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The Swedish official cultivar testing conducts multienvironmental trials (MET) to make 

recommendations of cultivars that are well adapted to farmers’ regional conditions. In 

the MET, a large number of cultivars are tested in several geographical regions. The 

tested cultivars perform differently in varying soil types and climates, a phenomenon 

known as genotype×environment interactions. The MET data structure is often large and 

highly imbalanced, which causes computational problems when applying some statistical 

methods. Several issues, such as prediction of crop variety performance and efficient 

computation of measure of cultivar stability are urgent to be tackled by developing 

comprehensive and robust statistical methods. This study aims to address these issues 

and provide a gold standard for MET analysis in Swedish official cultivar testing. 

In this study, we investigated several linear mixed models by using cross-validation 

(CV). We proposed to use random cultivar effects, known as best linear unbiased 

prediction (BLUP) method to replace the current fixed cultivar effects, known as best 

linear unbiased estimation (BLUE). In theory, BLUP provides more accurate rankings 

and predictions than BLUE. The current-practice analysis strategy, i.e., two-stage 

unweighted strategy, was also compared to several strategies such as single-stage 

strategy and two-stage weighted strategies that comprise some weighting methods. In the 

CV, mean squared error of differences (MSEP) was used to assess the performance of 

estimation of cultivar effects by BLUP and BLUE to select a model that provides best 

prediction accuracy. A new inter-zone stability measure was also proposed to tackle 

computational burden and provide additional useful information regarding cultivar 

stability across zones and years. 

The MSEP revealed that BLUP outperformed the current-practice method, BLUE, 

and so improved the accuracy of zone-based prediction. Also, the single-stage and two-

stage weighted strategies outperformed the current strategy. The proposed stability 

measure offered a less computational resource, and provided more flexible stability 

measure for practical purpose. 
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Food and Agriculture Organization (FAO) projected that the world’s population 

grows to almost 10 billion by 2050, boosting agricultural demand – in a scenario 

of modest economic growth – by some 50 percent compared to 2013 (FAO, 

2017). Thus, efficient plant breeding and cultivar testing programmes are parts 

of the solution to meet the growing food demand due to an increasing world 

population. A critical factor for the success of a plant breeding programme is to 

select varieties that guarantee high yield and quality in varying environmental 

conditions because different cultivars perform differently in diverse 

environments, a phenomenon known as genotype×environment interactions 

(GEI) (Kang and Gorman, 1989). Therefore, multienvironment trials (MET) are 

conducted as a crucial part of any plant breeding programme to assess and 

provide cultivars performance across diverse environmental conditions. In an 

MET, a large number of cultivars are tested in several geographical regions. A 

reliable and robust statistical method is required to provide accurate predictions 

of yield and stability measure of tested cultivars so that the MET results can 

assist breeders in selecting the best cultivars and providing recommendation for 

farmers to select well-adapted cultivar to their regional conditions. 

1.1 Genotype × environment interactions (GEI) 

The main goal of a plant breeding programme is to develop superior cultivars in 

yield and/or quality across diverse environmental conditions (Malosetti et al., 

2013). “Cultivar” is a term defined as a product of plant breeding that is released 

for access to producers or cultivated variety of a plant (Acquaah, 2012; Fehr, 

1987). Breeders face a major challenge to achieve the aim because cultivars are 

grown across a wide range of environmental conditions. Cultivars are exposed 

to diverse soil types and fertility levels, temperatures, moisture levels, and 

1 Introduction 
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agricultural practices. These variables encountered in crop production can be 

described collectively as the environment.  

When cultivars are compared in different environmental conditions, their 

performance relative to each other may not be the same. A cultivar may have the 

highest yield in some environments and another cultivar may outperform in 

others. This differential response of genotypes across different environments 

called genotype × environment interactions (GEI) (de Leon et al., 2016). In the 

GEI concept, the “genotype” term is interchangeably with “variety”, “crop”, and 

“cultivar”. 

The concept of GEI can be depicted as the slope of the line when genotype 

performance is plotted against an environmental gradient. This concept is also 

known as the reaction norm: the genotype-specific functional relationship 

between phenotype and environmental gradients (DeWitt and Scheiner, 2004; 

van Eeuwijk et al., 2016) as shown in Figure 1. The reaction norm can be 

illustrated by the combination of GEI and phenotypic plasticity, where 

phenotypic plasticity is environment-dependent phenotype expression (DeWitt 

and Scheiner, 2004). 

In Figure 1, five scenarios of reaction norm are shown. Figure 1a shows no 

GEI and no plasticity since there is no different mean of genotype performance 

across the environments, and the ranking of genotypes are the same across 

environments. Figure 1b also shows no GEI but plasticity because of the 

phenotype expression, in this case, yield, changes across the different 

environment. In Figure 1b, there is no GEI because the genotype and the 

environment behave additively, and the reaction norms are parallel (no 

difference ranking and changing mean differences among genotypes). The 

remaining plots show various situations in which GEI occurs: divergence 

(Figure 1c), convergence (Figure 1d), and the most crucial one, crossover 

interaction (Figure 1e). In the case of divergence and convergence, the genotype 

ranking does not change across environments, but the mean difference between 

the three genotypes does. In the case of crossover interaction, not only the mean 

difference between genotypes is changing but also the ranking. Crossover 

interactions are the most important for breeders as they imply that the selection 

of the best genotype depends on the specific environment. 
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Figure 1. Illustration of GEI for three genotypes in five different environment conditions. No GEI 

in (a) and (b) versus GEI in (b) until (c). No plasticity in (a) versus plasticity in (b) until (e). The 

environment index shows the unfavourable environment conditions (1) to favourable environment 

conditions (5). 

1.2 Multienvironment trial (MET) 

It is beneficial to introduce the concepts of target population of genotypes (TPG) 

and target population of environments (TPE) to understand the breeding 

concepts associated with GEI. The combination of TPG and TPE assists breeders 

to define the set of genotypes (cultivars/varieties) and environments to obtain 

valid and precise inference and predictions (van Eeuwijk et al., 2016). The TPG 

comprises all candidate genotypes to grow the coming years (van Eeuwijk et al., 

2016). The TPE contains a group of environments concerning the genotypic 

performance where new cultivars will be adopted. In other words, TPE describes 

the future growing conditions of the cultivars in the TPG (Comstock, 1977; 

Cooper and Hammer, 1996; Cooper et al., 2014). The TPE is also essential to 

predict GEI since the identification of repeatable GEI is a challenge due to the 

unpredictable weather (de Leon et al., 2016). 
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In a breeding programme, developed or improved cultivars are assessed in a 

multienvironment trial (MET), which comprises potential representatives of the 

TPE (Cooper and DeLacy, 1994; DeLacy et al., 1996). In the MET, the term 

“environment” refers to a year-location combination. The objective of an MET 

is to determine which cultivars matched to a TPE, based on the reaction 

norm/expression of the cultivars per se to the environments. Thus, METs assist 

breeders to determine the similarity of environments and grouping similar 

environments in METs. The results of MET are crucial not only for selection 

purpose in a breeding programme but also to give advice or recommendation to 

farmers in deciding which cultivar is the most suitable and performs the best in 

their growing conditions. Since METs consist of year–location combination, the 

stability of cultivars is also evaluated. The stability measure is essential for 

breeders and farmers because, as already mentioned before, the repeatable GEI 

is crucial to avoid the risk of unstable cultivars in unpredictable changing 

weather, i.e., loss or lowering of yield. Thus, robust statistical methods are 

necessary to obtain accurate predictions of genotype performance such as yield, 

and to obtain a reliable stability measure of each cultivar across environments. 

1.3 Stability measures 

The MET analysis also provides an assessment of yield stability of the tested 

genotypes. The term “stability” refers to the behaviour of a crop in varying 

environments (Piepho, 1996). Environments may be locations, years, or 

combinations of both. Stability measures are essential for plant breeders since 

the breeding goal is not only to develop a high-yielding cultivar but also to 

develop stable cultivars for a range of environments, to meet the demand for 

food production. The stability measure is also beneficial for farmers in selecting 

which varieties to grow since the weather is changing inconsistently. Stability 

measures are estimated mostly for yield compared to quality traits because yield 

is still the most critical trait in comparison to other traits. 

