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Mechanisms of unreduced gamete formation in Arabidopsis 

thaliana 

 
Abstract 

Polyploidy is a widespread phenomenon in plants, which is commonly believed to arise 

through the production of unreduced (2n) gametes due to meiotic failure. Despite the 

importance of unreduced gamete formation for plant polyploidization, the mechanisms 

leading to their formation are not well understood. Previous work of our group indicated 

that JASON (JAS) regulates chromosome segregation through affecting the position of 

organelles, which behave as a physical barrier between the two spindles. 

    In my thesis, I aimed at understanding how JAS affects positioning of the organelles 

during meiosis in Arabidopsis thaliana. I revealed that during meiosis, JAS was co-

localized with markers for the Golgi and the plasma membrane in the organelle band at 

metaphase II, indicating that a subset of the Golgi apparatus and endomembrane vesicles 

are components of the organelle band. Maintaining the organelle band relies on the 

function of the JAS protein.    

    JAS can encode two versions of proteins, a long version including an N-terminal 

mitochondrial targeting signal (JAS.1) and a short version lacking this sequence (JAS.2). 

To investigate which version of JAS is functional during meiosis, I tested both versions 

for their ability to complement the jas mutant. I found that only JAS.2 could complement 

the jas mutant phenotype. Consistent with the genetic data, localization of JAS.2-GFP 

under control of a constitutive promoter was the same as JAS-GFP expressed under 

control of the native promoter that also contained the N-terminal extension, suggesting 

that most likely JAS.2 is the protein translated in wild type during meiosis.  

    To further characterize the mechanism of JAS function, we performed a suppressor 

screen with the aim to find mutants that form reduced gametes in the presence of the jas 

mutation. In this screen, telamon (tel) was isolated as a strong suppressor of jas that can 

produce many haploid pollen in the jas background. While the organelle band was not 

restored in jas;tel in meiosis II, meiotic cells were enlarged in the jas;tel mutant. 

Importantly, tetraploidization of jas suppressed the jas phenotype and led to the 

production of reduced gametes, supporting the idea that increase of meiocyte size can 

bypass the requirement of the organelle band. Lastly, I discovered that Eutrema 

salsugineum that has smaller meiocytes than Arabidopsis thaliana was more sensitive to 

cold stress and produced increased numbers of diploid pollen. Combined, these results 

strongly support the idea that meiocyte size impacts on chromosome segregation in 

meiosis II and suggests that the organelle band is mainly required in species forming 

small meiocytes.  

    Altogether, this thesis provides novel insights into the mechanism leading to 

unreduced gamete formation and reveals a new and exciting mechanism that may have 

facilitated the decrease of pollen size.  
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Mekanismer för bildning av oreducerade gameter i Arabidopsis 

thaliana 
 

Vetenskaplig sammanfattning 

Polyploiditet är ett utbrett fenomen bland växter, som tros uppstå genom produktion av 

oreducerade (2n-) gameter vid misslyckad meios. Trots betydelsen av oreducerade 

gameter för polyploiditet, är kunskapen om de grundläggande mekanismerna fortfarande 

bristfälliga. Tidigare forskning i vår grupp indikerar att JASON (JAS), reglerar 

uppdelning av kromosomer genom att påverka organellernas position, vilka utgör en 

fysisk barriär mellan kärnspolarna. 

   Målet med min avhandling är att förstå hur JAS påverkar organellernas position under 

meiosen hos Arabidopsis thaliana. Jag fann att under meiosen var JAS sammankopplad 

med markörer för Golgi-apparaten och plasma membranet i ett organellaggregat under 

metafas II, vilket indikerar att en del av dess vesiklar utgör komponenter i 

organellaggregatet. Upprätthållandet av detta organellaggregat är beroende av JAS-

proteinets funktion. 

   JAS kan koda för två typer av proteiner, en lång version som inkluderar en N-terminal 

sekvens med en signal för transport till mitokondrien (JAS.1) och en kort version utan 

denna sekvens (JAS.2). För att undersöka vilken version som är aktiv vid meios, testade 

jag bådas förmåga att komplementera  jas-mutanten. Jag fann att endast  JAS.2 kunde 

komplementera jas-mutantens fenotyp.  I överensstämmelse med genetiska data, visade 

lokalisering av JAS.2-GFP under kontroll av en konstitutiv promotor samma uttryck som 

JAS-GFP under kontroll av dess naturliga promotor som också innehåller N-

terminalsekvensen, vilket tyder på att det troligtvis är JAS.2-proteinet som translateras 

vid meiosen. 

   För att vidare karaktärisera mekanismen för JAS funktion utförde vi en suppressor-

screen med målet att hitta mutanter som bildar reducerade gameter i närvaro av jas-

mutationen. I denna screen identifierades telamon (tel) som en stark undertryckare av jas 

som kan producera många haploida pollen i jas-bakrund. De meiotiska cellerna var 

förstorade i jas:tel-mutanten, men organellaggregatet var inte återställt. Tetraploidisering 

av jas undertryckte dess fenotyp och ledde till produktion av reducerade gameter, vilket 

stödjer idén att en ökning av storleken på meiotiska celler kan kringgå behovet av ett 

organellaggregat. Slutligen upptäckte jag att Eutrema salsugineum som har mindre 

meiotiska celler än Arabidopsis thaliana, är mer känslig för köldstress och producerar ett 

ökat antal diploida pollen. Dessa resultat stödjer idén att storleken på de meiotiska 

cellerna påverkar separationen av kromosomer i meios II och tyder på att 

organellaggregatet huvudsakligen behövs i arter med små meiotiska celler. 

   Sammanfattningsvis ger denna avhandling ny insikt om oreducerad gametbildning och 

uppenbarar en ny och spännande mekanism som kan ha främjat minskad pollenstorlek. 
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1.1 Meiosis and gametophyte development 

1.1.1 General introduction of plant meiosis 

The plant life cycle is characterized by an alteration between two multicellular 

generations: an asexual sporophytic generation and a sexual gametophytic 

generation (Qin et al., 2014). Meiosis is a specialized reductive cell division that 

initiates the formation of the sexual gametophytic generation. Meiosis involves 

one round of DNA replication followed by two rounds of chromosome divisions, 

termed meiosis I and meiosis II.  This results in the formation of cells carrying 

half the number of the parental chromosomes (Ma, 2006; Zamariola et al., 2014).  

