvert, 1968).  

1.2 Global distribution of PMTV 

Since the first discovery of the virus in Scotland and Northern Ireland (Calvert 

and Harrison, 1966), PMTV was reported in many potato growing regions 

around the world. In Europe, PMTV was found in the Netherlands in 1969, 

which is the largest exporter of seed potatoes (Rabobank, 2019; van Hoof and 

Rozendaal, 1969). The virus was also found in Ireland (Foxe, 1980), Czech 

Republic (Novak et al., 1983), Switzerland (Schwärzel, 2002), Latvia (Latvala-

Kilby et al., 2009), and Poland (Budziszewska et al., 2010). In the Scandinavian 

region, PMTV was first detected in Norway (Björnstad, 1969), and later found 

in Sweden (Ryden et al., 1986; Sandgren, 1995), Finland (Kurppa, 1989b), and 

Denmark (Mølgaard and Nielsen, 1996). 

In the Andes region of South America, which is considered as the centre of 

domestication of the potato (Spooner et al., 2005), the virus was first reported 

in 1972 in Peru (Hinostroza and French, 1972; Salazar and Jones, 1975),  

followed by Bolivia (Jones, 1975), Venezuela (Ortega and Leopardi, 1989), and 

Colombia (Gil et al., 2011). The virus was also detected in Costa Rica in Central 

America (Montero-Astúa et al., 2008), and the USA (Lambert et al., 2003) and 

Canada in North America (Xu et al., 2004). In Asia, PMTV was first identified 

in Japan (Imoto et al., 1986), followed by the reports in China (Hu et al., 2016) 

and Pakistan (Arif et al., 2014). Recently PMTV was also detected in New 

Zealand, making it a first report from Oceania (Government of NZ, 2018). 
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1.3 Genome organization and properties of the genomic 

components of PMTV 

Potato mop-top virus is the type member of genus Pomovirus in the family 

Virgaviridae (Adams et al., 2012). Other members in the genus Pomovirus 

include Beet soil-borne virus (BSBV), Beet virus Q (BVQ), Broad bean necrosis 

virus (BBNV), and Colombian potato soil-borne virus (CPSbV) (Adams et al., 

2017). The PMTV genome consists of three single-stranded positive-sense RNA 

segments, namely RNA-rep, RNA-CP and RNA-TGB, with a length of 6 kb, 3.1 

kb and 2.9 kb, respectively (Savenkov et al., 1999; Kashiwazaki et al., 1995; 

Scott et al., 1994; Sandgren et al., 2001). These three segments together harbour 

six open reading frames (ORFs) encoding eight proteins. The 3´-untranslated 

region (UTR) of all three segments contain identical tRNA-like structures 

having an anticodon for valine (Savenkov et al., 1999) (Figure 2).  

 

Figure 2. Genomic segments of PMTV 

The RNA-rep segment contains an ORF that codes for a 148 kDa protein, 

and a 206 kDa protein that is produced through translational read through at the 

opal (UGA) stop codon of the ORF encoding 148 kDa protein. The 206 kDa 

protein contains a methyltransferase (MetT), a helicase and an RNA-dependent 

RNA polymerase (RdRp) motif, respectively (Savenkov et al., 1999). The RdRp 

domain catalyzes the synthesis of RNA using an RNA template by forming 

phosphodiester bonds between the ribonucleotides  (Venkataraman et al., 2018), 

while helicase domain takes part in the displacement of complementary strands 

in the RNA duplex (Jankowsky, 2011). The MetT domain encoded by RNA-rep 

suggests that the viral RNAs are capped to facilitate translation (Byszewska et 

al., 2014). 
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The RNA-CP segment codes for a coat protein (CP, 20 kDa) which 

encapsidates the viral RNAs (Kashiwazaki et al., 1995). Through translational 

read-through at the amber (UAG) stop codon of the CP ORF, the RNA-CP also 

encodes a longer polypeptide, CP-RT (91 kDa) (Sandgren et al., 2001), a 

common feature among other soil-borne fungal transmitted viruses (Bouzoubaa 

et al., 1986; Koenig et al., 1997; Shirako and Wilson, 1993). CP-RT associates 

with one extremity of the virus particles (Cowan et al., 1997), supporting the 

transmission of the virus by its vector (Reavy et al., 1998). Inoculation of the 

virus through mechanical means under experimental conditions often results in 

internal deletions in the CP-RT region, causing the virus to lose the ability to be 

acquired and transmitted by its vector, as noticed for PMTV-T laboratory isolate 

that was maintained for 30 years through mechanical inoculations (Reavy et al., 

1998; Sandgren et al., 2001). CP-RT is also an important factor in the long-

distance movement of the virus particles, and RNA-CP (Torrance et al., 2009).  

The third segment RNA-TGB contains triple gene block, which encodes 

TGB1 (51 kDa), TGB2 (13 kDa) and  TGB3 (21 kDa) proteins, and an additional 

ORF coding for the 8K protein (Scott et al., 1994). The TGB proteins function 

in a coordinated manner and facilitate virus movement. The presence of triple 

gene block is a conserved feature among various other genera of viruses 

including Potexvirus, Mandarivirus, Allexivirus, Carlavirus, Foveavirus, 

Hordeivirus, Pecluvirus and Benyvirus (reviewed in Verchot-Lubicz et al., 

2010). 

 
Figure 3. Domain organization of the TGB1 protein of PMTV. NTD, N-terminal domain, ID, 

Internal domain, Hel, Helicase domain, NoLS, predicted nucleolar localization sites.  

The TGB1 protein plays a major role in the intercellular and long-distance 

movement of the virus. The TGB1 protein binds to the viral RNA to form a viral 

ribonucleoprotein complex (vRNP), that moves cell-to-cell and systemically. 

TGB1 protein contains three structurally distinct domains, namely, N-terminal 
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domain (NTD), internal domain (ID), and the helicase domain (Figure 3). The 

NTD domain, containing two nucleolar localization signals, binds RNA in a 

non-cooperative manner, whereas the other two domains bind RNA in a 

cooperative manner (Makarov et al., 2009). The NTD of TGB1 interacts with 

Importin-, a nuclear transport receptor, and accumulates in the nucleolus. The 

nucleolar association of TGB1 is necessary for the viral long-distance 

movement. The ID of TGB1 is predicted to form an -helix, which might 

mediate self-interaction of TGB1 protein to e.g. form dimers. The self-

interaction of TGB1 is important for the cell-to-cell movement of PMTV 

(Lukhovitskaya et al., 2015). The TGB1 also interacts with CP-RT at one 

extremity of the virions assisting in the long-distance movement of the virus 

particles (Torrance et al., 2009). At the subcellular level, TGB1 localizes to 

plasmodesmata, cytoplasm around the nucleus, nucleolus and nucleoplasm, ER 

network, and occasionally decorates microtubules at later stages of virus 

infection (Wright et al., 2010). 

The TGB2 protein is also an RNA binding protein that binds RNA in a 

sequence non-specific manner. TGB2 is suggested to play a role in targeting the 

viral RNAs to the chloroplasts for replication (Cowan et al., 2012), and is 

required for the vRNP intracellular movement (Zamyatnin et al., 2004). The 

TGB2 is an integral membrane protein that associates with the endoplasmic 

reticulum (ER), mobile granules in the cytoplasm, and the outer membrane of 

chloroplasts (Cowan et al., 2012). 

The third protein encoded by TGB module, TGB3 protein is also a 

membrane protein that associates with the ER, motile granules and 

plasmodesmata at the subcellular level (Tilsner et al., 2010). The TGB3 protein 

contains two transmembrane domains that integrate into the membranes in a U-

shaped orientation with its central loop protruding into the ER lumen. The TGB3 

protein contains a conserved tyrosine-based motif that mediates the 

plasmodesmatal targeting (Tilsner et al., 2010), through which the TGB3 assists 

the intracellular movement of the vRNP-TGB2 complex towards the 

plasmodesmata. Although, both TGB2 and TGB3 proteins can increase the 

permeability of the plasmodesmata (Haupt et al., 2005), they do not move 

intercellularly (Haupt et al., 2005). 

The 8K protein encoded by RNA-TGB is a cysteine-rich protein that acts 

as a suppressor of RNA silencing (Lukhovitskaya et al., 2013). PMTV 8K is an 

integral membrane protein that associates with and rearranges the ER-derived 

membranes in the plant cells when expressed transiently by agroinfiltration 

(Lukhovitskaya et al. 2005). The 8K protein is dispensable for viral replication 

and the long-distance movement of the virus in N. benthamiana and N. tabacum 
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plants (Savenkov et al., 2003). However, it appears to play an important role in 

enhancing the virus accumulation in these plant species (Lukhovitskaya et al., 

2013). 

1.3.1 Genome variability of PMTV 

Even though PMTV was detected in many regions around the world, the PMTV 

isolates were reported to share a high level of sequence identity, with only about 

0% - 2% genetic variability (Beuch et al., 2015; Latvala-Kilby et al., 2009; 

Ramesh et al., 2014; Santala et al., 2010). Previously, phylogenetic analysis 

based on RNA-CP component and the 8K protein identified two distinct clades 

and showed no strict geographical distribution among the isolates from various 

parts of the world (Beuch et al., 2015; Latvala-Kilby et al., 2009; Santala et al., 

2010). As mentioned earlier, the Andean region is considered as center of 

domestication of potato. Hence, we hypothesized that a higher genetic variation 

of PMTV might exist in the Andean regions of South America. A recent study 

on Colombian isolates identified three genetically distinct PMTV variants (Gil 

et al., 2016) further supporting our hypothesis. Characterization of the genetic 

variability of the PMTV was one of aims of this thesis and is addressed in Paper 

I. 

1.4 Virus-host interactions 

Compared to other microbial pathogens such as bacteria and fungi, most of the 

viruses have smaller genome that has a limited coding capacity (Wang, 2015). 

Over the course of infection, viruses and their hosts respond to each other 

through complex molecular interactions. These interactions occur at various 

stages of infection starting from viral genome translation to establishing a 

systemic infection. Deciphering these interactions not only allow us to develop 

successful antiviral strategies, but also provides great insight into the 

mechanisms of plant cellular processes. Studying the virus-host interactions 

with in the context of PMTV movement and 8K-mediated suppression of RNA 

silencing are two other aims of this thesis. 