The stability of a genotype or cultivar is measured by variability of yields 

across environments, e.g. the sample variance (Piepho, 1998b). Lin et al. (1986) 

considered stability called static (type 1) when a genotype can give the same 

performance across environments. In shorter words, the reaction norm is flat, as 

shown in Figure 1(a) (non-plasticity). This type 1 stability is also called 

“biological” stability since it does not account for differences due to a different 

environment. Dynamic or agronomic stability (type 2) is defined when genotype 

performance changes in a predictable way across different environments 

(plasticity). Wricke (1962) and Shukla (1972) stability measures are examples 

of type 2 stability while Finlay and Wilkinson (1963) stability measure can show 
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type 1 and type 2 stability. In Finlay-Wilkinson joint-regression (FW 

regression), the stability is measured by the regression slope, 𝑏𝑖. If 𝑏𝑖 is close to 

0, then it is considered to be type 1 stability. If 𝑏𝑖 is close to 1, then it is 

considered to be type 2 stability. Wricke (1962) introduced Wricke’s Ecovalence 

(𝑊𝑖) defined as the contribution of a genotype to the sum of squares GEI. Shukla 

(1972) stability variance 𝜎𝑖
2 is a modification of 𝑊𝑖 that 𝜎𝑖

2 is an estimate of 

variance of i-th genotype across environments based on residuals of the two-way 

GEI. Thus, the most stable genotype is the one that has smallest 𝜎𝑖
2. 

Eberhart and Russell (1966) extended the FW regression with another 

measure called “deviation” (𝑠𝛿
2) with respect to FW regression. Hence, this 

method is a combination of 𝑏𝑖 from FW regression and the 𝑠𝛿
2. Eberhart and 

Russell (1966) stability measure 𝑠𝛿
2 is known as type 3 stability. Thus, a genotype 

will be regarded as type 3 stability if a cultivar has the smallest 𝑠𝛿
2, regardless its 

𝑏𝑖. In practice, breeders cannot use only type 3 stability because it does not show 

the performance of genotype per se. Breeders, therefore, must consider the 𝑏𝑖 

and the mean performance of genotypes across environments. The reason is that 

it is possible that a genotype has type 3 stability but also has type 1 stability, 

which indicates that genotype either has the lowest mean or highest mean in all 

environments. 

Lin and Binns (1988) proposed a type 4 stability. This stability not only takes 

into account the interaction between genotype and location but also with time, 

i.e., genotype×location×year interactions. Thus, type 4 stability is considered as 

unpredictable due to the inclusion of time, and it is the opposite of the type 2 

stability. The type 2 stability defines as the changes of genotype performance to 

be predictable to environmental alterations because the response of genotype to 

environments is parallel to the mean response of all genotypes in the trial (Lin 

and Binns, 1988). The type 4 stability is measured by the mean squares (MS) of 

year nested by location (Y/L) of each genotype. The genotype with the smallest 

MS (Y/L) is considered as the most stable genotype. 

The stability measures are important to provide information regarding the 

response of cultivars to unpredictable changing environments. Breeders want to 

select not only the cultivar that has the highest yield but also the stable one across 

environment (location and years). Farmers will also prefer the same cultivar 

behaviour since the unpredictable changing weather will risk the yield loss. 

Thus, an appropriate stability measure type and computation method are crucial 

to provide the information for breeders and farmers. 
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1.4 Swedish cultivar testing 

Swedish cultivar testing conducts METs every year to test vast numbers of 

cultivars to be registered in variety registration as a precondition for the seed 

certification. The seed certification is a compulsory requirement to be able to 

enter the seeds market in Sweden and EU. Thus, a new variety can enter the seed 

market and cultivated as a cultivar only if it is admitted to the Swedish list of 

varieties or admitted to the common catalogues of varieties of agricultural plant 

or vegetable species (Jordbruksverket, 2015). 

Furthermore, Swedish cultivar testing also assess the new plant varieties to 

protect the breeder’s right. Breeders cannot rely on supplying existing 

varieties/cultivars. To meet the demand of cultivar improvement, such as 

enhanced quality, disease-resistance, productivity and environmental criteria, 

new varieties need to be developed. The Community Plant Variety Rights 

(CPVR) system incorporates the principle of the breeders’ exemption, which 

allows free access to protected varieties for the development and exploitation of 

new plant varieties.  

Thus, besides the seed certification, a new variety that will be cultivated as a 

cultivar has to be assessed for to ensure the breeder’s right. According to the 

Community Plant Variety Office (CPVO), a new cultivar has to meet three 

criteria: distinctness, uniformity, and stability (DUS) (CPVO, 2018).  

The results of this assessment can provide a cultivar recommendation for 

farmers in their growing regions or zones. In Sweden, the most important 

growing zones are depicted in Figure 2, i.e., South (A), Middle (D+E), and North 

(F). A zone consists of several trials/locations that represent farmers’ growing 

conditions. Swedish cultivar testing provides cultivar recommendation on zone-

based, not each trials/locations.  

 
Figure 2. Swedish agricultural zones. The coloured zones indicates the zones that are used in the 

study. Green, south zone (A); Brown, middle zone (D+E); Blue, north zone (F). 
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1.5 Linear mixed models 

A model is defined as a mathematical notation of the processes that give rise to 

the observations in a set of data (Stroup, 2012). A purely mathematical model is 

a deterministic device in that for a given set of inputs, it predicts the output with 

absolute certainty, and it leaves nothing to stochastic part (Schabenberger and 

Pierce, 2001). A model is considered as a statistical model when it includes a 

deterministic/systematic part and a stochastic/random part. A statistical model, 

therefore, describes the presumed impact of explanatory variables and the 

probability distributions associated with aspects of the process that are assumed 

to be characterised by random variation (Stroup, 2012). In short, a statistical 

model comprises three components, i.e., systematic part, which consists of 

quantitative and/or qualitative explanatory variables, random part (refers to 

residual error term), and an assumed distribution. 

A linear model usually refers to a classical linear model with Gaussian error. 

In matrix notation, this linear model is written as: 

y = Xβ + e 

where Y is an 𝑛 × 1 vector of observations, X is an 𝑛 × 𝑘 incidence matrix for 

fixed effects factors, β is a 𝑘 × 1 vector of unknown fixed effect parameters to 

estimate, and e is a vector of residual errors and is assumed homoscedastic, 

uncorrelated, and following 𝑁(0, 𝜎2I ). In this case, the parameter estimates of 

β are solved using ordinary least squares (OLS), and the solutions are called best 

linear unbiased estimation (BLUE). Thus, in the classical linear model, there is 

only one type of effect in the systematic part that is considered, i.e. fixed effect. 

The matrix structure of variance for the classical linear model is 𝐕 = 𝜎2𝐈 

Linear mixed models extend the classical linear models to allow both fixed 

and random effects factors in one model (Eisenhart, 1947; Harville, 1976; Laird 

and Ware, 1982). A matrix formulation of linear mixed models is as follows: 

y = Xβ + 𝐙𝐮 + e 

where Y is a vector (𝑛 × 1) of observations, X is the incidence matrix for fixed 

effects with (𝑛 × 𝑘) matrix, β is a vector of unknown fixed effect parameters to 

estimate with (𝑘 × 1) matrix, 𝐙 is the incidence matrix for random effects with 

(𝑛 × 𝑝) matrix, 𝐮 is a vector of unknown random effect parameters to estimate 

with (𝑝 × 1). Since 𝐮 consist of random effect parameters, 𝐮 is assumed to be 

𝑁(0, G), where G is the variance-covariance (VCOV) matrix of all random 

effects. The vector e consists of residual errors. The assumption of residual 

errors are more relaxed in the linear mixed models than in the classical linear 

models since it allows non-independence and heterogeneity, 𝑁(0, R), where R 

is the VCOV matrix for the residuals. Henderson (1950,1963,1975,1984) 

developed mixed model equations (MME) to obtain the solutions of fixed effects 
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(β) and random effects (𝐮) for animal breeding purpose. The Henderson’s MME 

is as follows: 

[𝐗
T�̃�−1𝐗 𝐗T�̃�−1𝐙

𝐙T�̃�−1𝐗 𝐙T�̃�−1𝐙 + 𝐆−1] [�̂�
�̂�
] = [

𝐗T�̃�−1𝒚

𝐙T�̃�−1𝐲
] 

The solutions to MME are the BLUE for β and the best linear unbiased 

prediction (BLUP) for 𝐮. Unlike the classical linear model, linear mixed models 

have variances for random effects and the residual terms. Thus, the variance for 

linear mixed model is written as 𝐕 = 𝐙𝐆𝐙′ + 𝐑. The 𝐆 matrix is the variance-

covariance (VCOV) matrix for the random effects and the 𝐑 matrix is the VCOV 

matrix for the residual term. The various structures of VCOV will be described 

in the VCOV structures section. 