     Meiosis I and meiosis II are further divided into four substages according to 

different cytological characters of the chromosomes: prophase, metaphase, 

anaphase, and telophase. Meiosis is a critical process and a sequence of 

coordinated steps must occur in these two phases to ensure successful 

chromosome segregation. Homologous chromosome pairing, synapsis, and 

recombination takes place in prophase I, which is a complex and long process 

and divided again into substages termed leptotene, zygotene, pachytene, 

diplotene, and diakinesis (Dawe, 1998; Zickler and Kleckner, 1998; Armstrong 

and Jones, 2003). Chromosomes begin to condense in the leptotene stage (Figure 

1 A). When homologous chromosomes start recognizing each other and become 

1 Introduction 
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partially synapsed, they enter into the zygotene substage (Figure 1 B). In 

pachytene, homologs are fully synapsed and connected by a protein-RNA 

synaptonemal complex (Roeder, 1990) (Figure 1 C). During the pachytene stage, 

chromosomal crossover occurs, which not only establishes chromosome 

connections that are required for the following divisions, but also facilitates the 

exchange of genetic information and thus increases the genetic diversity in a 

population (Ma, 2006). These points of crossover are called chiasmata that 

establish connections between homologs and forming bivalent. This kind of 

structure not only ensures suitable positioning of spindle and chromosomes but 

also facilitates the segregation of homologs in balance in anaphase I(Zamariola 

et al., 2014). Most plant species form only one to four crossovers per bivalent, 

independent of chromosome size (Crismani and Mercier, 2012). At least one 

crossover should be presented in bivalents to provide the connection between 

homologs, retain proper chromosome orientation and poleward movement for 

correct chromosome segregation in anaphase I (Dawe, 1998; Sablowski and 

Carnier Dornelas, 2014). After pachytene, the synaptonemal complex begins to 

be degraded. Homologs partially separate at the diplotene stage except at the 

chiasmata (Figure 1 D). After diplotene, chromosomes further condense and 

form bivalent pairs at the diakinesis stage (Figure 1 E). After prophase I, the 

bivalents begin to move to the center of the cell by being attached and dragged 

by meiotic spindle microtubules. This requires that the sister kinetochores from 

each homolog must attach to microtubules emanating from the same spindle pole 

(Zamariola et al., 2014). At metaphase I, homologous chromosomes align at the 

equation plane (Figure 1 F). Following the degradation of cohesion along 

chromosomal arms, homologs separate and move to opposite poles of the spindle 

at anaphase I (Figure 1 G). Telophase I is characterized by chromosome 

decondensation (Figure 1 H). After the first round of nuclear division, meiosis I, 

homologous chromosomes are segregated and ploidy is reduced by half. Hence, 

meiosis I is also called a reductional division (Ross et al., 1996; Armstrong and 

Jones, 2003; Ma, 2006). 
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    In meiosis II, the two groups of chromosomes re-condense at prophase II 

(Ross et al., 1996). At metaphase II, the chromosomes align prior to the second 

division (Fig. 1J). The sister kinetochores become bi-oriented and attach with 

microtubules in two directions. With the cohesion released at the sister 

centromeres at anaphase II, chromosomes segregate to four directions and form 

four clusters of new chromosomes (Figure 1 K). Chromosomes decondense at 

telophase II and four haploid nuclei are formed (Figure 1 L). After cytokinesis, 

four spores in a tetrad are formed (Figure 1 M). Meiosis II results in the 

segregation of sister chromosomes, which is similar to mitosis and also termed 

equational division (Ross et al., 1996; Armstrong and Jones, 2003; Ma, 2006). 

 

Figure 1. Arabidopsis male meiosis (Ma, 2006). A, leptotene. B, zygotene; 

arrows indicate regions of homologs pairing. C, pachytene. D, diplotene. E, 

diakinesis; arrows point to chiasmata and arrowheads indicate the centromere. 

F, metaphase I. G, anaphase I. H, telophase I. I, prophase II; the arrow points to 
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the organelle band. J, metaphase II. K, anaphase II. L, telophase II, M. Four 

newly formed nuclei. 

1.1.2 Mechanisms ensuring faithful chromosome segregation during 

meiosis 

The orientation of the spindle and the organization of microtubules are essential 

for faithful chromosome segregation. Microtubules are highly dynamic polar 

polymers formed of noncovalently bound  and  tubulin heterodimers that 

rapidly polymerize and depolymerize (Nogales, 2000). In plants, microtubules 

assemble in a cell-cycle particular way. Different forms of arrays are observed: 

radial arrays when around nuclear, cortical arrays at interphase, then forming 

preprophase bands, spindles, phragmoplasts (Wasteneys, 2002; De Storme and 

Geelen, 2013). The minus-end of microtubules usually anchors at the spindle 

pole and the plus-end attaches to the chromosomes (Wittmann et al., 2001). The 

correct segregation of the chromosomes depends on the bipolar structure of the 

spindle and microtubule-based chromosome movement. In the majority of 

dicotyledonous plants that undergo simultaneous male meiotic cytokinesis, the 

orientation of the spindle position is essential for faithful chromosome 

segregation in meiosis II (Brownfield and Kohler, 2011). In such kind of 

cytokinesis, no cell plate is formed after the first meiotic division, which results 

in two sets of chromosomes which have already separated still in one common 

cytoplasm, contrasting the mode of successive cytokinesis where a cell plate is 

already formed after the first division. To ensure faithful chromosome 

segregation of the two chromosome sets, the two spindles have to be 

perpendicularly oriented. Any alteration of the spindle orientation, such as 

parallel, tripolar or fused spindles, causes chromosomes to reunite after division, 

leading to the formation of unreduced gametes (Conicella et al., 2003; De 

Storme and Geelen, 2013). This forms the major path to polyploidy plants and 

will be elaborated in more detail in chapter 2.  
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1.1.3 Difference between male and female meiosis and postmeiotic 

events 

Male and female meiosis takes place in anthers and ovules, respectively. The 

different structure of male and female organs causes a substantially higher 

number of cells undergoing meiosis in male than female organs.  In Arabidopsis, 

male meiosis usually occurs at anther stage 6 and lasts to stage 9 of flower 

development (Smyth et al., 1990). Each flower contains six anthers and each 

anther includes four lobes. There are around thirty meiocytes in one lobe; hence 

around seven hundred meiocytes undergo male meiosis in each flower. In 

contrast, there are only around fifty ovules in each of flower. Since only one cell 

in each ovule undergoes meiosis, there are only around fifty cells per flower 

undergoing female meiosis (Ma, 2006). This, together with the fact that several 

cell layers surround female meiocytes, makes research on female meiosis more 

challenging than on male meiosis. Male and female meiosis in plants, like in 

other organisms, share the same stages. However, in most angiosperms the 

product of female meiosis is a linear array of four megaspores, contrasting the 

tetrahedral arrangement of four haploid microspores as product of male meiosis 

(Brownfield and Kohler, 2011). Also the products of male and female meiosis 

have different fates; while all spores survive after male meiosis, in most 

angiosperms only one megaspore survives after female meiosis (Mccormick, 

1993; Yadegari and Drews, 2004). Following degeneration of the other three 

megaspores, the only functional megaspore undergoes three rounds of mitosis 

and develops into a seven-celled mature female gametophyte, containing two 

gametes, the egg cell and the central cell (Yang et al., 2010). In contrast, all four 

male meiotic products enter into a mitotic division generating a vegetative and a 

generative cell. In ~70% of plant families, the mature pollen grain consists of 

these two cells and the second mitotic division of the generative cell occurs 

during pollen tube germination, giving rise to two sperm cells. In other plant 

families, including the Brassicaceae, the mature pollen grain contains already 

two sperms cells. The germinating vegetative cell forms the pollen tube that 

delivers the sperm cells to the female gametophyte (Mccormick, 1993). After 
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pollination, male and female gametes fuse in a process termed double 

fertilization, then the formation of endosperm and embryo start in the later 

progress. 