In line with the scope of this thesis, virus-host interactions during the 

virus movement and RNA silencing mechanism are discussed in the following 

sections. 
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1.4.1 Virus movement  

Following the entry into the cells, and subsequent replication, viruses must 

egress from initially infected cells to other parts of the plant in order to spread 

through the host. Plant viruses use two distinct mechanisms to establish the 

systemic infection in the host, a slow cell-to-cell movement via the 

plasmodesmata, followed by a rapid long-distance movement via the plant 

vasculature (Samuel, 1934) (Figure 4). The cell-to-cell movement occurs from 

the initially infected cells to the adjacent cells, which are usually the mesophyll 

or epidermal cells to the vascular bundle (Carrington et al., 1996). The long-

distance movement occurs from source (net carbon exporting) to sink (net 

carbon importing) tissues, through the plant vascular tissues, usually through 

phloem sieve elements (Leisner and Turgeon, 1993; Lemoine et al., 2013). The 

coordination between the virus and host-encoded proteins is paramount for 

successful virus movement in the host. The restriction of the movement can lead 

to subliminal infection, where the virus can carry out replication, but not the 

intercellular movement, causing confinement of the infection to the initially 

infected cell (Bamunusinghe et al., 2013; Hull, 2013a). 

As the primary objective of the viruses is to transport the infectious 

material, viruses have evolved to move their genetic material as different forms 

to adapt to various hosts. On the basis of requirement of CP, the intercellular 

movement can be categorised into two types (reviewed in Rojas et al., 2016).  

The first type of movement occurs in the form of a vRNP complex, where 

the virus movement protein (MP) binds the viral RNA. The vRNP movement 

can be further categorised into three types, depending on the requirement of the 

CP. In certain genera of viruses, the CP is dispensable for the intercellular 

movement of the vRNP complex. Some examples for such movement form 

include viruses belonging to the genus Tobamovirus, Carmovirus, Hordeivirus, 

Pomovirus, Dianthovirus, Tombusvirus (Rojas et al., 2016). However, for some 

viruses including the members of Potyvirus, CP acts as a MP and thus is required 

for the movement of the virus as a vRNP complex (Dolja et al., 1995, 1994). 

Additionally, in certain viruses, the CP takes part in the movement of the vRNP 

complex as a non-virion form, as typified for Potato virus X (PVX), where the 

vRNA-MP-CP complex moves intercellularly (Lough et al., 1998). Similar 

mechanisms have been identified in certain DNA viruses e.g. Geminivirus, 

where the vRNP includes one or two MPs and the CP for the intercellular 

movement. 

The second type of movement occurs as virus particles. Viruses belonging 

to genera Closterovirus, Nepovirus, Caulimovirus, Comovirus, Bromovirus, 

Alfamovirus and Cucumovirus move as virions (Schoelz et al., 2011). 
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1.4.1..1 Cell-to-cell movement 

The cell-to-cell movement of the virus can be differentiated into two stages, 

intracellular movement and intercellular movement. During the first stage, the 

newly replicated viral genomes are transported intracellularly from the sites of 

replication towards the plasma membrane. Most viruses use the host 

intracellular transport system that includes cytoskeletal or endomembrane 

system to carry out the intracellular movement (Carmen Herranz et al., 2009). 

The plant viruses face a unique challenge during their intercellular 

movement in the hosts due to the presence of cell wall. Thus, in order to move 

from cell-to-cell, plant viruses must pass through the plasmodesmata 

cytoplasmic connections between the cells to move to the neighbouring cells 

(Niehl and Heinlein, 2011). Viral proteins interact with various host cellular 

factors in the process of the cell-to-cell movement. The following sections 

consider some of the important factors involved in this process. 

1.4.1..1.1 Host factors involved in the cell-to-cell movement of 

viruses 

As obligate parasites, viruses depend on host cellular factors for their movement, 

and encode proteins that can hijack these host factors for their own benefit. 

Hence, the compatibility of the virus MPs, the host proteins, and cellular 

components is vital for efficient virus transport (Carrington et al., 1996). Even 

though not all host components involved in this process are known, most viruses 

localize to specific cellular components, including cytoskeletal elements, ER, 

and interact with certain motor proteins for trafficking their infectious material 

from the site of replication towards the plasmodesmata, and sometimes 

intercellularly (Rojas et al., 2016). 

1.4.1..1.1.1 Plant cytoskeleton 

The plant cytoskeleton is a structure that is composed of microtubules and actin 

microfilaments that provides mechanical support to the cell. Microtubules are 

long tubular components made of alpha and beta subunits of tubulin molecules. 

The dimers of these subunits form linear protofilaments that wind together to 

form a 24 nm wide hollow cylinder (Goddard et al., 1994). Actin microfilaments  
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are made of actin monomers arranged as a long spherical chain, and are narrower 

than the microtubules with a diameter of about 6 nm (Perez et al., 1986). Both 

microtubules and actin filaments rapidly polymerize and depolymerize making 

the cytoskeleton structure highly dynamic and constantly changing. The 

dynamic nature of cytoskeleton provides necessary force for the movement of 

cellular components and viruses intra- and intercellularly (Burckhardt and 

Greber, 2009).  

The plant cytoskeleton plays an important role in the growth and 

development of the plants including cell division, cell expansion, ER network 

organization, intracellular motility, and cytoplasmic streaming (Staiger, 2000). 

It also plays a major role in mediating the plant response to a diverse range of 

environmental factors such as abiotic and biotic stresses (Blume et al., 2017; 

Day et al., 2011; Wang et al., 2011). The plant cytoskeleton acts as a defence 

system against bacterial and fungal infections. However, during the plant-virus 

interactions, viruses hijack the cytoskeleton for their spread (Takemoto and 

Hardham, 2004).  

1.4.1..1.1.2 Microtubules 

The role of the microtubule network in virus movement is not very well 

understood. Many of the studies addressing the role of microtubules in the virus 

movement were focused on the Tobacco mosaic virus (TMV), and it has been 

shown that the TMV MP binds with the microtubules and the viral RNA, 

suggesting that the microtubular network mediates the transport of TMV 

infectious unit from the replication sites to the plasma membrane. Association 

of TMV MP with microtubules was further confirmed by mutating the ORF 

encoding MP, which abolished the virus movement and association with 

microtubules (Boyko et al., 2007, 2000). Interestingly, several of tobamoviruses 

contain a GxxP (where x represents any amino acid) structural motif that is 

conserved in the tubulins, and is critical for the microtubular assembly. 

Mutations in this motif resulted in reduced cell-to-cell movement of TMV, 

suggesting that the tobamoviral MPs mimic structural motifs in the tubulins for 

their movement (Boyko et al., 2000). Two models have been proposed for the 

microtubule network mediated movement of TMV vRNP complex: active 

transport of vRNA-MP complex mediated by kinesin molecular motors, or the 

movement as a result of the force generated during microtubular dynamics 

(Hull, 2013a).  

MPs of some other viruses including, Hsp70 of BVY and TGB1 of PMTV 

were reported to associate with the microtubules. However, disrupting 



   

 

28 

 

microtubules using chemical inhibitors such as oryzalin and colchicine did not 

inhibit the intercellular movement of these viruses (Prokhnevsky et al., 2005; 

Wright et al., 2010). Interestingly, similar experiments with TMV also did not 

inhibit the virus movement. It was later identified that these chemical inhibitors 

do not disrupt the microtubules completely (Seemanpillai et al., 2006). 

Collectively, these results highlight the importance of further studies in 

understanding the role of microtubules in the virus movement. 

1.4.1..1.1.3 Actin microfilaments 

Unlike the microtubules, actin microfilaments are considered to extend through 

the plasmodesmata (White and Barton, 2011). Actin filaments are implicated in 

the intercellular transport of the cellular cargo, and in regulating the 

permeability of the plasmodesmata (Chen et al., 2010). Transient expression of 

10 kDa fluorescent dextran in N. benthamiana and N. tabacum plants treated 

with chemical disruptor of actin, cytochalasin D, resulted in increased cell-to-

cell movement of the dextran, while treating with actin-stabilizing toxin, 

phalloidin prevented its movement, suggesting that the actin dynamics play a 

role in regulating the transport through plasmodesmata (Ding et al., 1996). 

However, similar studies in other species, namely, Azolla pinnata, Hordeum 

vulgare, Arabidopsis root cells, and Tradescantia virginiana stamen hairs 

indicated no significant difference in the intercellular movement (White and 

Barton, 2011) suggesting that the role of actin in regulating the plasmodesmata 

is varied among the plant species, and tissues. 

Evidence suggests that many viruses hijack the actin filaments for their 

transport, as MPs of many viruses e.g. TMV, and Cucumber mosaic virus 

(CMV) were reported to track along the actin filaments to reach the 

plasmodesmata (Su et al., 2010). Latrunculin B (LatB) treatment inhibited the 

cell-to-cell movement of TMV, PVX and TBSV (Harries et al., 2009). In the 

case of PVX, LatB treatment disrupted the association of MP with the ER 

network which in turn inhibited the cell-to-cell movement (Mitra et al., 2003), 

suggesting that the actin-mediated membrane association is necessary for the 

cell-to-cell movement. 

1.4.1..1.1.4 Motor proteins 

Motor proteins are a part of the cell machinery that move along the cytoskeletal 

components. In plant cells, kinesins and myosins are classified as motor proteins 

that move on the microtubules, and actin filaments respectively. These motor 
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proteins are involved in regulating and organizing the cytoskeleton and drive the 

transport of cellular components (Neben Uhr and Dixit, 2018). As one of the 

aims of this thesis is on understanding the movement of the virus through the 

acto-myosin network, the following section briefly describes the myosin motor 

molecules. 

Plant myosins are widely classified into two classes, class VIII and class 

XI based on the phylogenetic analysis (Reddy and Day, 2001). The basic 

structure of the myosins includes a microfilament binding motor domain, a neck 

domain and a cargo-binding tail domain. Myosins move on the microfilaments 

in an ATP dependent fashion, where hydrolysis of ATP results in a reversible 

conformational change in their motor domains, which is translated into larger 

movement by the stiff neck region at the C-terminal end of the motor domain 

(Preller and Manstein, 2013). Thus for every hydrolytic cycle, one ATP 

molecule is used, which is coordinated with binding and release of the motor 

domain on the actin filament, that causes one step forward towards the plus end 

of the actin filament (reviewed in Ryan and Nebenführ, 2018).  

Among the class VIII and class XI myosins, class XI myosins are well 

studied and are reported to be similar to the class V myosins in the animals 

(Kinkema and Schiefelbein, 1994). Class XI myosins are characterized by 

having longer neck domain and a globular tail domain that allows for cargo 

binding. The presence of a longer neck domain allows the class XI myosins 

move with faster velocity compared to class VIII on the actin filaments 

(Tominaga and Nakano, 2012). While class XI myosins mostly are involved in 

the propelling the organelles during the cytoplasmic streaming (Wang and 

Pesacreta, 2004), class VIII myosins localize primarily to the plasma membrane 

and are involved in endocytosis and plasmodesmatal trafficking (Reichelt et al., 

1999).  