1.5.1 Estimating fixed effects (BLUE) and predicting random effects 

(BLUP) 

A fixed effect factor is estimated with BLUE. The term “Best” means that the 

sampling variance is minimised. “Linear” indicates that the estimates are linear 

functions of the observed values. “Unbiased” implies that the expected values of 

the estimates are equal to their true values 𝐸[𝐵𝐿𝑈𝐸(β)] = β. The effect of a 

factor is considered as “fixed” if we are just interested in its particular value or, 

in general, if a factor only has a few levels and not coming from or representing 

from a probability distribution (McCulloch et al., 2008), and the conclusions 

apply only to the particular factor levels (Lynch and Walsh, 1998). For 

examples, effects of different soil types, or effects of different fertilizer. In plant 

breeding, an individual location or a trial is considered random but the set of 

locations/trials is considered as a fixed effect (Bernardo, 1996). In other words, 

if a zone or region consists of a number of locations, then the effect of a zone is 

considered as fixed and the effect of locations are considered as random because 

the condition of locations may change from year to year. Furthermore, the mean 

differences among different sets of environments are considered as nuisance 

factors that should be taken into account for genotypes comparisons (Bernardo, 

2010). In the fixed effect, when the experiment is repeated, the effect of a factor 

will be the same, which means the true value of fixed effect does not change in 

each repetition of the experiment (Blasco, 2017). The estimation of fixed effects 

in the linear mixed models is slightly different from the estimation in the 

classical linear model. In the mixed models, the fixed effects estimates are solved 

using generalised least squares estimation (GLSE), not OLS. 

A random effect is predicted with BLUP. The expansion of “B” is the same 

with “B” in BLUE. “L” indicates the predictions are linear functions of the 

observed values. “Unbiased” implies that the expected values of the predictions 
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are equal to their true values 𝐸[𝐵𝐿𝑈𝑃(u)] = 𝐸(u)=0. Hence, in random effect, 

we would like to have prediction instead of estimation. The term “prediction” is 

chosen by Henderson (1984) since in the animal breeding, the interest is to 

evaluate the potential of breeding value of a mating between two potential 

parents and to predict the future records. The term “estimation” is more 

appropriate to estimate the value if an animal already born. Thus, it has become 

common term in practice to “estimate” fixed effects and to “predict” random 

effects (Robinson, 1991). In the opposite of fixed effect, one of the assumptions 

underlying random effects is when the experiment is repeated, the true value will 

change/not be constant. This is also the reason that “prediction” term is used for 

random effect. The other assumptions are: the levels of a factor are of no 

particular interest and represents or comes from a probability distribution. Thus, 

in general, the levels of a random effect factor will have many levels to represent 

the whole population. While in the fixed effect, the parameter to estimate is the 

mean of individual levels, in the random effect, a variance (dispersion 

parameter) is the parameter to estimate. Therefore, the conclusion applies to a 

population. 

There are some approaches to estimate variance components for random 

effects such as least squares/ANOVA, maximum likelihood (ML), and 

residual/restricted maximum likelihood (REML). The ANOVA approach is 

limited because it cannot construct complex VCOV structures, the data should 

be balanced, and it needs to make expected mean squares tables, which are not 

easy to construct. The preferred used method is REML (Patterson and 

Thompson, 1971). REML is more favourable than ML because variance 

estimation via ML fails to take into account for the loss of degrees of freedom 

needed for estimation, which results in downward bias in variance estimates. 

REML accounts for the degrees of freedom that are used to estimate fixed 

effects. Thus, it corrects the degrees of freedom. For a simple example, an 

unbiased sample variance estimate should have 𝑛 − 1 for the degrees of 

freedom. The estimate variance with ML produces 𝑛 degrees of freedom, while 

REML produces 𝑛 − 1. This is the reason why REML is preferable to ML. Also, 

when the data is balanced, the REML variance estimates are equivalent to the 

ANOVA approach. 

Bernardo (2010) mentioned several benefits of BLUP in the plant breeding 

framework. First, in the MET, the better genotypes will be tested in several years 

while the less superior genotypes will be discarded, which results in unbalanced 

data. BLUP allows analysing such unbalanced data while accounting for 

differences in the amount of data available for each genotype. Second, BLUP 

uses the information for all relatives measured to improve the prediction of 

breeding values. For example, when a breeder wants to compare two individuals, 
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A and B, the comparison can be made solely on the basis performance of A and 

B alone. By using BLUP, the comparison will be more precise by including the 

information of relatives of A and relatives of B. In the MET, this feature is very 

useful that using BLUP, we can borrow or recovery information of the same 

genotype in other environments, and so exploit the genetic correlation between 

environments (Kleinknecht et al., 2013; Piepho et al., 2016), which improves the 

prediction accuracy of genotype performance compared to BLUE. 

1.5.2 Variance-covariance (VCOV) structures 

In the MET analysis, the assumption of homogeneity variance is hardly ever 

fulfilled, because genotypic variances tend to change across environments. 

Furthermore, genotypic correlations for pairs of these environments are not 

homogeneous (Bustos-Korts et al., 2016). In the linear mixed models 

framework, applying variance-covariance (VCOV) structures can be applied on 

the random effect of GEI and the residual terms to take into account this 

heterogeneity, and so achieve higher prediction accuracies. The VCOV for GEI 

effect is applied in the 𝐆𝑔𝑒 matrix and the VCOV of residual term is applied in 

the 𝐑 matrix. In this section, we describe four VCOV structures: identity, 

compound symmetry, unstructured, and factor analytic order 1. 

Identity (ID) 

The ID structure assumes independence and homoscedasticity, 𝐆𝑔𝑒 = 𝐈(𝜎𝑔
2 +

𝜎𝑔𝑒
2 ), where 𝜎𝑔

2 is variance of genotype and 𝜎𝑔𝑒
2  is variance of GEI. The matrix 

form is as follows:  

𝐆𝑔𝑒 =

[
 
 
 
 
𝜎𝑔

2 + 𝜎𝑔𝑒
2 0 … 0

0 𝜎𝑔
2 + 𝜎𝑔𝑒

2 … 0

⋮ ⋮ ⋱ ⋮
0 0 … 𝜎𝑔

2 + 𝜎𝑔𝑒
2

]
 
 
 
 

 

The dimension of this diagonal matrix equals the number of genotype (g) times 

the number of environments. In this case, all the variances in all environments 

are the same. 

Compound symmetry (CS) 

The compound symmetric (CS) model implies that both variance and covariance 

are homogeneous. Thus, the structure of CS is as follows: 
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𝐆𝑔𝑒 =

[
 
 
 
 
𝜎𝑔

2 + 𝜎𝑔𝑒
2 𝜎𝑔

2 … 𝜎𝑔
2

𝜎𝑔
2 𝜎𝑔

2 + 𝜎𝑔𝑒
2 … 𝜎𝑔

2

⋮ ⋮ ⋱ ⋮
𝜎𝑔

2 𝜎𝑔
2 … 𝜎𝑔

2 + 𝜎𝑔𝑒
2

]
 
 
 
 

 

Each environment has the same variance and the genetic correlation is the same 

between all pairs of environments. 