1.2 Polyploidization 

1.2.1 Polyploidization and unreduced gamete formation 

Polyploidy, the presence of three or more complete sets of genomes within a 

cell, is a widespread phenomenon in many eukaryotic taxa, such as yeast, insects,  

fish, amphibians, and reptiles (Ramsey and Schemske, 1998). In plants, it is 

estimated that probably all angiosperm species have undergone one or more 

ancient genome-wide duplication events (Cui et al., 2006). Thus, polyploidy is 

highly prevalent in angiosperms. Much research in the past has focused on novel 

characteristics of polyploids (Adams and Wendel, 2005a, b; Leitch and Leitch, 

2008). Genotypic plasticity of polyploids has been suggested to promote 

adaptation and speciation (Alix et al., 2017). Importantly, polyploids are of 

immense commercial value. Many important crop species including coffee, 

potato, tobacco, wheat, banana, and many fruits are polyploids (Bretagnolle and 

Thompson, 1995; Udall and Wendel, 2006). 

Polyploids can arise as a consequence of hybridization of different species 

followed by somatic doubling in meristematic tissue, giving rise to 

allopolyploids. Autopolyploids, which have multiple sets of chromosomes 

derived from the same species, most frequently arise as a consequence of meiotic 

defects, giving rise to unreduced gametes that contain the complete somatic 

chromosome number (Brownfield and Kohler, 2011).  Disruption of meiosis 

usually results in imbalanced gametes, causing premature spore abortion and 

sterility. Nevertheless, under some conditions meiotic failure leads to the 

production of viable unreduced (2n) gametes (Bretagnolle and Thompson, 1995; 

Ramanna and Jacobsen, 2003). After fertilization, the union of these viable 

unreduced gametes with reduced gametes will lead to the formation of triploids, 
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which can form swarms of euploid and aneuploid gametes that after fusion can 

give rise to stable tetraploids (Henry et al., 2005). This mechanism has been 

termed triploid bridge and is considered the main route to the formation of 

autopolyploids (Husband, 2004; Mason and Pires, 2015). 

Until now, the mechanisms leading to the formation of unreduced gametes 

under natural conditions and their impact on the formation of polyploids are not 

well understood. Since polyploidy is considered a major speciation mechanism 

(Landis et al., 2018), understanding the mechanisms leading to unreduced 

gametes is of vital importance. 

1.2.2 Types of mutants that generate viable unreduced gametes in 

plants 

Unreduced gametes can be the consequence of male or female meiotic defects. 

Three different types of meiotic mutants can produce viable unreduced gametes. 

To the first class of mutants belong the Arabidopsis thaliana parallel spindle1 

(atps1), jason (jas) and arabidopsis formin14 (afh14) (d'Erfurth et al., 2008; 

Erilova et al., 2009; Li et al., 2010; De Storme and Geelen, 2011; Brownfield et 

al., 2015). Meiosis I is normal in these mutants. However, while in wild type 

metaphase II chromosomes are oriented in a perpendicular way, in these mutants 

the spindle polarity and orientation is disordered. The orientation of the 

metaphase II plates in these mutants is frequently parallel. Consequently, 

chromosomes that have already been separated in meiosis I come close again at 

anaphase II, generating two diploid cells that contain non-sister chromosomes. 

This type of meiotic restitution is termed first division restitution (FDR). To the 

second class of mutants belong the tardy asynchronous meiosis (tam) and 

omission of second division1 (osd1) mutants (Magnard et al., 2001; Wang et al., 

2004; d'Erfurth et al., 2009; d'Erfurth et al., 2010). Meiosis I is also normal in 

these two mutants, but meiosis II does not occur, leading to dyads of diploid 

cells containing sister chromosomes. This type of meiotic defect is referred to as 

second division restitution (SDR). To the third class of mutants belongs the tes 
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mutant, in which meiosis occurs normally, but cytokinesis is disturbed 

(Hulskamp et al., 1997; Spielman et al., 1997; Yang et al., 2003). The tes mutant 

contains multiple nuclei in one cell, some of which can fuse during development.  

1.2.3 Environmental stress contributes to unreduced gamete formation 

by affecting meiotic cell division 

Besides genetic factors that may contribute to the formation of unreduced 

gametes in natural populations, the probably more likely path to 2n gametes is 

meiotic failure as a consequence of environmental stress (De Storme and Geelen, 

2014). Meiosis is highly sensitive to adverse environmental conditions, 

especially male gamete development. In particular heat and cold stress, but also 

treatment with the plant hormone gibberellic acid (GA) have been reported to 

cause meiotic defects leading to the formation of unreduced gametes 

(Brownfield and Kohler, 2011; De Storme et al., 2012; Liu et al., 2017; Wang 

et al., 2017).  

Specifically, in Rosa hybrida, short periods of heat stress cause alterations of 

spindle orientation at metaphase II (Pecrix et al., 2011). Instead of the normal 

perpendicular orientation the spindles, parallel and tripolar spindles are formed, 

causing chromosome segregation failure at meiosis I and formation of unreduced 

diploid gametes (Pecrix et al., 2011). Similarly, also cold stress leads to 

unreduced gamete formation in many species (Ramsey and Schemske, 1998). In 

Arabidopsis, a short period of cold stress results in the formation of dyads and 

triads by a combination of FDR and SDR mechanisms (de Storme et al., 2012). 