The viral cell-to-cell movement, along with the transport of Golgi 

complexes was inhibited by the overexpression of an actin-binding protein 

suggesting that the motor-driven transport along the actin filaments is important 

for the cell-to-cell movement of the virus (Hofmann et al., 2009). Recently, few 

studies identified that specific classes of myosins take part in the transport of 

viral MPs. Through dominant-negative inhibition of myosins, it was identified 

that several viruses use myosins for their intercellular movement (Amari et al., 

2014, 2011; Avisar et al., 2008). 
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1.4.1..1.1.5 Plasmodesmata 

Among the cellular structures, plasmodesmata are the primary barriers for the 

intercellular movement of the viruses (Lee and Lu, 2011). Plasmodesmata are 

the intercellular junctions in plant cells that allow cytoplasmic continuity (Lucas 

et al., 2009). Plant viruses exploit these organelles to carry out the intercellular 

movement of their infectious material to achieve the systemic infection in their 

hosts. The plasmodesmata are formed during cell division, when ER gets 

trapped within the cell plate, forming a desmotubule or appressed ER (Robards 

and Lucas, 1990). The space between the desmotubule and the plasma 

membrane is usually of 2.5-3.0 nm size, and its translocation capacity is tightly 

controlled (Ding, 1998). These nanopores serve as a channel for the exchange 

of nutrients and other signalling molecules such as transcription factors and 

small RNA molecules between the cells (Sager and Lee, 2014).  

Figure 5. Structure of simple plasmodesmata and various cellular factors associated with 

plasmodesmata. NCAP, Non-cell-autonomous proteins. PDLP, Plasmodesmata-located protein.  

Structurally, plasmodesmata have been classified into two types, primary 

and secondary plasmodesmata (Ehlers and Kollmann, 2001). Primary 

plasmodesmata are formed during the cell division and usually found in young 

tissues (Hepler, 1982). Primary plasmodesmata have simple structure with a 
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single plasma membrane-lined channel connecting the adjacent cells (Overall 

and Blackman, 1996). As the leaf tissues mature and progress from sink to 

source tissues, the primary plasmodesmata undergo branching to form 

secondary plasmodesmata (Faulkner et al., 2008; Oparka et al., 1999). The 

secondary plasmodesmata often contains a central cavity, and multiple channels 

linking the cells.  

The upper limit of the size of the molecules that can move through the 

plasmodesmata, called size exclusion limit (SEL), is tightly controlled by the 

deposition of callose, a β-glucan polysaccharide, around the neck region (Vatén 

et al., 2011). The SEL of the secondary plasmodesmata is also significantly 

lower than the primary plasmodesmata. Both biotic and abiotic stresses have 

been found to influence the callose deposition. Indeed, the salicylic acid (SA) 

defence signalling pathway, mediated by EDS1, NPR1, and PDLP5 regulates 

this callose deposition by inducing callose synthase activity (Wang et al., 2013).  

The SEL generally is far less than the size of macromolecules including 

both host and viral nucleic acids, and virus particles that are transported through 

plasmodesmata (Gibbs, 1976). Hence, in order to carry out the intercellular 

transport of non-cell-autonomous proteins, the plasmodesmata interact with 

specific proteins that can increase the SEL to allow their movement (Lucas, 

2006). Additionally, various plasmodesmata associated proteins such as 

plasmodesmata-located proteins (PDLPs) that are present along the plasma 

membrane (Amari et al., 2010; den Hollander et al., 2016), remorin (REM), a 

plasma membrane protein (Perraki et al., 2014; Raffaele et al., 2009; Sasaki et 

al., 2018) were reported to interact with the viral MPs.  

The viral MPs, like that of TMV, have been identified to interfere with the 

callose deposition by recruiting β-1,3 glucanases that can degrade the callose 

which is induced by the viral infection (Epel, 2009). These findings were further 

supported by a study that showed viral spread is positively correlated with the 

expression of β-1,3 glucanases (Elvira et al., 2008; Gorovits et al., 2007). 

Similar findings were reported in mutant tobacco plants deficient in β-1,3 

glucanases, where the cell-to-cell movement of TMV, PVX and the MP of 

cucumber mosaic virus were reduced (Fridborg et al., 2003; Iglesias and Meins, 

2000). The callose deposition levels were increased in the same mutant, 

suggesting that the virus induces expression of β-1,3 glucanases for the 

degradation of callose. 



   

 

32 

 

1.4.1..1.1.6 Viral movement proteins 

The capacity of the virus to efficiently infect the host depends on the expression 

of one or more MPs that potentiate movement of the virus (Atabekov and 

Dorokhov, 1984). The first evidence for the presence of viral MPs came from 

the study on a temperature-sensitive mutant of TMV which showed that the 

spread of the virus was inhibited at restrictive temperatures (Nishiguchi et al., 

1978). This failure in the movement was later mapped to the 30K protein of 

TMV (Ohno et al., 1983). Since then TMV 30K has been extensively studied 

for understanding the virus movement in general. 

Functionally the MPs of different viruses share similar properties; this 

includes, for example, supporting the passage of their genetic material by 

modifying the plasmodesmata (Carrington et al., 1996; Oparka et al., 1997; Wolf 

et al., 1989). This is supported by experimental evidence demonstrating that the 

MP of one virus is able to complement the movement of a different virus. For 

instance, the MP of TMV complemented the movement of MP-deficient BSMV 

(Solovyev et al., 1996), the Dianthovirus MP complemented TMV movement 

(Xiong et al., 1993). Similar findings have been reported for the PVX, where the 

CMV MP complemented the PVX MP (Tamai et al., 2003). 

MPs use a diverse range of strategies in order to achieve the intercellular 

movement, which can be broadly grouped as two major forms: (i) those that 

form tubules by restructuring the plasmodesmata, and (ii) those that gate the 

plasmodesmata and increase SEL (Figure 6). 

1.4.1..1.1.6.1 Movement proteins that form tubules 

The MPs of several genera including Caulimovirus, Nepovirus, Comovirus, and 

Alfamovirus facilitate the intercellular movement of the virus particles or 

nucleocapsid proteins by modifying the plasmodesmata into tubule-like 

structures (Kitajima and Lauritis, 1969). The MP-lined tubules extend through 

the plasmodesmata into the cytoplasm of adjacent cells (Figure 6) (Niehl and 

Heinlein, 2011). These tubules are usually seen only in the primary 

plasmodesmata. These MPs modify the plasmodesmata by removing the 

desmotubule and thereby increasing the SEL of the plasmodesmata up to 50 nm 

(Schoelz et al., 2011). Electron microscopy revealed that the virions lined up as 

a single file within the tubules in the case of Cowpea mosaic virus (CPMV), an 

RNA virus, and Dahlia mosaic virus, a DNA virus (Kitajima and Lauritis, 

1969). The MPs of these viruses usually interact with the C-terminus of the CP, 

as it was observed in the case of the CPMV, Grapevine fanleaf virus (GFLV) 

and Cauliflower mosaic virus (CaMV) (Belin et al., 1999; Bertens et al., 2003; 
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Huang et al., 2001). Deletion in the C-terminus of the CP of the CPMV leads to 

interfering with virion uptake, resulting in the formation of the empty tubules 

and inhibition of the virus movement (Huang et al., 2001). 

Figure 6. Movement strategies of plant viruses to cross plasmodesmata. MPs of the tubule forming 

viruses create tubule-like structures through which virus particles move intercellularly. On the 

other hand, the MPs that gate plasmodesmata increase the size exclusion limit of the 

plasmodesmata through which the vRNP complex moves cell-to-cell. 

1.4.1..1.1.6.2 MPs that gate plasmodesmata 

The MPs that gate the plasmodesmata to carry out the cell-to-cell movement can 

be classified into at least two groups based on the type of MP. The first group, 

TMV-like MPs, consists of a large, single-unit MP that transports the virus 

(Rojas et al., 2016). These MPs are seen in the members of Tobamovirus, and 

Dianthovirus genera (Schoelz et al., 2011). The ability to increase the SEL of 

plasmodesmata by MP of TMV was first demonstrated by injecting 10 kDa 

fluorescent labelled dextrans into the mesophyll cells of 30K transgenic plants, 

which increased the intercellular transport of dextrans (Oparka et al., 1997). As 

mentioned in the previous section, the MP of TMV influences the callose 
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deposition and increases the plasmodesmatal SEL. In addition, the TMV MP 

has been shown to interact with ankyrin repeat-containing protein (ANK) at the 

plasmodesmata that could degrade the callose, and with calreticulin, a protein 

involved in sequestering Ca2+ resulting in increased plasmodesmatal 

permeability (Ueki et al., 2010). 

Various models have been suggested for the movement of TMV infectious 

unit through the plasmodesmata. The TMV MP is suggested to act as a 

chaperone that binds to vRNA and moves as a vRNP complex through the 

dilated plasmodesmata (Citovsky et al., 1992). Another model suggests an 

involvement of the cytoskeletal components in transporting the ER-vesicles 

derived from the membrane-associated vRNP complex, or the membrane-

associated vRNP complex itself through the plasmodesmata (Kawakami et al., 

2004). Additionally, vRNP complex of TMV has also been suggested to diffuse 

through the lipid matrix of the desmotubule between the cells (Kawakami et al., 

2004). These results indicate that TMV MP uses more than one mode of 

intercellular transport through the plasmodesmata.  

The second class of MPs are segmented and shorter MPs that co-ordinate 

the movement of the virus. The segmented MPs can be encoded by double-gene-

block of the viruses belonging to genus Carmovirus (Marcos et al., 1999) or 

triple-gene-block-encoded proteins of nine genera of viruses belonging to 

families Alpha-, Beta-flexiviridae, Virgaviridae, and an unassigned genus 

Benyvirus (Verchot-Lubicz et al., 2010). Based on the properties of the MPs, 

these MPs are grouped as potex-, hordei-, and pomo-like TGBs. Potex-like MPs 

are encoded by the members of Alpha-, and Beta-flexiviridae families (Morozov 

and Solovyev, 2003). The TGBs encoded by the genera Hordeivirus, and 

Pecluvirus are classified as a hordei-like group of TGBs, while that of 

Pomovirus are classified as pomo-like TGBs (Verchot-Lubicz et al., 2010).  