Unstructured (US) 

The unstructured VCOV structure allows both heterogeneous covariance and 

variance. Thus, each environment has a unique genotype variance, and each pair 

of environments has a unique covariance. The number of parameters needed for 

this VCOV structure is (𝑝 + 1)/2 , where 𝑝 is the number of environments. 

 

𝐆𝑔𝑒 =

[
 
 
 
 
𝜎𝑒1

2 𝜎𝑒12

2 … 𝜎𝑒1𝑝

2

𝜎𝑒12

2 𝜎𝑒2

2 … 𝜎𝑒2𝑝

2

⋮ ⋮ ⋱ ⋮
𝜎𝑒1𝑝

2 𝜎𝑒2𝑝

2 … 𝜎𝑒𝑝

2
]
 
 
 
 

 

Factor analytic order 1 (FA1) 

Factor analytic (FA) structures are often more useful than the US structure for 

taking into account heterogeneity in complex genotype×environment models. 

These structures have fewer parameters than the US structure (Isik et al., 2017). 

We here describe the FA structure with a single multiplicative term (FA1). In 

this structure, the 𝐆𝑔𝑒 is defined as 𝚲𝚲𝑻 + 𝚿 , where 𝚲 is a vector of dimension 

1 × 𝑝 that consists of loading factors 𝜆1 to 𝜆𝑝, and 𝚿 is a 𝑝 × 𝑝 diagonal matrix 

that consists of environment-specific genotype variances (𝜓𝑒
2), 𝑒 = 1, 2, … , 𝑝. 

For the FA1 model with g unrelated cultivars tested in 𝑝 environments, we have: 

𝚲 = [

𝜆1

𝜆2

⋮
𝜆𝑝

] ,𝚿 =

[
 
 
 
𝜓1

2 0 … 0

0 𝜓2
2 … 0

⋮ ⋮ ⋱ ⋮
0 0 … 𝜓𝑝

2]
 
 
 

 

Hence, the VCOV structure for 𝐆𝑔𝑒  is: 

𝐆𝑔𝑒 = [𝚲𝚲𝑻 + 𝚿] =

[
 
 
 
 
𝜆1

2 + 𝜓1
2 𝜆1𝜆2 … 𝜆1𝜆𝑝

𝜆2𝜆1 𝜆2
2 + 𝜓2

2 … 𝜆2𝜆𝑝

⋮ ⋮ ⋱ ⋮
𝜆𝑝𝜆1 𝜆𝑝𝜆2 … 𝜆𝑝

2 + 𝜓𝑝
2
]
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The off-diagonal elements of the blocks 𝚲𝚲𝑻 + 𝚿 are products of parameters 𝜆𝑝 

and 𝜆𝑝′, which refers to the 𝑒-th and 𝑒′-th environment, respectively. Therefore, 

the nested effects between the same genotype in different environments are 

correlated, while the interaction effects from different genotypes are 

uncorrelated. 

1.6 Cross-validation (CV) 

Cross-validation (CV) is a method to evaluate the performance of statistical 

methods by estimating test error rate (James et al., 2013). A CV is conducted to 

evaluate a model’s performance, which is known as model assessment, and to 

select a model that has a proper level of flexibility, which is known as model 

selection (James et al., 2013). In the CV, a dataset is split into a training set and 

a validation set. The training set is used to train the model while the validation 

set is used to validate the prediction produced by the model from the training set. 

Two most-used methods to conduct CV are leave-one-out (LOO) and k-fold 

CV. The LOO CV leaves one data point as validation set. Thus, if there is a set 

of n data points, then there will be n iterations of fitting. For example, with 10 

data points, 10 iterations are done because each time one data is left out as a 

validation set. A k-fold CV divides randomly a set of data points into k groups, 

or folds, in an equal size. The first fold is kept for validation and the model is 

trained on k-1 folds. The process is iterated k times and each time a different fold 

or a different group of data points are used for validation. Thus, a k-fold CV may 

require less iterations than LOO CV.  Figure 3 depicts the LOO CV and k-fold 

CV.  

 
Figure 3. Examples for LOO CV and 2-fold CV for 10 data points. 
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The difference between the predictions from the training set and the 

validation set will be measured by using mean squared error (MSE). The 

smallest MSE of a model will be regarded as the best-performed model, and so 

may be selected because the best-performed model provides the highest 

prediction accuracy among the compared models.  

1.7 Current statistical analysis in Swedish cultivar testing 

The MET data structure is often large and highly imbalanced, and so causes 

computational problems when applying some statistical methods. Furthermore, 

the current statistical model needs to be assessed whether it produces accurate 

predictions of cultivar performance.  

As already mentioned in Section 1.4, Swedish cultivar testing provides 

cultivar recommendation for zones, not for each trials/locations. The current 

statistical method analyses each zone separately to obtain the mean of each 

cultivar for each zone. Furthermore, the effect of cultivar in the model is fixed. 

The drawbacks of this statistical analysis are that the interaction of cultivar×zone 

is not exploited and the fixed effect of cultivar leads to the overoptimistic 

estimate of cultivar performance and inaccurate cultivar rankings. Patterson and 

Silvey (1980) mentioned that the estimate of newly recommended cultivars are, 

on the average, 27% too large. Thus, the cultivar performance information for 

the future is not accurate for farmers.  For this reason, the current statistical 

analysis needs to be improved by developing a robust and efficient statistical 

method that provides more accurate predictions. 

Another aspect that needs to be addressed is a stability measure of cultivar. 

Due to large and imbalanced data, the computation of stability measure is 

demanding and may lead to uninformative estimates. Thus, an efficient 

computation of measure of cultivar stability is also urgent to be tackled by 

developing a comprehensive and robust statistical method.  

1.8 Aims of the thesis 

This study aims to address the mentioned issues in section 1.7 and provide a gold 

standard for MET analysis in Swedish official cultivar testing. The overall aim 

of the thesis was to improve the statistical model for zone-based cultivar 

predictions and rankings by comparing the current-practice statistical procedures 

of Swedish cultivar testing with a new statistical method using BLUP through a 

CV study and propose a new inter-zone stability measure.  
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The specific aims were to: 

 Investigate the performance of empirical BLUE and empirical BLUP for 

zone-based prediction in cultivar testing focused on the fungicide-treated 

subsets of the datasets (Paper I). 

 Compare the performance of empirical BLUE and empirical BLUP for zone-

based prediction in cultivar testing including complex variance-covariance 

structures in Swedish cultivar trials on all fungicide levels datasets (Paper II). 

 Determine the necessity of division of agricultural zones/zonation (Papers I 

and II). 

 Determine the best statistical analysis strategy for zone-based prediction 

cultivar testing, i.e., single-stage or two-stage analyses combined with 

complex VCOV structure focused on the fungicide-treated subsets of datasets 

(Paper III). 

 Propose a new inter-zone stability measure based REML approach from the 

best model according to the CV study.  
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2.1 Swedish cultivar trials datasets 

The dry matter yield (DMY) of winter wheat (Triticum aestivum L.) and spring 

barley (Hordeum vulgare L.) from three zones, i.e., South, Middle, and North, 

of Swedish MET datasets were used. A detailed description of the number of 

locations in each zone is given in Papers II and III. The cultivar trials were laid 

out in a split-plot design with two replicates. The main-plot factor consisted of 

two levels of fungicide treatment (treated and untreated). Within each fungicide 

treatment, cultivars were arranged in α-designs (Patterson and Williams, 1976) 

with two replicates. The number of incomplete blocks varies between trials, 

depending on the number of cultivars.  

2.2 EBLUE vs. EBLUP on fungicide-treated subsets 
datasets (Paper I) 

The current analysis procedure of Swedish cultivar trials is done with an 

unweighted two-stage analysis. In the first stage, the experiment is analysed 

using a linear mixed model with cultivars, fungicide treatments, and 

cultivar×fungicide treatment interactions as fixed effects. The effects of 

replicates and incomplete blocks are modelled as random. The model is written 

using the notation introduced by Wilkinson and Rogers (1973) and applied in 

Patterson (1997) and Piepho et al. (2003). The linear mixed model used in the 

first-stage is written as: 

C + F + C∙F : R + R∙F + R∙B (1) 

where C is the cultivar, F is the fungicide treatment, R is the replicate, and B is 

the incomplete block within a replicate. The fixed effects are specified before 

2 Materials and methods 
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the colon and the random effects after the colon. The dot between two factors 

indicates a crossed effect. The response variable (i.e., the yield), the intercept, 

and the residual error term are implicit. 