Cytological examination revealed that the deposition and maintenance of the 

organelle band and internuclear radial microtubule arrays (RMAs) at meiosis II 

is disrupted upon cold stress (de Storme et al., 2012), leading to defects in post-

meiotic cell plate formation. This results in abnormal  meiotic cytokinesis and 

unreduced gamete formation (De Storme et al., 2012). Taken together, 

developing meiocytes are highly sensitive to environmental stress. 
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1.2.4 Possible function of the organelle band in male meiosis 

Organelle aggregation has been observed to occur during plant male meiosis in 

different plant species (Bednara et al., 1986; Tchorzewska et al., 1996; Furness 

et al., 2002; Wang et al., 2010). A distinct organelle organization in the 

cytoplasm has been observed during metaphase I. Usually, organelles move 

together into a cluster around the spindle and chromosomes at this stage 

(Wolniak, 1976). At the end of meiosis I, organelles aggregate at the equator of 

meiocytes and form an organelle band between two groups of chromosomes 

(Ma, 2006). This organelle band can be observed at metaphase II. Following the 

separation of the sister chromatids at telophase II, organelles aggregate between 

all four haploid nuclei (Brown and Lemmon, 1988; De Storme et al., 2012). 

Even though organelle aggregation has been frequently observed, little is known 

about its formation and function. It has been proposed that the organelle band in 

meiosis II allows equal organelle segregation into the four haploid daughter cells 

at end of anaphase II, or alternatively, to be essential for keeping the two spindles 

physically separated in the second meiotic division (Koscinska-Pajak and 

Bednara, 2003). It was furthermore proposed that the deposition and 

maintenance of the organelle band at metaphase II is critical for post-meiotic cell 

plate formation and cell wall establishment, which is essential for meiotic 

cytokinesis (Otegui and Staehelin, 2004; De Storme et al., 2012). Since proper 

spindle orientation and cytokinesis are related to normal chromosome 

segregation, organelle organization in meiosis is likely an important factor 

impacting on unreduced gamete formation. 

1.3 Plant cytokinesis and endomembrane trafficking 

1.3.1 Plant somatic cytokinesis 

Cytokinesis is the final step of cell division, which takes place after chromosome 

segregation, leading to the separation of the two daughter nuclei by a new cell 

wall.  Although cell division is common to all eukaryotes, the way it is achieved 
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differs. In animals, cytokinesis proceeds from the periphery to the center, with 

the help of a contractile ring (Glotzer, 2001). In contrast, cytokinesis of plant 

somatic cells is orchestrated by a specialized structure, the phragmoplast that is 

a cytoskeletal array containing microtubules and microfilaments (Lipka et al., 

2015). A large number of membrane vesicles are transported along the 

phragmoplast by the endomembrane system (Figure 2). When these vesicles 

arrive at the center of the dividing cell, they fuse with each other to form a new 

membrane compartment, the cell plate. Afterwards, the phragmoplast grows 

towards the periphery of the cell, recruiting later-arriving vesicles to the margin 

of growing cell plate. Eventually, the growing cell plate fuses with the pre-

existing plasma membrane to separate the forming daughter cells (Jurgens et al., 

2015).  

 

Figure 2. Dynamics of membrane fusion during plant cytokinesis (Modified 

from Jurgens et al., 2015). Membrane vesicles are delivered along 

phragmoplasts (PHPs) to the plane of cell division, and then the vesicles fuse 

with each other to form the cell plate (CP). This process starts at the center of 

the plane of cell division and expands to the CP. DN, daughter nuclei.  
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1.3.2 Vesicle trafficking in plant somatic cytokinesis 

Electron microscopic studies revealed the dynamic change of vesicle 

accumulation during the cell plate formation (Otegui et al., 2001; Segui-Simarro 

et al., 2004). For a long time it was commonly accepted that vesicles required 

for the formation of the cell plate are mainly delivered by the secretory pathway, 

which includes the Endoplasmic reticulum (ER), the Golgi apparatus (Golgi), 

and the trans-Golgi network (TGN) (Figure 3). The ER is a place that synthesizes 

cell wall structural proteins, enzymes, and lipids; moreover, the ER is also the 

port of entry into the secretory pathway (Brandizzi and Barlowe, 2013; Stefano 

et al., 2014; Kim and Brandizzi, 2016). After passing the quality control, newly 

synthesized proteins are transported to the Golgi, which is defined as a hub for 

protein secretion (Dupree and Sherrier, 1998; Faso et al., 2009). More 

importantly, the Golgi is also a cellular factory for synthesizing cell wall 

materials and protein modifications such as glycosylation (Oikawa et al., 2013). 

The TGN is a membrane compartment on the trans-side of the Golgi apparatus, 

which is responsible for the sorting and packaging of newly synthesized material 

from the Golgi and the transport to the plane of cell division (Roth et al., 1985; 

Kang et al., 2011; Rosquete et al., 2018).  

    It was then realized that material from the plasma membrane and the cell wall 

is also delivered by endocytosis through the TGN and early endosome (EE), to 

the plane of cell division (Figure 3) (Dhonukshe et al., 2006). The in vivo 

endocytic marker FM4-64 and multiple plasma membrane or cell wall resident 

proteins are localized at the forming cell plate (Dhonukshe et al., 2006). 

However, specific disruption of endocytosis by the inhibitor Wortmannin did 

not impair cell plate formation, which differs from the effect of Concanamycin 

A and Brefeldin A that inhibit traffic at the TGN and suppress cell plate 

formation (Reichardt et al., 2007). Hence, material delivered by both, 

endocytosis and the secretory pathway, are required for cell plate formation, but 

newly synthesized material is more crucial for cell plate formation.    
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Figure 3. Endomembrane trafficking during plant cytokinesis (Modified from 

Jurgens et al., 2015). Both newly synthesized (blue arrows) and endocytosed 

(red arrows) proteins are delivered via the TGN/EE to the plane of cell division.  

1.3.3 Cytokinesis in plant male meiosis  

Cytokinesis in plant male meiosis can occur either successively or 

simultaneously. Successive cytokinesis usually occurs in monocots, where 

meiotic cell division is directly followed by cytokinesis. Hence, the process of 

male meiosis in most monocots can be considered as two rounds of mitotic cell 

divisions (Shamina et al., 2007; De Storme and Geelen, 2013).  Like in somatic 

cytokinesis, the phragmoplast is formed after meiosis I, and the microtubules 

guide vesicle deposition to generate the cell plate (Shamina et al., 2007). In the 

end, a transient dyad is formed after first cell division and a tetrad is generated 

after the second cell division.  