One of the striking differences between the potex-like TGB proteins from 

the hordei-, and pomo-like TGBs is the requirement of the CP for carrying out 

the intercellular movement of the virus (Ozeki et al., 2009). Moreover, the 

TGB1 of potex-like viruses is smaller compared to that of the other groups 

(Solovyev et al., 2012), and can increase the SEL independently of TGB2 and 

TGB3 (Howard et al., 2004; Verchot-Lubicz et al., 2010), while the TGB1 of 

hordei- and pomo-like viruses require TGB2 and TGB3 in delivering the vRNP 

complex at the plasmodesmata, and to increase the permeability of 

plasmodesmata (Haupt et al., 2005; Jackson et al., 2009). 
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1.4.1..1.1.7 Cell-to-cell movement of PMTV 

The GFP-tagged TGB1 of PMTV, when expressed together with TGB2 and 

TGB3 proteins transports through the plasmodesmata and achieves cell-to-cell 

movement. However, when expressed alone, the GFP-TGB1 is confined to 

single cells (Zamyatnin et al., 2004), suggesting that the TGB2 and TGB3 

proteins play an important role in the intracellular movement of the vRNP. 

Similar observations were made in the studies on the hordei-like TGB of BSMV 

that showed accumulation of GFP-TGB1 in the cytoplasmic bodies when 

expressed individually, but when co-expressed with TGB2 and TGB3, resulted 

in accumulation of fluorescence in multiple foci (Lim et al., 2009). However, 

TGB3 alone appears to be sufficient to assist the TGB1 in intercellular transport 

of BSMV, although the presence of TGB2 protein increases the efficiency of its 

movement (Lim et al., 2009). 

Figure 7. Current model of PMTV intracellular and cell-to-cell movement. Following the 

replication at the chloroplast, and subsequent translation (1), the TGB1 protein binds with the viral 

RNA forming a vRNP complex (2). TGB2 and TGB3 proteins assist the movement of vRNP, 

probably by being incorporated into vesicles or by interacting with some host protein. This complex 

moves towards plasmodesmata probably by hijacking acto-myosin network (3), where the vRNP 

complex moves to adjacent cells (4), while TGB2 and TGB3 are recycled through the endocytic 

vesicular pathway (5). TGB1 associates with microtubules and nucleolus at the late stages of 

infection. 
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The current model of PMTV intracellular movement suggests that, during 

the initial stage of infection, the vRNP complex of TGB1 and viral RNA is 

recruited by the TGB2 protein through its RNA interaction domain. Later the 

TGB2 protein recruits TGB3 protein, which directs the complex towards the 

plasmodesmata through the actin-ER network, where TGB2 and TGB3 increase 

the SEL of plasmodesmata (Haupt et al., 2005). Following the delivery at the 

plasmodesmata, both the TGB2 and TGB3 proteins are recycled through the 

endocytic recycling pathway (Haupt et al., 2005). The TGB1-RNA vRNP 

complex then moves intercellularly through plasmodesmata. However, the 

molecular mechanism of how the vRNP moves through the plasmodesmata is 

still unclear. 

1.4.1..2   Long-distance movement 

One of the first reports showing that the viruses move long-distance came from 

a study that suggested that the flow of metabolites in the plant influence the virus 

spread in the host (Bennett, 1940). The long-distance movement of the viruses 

mostly occurs through the plant vascular system. While most viruses move from 

non-vascular cells to minor veins in the leaves, some viruses move through both 

major and minor veins (Cheng et al., 2000; Roberts et al., 1997). The ability of 

the virus to move systemically depends on the capacity to enter and exit the 

bundle sheath cells, phloem parenchyma, companion cells and the phloem sieve 

elements. Once entering the sieve elements, where the sieve plate pores have 

larger SEL than the plasmodesmata in the leaf cells (Oparka et al., 1999), viruses 

move long distance rapidly and establish a systemic infection (Figure 4). Many 

plant species contain two structural types of phloem, external and internal 

phloem. The external phloem is towards the abaxial side of the leaf that 

transports the metabolites towards the roots in a slow manner, while the internal 

phloem is on the adaxial side of the leaf allows rapid transport of the metabolites 

towards the upper part of the plant. It has been reported that some of the 

potyviruses and carmoviruses first move through the external phloem towards 

the roots and, at or near the cotyledonary node they enter the internal phloem to 

move to the upper parts of the plant  (Andrianifahanana et al., 1997; Gosalvez-

bernal et al., 2008). However the mechanism through which they move from 

external to internal phloem is not known (Hull, 2013a). On reaching the upper 

parts of the plant, the virus exits the vascular elements and enters the mesophyll 

of the younger leaves.  

The long-distance movement of most viruses occurs as virus particles that 

require the CP, however, some viruses including PMTV are capable of moving 
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systemically in the absence of CP, as a vRNP complex (Torrance et al., 2009). 

In both movement forms of PMTV, TGB1 MP plays an indispensable role. The 

TGB1 protein contains two nucleolar localization sites (NoLS) in the N-terminal 

domain (Lukhovitskaya et al., 2015), and deleting the first 84 amino acid 

residues resulted, not only in absence of nucleolar accumulation and 

microtubule labelling, but also abolished the systemic movement of the virus 

(Lukhovitskaya et al., 2015; Wright et al., 2010). Mutational analysis identified 

that the NoLSs in the N-terminal domain are important for the importin- 

mediated nucleolar localization of TGB1, and for the long-distance movement 

of the virus, suggesting that the nucleolar passage of TGB1 is necessary for the 

systemic movement of PMTV (Lukhovitskaya et al., 2015). 

Table 1 explains the different ways in which PMTV moves systemically. 

In the presence of the CP and CP-RT, PMTV moves systemically as virus 

particles, where the CP-RT and TGB1 protein are attached to one extremity of 

the virus particles (Torrance et al., 2009). In the absence of the CP-RT, virus 

particles are formed but failed to move systemically, suggesting that the CP-RT 

is not required for the virion assembly, but is necessary for the long-distance 

movement of the virus particles (Torrance et al., 2009). 

As mentioned before, PMTV belongs to a small group of viruses where the 

CP is dispensable for the systemic movement as the virus can move in the form 

of a vRNP complex (Savenkov et al., 2003). Interestingly, in the presence of CP 

alone, or the CP-RT with deletions in the TGB-interacting region, the systemic 

movement of RNA-CP, but not the other two RNAs (as vRNP) is inhibited. The 

reason for this was suggested to be because of the differences in the 5’ UTR  

sequence of RNA-CP compared to that of RNA-rep and RNA-TGB, that might 

prefer binding of CP over the TGB1, thereby inhibiting the formation of the 

vRNPs. 

 

Table 1. Various movement forms of PMTV for carrying out systemic infection. 

 +CP 

+CP-RT 

+CP 

-CP-RT 

-CP 

+CP-RT 

-CP 

-CP-RT 

RNA-rep 

RNA-CP 

RNA-

TGB 

All three 

genomic 

components 

move as 

vRNP and as 

virions. 

Only 

RNA-rep 

and RNA-

TGB move 

as vRNP. 

All three 

genomic 

components 

move 

systemically 

as vRNPs. 

All three 

genomic 

components 

move 

systemically 

as vRNPs. 
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1.4.2 Suppression of host defence system 

As a result of the extensive interactions between the viruses and their hosts 

during the process of infection, plants go through various physiological and 

developmental disorders. Consequently, plants employ multiple defence 

strategies to restrict the viral infection, such as triggering a hypersensitive 

response (HR), RNA silencing, hormone-mediated defence, a defence based on 

pathogen-associated molecular patterns (PAMP) etc (Carr et al., 2010; Islam et 

al., 2019; Liu et al., 2017; Mandadi and Scholthof, 2013). The RNA silencing is 

one of the well-studied mechanisms and is considered as one of the common 

defence mechanism against plant viruses (Burgyán and Havelda, 2011). 

1.4.2.1. RNA silencing 

RNA silencing is a highly conserved gene silencing mechanism that degrades 

RNA in a nucleotide sequence-specific manner (Ding and Voinnet, 2007). This 

activity was first discovered in plants in an attempt to overexpress chalcone 

synthase (CHS) gene in petunia petals, which unexpectedly resulted in 

suppression of both transgene and endogenous CHS gene (Napoli et al., 2007). 

RNA silencing mechanism was later found out to be conserved in most of the 

eukaryotes. RNA silencing has a very significant role in the regulation of the 

plant growth and development, and takes part in DNA repair, abiotic stress 

response, suppression of transposons, and other foreign nucleic acids (Bajczyk 

et al., 2019; Chinnusamy et al., 2007; Khraiwesh et al., 2012; Manova and 

Gruszka, 2015). 

The mechanism of RNA silencing can be divided into three stages: 

initiation phase that involves biogenesis of small interfering RNA (siRNAs), 

followed by the effector phase, where the siRNAs are loaded into the RNA 

induced silencing complexes (RISC), and amplification phase that causes 

systemic silencing.  

The initiation of the RNA silencing is triggered by the presence of the 

double-stranded RNA (dsRNA) (Fire et al., 1998). These dsRNAs can produced 

be as a result of RNA-dependent RNA polymerase (RdRp) mediated dsRNA 

formation, as occurs in the case of RNA viruses. The presence of hairpin-like 

secondary structures formed by the fold-back regions of the viral ssRNA also 

acts as substrates for the sRNA biogenesis (Molnár et al., 2005). The dsRNAs 

are targeted by RNase III-type DICER-LIKE (DCL) family of proteins together 

with double-stranded RNA binding protein (DRB) (Hiraguri et al., 2005). 

Various DCL proteins process the dsRNA into siRNA duplexes (Hamilton and 

Baulcombe, 1999). In Arabidopsis four DCLs (DCL 1-4) were identified, of 
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which DCL4, DCL2, and DCL3 were identified to confer antiviral defence, and 

catalyse the production of 21-, 22-, and 24-nt vsiRNAs, respectively (Margis et 

al., 2006). DCL4 confers efficient defence against the RNA viruses. However, 

in the dcl4 mutant background DCL2 acts as a potent antiviral defence factor 

(Deleris et al., 2006; Donaire et al., 2008; Garcia-Ruiz et al., 2010; Qu et al., 

2008). The DCL3, although has a minor role against the RNA viruses (Qu et al., 

2008; Raja et al., 2008) and may enhance antiviral defence mediated by the 

DCL4 and DCL2. The vsiRNAs are then stabilized at their 3’ end by the HUA 

Enhancer 1 (HEN1) dependent methylation (Vogler et al., 2007). 