In the second stage, since the current analysis strategy is unweighted, only 

the adjusted cultivar means from the first stage are forwarded to the second stage. 

Thus, there was only a single value of DMY per cultivar and trial, and no residual 

plot error information was available in the second stage. By using mixed models, 

the adjusted cultivar means were used to obtain the final estimates of cultivar 

yields for each zone. The model used in the second stage is as follows: 

C ∶ L + C ∙ L (2) 

where L is the location/trial, which is always nested within zone/region (Z). In 

the current-practice, the model in Eq. 2 is fitted separately for each level of 

fungicide and zone. Nevertheless, since the cultivar and zone effects are fixed, 

we can rewrite equation 2 as:  

C + Z + C ∙ Z ∶ L + C ∙ L (3) 

Equation 3 is equal to equation 2 when the equation 3 uses zone-specific residual 

variance. The cultivar and cultivar×zone interaction effects are assigned to be 

fixed. Thus, it will be estimated by empirical BLUE (EBLUE), and so it is not 

possible to borrow information across zones. The term “empirical” indicates the 

actual variance components are not known and therefore are estimated from the 

data.  

In this study, we would like to improve the prediction accuracy of yield of 

each genotype for each zone in the second stage. For that reason, the cultivar and 

cultivar×zone interaction effects were assigned to be random. Hence, the 

equation 2 is changed as follows: 

Z ∶ C + L + C ∙ L + C ∙ Z  (4) 

where Z is the zone. In equation 3, the zone and cultivar×zone interaction terms 

are included and so accommodates all zones to be analysed in a single model 

and explore the interaction effect of cultivar×zone. Moreover, the cultivar and 

cultivar×zone interaction effects are random, which are predicted by empirical 

BLUP (EBLUP), and so allowing EBLUPs for a specific zone to borrow 

information from the other zones (Atlin et al., 2000; Kleinknecht et al., 2013; 

Piepho et al., 2016).  Note that when there is an interaction between fixed and 

random effects of a factor, its effect will be considered as random. The 

motivation to use EBLUP has been addressed by Smith et al. (2001) because of 

the “deficiency in the traditional fixed cultivar-effects approach in terms of 

obtaining reliable predictions of future yield performance.” This deficiency has 
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been discussed by Patterson and Silvey (1980), who stated that “differences 

between trials means for newly recommended cultivars are, on the average, 

about 27% too large.” Thus, in current practice, the estimation of cultivar’s yield 

may be too optimistic and the ranking of cultivars may be not accurate since the 

cultivar effect is fixed. 

In this study, we searched the best model for the single-year and the multi-

year series analyses via a CV study focused on improving the model in the 

second stage, which will be explained in section 2.5.1. The multi-year analysis 

refers to five-year series analysis. For this work, we started with a simple case 

data and focused on the fungicide-treated subsets of the datasets so the models 

were simple without any complex interaction terms. Five models were proposed 

for the single-year analysis. The five models consisted of four models for 

EBLUP (single-year random effect of cultivar models, SYR) and one model for 

EBLUE (single-year fixed effect of cultivar models, SYF). Zone-specific 

residual variance structures were employed in some EBLUP models to account 

for heterogeneity among zones. An EBLUP model without the zone term was 

also included in the study to assess the necessity of zonation. 

For the five-year series analysis, four models, consisted of two models for 

EBLUP (multi-year random effect of cultivar models, MYR) and two models 

for EBLUE (multi-year random effect of cultivar models, MYF), were proposed. 

However, in the five-years series, heterogeneous residual variance was not used 

due to convergence problem. The EBLUE models compared in this study were 

models used in the current practice. The details of the models are given in Paper 

I. However, note that the notations in Paper I were slightly different. In the Paper 

I, the cultivar was coded with V because it referred to variety and the zone was 

coded with R because it referred to region. Thus, in principle, the variety is 

interchangeably to cultivar, and region is interchangeably to zone. Nonetheless, 

for the whole thesis, we will use C for cultivar, Z for zone, and R for replicate. 

2.3 EBLUE vs. EBLUP on all fungicide levels datasets 
(Paper II) 

In this study, we extended the model from the first study by including the 

fungicide factor in the second stage. Therefore, the baseline model, which is used 

in the current routine analysis in Swedish cultivar testing, can be written as 

C + Z + F + C∙Z + C∙F + Z∙F + C∙Z∙F : L + C∙L (5) 

Again, we would like to assign the effects of cultivar to be random, and so the 

effects of the cultivar×zone term will be random to allow borrowing information 

between zones. A total of 20 linear mixed models were compared for the single-
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year series. The single-year (S) series models with fixed (F) effects of cultivars 

are called SF models, and the single-year series models with random (R) effects 

of cultivars are called SR models. Since the cultivar×zone interaction term was 

random, several VCOV structures were applied to account for heterogeneity of 

this term. Zone-specific heterogeneous residual variance structures were also 

employed in some models to account for heterogeneity among zones. To 

facilitate readability, the 20 models were categorised into five groups. There 

were 17 SR models and 3 SF models.  The details of the models and the VCOV 

structures are given in Table 1, Paper II. 

In the five-year series, an additional factor to be included in the model is year 

(Y). Thus, the baseline model for the current practice, in the second stage is 

C ∶ L + Y + C ∙ Y (6) 

which is fitted separately for each fungicide and zone. A total of 11 models were 

compared for the multi-year series. One multi-year series model (M) with fixed 

(F) effects of cultivar is called the MF model and is the model used in current 

practice. The other 10 models with random (R) effects of cultivar are called MR 

models. The details of all the models are given in Table 2, Paper II. The MR 1 

model is a basic saturated model. The next three MR models (MR 2–4) were 

obtained by dropping, one at a time, the single term with the smallest variance. 

From the model MR 5, the year×fungicide and year×zone×fungicide interactions 

were dropped. In models MR 6 to 8, either the cultivar×zone×fungicide 

interaction or the cultivar×zone×year interaction, or both these interactions, 

were removed. Models MR 9 and 10 are models without effects of zones, which 

were compared to determine whether zonation is needed or not. Due to 

convergence problem, no heterogeneous residual variance was used in any five-

year series models. 

2.4 Single-stage versus two-stage analysis for zone-
based prediction (Paper III) 

The multienvironment trials data can be analysed by a single-stage analysis or 

stage-wise analysis (two stages or more). A single-stage analysis is considered 

as the gold standard (Gogel et al., 2018), while the two-stage analysis will have 

similar results when the full VCOV matrix of the estimated cultivar means from 

the first stage is forwarded to the second stage (Damesa et al., 2017). 

Nevertheless, in practice, storing full VCOV is hard to do, and so a diagonal 

approximation is often used. 

A single-stage analysis has an advantage from theoretical consideration since 

the estimation of fixed and random effects are done in a single model from plot-
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level data (Piepho et al., 2012a). Nevertheless, the most common disadvantage 

is the computational resource, especially when the number of cultivars and 

environments are large and a complex variance-covariance (VCOV) structure 

for the cultivar×environment interaction effects is assumed (Möhring and 

Piepho, 2009; Welham et al., 2010). 

The computational burden in the single-stage analysis motivates a stage-wise 

analysis that splits the analysis into two (or more) stages. Damesa et al. (2017) 

and Piepho et al. (2012a) reported that the stage-wise analysis was possible to 

substantially reduce the computational burden. In the stage-wise analysis, each 

trial is analysed separately using BLUE, in the first stage, to obtain adjusted 

cultivar means per trial. Thus, the cultivar effects are modelled as fixed. In the 

second stage, the adjusted cultivar means from the first stage are analysed 

jointly, using an appropriate mixed model, in order to compute marginal means 

for cultivars across environments. In this stage, the cultivar effects may be 

modelled as fixed or random. Piepho and Eckl (2014) mentioned another 

advantage of stage-wise analyses for practical analyses: it facilitates a combined 

analysis of different trials with different experimental designs in the first stage, 

and subsequently allows modelling structures for heterogeneity of variance 

between trials easily.  