    Simultaneous cytokinesis occurs in most dicots and is characterized by the 

suppression of cytokinesis after the first meiotic division and simultaneous 

completion of cytokinesis after the second meiotic division is finalized (De 

Storme and Geelen, 2013). The formation of the cell plate is executed by radial 
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microtubule arrays (RMAs), which contain microtubules and actin filaments that 

emerge from outside of nuclei surface at telophase II. Therefore, the position of 

the newly generated daughter nuclei determined the location of the cell plate at 

the end of meiosis II. Subsequently, the new cell walls are formed between 

daughter nuclei.  A MAPK signalling pathway mediates RMA and cell plate 

formation in Arabidopsis, which includes AtNACK1/2, ANP1/2/3, MPK4, and 

MKK6 (Petersen et al., 2000; Krysan et al., 2002; Strompen et al., 2002; 

Takahashi et al., 2010; Sasabe et al., 2015). MAP65s, a group of microtubule-

associated proteins that is crucial for cell plate formation in somatic cytokinesis, 

is proposed to be targeted by this MAPK pathway in male meiotic RMA 

formation (Mao et al., 2005; Sasabe et al., 2006; Sasabe et al., 2011). However, 

the exact targets of this MAPK pathway in male meiosis remain to be identified. 

Moreover, a caspase family protease, SEPARASE is also involved in male 

meiotic RMA formation in Arabidopsis, which is thought to occur through the 

control of cyclin levels (Liu and Makaroff, 2006; Yang et al., 2009), but a clear 

connection between SEPARASE and male meiotic RMA formation is still 

unclear. 

1.4 Cell size control 

1.4.1 Interplay between cell growth and cell cycle    

Cell size varies greatly within and between species (Sugimoto-Shirasu and 

Roberts, 2003).  Nevertheless, cell size is strictly controlled and efficient cell 

function strongly relies on the proper cell size in both unicellular and 

multicellular organisms (Kwon et al., 2001; Payne et al., 2013). One 

determining factor for cell size are the movement rates of nutrients that depend 

on the surface-to-volume ratio, which generates a selection pressure for smaller 

cell size (Wu et al., 2010). Cell size is controlled by genetic factors through the 

coupling of cell growth and cell division.  This is nicely illustrated by the 

different growth speed of yeast depending on nutrient conditions;  yeasts slow 
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down their growth speed in poor nutrient conditions by adjusting their cell-cycle, 

allowing cell division to occur at around similar sizes under high and low 

nutrient conditions (Jorgensen et al., 2002; Buchler and Louis, 2008; Di Talia et 

al., 2009). 

    Cell cycle involves mitotic cycles and endocycles (Sablowski and Carnier 

Dornelas, 2014). Mitotic cycles are usually divided into G1, S, G2, and M phase. 

In G1 phase, the cell is preparing for DNA synthesis and accomplishes most of 

its growth. DNA replication happens in S phase. The second G2 growth phase 

follows S phase, then cells enter M phase, where mitotic chromosome division 

occurs. Besides the mitotic cycle, the endocycle is a deviating form of the cell 

cycle that is important for plant growth. The endocycle is characterized by DNA 

replication without chromosome division and results in increased ploidy (Lee et 

al., 2009). Cell growth and cell cycle are coupled by two feedback mechanisms 

(Sablowski and Carnier Dornelas, 2014). The cell-size checkpoint operates 

before DNA replication and coordinates cell growth and division (Jorgensen and 

Tyers, 2004). The other feedback connects maximum cell size and DNA content, 

indicating that the upper limit for cell growth is probably controlled by DNA 

content. The “karyoplasmic ratio” hypothesis states that the amount of 

cytoplasm is sustained by the amount of DNA, thus the upper limit of 

cytoplasmic growth is settled by the ploidy level (Sugimoto-Shirasu and 

Roberts, 2003; Jorgensen and Tyers, 2004). It is nevertheless not clear how these 

two feedbacks are regulated. 

    Together, maintaining a characteristic cell size could be reached either by 

regulating the growth rate or by the cell size sensors coordinating cell division 

(Amodeo and Skotheim, 2016). 

 

1.4.2 The MCM complex and DNA replication    

DNA replication starts with the unwinding of the double stranded DNA at an 

origin of replication. Then DNA synthesis is carried out by a multi-protein 
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assembly complex called the replisome (Bell, 2014). The replisome is usually 

assembled at the origin of DNA replication. DNA replication only starts at the 

origins when the double helix unwinds to two single strands. Thus, precise DNA 

replication in eukaryotes depends on the strict regulation of DNA unwinding by 

the replicative helicase (Deegan and Diffley, 2016). The central component of 

the replicative helicase is a ring-shaped DNA helicase termed the MCM 

(minichromosome maintenance) complex. It is composed of six related subunits, 

Mcm2 to Mcm7 (Davey et al., 2003; Bochman et al., 2008; Remus et al., 2009; 

Costa et al., 2011; Li et al., 2015). 

    The loading of the MCM complex at the origin of DNA replication begins in 

G1 phase, encircling double strand DNA (Gillespie et al., 2001; Evrin et al., 

2009; Gambus et al., 2011). After entering into S phase, the replicative helicase 

activates. Two proteins, go-ichi-ni-san (GINS) and cell division cycle 45 

(Cdc45) are recruited to the MCM complex. The MCM double hexamer is 

remodeled and develops into two active replicative helicases, termed as CMG 

(Cdc45–MCM– GINS) helicases (Tanaka and Araki, 2013). The CMG complex 

is constituted of GINS, Cdc45, and a single MCM hexamer. After DNA 

unwinding and loading of DNA polymerases, DNA replication commences in a 

bidirectional way. When two directional replisomes encounter each other and 

the replication forks converge, the MCM subunit MCM7 (termed PROLIFERA 

in Arabidopsis), is modified by a chain of ubiquitin proteins (Bell, 2014). MCM7 

is ubiquitylated by the ubiquitin ligase SCFDia2 in yeast and then targeted by 

Cdc48, leading to CMG disassembly (Maric et al., 2014; Moreno et al., 2014). 

The SCF complex contains Skp1, Cullin, and the DIA2 F-box protein. DNA 

replication terminates after the CMG complex and the replisome are 

disassembled.  

 



27 

 

1.4.3 Cell size and genome size    

Cell size varies greatly among tissues within a single organism, but is 

remarkably constant within tissue types. What decides the particular cell size in 

a tissue? Two hypotheses were proposed addressing this question. The first one 

proposes that there is a fitness consequence for a special size in a given cell type 

(Gregory, 2005). Based on this hypothesis, a particular cell size is determined 

by natural selection optimizing cell size in relation to metabolic rate (Hughes 

and Hughes, 1995; Waltari and Edwards, 2002), or developmental rate (Gregory, 

2002). Another hypothesis focuses on the correlation between genome size and 

cell size. Based on this hypothesis, genomic expansion by transposable element 

(TE) accumulation in the genome causes expansion in cell size (Roth et al., 

1994). Combining both hypotheses, it has been proposed that natural selection 

shapes a particular cell size followed by changes in genome size. The alternative 

hypothesis is that changes in cell size follow changes in genome size (Mueller, 

2015). 