During the effector phase, the siRNAs are loaded into Argonaute (AGO) 

containing RNA-induced silencing complex (RISC) which slices the RNA 

sequences with high sequence complementarity (Fagard et al., 2000). The size 

of the siRNAs and the 5’ nucleotide of the sRNA directs preferential sorting of 

siRNAs into specific AGOs. For instance, AGO1 and AGO2, most important 

AGOs in the antiviral silencing in Arabidopsis (Brodersen et al., 2008), 

preferentially binds to sRNA with 5’-terminal U and A residues, respectively 

(Mi et al., 2008). Following the incorporation of siRNA duplex into the RISC 

complex, one strand known as guide strand is assembled with the AGO protein 

while the other strand, called passenger strand is discarded. It was reported that 

this selection based on the thermodynamic stability between the two ends of the 

siRNA and the strand with less stable 5’ pairing is retained within the AGO 

protein (Khvorova et al., 2003; Schwarz et al., 2003; Takeda et al., 2008). The 

guide strand then binds to the mRNA or viral RNA in a sequence-specific 

manner which results in degradation or translational repression of the RNA by 

RISC (Guo et al., 2019). The siRNA along with other aberrant RNAs serve as 

primers to generate dsRNA via cellular RNA-directed RNA polymerase (RDR), 

that subsequently serves as substrates for the DCL processing, followed by 

RISC formation, leading to the amplification of the RNA silencing signal 

(Dalmay et al., 2000; Voinnet et al., 1998). 

The amplified RNA silencing signal then travels intercellularly from the 

site of initiation to the neighbouring cells, and systemically to other parts of the 

plant. This movement of the RNA silencing signal was observed through 

grafting experiments in tobacco plants, which provided an evidence for the 

spread of RNA silencing signal from silenced rootstock to non- silenced scions 

(Palauqui et al., 1997). The short range spread of RNA silencing signal occurs 

in a limited area of about 10-15 cells from the site of initial silencing either 

through the plasmodesmata, or apoplastically through intercellular spaces or the 

cell walls (Mermigka et al., 2016). The short range spread of RNA silencing is 

predominantly mediated by the DCL4-produced 21-nt siRNAs. The systemic 
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silencing, on the other hand is transported to distant organs through phloem 

(Kalantidis et al., 2008). The silencing signal, following the movement through 

plasmodesmata, reaches and enters the phloem cells and follows the photo 

assimilate translocation route from the source to sink tissues (for review, 

Mermigka et al., 2016). 

1.4.2.2. Suppression of RNA silencing 

To counteract the RNA silencing-mediated defence, viruses evolved to encode 

proteins that are able to suppress the RNA silencing, called as viral suppressors of 

RNA silencing (VSRs) (Burgyán and Havelda, 2011). It is reported that many 

viruses encode at least one VSR, which in many cases is essential for the efficient 

virus infection (Csorba et al., 2015). Based on the diversity in their sequence and 

structure, it was suggested that VSRs evolved independently. Various VSRs employ 

different strategies to suppress host RNA silencing by blocking key steps in the RNA 

silencing pathway (Li and Ding, 2006). Some VSRs target multiple steps of the 

antiviral silencing mechanism, and thereby helping in achieving a balance between 

the plant defence and viral counter-defence (Iki et al., 2017; Valli et al., 2018).  

1.4.2.2. 1. Binding to dsRNA 

Binding to dsRNA is considered to be of the most common mechanisms the 

VSRs employ to suppress RNA silencing (Hull, 2013b). The VSRs are reported 

to bind to dsRNAs in two different ways, binding in size-independent way to 

various dsRNAs, and binding to specific sized dsRNAs. 

1.4.2.2. 1.1. Binding to dsRNA in size-independent way  

VSRs such as P14 of Pothos latent virus, 2b of Tomato aspermy virus, and P38 

of TCV have been reported to bind to long dsRNA preventing processing of 

dsRNA into siRNAs by DCL proteins (Chen et al., 2008; Iki et al., 2017; Mérai 

et al., 2006, 2005). Biochemical analysis using a synthetic dsRNA revealed that 

the TCV P38 protein efficiently inhibits dsRNA processing into 21- and 24-nt 

siRNAs (Iki et al., 2017).  

1.4.2.2. 1.2. Binding to specifically sized dsRNA  

On the other hand, several VSRs bind to specifically sized siRNAs duplexes and 

sequester them, and thus depleting their availability to be incorporated into the 

RISC. Immunoprecipitation of Cymbidium ringspot virus P19 protein from 



   

 

41 

 

infected N. benthamiana plants using anti-P19 antibodies and subsequent 

Northern blot analysis showed that P19 binds virus-specific 21-nt RNAs 

(Lakatos et al., 2004). In the same study, it was identified that the plants infected 

with a modified virus that does not express P19 resulted in high accumulation 

of siRNAs, suggesting that the P19 sequesters the siRNAs. Furthermore, 

crystallization studies of P19 protein from another tombusvirus Carnation 

Italian ringspot virus in complex with a 21-nt siRNA duplex revealed that the 

two molecules of P19 binds to one siRNA duplex (Vargason et al., 2003). Size-

selective binding of siRNAs was identified through in vitro binding assays in 

many unrelated viruses such as the HcPro of Tobacco etch virus, P15 of Peanut 

clump virus, P21 of Beet yellows virus (BYV), and γb of Barley stripe mosaic 

virus. These VSRs efficiently bind 21-nt siRNA duplexes, but not long dsRNA 

(Mérai et al., 2006; Vargason et al., 2003), indicating that dsRNA binding is a 

widely used silencing suppression strategy and many VSRs can discriminate 

between short and long sRNA. However, the sites of binding among the VSRs 

are different. For example, the HcPro binds to 3’ overhang of the 21-nt siRNA 

through an amino acid sequence, FRNK, conserved in its central region (Sahana 

et al., 2014; Shiboleth et al., 2007). On the other hand, the P19 protein binds to 

the duplex region of the siRNA (Vargason et al., 2003). Together, the difference 

in the binding properties suggest that these VSRs, even though carry out similar 

functions, might have evolved the siRNA-binding activities independently. 

1.4.2.2. 2. Preventing the functioning of DCL proteins 

Some VSRs prevent the functioning of DCL proteins by suppressing their 

expression, and thus preventing the accumulation of siRNAs. VSRs of some 

viruses like Red clover necrotic mosaic virus recruits the DCL proteins into viral 

replication complexes thus preventing processing of long dsRNA into vsiRNAs 

(Takeda et al., 2005). Various other VSRs such as TCV P38 (Deleris et al., 

2006), CMV 2b protein (Diaz-Pendon et al., 2007) reported to interfere with the 

DCL functioning. Studies on the CaMV VSR, P6 protein reported that P6 

interacts with and inhibits the functioning of DRB4 protein that acts as a cofactor 

for DCL4 (Haas et al., 2008). 

1.4.2.2. 3. Interfering with RDR pathway 

In plants, RDR6 mediated generation of secondary siRNAs plays an important 

role in the silencing based antiviral immunity (Li et al., 2014). Hence, multiple 

VSRs evolved to either block or downregulate the functioning of RDR, thus 
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preventing the siRNA biogenesis and inhibiting the signal amplification 

pathway. The V2 protein of Tomato yellow leaf curl virus binds to suppressor 

of gene-silencing 3 (SGS3), which is involved in the amplification of siRNA 

signal (Glick et al., 2008). VSRs such as P6 of Rice yellow stunt virus, potyvirus 

HC-Pro, and CMV 2b, PVX TGB1 (Fang et al., 2016; Guo et al., 2013; Okano 

et al., 2014; Valli et al., 2018) proteins are also reported to interfere with the 

RDR mediated signal amplification pathway. However, the mechanisms with 

which they interfere with RDR pathway is not clearly understood (Burgyán and 

Havelda, 2011). 

1.4.2.2. 4. Inhibiting AGO proteins 

As AGO proteins play an important role in the RNA silencing mechanism, several 

VSRs inhibit their functioning either by degrading AGO proteins, or downregulating 

the expression of AGO genes. Examples of the VSRs degrading the AGO protein 

includes P25 protein of PVX and P0 protein of Polerovirus, both of which degrade 

the AGO1 in two different pathways. P25 protein of PVX selectively interacts with 

few AGOs, and degrades the AGO1 protein through proteasome pathway (Chiu et 

al., 2010). On the contrary, inhibition of proteasome did not prevent P0-mediated 

degradation of AGO1. It has been shown that P0 protein identifies the PAZ motif 

and a part of its upstream sequence in AGO1 and triggers its degradation through 

autophagy pathway (Baumberger et al., 2007; Bortolamiol et al., 2007).  

VSRs also inhibit functioning of AGO by downregulating the expression of 

AGO1 gene. VSRs such as HcPro, P38, 2b and P19 proteins are reported to 

upregulate the expression of miR168 which inhibits the translation of the AGO1 

mRNA (Varallyay and Havelda, 2013).  

1.4.2.2. 5. RNA silencing suppression activity of PMTV 8K protein 

In the case of PMTV, the third genomic segment, RNA-TGB encodes an 8 kDa 

cysteine-rich protein, which is reported to function as a weak VSR (Lukhovitskaya 

et al., 2013). The 8K protein, although dispensable for the long-distance movement 

of the virus, appears to be an important factor for an efficient virus accumulation in 

N. benthamiana and N. tabacum (Lukhovitskaya et al. 2005).  
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Figure 8. A model for antiviral RNA silencing mechanism and various stages where suppressor of 

RNA silencing interfere with the RNA silencing pathway. 
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The specific objectives of the study were: 

 

 To characterise the variability of PMTV in the Andean region of Peru. 

 

 To characterize the RNA silencing suppression activity of the 8K 

protein of PMTV isolates from Peru and Sweden. 

 

 To uncover the role of the acto-myosin network in the cell-to-cell 

movement of the virus. 

 

 To identify TGB1-interacting partners (host protein) and assess their 

role in the virus cell-to-cell and systemic movement. 

  

2 Aims of the study 
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3.1 Diversity of potato mop-top virus (Paper I) 

3.1.1 Genetic variability and phylogenetic relationship of the PMTV 

isolates 

Previous studies on PMTV isolates obtained from Europe, Asia, and North 

America reported very little genetic variability of PMTV (Beuch et al., 2015; 

Hu et al., 2016; Latvala-Kilby et al., 2009; Ramesh et al., 2014). We 

hypothesized that the reason for the low variability could be as a result of limited 

number of isolates sequenced so far. In this study, we characterized the diversity 

of PMTV by sequencing and analysing the genome of isolates from the Andean 

region of Peru and Sweden.  

PMTV isolates were collected from 12 potato fields present in three 

different locations in the Andean region of Peru (Figure 1 and Table S1, Paper 

I). A total of 61 full-length genomic segments of PMTV were amplified using 

primers specific for well-conserved 5′- and 3′ termini. Between nine and 30 

clones for each full-length genomic component were sequenced. To understand 

the rate of mutations in different cistrons, we carried out single-likelihood 

ancestor counting (SLAC) analysis that showed an uneven distribution of 

mutations with the CP-RT and 8K cistrons accumulated the highest number of 

mutations, while the RdRp ORF accumulated lowest number of mutations 

(Figure 2, Paper I). 