A major issue of stage-wise analysis is the choice of method to forward the 

information on precision (standard errors, VCOV matrix of the adjusted means) 

between stages to account for heteroscedasticity as well as for covariances 

among the adjusted means (Damesa et al., 2017; Möhring and Piepho, 2009). A 

general scheme of the single-stage and two-stage analysis is depicted in Figure 

4. 

The simulation from Möhring and Piepho (2009) indicated that weighting 

can improve efficiency, but the unweighted method was acceptable if the 

assumptions of the model were correct, i.e., when error variances are 

independent of the genoptype×environment interaction structure. Also, they 

mentioned that the performance of the method for weighting did not depend on 

the evaluation criterion, but on the dataset. Welham et al. (2010) conducted a 

simulation study and showed that the two-stage unweighted method performed 

poorly due to the loss of information in estimating the estimates of cultivar 

performance, both overall and within environments. However, similar to Gogel 

et al. (2018), Welham et al. (2010) focused on prediction for individual sites, 

whereas the focus of our study is on means across a wider region or zone, or in 

other words, zone-based prediction. 

In this study, we assessed the current-practice strategy in Sweden, i.e., a two-

stage unweighted, with several strategies, i.e., a single-stage with heterogeneous 

location-specific and homogeneous residual variance , two-stage weighted with 
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fully-efficient weighting (forward the full VCOV from stage 1 to stage 2), and 

two-stage weighting with diagonal approximation, via CV study and correlation 

coefficient. The diagonal approximation used for weighting were Smith’s 

weighting (Smith et al., 2001) and the average standard error of differences 

(AVSED) weighting (Möhring and Piepho, 2009). We also added several VCOV 

structures for the cultivar×zone interaction term such as compound symmetry 

(CS), FA, and unstructured (US).  

The combination of the approaches, a single-stage or a two-stage (weighted 

and unweighted), weighting methods in the two-stage weighting approach, and 

the VCOV structures, resulted in 21 strategies to be compared. The details of the 

strategies are given in Table 2 (Paper III). Moreover, unlike the first two studies, 

in this study, we used the datasets in the plot levels of single-year datasets. Thus, 

the CV was conducted in a single-year series dataset. The details of the datasets 

used in this study are shown in Figure 1, Paper III. To our knowledge, this study 

is the first using cross-validation for comparing single-stage analyses with stage-

wise analyses. 

 
Figure 4. Scheme of the single-stage and two-stage analyses 

2.5 Cross-validation study (Papers I, II, and III) 

We preferred to conduct a CV study since the main objective was to select a 

model that provides the most accurate prediction. An information criterion like 

the Akaike information criterion (AIC) for model selection can be used, but it 

does not examine the accuracy of model prediction. Thus, a CV study is 

preferable to examine whether a model can produce an accurate prediction or 

not, and so gives a measure (MSEP) of the size of the prediction errors. 

Analysis options

Single-stage 

analysis

Two-stage 

analysis

Stage 1 

(per location 

analysis)

Stage 2 

(unweighted)

Stage 2 

(weighted)
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2.5.1 CV for Papers I and II 

Single-year series CV 

In Papers I and II, the CV study was carried out using the adjusted means of 

cultivars from the first stage. A 2-fold CV was used for model evaluation. In the 

first fold, the locations/trials were randomised equally (50/50) within zones to a 

training dataset 𝐴1 and a validation dataset 𝐴2. In the second fold, 𝐴2 was used 

as the training dataset, and 𝐴1 as the validation dataset. The reason for 

conducting this type of CV was the decreasing number of trials in recent years. 

Thus, the aim was to train the model with a small number of trials. If the CV 

were conducted with many folds, then there would be many trials included in 

the training set, which does not represent the current situation in Swedish 

cultivar testing. Thus, a 2-fold CV was preferred. The illustration of the 2-fold 

CV is given in Figure 5. 

 
Figure 5. Illustration of single-year CV scheme. 

In general, cultivar trials aim at predicting differences between tested 

cultivars rather than each cultivars’ mean. Piepho (1998a) proposed the mean 

squared error of prediction (MSEP) to assess the accuracy of estimates of 

differences between cultivars in different environments. In this study, we used a 

measure similar to Piepho’s MSEP based on differences for measuring the 

prediction accuracy of the models. The assessment was measured based on the 

discrepancies between observed (𝑦𝑣𝑘𝑡 − 𝑦𝑣′𝑘𝑡) and predicted pairwise 

differences (𝑧𝑣𝑘𝑡 − 𝑧𝑣′𝑘𝑡): 

𝑀𝑆𝐸𝑃 =
∑ ∑ ∑ ∑ [𝑦𝑣𝑘𝑡 − 𝑦𝑣′𝑘𝑡 − (𝑧𝑣𝑘𝑡 − 𝑧𝑣′𝑘𝑡)]

2𝑉′
𝑣′≠𝑖

𝑉
𝑣=1

𝐾
𝑘=1

𝑇
𝑡=1

𝑇𝐾𝑉(𝑉 − 1)
 (7) 

where 𝑦𝑣𝑘𝑡  and 𝑧𝑣𝑘𝑡 is the observed yield and the predicted yield, respectively, 

of the 𝑣th cultivar in the 𝑡-th trials of 𝑗-th zones, using the 𝑘-th fungicide 

treatment,  𝑇 is the number of trials of all zones, ∑ 𝑇𝑗
𝐽
𝑗=1  , 𝐾 is the number of 

fungicide levels, and 𝑉 is the number of cultivars. 
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We ranked the model performance based on the average single-year MSEP 

for each crop, i.e., the mean of eight MSEPs for winter wheat (based on eight 

single-year datasets) and the mean of five MSEPs for spring barley (based on 

five single-year datasets). In Paper I, the fungicide term was omitted because the 

study focused on the fungicide treated  level only. The CV study was performed 

in SAS (SAS Institute, 2013) using PROC MIXED for the FA models and the 

models with the heterogeneous residuals. The PROC HPMIXED was used for 

the other models and to reduce the computational time. 

Multi-year series CV 

For the multi-year series CV, we modified a leave-one-out CV to mimic the 

current Swedish practice of predicting cultivar performance based on results 

from five years. A set of data from five consecutive years was used as a training 

set. Then, the following sixth year was used as a validation set as depicted in 

Figure 6. For example, the dataset of yields from 2007 to 2011 was assigned as 

the training dataset, and the dataset from 2012 was assigned as the validation 

dataset. 

 
Figure 6. Illustration of multi-year CV scheme. 

The CV was done in chronological order, besides to mimic the current-

practice, due to the set of cultivars in the early years and recent years differ a lot. 

For example, when the training set consists of recent years and the validation set 

consists of early years, then there will be only very few cultivars in common 

between both sets. Consequently, most of the cultivars that are predicted in the 

training set would not be available in the validation set because the validation 

set comprises early years. Thus, to meet the purpose of this study, i.e., prediction 

of future yield performance, we conducted the CV in chronological order.  

We computed the MSEP as given in the Eq. 7. Again, the best model was the 

one that had the smallest MSEP since that model predicted the yield of the 

following year most accurately. The models were ranked based on the mean of 

Second set

Training set

2008

2009

2010

2011

2012

Validation set 2013

First set

Training set

2007

2008

2009

2010

2011

Validation set 2012



39 

 

MSEP over the six CV sets. The multi-year series CV was performed in PROC 

HPMIXED in SAS (SAS Institute, 2013). 

2.5.2 CV for Paper III 

Most other studies comparing single-stage and stage-wise analyses used 

Pearson’s moment-product correlation or Spearman’s rank correlation between 

the cultivar estimates between those two analyses (Cullis et al., 2000; Damesa 

et al., 2017; Gogel et al., 2018; Piepho et al., 2012a). The consequence of using 

these correlations was the correlation coefficient estimates often are around 0.90, 

implying that the single-stage and stage-wise analyses provide similar results. In 

comparison to Pearson correlation, a CV study can measure the prediction errors 

of the model using MSEP, which is more desirable for choosing the model to 

predict cultivar performance in MET analysis.   