    In the animal kingdom, a positive correlation between genome size and cell 

size has been frequently reported (Horner and Macgregor, 1983; Hardie and 

Hebert, 2003; Organ et al., 2007). In the plant kingdom, many studies 

investigated correlations between genome size and cell size across varying 

ploidy series. These studied revealed that cells in polyploid plants are 

substantially larger than cells in their diploid progenitors (Mowforth and Grime, 

1989; Melaragno et al., 1993; Kudo and Kimura, 2002). Also a strong positive 

correlation was reported between genome size, guard cell length, epidermal cell 

area across 101 angiosperms species (Beaulieu et al., 2008). While it remains 

difficult to test whether genome size follows cell size or conversely, cell size 

follows genome size, the fact that polyploid plants have larger cells than diploid 

plants would strongly favor the second hypothesis.  
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1.4.4 Pollen size    

Pollen size varies over three order of magnitude across plant species (Muller, 

1979). Variation in pollen size is impacted by different factors. One factor is 

strong selection pressure correlated with pollen dispersal strategies. Wind-

pollinated species prefer small, light pollen, while pollen of insect-pollinated 

species can be quite large (Schwendemann et al., 2007). Another factor is the 

length of the style, where it is assumed that species with longer styles produce 

larger pollen that is able to produce sufficiently long pollen tubes to fertilize the 

ovules (Roulston et al., 2000; Jurgens et al., 2012; Knight et al., 2010)  

    It has been proposed that there is a trade-off between the number and size of 

pollen produced (Knight et al., 2010), leading to the evolutionary trend to 

decrease pollen size. Small pollen produced in large quantities maximize the 

pollination success by wind and many insect pollinators (Schwendemann et al., 

2007), which may be the driving force causing pollen size reduction.  

    As discussed above, there is a correlation between genome size and cell size, 

raising the question whether this is reflected in a correlation between genome 

size and pollen size. Previous studies based on few species revealed that pollen 

size increases with ploidy (Bennett, 1972; Orjeda et al., 1990; Altmann et al., 

1994). Nevertheless, a study investigating the relationship between genome size 

and pollen size of 464 species made a more differentiated conclusion (Knight et 

al., 2010). At the microevolutionary level, particularly when divergence 

involves variation in ploidy level, the data support that increasing genome size 

correlates with increasing pollen size. However, analyzing phylogenetically 

distant species did not show a simple positive correlation between genome size 

and pollen size for small pollen size. The authors proposed that increased 

genome size by polyploidization causes an initial increase of pollen size, but 

strong selection pressure for small pollen causes eventually again a reduction of 

pollen size.  
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The aims of the study are to: 

1. Characterize the origin and function of the organelle band in meiosis; 

2. Identify the version of JAS that functions in meiosis;                                   

3. Identify the mechanisms that maintain chromosome segregation in meiosis.  

  

2 Aims of the study 
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3.1 JAS co-localizes with markers of the endomembrane 

system 

The jason (jas) mutant was identified in a genetic screen for mutants that affect 

PHE1 expression in seed development. The jas mutant forms about 60% diploid 

pollen due to a defect in male meiosis (Erilova et al., 2009). In wild-type meiosis, 

two chromosome groups are divided by an organelle band in metaphase II. In 

the jas mutant, the organelle band is usually lost in metaphase II, which results 

in parallel or fused chromosome groups at this stage. At anaphase II, parallel or 

fused chromosome groups are separated in two or three directions, which finally 

results in dyads or triads after meiosis (De Storme and Geelen, 2011). 

    To identify the localization of JAS and the composition of the organelles in 

the meiotic organelle band, a construct containing the JAS native promoter and 

coding sequence fused to GFP was generated. This construct could complement 

the jas phenotype, leading to reduced pollen formation. JAS–GFP was localized 

in many subcellular compartments, including the organelles and membranes in 

meristematic root cells. To clarify in which organelles JAS was localized, we 

introduced organelle markers into the JAS-GFP expressing background. The 

results revealed that JAS was colocalized with the Golgi apparatus, trans-Golgi 

network, and tonoplast. There was also a weak JAS-GFP signal colocalized with 

the plasma membrane, indicating that JAS is also presented in plasma membrane 

3   Results and discussion 
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vesicles. However, JAS-GFP was not colocalized with mitochondria, the 

endoplasmatic reticulum (ER), and peroxisome markers. Overall, these data 

revealed that JAS is associated with the endomembrane system, trafficking from 

the Golgi apparatus through the trans-Golgi network to the tonoplast and plasma 

membranes in meristematic root cells. 

    JAS plays a vital role in maintaining the organelle band in meiosis; therefore, 

we investigated JAS localization during meiosis. The results revealed that JAS 

was localized in clustered organelles at metaphase I and in the organelle band at 

metaphase II, consistent with the role of JAS in maintaining these structures. I 

observed the localization of different endomembrane organelles in meiosis by 

using markers for the Golgi apparatus, the tonoplast, and the plasma membrane, 

and further compared their localization with JAS–GFP. Markers for the Golgi 

apparatus and the plasma membrane were located in the organelle band, but the 

tonoplast marker was largely undetectable during meiosis. JAS–GFP co-

localized with a subset of the Golgi and largely co-localized with the plasma 

membrane marker at metaphase II. Overall, I conclude that JAS is located in the 

endomembrane system in meiosis, consistent with the localization of JAS in root 

cells.  

    The localization of these endomembrane vesicles indicates that a subset of the 

Golgi apparatus and endomembrane vesicles are components of the organelle 

band. In mitotic cytokinesis, endomembrane vesicles are transported to the 

phragmoplast and further develop to the new membrane of the cell plate 

(Dhonukshe et al., 2006; Van Damme et al., 2008). In plants undergoing 

simultaneous male meiotic cytokinesis, where cytokinesis only takes place after 

the completion of the second meiotic division, phragmoplast-like structures have 

been observed at the end of meiosis I in some species (Brown and Lemmon, 

1988; Dinis and Mesquita, 1993; Tchorzewska and Bednara, 2011). We propose 

that, in male meiocytes, the JAS-containing vesicles could be transported to the 

centre of the cell at the end of meiosis I. The cytokinesis process is initiated but 

halted, which fails to result in cell plate formation. But the organelle band still 
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plays a very important role, forming a physical barrier between the two groups 

of chromosomes in metaphase II to support the separation of the spindles. 

Maintaining the organelle band relies on the function of the JAS protein. 