The phylogenetic analysis based on the sequences of PMTV isolates from 

Peru and the sequences of isolates available in the GenBank showed that there 

are two lineages of RNA-rep and RNA-TGB, and three lineages of RNA-CP 

(Figure 3, Paper I). In the RNA-rep phylogenetic tree, the clade I grouped 

isolates from Peru, Europe, Canada, USA and Colombia, clade II was 

3 Results and discussion 
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exclusively represented by Colombian isolates. The sequences in the clade I 

shared about 97% identity with the clade II. In the RNA-TGB bootstrap 

consensus tree, the Peruvian isolates were grouped in clade I together with 

isolates from Europe, Canada, USA and Colombia. The clade II was represented 

by single isolate from Peru, which shared 92-94% identity with isolates from 

clade I. 

The phylogenetic tree of RNA-CP segment revealed two major clades and 

one novel genotype (genotype 3). While the clade I grouped isolates from Peru 

and other parts of the world, clade II and the novel genotype was exclusively 

represented by isolates from Peru, suggesting higher variability of RNA-CP in 

Peru compared to other parts of the world. Genotype 3 shared 80% identity with 

isolates from clade I and clade II. 

3.1.2 Novel classification of PMTV isolates and Global spread of PMTV 

Based on the new deduced phylogenetic relationship among the PMTV isolates, 

we suggested a novel classification of the PMTV isolates. In this classification, 

the genotype of each RNA segment is taken into consideration. Based on this 

classification, all the isolates described so far were catalogued into four 

genotype constellations (Table 2, Paper I), of which, two constellations were 

found exclusively in Peru, and another constellation was found in Colombia, 

suggesting that the Andes region has a higher diversity of PMTV. 

Interestingly, one constellation was represented by isolates from Colombia, 

Europe, North America, Asia and Peru, suggesting that this particular genotype 

constellation was firstly introduced into Europe, which probably served as a 

source to the other parts of the world. A recent study on the global diversity of 

S. subterranea, the vector of PMTV suggested that S. subterranea was probably 

first introduced into Europe from South America, and was subsequently spread 

to other parts of the world (Gau et al., 2013). Considering the S. subterranea 

being the vector for PMTV, it can be hypothesized that the PMTV was first 

introduced into Europe, which served as a source of the virus to other potato 

growing regions of the world. 

3.1.3 Role of CP-RT in the pathogenicity of PMTV 

Existence of two different genotypes of RNA-CP as determined by the 

phylogenetic analysis suggests that there might be differences in their biological 

properties. To address that, we inoculated plants with the in vitro generated 

RNA transcripts from the infectious cDNA clones of the PMTV isolates 
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representing each of the lineages of the RNA-CP phylogenetic tree. Quantifying 

the virus accumulation using ELISA indicated that viruses containing RNA-CP 

belonging to clade I of phylogenetic tree accumulated in significantly lower 

amounts than the viruses containing RNA-CP from clade-II (Figure 6A and 6C, 

Paper I). Based on the differences in pathobiological properties, we termed clade 

I and clade II as S (severe) and M (mild) strains, respectively. Single-segment 

reassortant of the S-type, with the M-type RNA-CP segment resulted in 

decreased accumulation of virus (Figure 6D, Paper I). Notably, the amino acid 

differences in the S- and M-types were located in the read-through domain 

(Figure 5A, Paper I), suggesting that the read-through domain of CP-RT is a 

major determinant of the pathobiological properties of different strains.  

Multiple sequence alignment of the CP-RT sequences revealed that some 

of the Peruvian isolates have internal in-frame deletions (Figure 5, Paper I). The 

internal deletions in the CP-RT region were previously reported in few isolates 

that were manually propagated for a long time, and also in some field isolates. 

These internal deletions had no effect on the systemic movement of the PMTV 

(Torrance et al., 2009). However, the reason why the virus loses this region upon 

serial mechanical transmission was not clear. Here, we showed that the isolates 

with the internal in-frame deletions accumulate slightly higher (Figure 6B, Paper 

I), suggesting a faster replication of the genome.  

The isolates with the internal deletions in the CP-RT sequences were 

unable to be transmitted by its natural vector when tested experimentally (Reavy 

et al., 1998). Previously it has been shown that many genera of viruses with 

plasmodiophorid vectors contain transmembrane domains in the CP-RT region. 

These transmembrane domains are suggested to be involved in the attachment 

of the CP-RT to the plasma membrane of the vector, and thereby supporting 

movement from the cytoplasm of the host and the vector (Adams et al., 2001). 

Consistent with the previous studies, our in-silico analysis identified the 

presence of two transmembrane domains in the CP-RT region of PMTV, 

supporting the idea that the CP-RT protein is a membrane protein which is 

inserted into the lipid bilayer in a U-shaped orientation (Figure 5C, Paper I). We 

noticed that the isolates with internal deletion contain only one of the 

transmembrane domains, which is also consistent with the previous studies 

showing the loss of transmembrane domain in the nontransmissible deletion 

mutants, further supporting the idea that these transmembrane domains are 

important for the virus transmission by the vector. Future studies may 

experimentally address the importance of these transmembrane domains in the 

vector transmission. 
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3.2 RNA silencing suppression activity by PMTV 8K 

protein (Paper I and II) 

3.2.1 Variability and selection pressure acting on the 8K gene (Paper I) 

Multiple sequence alignment of the 8K amino acid sequences showed an 

extraordinary variability, with 23 variable amino acid positions in a 68 amino 

acid protein (Figure 4B, Paper I). The phylogenetic analysis of the 8K amino 

acid sequence revealed three clades and a novel distinct genotype (Figure 4A, 

Paper I). Peruvian isolates grouped into all four clades indicating higher 

variability of 8K in Peru than other parts of the world. While the clade I of 8K 

phylogenetic tree was represented by the majority of isolates from Europe, Asia, 

and two isolates from Colombia, and one isolate from Peru, clade II was 

represented by isolates from Peru, Colombia, and some isolates from Europe. 

The clade III and the novel genotype was exclusively represented by Peruvian 

isolates. The sequences in clade I shared 89 – 98% identity with clade II, 88 – 

95% identity with clade III and 77 – 85% identity with novel genotype. 

To address the question if there is any selection pressure acting on the 

PMTV genome, we calculated the ratio of non-synonymous to synonymous 

substitutions (dN/dS) using SLAC analysis. We found that the 8K genomic 

region (dN/dS ration 1.415; dN/dS > 1, positive selection), but not any other 

cistrons are under positive selection. Interestingly, previous studies indicated no 

strong positive selection on the 8K gene of the PMTV isolates from Europe, 

North America and Colombia. Moreover, we found that the the dN/dS value is 

even higher (dN/dS value 1.863) among 8K sequences of isolates from Peru. 

3.2.2 RNA silencing suppression activity of the 8K protein of various 

PMTV isolates (Paper II) 

Although 8K protein is dispensable for the movement of the PMTV, it is 

required for efficient virus accumulation (Lukhovitskaya et al. 2005). The 8K 

protein was previously reported to be a weak suppressor of RNA silencing 

(Lukhovitskaya et al., 2013). Previous studies on the VSR of Rice yellow motile 

virus indicated that sites under positive selection modulate the RNA silencing 

suppression activity (Sereme et al., 2014). Indeed, a strong counter-counter-

defence by hosts might impose strong selection pressure on the viruses that 

might favour the acceleration in the divergence of the VSRs. As our study 

indicated that the 8K protein has high variability and is under positive selection, 

we compared the VSR activity of seven most diverse alleles representing four 
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major clades of the 8K phylogenetic tree. These analyses showed that the 8K 

protein of one of the isolates from Peru, 8KP1 has stronger suppression of RNA 

silencing activity compared to the 8K protein of the rest of the isolates. The 8K 

protein of Swedish isolate, 8KSwH showed weak VSR activity as reported 

previously (Lukhovitskaya et al., 2013). Some Peruvian isolates, 8KP118 and 

8KP157 also showed weak VSR activity, followed by 8KP11, 8KP13, 8KP125 which 

showed weakest VSR activity among the isolates characterized (Figure 2, Paper 

II).  

Interestingly, the 8KP125, one of the weakest VSR, differ only by two amino 

acid residues - P1Gly18CysP125 and P1Ser50AsnP125 - from the 8KP1, a relatively 

strong VSR (Figure 1, Paper II). To identify the key amino acid residue 

contributing to the efficient RNA silencing suppression activity of 8KP1, we 

carried out site-directed mutagenesis in the 8KP125 coding sequence to generate 

two mutant alleles, C18G (8KC18G) and N50S (8KN50S), and evaluated the RNA 

silencing suppression activity. We found that the 8KN50S allele has stronger RNA 

silencing suppression activity than 8KC18G and 8KP125 (Figure 3, Paper II), 

suggesting that Ser-50 is critical for efficient VSR activity of the 8K protein. 

Through multiple sequence analysis of 86 8K amino acid sequences, we 

identified that the 8K protein has a conserved C14 x C16 xn C34 x C36 (where x 

denotes any amino acid) type SWIM zinc-finger motif (Figure 4, Paper I). To 

examine the importance of putative SWIM zinc-finger motif, we carried out site-

directed mutagenesis at C34 and C36 to generate a mutant allele C34A C36A. 

Comparison the RNA silencing suppression activity of the wild-type 8K protein 

(8KSwH) with the zinc-finger mutant (8KC34A C36A), revealed that disruption of 

zinc-finger motif abolished the RNA silencing suppression activity, signifying 

that the integrity of the zinc-finger is essential for the VSR activity of the 8K 

protein (Figure 4, Paper II).  

In order to get an insight into the mechanisms of 8K-mediated RNA 

silencing suppression, we carried out deep sequencing of small RNAs (sRNA) 

to compare the sRNA profiles between the 8K proteins of two PMTV isolates 

with contrasting VSR abilities, 8KP1, a moderate VSR, and 8KP125, a weak VSR. 

These proteins were transiently expressed in the N. benthamiana leaves together 

with GFP. Transient expression of an empty plasmid (EP) was used as a negative 

control, while, HcPro, a known strong VSR, as a positive control. Alignment of 

total reads obtained from the sRNA sequencing to the GFP transgene sequence 

indicated an overall reduction in the amount of GFP specific sRNA reads in the 

presence of VSRs (Figure 5, Paper II). The 21-nt class was most abundant (30-

48%) siRNA class, followed by 22-nt (22-34%) and 24-nt (11-32%) sRNAs. 

There was an almost equal number of sense and antisense strands of siRNAs 
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distributed throughout the GFP transgene sequence. However, the amount of 22-

nt sRNA class was slightly reduced in the presence of 8KP1 compared to the 

8KP125 (Figure 5, Paper II). In order to validate the observed differences in the 

NGS data, we performed stem-loop RT-qPCR for detection of the antisense 

strand of sRNAs. To this end, we randomly selected six abundant 21-nt and 22-

nt size class siRNAs scatted along GFP ORF sequence. The stem-loop RT-

qPCR revealed that the expression of 22-nt sRNAs were significantly lower in 

the presence of VSRs (Figure 6, Paper II).  