In this study, a leave-one-out CV was performed for comparison and 

selection. One location was left out as a validation set and used the remaining 

locations as a training set. For example, when there are 10 trials in a single-year 

dataset, then there will be 10 folds of CV. We accumulated the discrepancies 

between the observed and predicted pairwise differences from the 10 folds of 

CV. Then, we computed the MSEP from this accumulation, and so there will be 

a single value of MSEP from the 10 folds of CV. 

Recall from Eq.7, the MSEP in Eq.8 is similar to the MSEP proposed by 

Piepho (1998a), for measuring the prediction accuracy of the models for each 

single-year dataset. The MSEP is a standard statistic for assessing predictive 

accuracy as pointed out by Wallach and Goffinet (1989). Let 𝑦 and 𝑧 denote 

the observed and predicted values, respectively, 𝐼 is the total number of cultivars, 

and 𝐽 is the total number of locations. Thus, the assessment was measured based 

on the discrepancies between observed (𝑦𝑐𝑙 − 𝑦𝑐′𝑙) and predicted pairwise 

differences (𝑧𝑐𝑙 − 𝑧𝑐′𝑙): 

𝑀𝑆𝐸𝑃 =
∑ ∑ ∑ [𝑦𝑖𝑗 − 𝑦𝑖′𝑗 − (𝑧𝑖𝑗 − 𝑧𝑖′𝑗)]

2𝐼′

𝑖′≠𝑖
𝐼
𝑖=1

𝐽
𝑗=1

𝐽𝐼(𝐼 − 1)
 (8) 

The model that produced the smallest MSEP is considered the best model, 

since it predicted yield differences in the validation set most accurately, which 

provides the most accurate predictions per agricultural zone as a prediction for 

the locations within zones. The models were ranked based on the average MSEP 

over the five CV sets, since there were five single-year datasets. The CV study 

was conducted in R (R Core Team, 2018), and fitted all the models in ASReml-

R 4.1.0.106 (Butler et al., 2017) to reduce computation time, and the ggplot2 
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package (Wickham, 2009) was used to produce plots via RStudio (RStudio 

Team, 2016).  

2.6 A new inter-zone stability measure 

The proposed inter-zone stability measure is a descriptive statistic obtained by 

computing a standard deviation for every single cultivar, and this standard 

deviation is computed of any interaction terms that comprise both cultivar and 

zone. The steps to calculate inter-zone stability are as follows: 

1) Compute the EBLUPs of the cultivar×environment interactions, for each 

cultivar and in each environment.  

2) Sum any EBLUPs of random effects that comprise cultivar×environment 

interaction effects, e.g., cultivar×zone (C∙Z), cultivar×zone×fungicide 

(C∙Z∙F), and cultivar×zone×year (C∙Z∙Y), for each cultivar, in each 

environment.  

Let �̂�𝑖𝑗 be the EBLUPs of the C∙Z effect, for the 𝑖th cultivar and 𝑗th zone, 

�̂�𝑖𝑗𝑘 be the EBLUPs of the C∙Z∙F effect for the 𝑖th cultivar, 𝑗th zone and 𝑘th 

level of fungicide, and �̂�𝑖𝑗𝑘𝑚 be the EBLUPs of the C∙Z∙Y effect for the 𝑖th 

cultivar, 𝑗th zone, 𝑘th level of fungicide, 𝑚th level of year. Then, the 

summation for the effects of C∙Z, C∙Z∙F, and C∙Z∙Y for each cultivar in each 

zone for each fungicide treatment is: 

𝑣𝑖𝑗𝑘𝑚 = �̂�𝑖𝑗 + �̂�𝑖𝑗𝑘 + �̂�𝑖𝑗𝑘𝑚 (9) 

Since 𝑣𝑖𝑗𝑘 is the summation of two or more EBLUPs of random-effects, 𝑣𝑖𝑗𝑘 

will only be zero if �̂�𝑖𝑗, �̂�𝑖𝑗𝑘, and �̂�𝑖𝑗𝑘𝑚 are zero. 

3) Finally, for the 𝑖th cultivar and 𝑘th level of fungicide, the inter-zone stability 

measure (𝑠𝑖𝑘) is computed as: 

𝑠𝑖𝑘 = √
∑ ∑ (𝑣𝑖𝑗𝑘𝑚 − �̅�𝑖𝑗𝑘𝑚)

2𝑀
𝑚=1

𝐽
𝑗=1

JM − 1
 (10) 

where 𝐽 is the number of zones and M is the number of years. As the example of 

the proposed inter-zone stability measure, we used the best multi-year model 

according to the MSEP as the fitted model for the stability measure. 
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3.1 Cross-validation of statistical models on fungicide-
treated subsets datasets (Paper I) 

The aim of this study was to compare the EBLUP and EBLUE in simple models 

(only in fungicide-treated datasets). The MSEPs of the CV for the single-year 

series and multi-year series for both crops are listed in Tables 1 and 2, 

respectively. Clearly, in the single-year series, the EBLUE model (current-

practice), performed comparatively poorly for winter wheat and spring barley 

datasets. On the other hand, as it was expected, the EBLUP models performed 

the best, i.e., SYR 1 with heterogeneous residuals.  

In the multi-year series, again, the EBLUP model, i.e., the MYR 1 performed 

the best. Nonetheless, unlike the SYR 1, which employed heterogeneous 

residuals variance structure, the MYR 1 was, due to convergence issue, not 

computationally feasible to have a heterogeneous residual variance structure due 

to convergence issue. For that reason, we did not employ such structure. 

In practice, the empirical datasets hardly satisfied the assumption of 

normality. However, EBLUP per se does not require normality (Searle et al., 

1992), and the CV revealed that the EBLUP performed better than the EBLUE. 

We demonstrated the potential of borrowing strength across regions from 

random effects of cultivar×zone interaction, thereby increasing the accuracy of 

zone-based yield prediction.  

In conclusion, the routine model used in the current-practice should be 

discontinued.  The model SYR 1, i.e., the model Z : C + L + C∙R, with 

heterogeneous residuals, should be the replacement model for the single-year 

series. For the multi-year series, the model MYR 1, i.e., the model Z : C + L + 

Y + C∙Z + C∙Y + Y∙Z + C∙Z∙Y, is recommended. 

3 Results and discussion 
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Table 1. Mean of MSEP for single-year series of winter wheat (𝑁 = 8) and spring barley (𝑁 = 5). 

Ranking Model 
Winter wheat Spring Barley 

Mean Mean 

  g2m-4 g2m-4 

1 SYR 1 6781 1751 

2 SYR 2 6846 1766 

3 SYF 1 7093 1783 

4 SYR 3 7245 1814 

5 SYF 2* (current method) 7407 1959 

 

Table 2. Mean of MSEP for multi-year series winter wheat (𝑁 = 6) and spring barley (𝑁 = 6). 

Ranking Model 
Winter wheat Spring Barley 

Mean Mean 

  g2m-4 g2m-4 

1 MYR 1 854685 276814 

2 MYR 2 859878 278789 

3 MYF 2* (current method) 938231 307994 

4 MYF 1 1940205 611592 

3.2 Cross-validation of statistical models on all fungicide 
levels datasets (Paper II) 

3.2.1 Single-year series 

We present parts of the list of MSEP average of winter wheat and spring barley 

for the single-year datasets in Table 3. The full list is given in the Paper II (Table 

3). Our study shows that random-cultivar-effects model is preferable for routine 

zone-based yield prediction compared to fixed-cultivar-effects models. The 

EBLUP (SR) models achieved lower MSEPs than the EBLUP (SF) models for 

both crop datasets. For both crops, the SR 5 model performed the best. The 

current-practice model (SF 3) performed poorly for both crop datasets, and was 

the least performing among the SF models in spring barley since it had the largest 

MSEP. 