 

3.2 Alternative translation initiation leads to the two 

versions of JAS 

JAS encodes a functionally unknown protein. There are two potential start 

codons in the JAS cDNA, but it was not clear which ATG is used as a start codon 

in wild-type Arabidopsis. The longer version of JAS contains a putative 

mitochondrial targeting peptide at the N-terminus, while the shorter version 

lacks the mitochondrial targeting peptide. To investigate which version of JAS 

is functional, I generated two constructs; a long version of JAS including the N-

terminal targeting sequence (JAS.1) and a short version lacking this sequence 

(JAS.2). A similar pattern to the genomic JAS-GFP was observed in UBQ:JAS.1-

GFP, with JAS-GFP being localized in organelles that overlap with the Golgi 

and tonoplast marker, but not in the plasma membrane. In contrast, JAS.2–GFP 

was present in the tonoplast and the plasma membrane, but not colocalizing with 

the Golgi marker. The localization pattern of genomic JAS-GFP driven by the 

JAS native promoter likely reflects a combination of JAS.1-GFP and JAS.2-

GFP, indicating endogenous JAS.1 localizes to the Golgi and only JAS.2 

localizes to the plasma membrane, but both JAS.1 and JAS.2 localize to the 

tonoplast. 

We next asked if the two different versions had different functional roles. As 

the jas mutant does not have a root phenotype, I focused on meiotic cells where 

the jas mutation leads to the formation of unreduced gametes. To test which 

version functions in maintaining the organelle band during male meiosis, I tested 

which version can complement the jas mutant. I found that only JAS.2 can 

complement the jas mutant phenotype, revealing that the plasma membrane-

localized, short version is sufficient for JAS function in meiotic cells. Consistent 

with the genetic data, JAS.2-GFP localization in meiosis II was the same as that 
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of pNative:JAS-GFP that was restricted to the organelle band. In contrast, 

JAS.1–GFP protein was also present in other areas of the cell as well as the 

organelle band, suggesting JAS.2 is the predominant form in meiotic cells, but 

there is little, if any, of JAS.1 produced during meiosis. 

 

3.3 Meiocyte size is a determining factor for unreduced 

gamete formation in Arabidopsis thaliana 

To further characterize the mechanisms maintaining chromosome segregation in 

meiosis II, we performed a suppressor screen with the aim to find mutants that 

form reduced gametes in the presence of the jas mutation. In this screen telamon 

(tel) was isolated as a strong suppressor of jas that can produce many haploid 

pollen in the jas background.  

    In the jas mutant concomitantly with the disappearance of the organelle band 

in meiosis II, the chromosome groups are often parallel or fused at metaphase II 

and the distance between the two groups of chromosomes is often much shorter 

than in wild-type plants (De Storme and Geelen, 2011). Although the production 

of diploid pollen was significantly reduced in jas tel, the organelle band was not 

restored in meiosis II, suggesting an organelle band-independent mechanism 

maintaining chromosome segregation. But the distance of the chromosome 

groups in the jas tel double mutant was significantly increased compared to jas, 

probably explaining the high percentage of haploid pollen formation. Measuring 

the size of meiotic cells in jas tel revealed that the meiotic cells are enlarged, 

supporting chromosome segregation in meiosis II independently of the organelle 

band. Polyploid plants have larger cells than diploid plants; therefore, I used 

tetraploid jas as a tool to test whether increased meiocyte size can bypass the 

requirement of JAS function. Tetraploid jas was generated by colchicine 

treatment. Strikingly, the percentage of reduced pollen formation was 

significantly increased in tetraploid jas. The organelle band was still missing in 

tetraploid jas, but the distance of the chromosome groups was increased, 
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coinciding with the increased size of meiotic cells. This data strongly supports 

the idea that cell size is an important factor in maintaining chromosome 

segregation in meiosis. Recent studies demonstrated that cold stress induces 

diploid pollen production in Arabidopsis (Nico De Storme et al., 2012).  Based 

on my finding that cell size is important in maintaining chromosome segregation, 

I hypothesized that species with smaller meiocytes may produce more diploid 

pollen under cold stress conditions than species with larger ones. Eutrema 

salsugineum produces smaller meiocytes than Arabidopsis thaliana, forming an 

ideal model to test whether male meiosis in Eutrema is more sensitive to low-

temperature stress than in Arabidopsis. Enlarged pollen was detected from 5 to 

10 days after cold treatment. Indeed, Eutrema produced significantly more large 

pollen grains than Arabidopsis. The shape of sperm in enlarged Eutrema pollen 

was elongated and flattened, which is strikingly different from the round shape 

of sperm in normal pollen. Sperm elongation and flattening occurs in 

Arabidopsis during pollen tube growth (Ge et al., 2011), when sperms are 

completing S phase (Friedman, 1999). This indicates that the elongated and 

flattened sperm in enlarged Eutrema pollen is a consequence of the increased 

DNA content. Together, our result strongly supports the idea that meiotic cell 

size is important in maintaining chromosome segregation during meiosis. 

    Using a Next Generation Mapping approach (Michael L Metzker, 2010), we 

have identified the candidate gene of TEL. The mutation in the candidate gene 

co-segregated with the jas tel phenotype. The mutation was found to be 

dominant; therefore, we tested whether a construct with the mutated TEL 

candidate gene could mimic the jas tel phenotype. Several transgenic lines were 

identified that mimicked the jas tel phenotype, revealing that the candidate gene 

was TEL. Further analysis showed that TELDtoN could enlarge meiotic cell size 

in the jas-3 background in both metaphase I and metaphase II stage, indicating 

that TELDtoN starts its function from the early stage of meiosis. However, tel had 

no effect in male meiosis in a wild-type background and tel did not enlarge root 

cells, revealing that tel only causes an effect during meiosis in the jas 

https://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Storme%20N%5BAuthor%5D&cauthor=true&cauthor_uid=23096158
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background. We failed to detect TEL-GFP and TELDtoN-GFP in male meiocytes, 

however, ectopic expression in root cells revealed that wild-type TEL-GFP was 

localized in the cytoplasm, while TELDtoN-GFP mainly accumulated in nuclei in 

root cells. Therefore, the point mutation changes the subcellular localization of 

TEL. Whether this causes a difference in TEL function remains to be shown.   