In plants, the 5’terminal nucleotide in the sRNAs directs the loading of 

them into specific AGO proteins, which is an important step in the functioning 

of the RISC. In Arabidopsis, it has been identified that the AGO1 preferentially 

binds to sRNAs with 5’ terminal U residue (Mi et al., 2008). Our analysis 

revealed that in the presence of an empty plasmid control, U was the most 

abundant nucleotide at the 5’ end, suggesting that these sRNAs are preferentially 

loaded into AGO1 containing RISC complex.  Interestingly, this pattern was 

similar in the presence of weak VSR, 8KP125. However, in the presence of 

HcPro, and 8KP1 there were a reduction siRNAs with the U residue at their 5’ 

end. Previously it has been shown that modifications in the 5’terminal 

nucleotide in the miRNA resulted in the failure of proper loading into the RISC, 

preventing the biological activity of the miRNA (Mi et al., 2008). The data of 

our study suggests that the 8KP1 protein and HcPro interfere with the RNA 

silencing pathway by interfering with AGO1 functioning. Interestingly, it has 

been shown that 22-nt miRNAs, but not 21-nt miRNAs bound to AGO1 recruit 

RDR6 to generate double-stranded RNA substrates for subsequent DCL 

processing, leading to the increased secondary siRNA production, and thus 

amplification of the signal (Schwab and Voinnet, 2010). Hence, it is tempting 

to hypothesize that VSRs such as HcPro and 8KP1 might destabilize the sRNAs 

with U at the 5’terminal end, inhibit their recruitment to AGO1, and thus prevent 

RDR6 recruitment. The observation of a reduction in 22-nt siRNAs, but not 21-

nt siRNAs through stem-loop qRT-PCR further supports this hypothesis. Taken 

together, these results show several novel features of the VSR activity of the 8K 

protein and provides new insights on how variability and selection pressure 

modulate the activities of VSR. 
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3.3 Movement of potato mop-top virus  

3.3.1 Role of the acto-myosin network in the cell-to-cell movement of 

PMTV (Paper III)  

To address the role of acto-myosin network in the movement of PMTV, we 

inoculated the plants with a modified PMTV variant that expresses GFP-fused 

TGB1 and infiltrated with LatB, an actin depolymerizing agent. This disruption 

in the actin network led to the impaired cell-to-cell movement of the PMTV 

(Figure 1, Paper III). It is worth noting that the disruption of microtubular 

network using oryzalin or colchicine had no effect on the intercellular movement 

of the virus (Wright et al., 2010), suggesting that PMTV depends on the actin 

microfilaments for its cell to cell movement. Previously, it has been shown that 

the MPs of certain viruses, such as the 30K protein of TMV, TGB1 protein of 

PVX; and 2b of GFLV uses actin network for their cell-to-cell movement 

(Amari et al., 2014, 2011; Harries et al., 2009). 

To assess the role of molecular motors behind the actin-mediated 

intercellular movement of PMTV, we used dominant negative inhibition 

constructs of six myosins belonging to two classes, VIII and XI. Transient 

expression of these dominant negative constructs in N. benthamiana leaves were 

carried out followed by inoculation with the PMTV.TGB1-GFP.  

Our analysis revealed that there was a significant decrease in the size of 

infection foci area when certain class VIII myosins were inhibited while 

inhibiting class XI myosins did not have a significant effect (Figure 2, Paper 

III). Inhibition of Class VIII myosins drastically reduced the localization of 

TGB1-GFP protein to plasmodesmata. The presence of TGB1-GFP at the 

plasma membrane suggests that the intracellular movement of TGB1 was not 

affected. To examine if the efficiency of delivery of the TGB1 at the 

plasmodesmata is affected when the Class VIII myosins were inhibited, we 

performed Fluorescence Recovery After Photobleaching (FRAP) assay. As the 

name suggests, upon bleaching of the TGB1-GFP fluorescence at 

plasmodesmata, the rate with which the fluorescence is recovered reflects the 

efficiency of the TGB1-GFP movement. As expected, the recovery of TGB1-

GFP fluorescence at the plasmodesmata was severely reduced upon 

overexpression of tails class VIII myosins (Figure 3, Paper III), indicating that 

class VIII myosins are required for efficient delivery of the TGB1 to the 

plasmodesmata. 

Previously it was reported that both class XI and class VIII myosins are 

required for the intercellular movement of the TMV, however, inhibiting class 
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VIII myosins specifically resulted in the abolishment of plasmodesmata 

localization, suggesting that the class VIII myosins are specifically required for 

MP targeting and movement through the plasmodesmata (Amari et al., 2014). A 

similar result has been observed in a previous study with BYV MP, where class 

VIII myosins, but not class XI myosins resulted in inhibition of plasmodesmata 

localization (Avisar et al., 2008). Overall, these results suggest a specific role of 

class VIII myosins in the virus movement, probably, by altering the permeability 

of the plasmodesmata as suggested by Pitzalis and Heinlein (2018). This idea is 

further supported by the fact that inhibiting class VIII myosins had no effect on 

the tubule guided movement of GFLV, where the virus MPs transform the 

plasmodesmata into specialized tunnels, whereas inhibiting class XI myosins 

resulted in the impaired intercellular movement of the GFLV (Amari et al., 

2011).  

3.3.2 Role of HIPP26 in the long-distance movement of PMTV (Paper 

IV) 

PMTV TGB1 plays an important role in the long-distance movement of PMTV. 

The Importin-α mediated nucleolar localization of TGB1 is necessary for the 

virus long-distance movement (Lukhovitskaya et al., 2015). However, the role 

of this nucleolar accumulation for the long-distance movement is not clearly 

understood. The yeast-two-hybrid screening of TGB1 with N. benthamiana 

cDNA library identified an interaction between the TGB1 and N. benthamiana 

HIPP26, a metallochaperone (Figure 2, Paper IV). The HIPP26 protein is unique 

to vascular plants, that act in the heavy metal homeostasis, regulating the 

transcriptional response to the biotic and abiotic stress (Barth et al., 2009; de 

Abreu-Neto et al., 2013).  

The TGB1 interacts with the c-terminal prenyl motif, CVVM, of 

NbHIPP26. The bimolecular fluorescence complementation assay (BiFC) 

confirmed the interaction between the TGB1 and HIPP26 and revealed that this 

complex accumulates in the nucleolus, and associates with microtubules (Figure 

3, Paper IV). Interestingly, the HIPP26, when expressed alone, does not localize 

to the microtubules (Figure 3, Paper IV). HIPP26 protein, like many other 

membrane-associated proteins that are involved in abiotic or biotic stresses, are 

modified posttranslationally by the addition of lipid moieties through a 

reversible linkage. Mutations in the lipidations domains resulted in weaker 

binding of HIPP26 to plasma membrane, suggesting that the lipidation is 

required to maintain the HIPP26 association with the membrane. Loss of 

association with membrane lead to increased accumulation of HIPP26 in the 
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nucleus and nucleolus. Co-immunoprecipitation (CoIP) showed that the HIPP26 

protein interacts with the nuclear import protein, importin-α (unpublished 

results) (Figure 9), suggesting that Importin-α mediates the nucleolar 

localization of the HIPP26. Taken together, our results support a model where 

the TGB1 interacts with HIPP26 at the C-terminal prenyl motif (Figure 2, Paper 

IV), reversing its association with the plasma membrane. Following that, the 

TGB1 translocates HIPP26 to the nucleus via cytoskeletal components. 
Figure 9. CoIP of extracts from N. benthamiana leaves co-infiltrated with GFP-TGB1 and 

HA-IMPα1, or IMPα1 and GFP-TGB1, using anti-GFP microbeads, followed by immunoblot 

analysis with anti-HA and anti- GFP antibodies. The coexpression of nonfused IMPα1 and GFP-

TGB1 was used as a control in the CoIP experiment. 

 

To test the importance of the HIPP26 in the long-distance movement of the 

virus, Tobacco Rattle Virus (TRV) based virus-induced gene silencing (VIGS) 

vectors were used to knock down the expression of NbHIPP26. The knock down 

of NbHIPP26 was confirmed using RT-qPCR. The NbHIPP26 silenced plants 

were then inoculated with PMTV. Two weeks post inoculation RNA was 

extracted from the upper non-inoculated leaves, and subsequently used to 

quantify the viral RNA. We detected a reduced accumulation of all three RNA 

segments of PMTV in the upper leaves upon knock down of NbHIPP26, 

suggesting that NbHIPP26 is necessary for the virus long-distance movement.  

Quantification of PMTV accumulation in the leaves by ELISA revealed a 
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significant reduction in the virus accumulation in the systemically-infected 

leaves as compared to the control plants (Figure 9, Paper IV) further supporting 

the idea that the HIPP26 is necessary for the virus long-distance movement. 

However, quantification of PMTV accumulation in inoculated leaves by ELISA 

revealed no difference in the viral accumulation upon silencing of NbHIPP26, 

suggesting that TGB1-NbHIPP26 interaction is required for the systemic 

movement, but not cell-to-cell movement of PMTV.  

Interestingly, PMTV infection resulted in increased drought tolerance in 

the N. benthamiana plants, suggesting a possible role of TGB1-HIPP26 

association in activating the drought response (Figure 8, Paper IV). It was shown 

that in Arabidopsis, HIPP26 interacts with a transcriptional activator, ZFHD1 in 

the nucleus, thereby regulating its response to the stress (Barth et al., 2009). It 

is hypothesized that nuclear accumulation of the TGB1-HIPP26 complex 

triggers the activation of ATHB29 transcription factor and thereby initiates 

transcription of drought response genes, even under normal, non-drought 

conditions.  
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The findings of this thesis contribute to a better understanding of PMTV 

variability and its interactions with the host. The main findings include: 

 

 PMTV has high genetic variability in the Andean region of Peru. 

 Based on the phylogenetic analyses, and the pathobiological 

differences, our work shows that the RNA-CP segment of all the 

isolates sequenced so far can be grouped into two genotypes: S-type 

(Severe) and M-type (Mild).  

 All of the previously characterized isolates from Europe, Asia, and 

North America belong to S-type, along with some newly characterized 

isolates from Peru. M-type, so far was found in Peru. 

 We suggested a novel classification of PMTV isolates based genetic 

constellations. 

 Our findings establish that PMTV has undergone continued 

evolutionary divergence in Peru.  

 The ORF encoding 8K protein is under positive selection.  