TEL encodes a putative F-box protein, which is one of the three components of 

the SCF complex; the other two components are ASK1 and CULLIN. The 

complex mediates ubiquitination of proteins targeted for degradation by the 

proteasome (Hershko and Ciechanover, 1998). ASK1 is crucial for male meiosis 

and proposed to be required for degrading a protein regulating homolog 

association before anaphase I (Yang et al., 1999). In a yeast two-hybrid screen 

using wild-type TEL and TELDtoN as baits, we identified several interacting 

proteins. One of them is PROLIFERA (PRL), a DNA helicase essential for DNA 

replication that is part of the minichromosome maintenance (MCM) complex 

(Springer et al., 1995). We further found that TELDtoN was able to interact with 

ASK1. Importantly, the wild-type version of TEL did not interact with ASK1, 

indicating that TELDtoN gained a new function. We speculate that interaction of 

TELDtoN with ASK1 may cause enhanced degradation of PRL, resulting in 

impaired MCM complex function and thus increased time of premeiotic DNA 

replication. Cell growth can continue when the cell cycle is blocked (Sablowski 

and Carnier Dornelas, 2014; Amodeo and Skotheim, 2016);  therefore, impaired 

MCM function during premeiotic replication may potentially increase meiocyte 

size. Together, the above results provide novel insights into the role of meiocyte 

size for successful chromosome segregation in male meiosis.   
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By investigating the localization of JAS and the composition of the organelle 

band during male meiosis in Arabidopsis, I found that JAS is associated with a 

subset of the Golgi apparatus and components of the plasma membrane at 

metaphase II. I thus conclude that a subset of the Golgi apparatus and 

endomembrane vesicles are components of the organelle band, and maintenance 

of the organelle band depends on the function of JAS. I furthermore was able to 

show that from the two versions of JAS proteins encoded by JAS, only the short 

version (JAS.2) lacking the mitochondrial targeting peptide in the N-terminus 

was functional during meiosis, consistent with its localization in the organelle 

band in meiosis II. Finally, I was able to show that increased meiocyte size can 

bypass the requirement of the organelle band during meiosis, suggesting a 

requirement of the organelle band with decreasing meiocyte size.  This idea was 

corroborated by my findings revealing that Eutrema salsugineum, which has 

smaller meiocytes than Arabidopsis thaliana, is more sensitive to cold stress and 

produced increased numbers of diploid pollen. In conclusion, meiocyte size is 

crucial for maintaining chromosome segregation in meiosis II and the organelle 

band is mainly required in species forming small pollen. 

 

 

  

4 Conclusions 
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Meiosis is regulated by a complicated network of molecular factors. Failure at 

different levels may cause the formation of unreduced gametes, resulting in 

sexual polyploidization. While JAS was found to be required to maintain the 

organelle band in male meiosis, how JAS achieves this function is still not clear, 

neither the relevant proteins that function in the same pathway. Elucidating the 

pathway through which JAS functions could reveal important new insights of 

potential relevance for plant breeding. Generating polyploids is an important 

breeding tool that is mainly achieved using the highly toxic drug colchicine. 

Interfering with organelle band formation during meiosis could be a valuable 

and possibly non-toxic alternative. Therefore, knowing the proteins that interact 

with JAS could open new avenues to polyploidy breeding.  

    This work unravelled that meiotic cell size is important for maintaining 

chromosome segregation during meiosis, implicating that species with smaller 

meiocyte size are more sensitive to low-temperature stress. This could explain 

why there are more polyploid species in harsh environments and at higher 

altitudes. Systematically testing whether indeed meiocyte size correlates with 

increased incidence of polyploidy would be an exciting future project. 

Furthermore, the size of male meiocytes could be used as a predictor for the 

success of producing unreduced gametes by cold, which could have potential 

value for plant breeding.  

5   Future perspectives 
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    The point mutation in TEL caused TEL to become mainly nuclear localized, 

for reasons that remain to be explored. Identifying the underlying mechanism 

will be important for understanding how the localization of F-box proteins is 

regulated between nucleus and cytoplasm. Through yeast two hybrid screening 

I identified the MCM complex member PROLIFERA as interaction partner for 

TEL. Moreover, one of the core components of the SCF complex, ASK1, could 

only interact with TELDtoN but not with the wild-type version of TEL. It will be 

important to confirm the interaction among TELDtoN, ASK1, and PRL by co-

immunoprecipitation and pulldown assays. If the interaction can be confirmed, 

it will be exciting to elucidate whether the mutated TEL causes increased 

degradation of PROLIFERA and whether impaired MCM complex function 

affects the balance between cell division and cell expansion. This research could 

substantially broaden our understanding of cell size regulation in plants.  
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Many plants have more than two chromosome sets in their cells and are referred 

to as polyploids. Polyploidy is frequently associated with increased biomass 

production, increased yield, and increased resistance to biotic and abiotic stress. 

For that reason, most of our currently used crops are polyploids. In nature, it is 

generally assumed that new polyploids arise as a consequence of meiotic failure, 

leading to the formation of unreduced gametes. My thesis provides new insights 

into the underlying mechanism leading to unreduced gamete formation. I found 

that an organelle band aligning at the center of the meiotic cell is required to 

separate chromosomes groups that belong to different cells after meiosis. 

Without the organelle band, chromosome groups easily fuse with each other, 

leading to the formation of unreduced gametes. I furthermore found that meiotic 

cell size impacts on the formation of unreduced gametes. Large meiotic cells 

could successfully complete meiosis without the organelle band. Therefore, 

variation in size of the male meiotic cells in different plant species may underlie 

the different frequency of unreduced gamete formation among species. Insights 

generated by this thesis may also be of relevance for plant breeding. This far, 

polyploids are mainly generated using highly toxic drugs. My findings revealed 

that factors affecting the organelle band, like cold, cause the formation of 

unreduced gametes, which could be exploited for chemical-free polyploidy 

breeding.  

 

Popular science summary 



51 

 

Många växter har mer än två uppsättningar av kromosomer i sina celler och är 

därmed polyploida. Polyploiditet associeras med ökad biomassa, högre 

avkastning och ökad resistens mot stress, som t ex torka och skadedjur. Därför 

är många av våra nuvarande grödor polyploida. Det är en generell uppfattning 

att i naturen är polyploiditet en konsekvens av att delningen av könsceller 

misslyckats och därmed ger upphov till att könscellerna får för många 

kromosomer (s k oreducerade könsceller). Min avhandling ger ny kunskap om 

mekanismerna bakom bildandet av oreducerade könsceller. Jag fann att ett 

aggregat av organeller i mitten av den delande cellen krävs för att separera 

kromosomer som hör till olika celler efter meiosen. Utan organellaggregatet kan 

kromosomer lätt smälta samman vilket leder till att oreducerade könsceller 

bildas. Vidare fann jag att storleken på den delande cellen påverkar bildandet av 

oreducerade könsceller. I stora celler kan meiosen fullbordas utan 

organellaggregatet. Därför kan variationen i storlek hos de hanliga delande 

cellerna i olika växtarter ligga till grund för varierande frekvenser av 

oreducerade könsceller bland arter. Insikter som genererats i denna avhandling 

kan komma till användning inom växtförädlingen. Hittills har polyploiditet 

huvudsakligen uppnåtts på kemisk väg med mycket giftiga ämnen. Mina resultat 

visar att faktorer som t ex kyla kan påverka bildandet av oreducerade könsceller, 

vilket kan komma till användning för en kemikaliefri växtförädling.  
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