 Through characterization of RNA silencing suppression activity of 

diverse 8K variants, we identified 8KP1 as a much stronger VSR 

compared to other natural variants of 8K. Mutants of the weak P125 

allele allowed us to identify that Ser-50 is critical for the activity. 

 Comparison of small RNA profiles upon transient expression of P1 and 

P125 alleles in N. benthamiana plants revealed lower accumulation of 

certain classes of siRNAs the presence of 8KP1.  

 Our findings set new grounds for future research to address the 

mechanism of the 8KP1 suppressor activity. This study also provides 

new insights on how genetic variability and positive selection modulate 

the activities of VSRs. 

 We demonstrated that PMTV utilizes the acto-myosin network for the 

cell-to-cell movement. 

4      Concluding remarks 
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 Our analysis indicates that two myosins, namely, VIII-1 and VIII-B 

from the class-VIII family, play a major role in the intercellular 

movement of PMTV. 

 Although class XI myosins had no effect in the intercellular movement 

of PMTV, knockdown of NbMyosin XI-K expression indicates that this 

myosin might have a functional role in the long-distance movement of 

the virus. However, this data must be interpreted with caution as 

knockdown of individual myosin gene expression often influenced 

expression of other myosin genes, probably due to the high level of 

redundancy among the myosin genes. 

 Further research is needed to clarify the role of acto-myosin network in 

the movement of PMTV. 

 TGB1 protein, a major protein facilitating the long-distance movement 

of PMTV, interacts with HIPP26, a vascular-expressed plant stress 

sensor, which acts as signal from plasma membrane-to-nucleus during 

abiotic stress. 

 Our results indicate that the interaction between TGB1 and HIPP26 

reverses the association of HIPP26 with the plasma membrane, 

followed by translocation of HIPP26 to the nucleus via microtubules. 

 Knockdown of NbHIPP26 expression resulted in the inhibition of 

PMTV long-distance movement. 

 We demonstrated that PMTV infection leads to increased drought 

tolerance in N. benthamiana.  

 Based on our results, we propose a model where the nuclear 

accumulation of the TGB1-HIPP26 complex induces the expression of 

dehydration-responsive genes in the vasculature, even under normal 

irrigation conditions, establishing a drought-tolerant state. These 

changes also allow the virus particles or RNPs enter the phloem for 

their long-distance movement. 
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Plant diseases due to pathogens pose a serious threat to crop production 

worldwide. Shortage of food was responsible for the death of millions of people 

and animals. Among the plant pathogens, viruses are the least understood and 

known to be the most difficult to control. Potato production is affected by a 

number of virus like Potato mop-top virus (PMTV). PMTV causes a disease 

called potato ‘spraing’, which results in necrotic arcs in the tubers making them 

not marketable. In Sweden alone, it causes about 80-100 million/SEK losses per 

year. The virus has its distribution in many parts of the world including Nordic 

countries, North and South America, and parts of Asia. Increasing detection in 

many new countries in the recent years suggests that PMTV poses a significant 

epidemiological risk. However, no viable options that are currently available for 

the control of PMTV and the chemical control methods are largely ineffective 

on virus infections.  

In this study, we collected samples from the Andean regions of Peru, which 

is considered as the centre of domestication of potato. By analysing these 

isolates we identified that compared to the rest of the world, PMTV has high 

genetic diversity in the Andean regions of Peru. Our result supports a notion that 

PMTV was first introduced into Europe from South America, which served as a 

source for subsequent spread to the other regions in the world.  

Viruses have highly diverse mechanisms in taking over the host’s 

machinery for their functionality. Understanding how viral proteins interact with 

the plant cellular components is critical to develop sustainable methods for 

disease control. In this study, we found that one of the genes that codes for a 

protein that counters the plant defence system against the virus is evolving 

rapidly. Through gene-editing method, we identified that the changes in this 

gene can enhance its counter-defence activity, suggesting that the evolutionary 

pressure modulates the viral counter-defence activity. 

Popular science summary 
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Movement of the virus is paramount for establishing successful infection 

in the plant. In this study, we also identified key components involved in the 

local and long-distance movement of the virus. We showed that the virus hijacks 

key cellular components like myosin motors that transport cellular organelles in 

and out of the cells. We also showed that PMTV hijacks a plant abiotic stress 

signalling protein for its long-distance movement. Our study indicated that 

PMTV can induce and enhance drought resilience in plants. The main reason 

for this could be that helping the plant survive adverse conditions could, in turn, 

help the survival of the virus itself. Further studies are required to enhance our 

understanding of this virus-induced drought tolerance in the plants so that we 

can explore the possibilities of improving drought tolerance in the agricultural 

crops. 

Taken together, this thesis contributed to a better understanding of the 

diversity of PMTV and how it hijacks the host proteins, and defends itself during 

the process of infection. 
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మొకొల వ్యయధులు ప్రప్ంచవ్యయప్తంగా ప్ంట ఉత్తితకి తీవ్రమైన ముపు్ కలిగస్తతయి. చారిత్రాతమకంగా, 
మొకొల వ్యయధులు కోటల మంది ప్రజలు మరియు జంతువుల మరణాలకు కారణ్మయాయయి. ఇతర 
వ్యయధికారక కారకాలతోకంటే, వైరస్ల తకుొవగా అరథం చేస్కోబడినవి మరియు నియంత్రంచటానికి 
చాలా కష్టమయినవి. ఇతర ప్ంటల మాదిరిగానే, బంగాళాదంప్ ఉత్తిత కూడా ‘పొటాటో స్థ్రంగ్ ' 
వంటి అనేక వైరల్ వ్యయధుల దాార్గ ప్రభావితమవుతుంది. పొటాటో మాప్-టాప్ వైరస్ (పిఎమ టివి) వలల 
కలిగే ఈ వ్యయధి దంప్లలో నలలటి చారలు కలిగస్తంది. స్వాడన్ లో మాత్రమే, ఇది సంవత్ర్గనికి 80-
100 మ్టలియన్ SEK నష్టటలను కలిగస్తంది. ఈ వైరస్ ప్రప్ంచంలోని అనేక ప్రంతాలలో నారిాక్ 
దేశాలు, ఉతతర మరియు దక్షిణ్ అమెరికా మరియు ఆసియాలోని కొనిో ప్రంతాలలో కనుగొనబడినది 
మరియు ఇటీవలి సంవత్ర్గలలో అనేక కొతత దేశాలలో కూడా కనుగొనబడినది. అయినప్్టికీ, 
ప్రస్తతం పిఎమ టివి నియంత్రణ్కు ఎలాంటి మార్గాలు అందబాటులో లేవు, ఎందకంటే రస్తయన 
నియంత్రణ్ ప్దధతులు వైరస్ వ్యయధులపై ఎకుొవగా ప్నిచేయవు.  

ఈ అధ్యయనంలో, మేము బంగాళాదంప్ యొకొ పెంప్కం కేంద్రంగా ప్రిగణంచబడుతునో 
పెరూలోని ఆండియన్ ప్రంతాల నుండి నమూనాలను స్తకరించ ప్ర్గక్షించాము. ఈ నమూనాలను  
విశ్లలషంచడం దాార్గ, మ్టగతా ప్రప్ంచంతో పోలిస్తత, పెరూలోని ఆండియన్ ప్రంతాలలో పిఎమ టివికి 
అధిక జనుయ వైవిధ్యం ఉందని మేము గురితంచాము. దక్షిణ్ అమెరికా నుండి పిఎమ టివిని మొదట 
యూరప్ లోకి ప్రవేశంచ, ఆ తరువ్యత ఇకొడినుండి ప్రప్ంచంలోని ఇతర ప్రంతాలకు వ్యయపితచందిందనో 
భావనకు ఈ అధ్యయనం మదదతు ఇస్తంది. 

వైరస్ల వ్యటి కార్గయచరణ్ కోసం మొకొ యొకొ ప్రోటీనల ప్నితీరును స్తాధీనం చేస్కోవడంలో 
చాలా విభినోమైన విధానాలను కలిగ ఉంటాయి. వైరల్ ప్రోటీనుల మొకొ కణాల భాగాలతో ఎలా 
సంకరషణ్ చందతాయో అరథం చేస్కోవడం వ్యయధిని నియంత్రంచడానికి సిథరమైన ప్దధతులను అభివృదిధ 
చేయడంలో కీలకం. ఈ అధ్యయనంలో, మొకొల రక్ష్ణ్ వయవసథను ఎదరుొనే ప్రోటీన్ ఒకటి ప్రిణామ 

అధ్యయన స్తర్గంశం 
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క్రమములో వేగంగా మారు్ చందతోందని మేము కనుగొనాోము. దాని దాార్గ జనుయవులో కలిగే  
మారు్లు వైరస్ యొకొ స్వాయ-రక్ష్ణ్ కారయకలాపాలను మెరుగుప్రుస్తతయని మేము గురితంచాము. 

మొకొలో విజయవంతమైన వ్యయధిని కలుగచేయటానికి వైరస్ యొకొ కదలిక చాలా 
ముఖ్యమైనది. ఈ అధ్యయనంలో, వైరస్ ఒక కణ్ం నుండి మరొక కణానికి, మరియు ఆ కణ్జాలమును 
వీడి వేర భాగమునకు అవసరమైన ముఖ్య ప్రోటీనలను కూడా మేము గురితంచాము. కణాల లోప్ల 
మరియు వెలుప్ల రవ్యణా చేస్త మైయోసిన్ మోటారుల వంటి కీలకమైనవ్యటిని వైరస్ హైజాక్ చేస్తందని 
మేము చూపించాము. పిఎమ టివి దాని స్దూర కదలిక కోసం మొకొలో కరువు సమయములో 
మాత్రమే ఎకుొవగా ప్నిచేస్త ఒక ప్రోటీన్ ను హైజాక్ చేస్తందని మేము కనుగొనాోము. మా అధ్యయనం 
వలల పిఎమ టివి మొకొలలో కరువు సహనానిో ప్రేరేపించగలదని నిరూపించబడినది. దీనికి ప్రధాన 
కారణ్ం ఏమ్టటంటే, ప్రతికూల ప్రిసిథతుల నుండి బయటప్డటానికి మొకొకు సహాయప్డటం వలల, వైరస్ 
యొకొ మనుగడ కూడా మెరుగుదల అవాగలద. మొకొలలో ఈ వైరస్-ప్రేరిత కరువు సహనం గురించ 
మన అవగాహన పెంచడానికి మరినిో అధ్యయనాలు అవసరం, తదాార్గ వయవస్తయ ప్ంటలలో కరువు 
సహనానిో మెరుగుప్రిచే అవకాశాలను అనేాషంచవచుచ. 
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गुरुर्ब्रह्मा गुरुर्वरषु्ण: गुरुरे्दवो महेश्वरः ।  
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