For the models without zones, particularly SR 16, the results were 

considerably different between the two crops. The SR 16 model was ranked as 

the second best model in winter wheat, while in spring barley it was ranked the 

16th best model. A plausible biological reason is that winter wheat is grown in 

winter weather conditions with large local variation, as compared to spring 

barley, which is sown in the springtime. Thus, spring barley is grown under less 
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diverse local conditions. In the winter time, the environmental conditions vary 

locally, from mild and humid to cold and dry, causing different stress factors to 

predominate (Olsen et al., 2018). 

The BLUP with a complex VCOV structure, the FA structure (SR 8–11), did 

not perform better than the simpler model, i.e., SR 5. The SR 8 and SR 10 models 

were the best BLUP with FA structure for winter wheat and spring barley, 

respectively. The SR model with more interaction terms (SR 1) and the SR 

model with heterogeneous residual variance (SR 4 and SR 7) were less well 

performing than the more parsimonious model SR 5. Therefore, the SR 5 model 

can be recommended for both crops. 

Table 3. Mean of MSEP from single-year CV of winter wheat (𝑁 = 8) and spring barley (𝑁 = 5) 

Ranking 
Winter wheat   Spring barley 

Model Mean   Model Mean 

  g2m-4   g2m-4 

1 SR 5 7017  SR 5 1815 

2 SR 16 7032  SR 6 1815 

3 SR 2 7037  SR 7 1824 

4 SR 8 7041  SR 3 1827 

5 SR 6 7046  SR 10 1829 

⋮ ⋮ ⋮  ⋮ ⋮ 
18 SF 3* 7313  SR 12 1911 

19 SR 13 7826  SR 1 1914 

20 SR 15 8488   SF 3* 2053 

*SF 3 is the currently used model in Swedish cultivar testing. 

 

The investigated FA covariance structure allows heterogeneous variances 

and unique pairwise correlations between zones. Moreover, the FA structure is 

useful because it allows heterogeneous variance and covariance using fewer 

parameters than the unstructured covariance structure. Nonetheless, the REML 

estimation for the FA structure and the model with many interaction terms 

combined with heterogeneous residual structure were computationally very 

demanding. For this reason, combinations of FA structures for interaction effects 

and heterogeneous structures for residual effects were not explored. The 

application of the factor-analytic structure may be more useful when the number 

of zones is larger than three. Also, it is shown that the model with many 

interaction terms were less-performing compared to the parsimonious one. 
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3.2.2 Multi-year series 

The MSEP means of multi-year series in winter wheat and spring barley are 

listed in Table 4. Again, the currently used MF model was the most unfavourable 

model since for both crops this model showed the largest average MSEP. The 

best EBLUP model was different in both crops. 

In the winter wheat, the MR 5 model, which does not include the Y∙F and 

Y∙Z∙F interactions, but includes the C∙Z∙F and C∙Z∙Y interactions, was the best 

model in terms of average MSEP. For spring barley, the MR 7 model was the 

best, while it performed less well in the winter wheat. The MR 5 model, which 

was top-performing in winter wheat, was ranked the third best model in spring 

barley. The MR 3, MR 2, MR 1, and MR 5 models were among the five best 

performing models in both winter wheat and spring barley. The MR models 

without zones (MR 9 and MR 10) did not perform well in spring barley five-

year series, while in winter wheat MR 10 was still ranked among the five best 

models, as also shown in the single-year series. 

Table 4. Mean of MSEP from multi-years CV of winter wheat (𝑁 = 6) and spring barley (𝑁 = 6) 

Ranking 
Winter wheat   Spring barley 

Model Mean    Model Mean  

  g2m-4   g2m-4 

1 MR 5 7718  MR 7 2092 

2 MR 3 7718  MR 3 2094 

3 MR 2 7736  MR 5 2094 

4 MR 10 7739  MR 2 2094 

5 MR 1 7743  MR 1 2095 

⋮ ⋮ ⋮  ⋮ ⋮ 
11 MF* 8596  MF* 2320 

*MF is the currently used model in Swedish cultivar testing. 

 

In the multi-year series, the prediction accuracy was not improved with the 

higher-order-interaction effects compared to models that are more parsimonious 

and straightforward to fit, as it also occurred in the single-year analysis. 

Employing the heterogeneous covariance structure for residual effects in the 

multi-year analyses may be useful in order to have variance components 

differing between years or zones. However, based on the single-year series CV, 

the model with heterogeneous variance in the R matrix (SR 4) did not perform 

well as compared to the model with homogeneous residual variance. 

Furthermore, the computation time will be increased and a convergence issue 

may occur when applying a heterogeneous residual variance structure. A higher 

number of interaction terms or a more complex variance-covariance structure 

may cause overfitting that may decrease the accuracy of predictions. As in the 
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single year series, in the multi-year series, it is reasonable to choose the 

parsimonious models since the MSEP of these models outperformed the others. 

Also, the computation time will be less compared to the complex models. In the 

multi-year series, either the MR 3 or MR 5 model may be chosen, since the 

differences of MSEP between these models were subtle in both crops. 

3.2.3 Use BLUP instead of BLUE – Yes, but with some notes 

As we already mentioned in the first study, the empirical datasets that we used 

here were not perfectly normally distributed, which is showed by the residual 

diagnostics in the Figure S1 and S2 in the Supplemental Materials of Paper II. 

However, BLUP per se does not require normality (Searle et al., 1992, p.270 and 

273). The mixed model equations can be derived from the equations for BLUP 

without assuming the normal distribution (Satoh, 2018). 

In practice, the variance components are unknown and must be estimated. 

REML estimates may be imprecise in small datasets, which makes the benefits 

of using random-cultivar-effects models is uncertain. The simulation study from 

Forkman and Piepho (2013) reported, however, that imprecise variance 

component estimates were not a severe problem for the application of EBLUP 

in small randomised complete block experiments. 

We recommend striving for complete datasets for the single-year analysis. 

Forkman (2013) showed that analyses of incomplete datasets using generalised 

least squares (GLS) based on mixed models with random environmental effects 

can give unexpected estimates. In Sweden, it has been a common practice to 

decide which cultivars should be tested in particular zones, depending on their 

expected performance in those zones. Specifically, cultivars might not be tested 

in a zone if they are expected to perform less well in that zone. In this case, the 

cultivars are not missing at random (MAR). If there is a doubt that cultivars are 

missing at random, it might be better to use a model with fixed effects of trials 

because comparisons among cultivars are then based exclusively on within-trial 

information and between-trial information is not recovered (Piepho et al., 

2012b). 

Regarding the missing data, in the multi-year series, the Swedish practice has 

been to exclude from the analysis all cultivars that have not been tested in the 

latest year and at least two years. We recommend that all cultivars should be 

retained in the analysis. The reason is that all cultivars involved in selection 

decisions should be included in the analysis to avoid selection bias, as pointed 

out by Piepho and Möhring (2006). Piepho and Möhring (2006) also mentioned 

that removal of data leads to a missing-not-at-random (MNAR) pattern that 

causes invalid variance component estimates. Besides, if missing data pattern is 



46 

 

MNAR, then EBLUP will systematically be associated with varying degree of 

shrinkage, which causes bias. For example, if a cultivar is very little tested, then 

the shrinkage of all its predicted effects will be large, and so the prediction will 

be less accurate. 

3.2.4 Application of the best model in winter wheat datasets 

We present the application of the SR 5 model in the winter wheat dataset 2016 

and the MR 5 model in the winter wheat dataset 2012–2016. The ANOVA table 

for the fixed effects significance tests and the tables of variance components for 

the winter wheat datasets are given in Tables 5 and 6 in Paper II. 

Table 5 presents an example of different cultivar ranking between EBLUE 

with the SF 3 model and E-BLUP with the SR 5 model in the winter wheat 2016 

single-year-series dataset. The DMY predictions were smaller using E-BLUP 

than using EBLUE in some cultivars, e.g., Etana, G 0512LT3, and Brons. The 

smaller values using EBLUP were a consequence of “shrinkage”. BLUP is a 

shrinkage method since information about the distribution is used, in essence, to 

“shrink” the effects towards zero (Galwey, 2014; Stroup, 2012). The magnitude 

of the shrinkage depends on the “shrinkage factor”, and, in a simple model, the 

shrinkage factor is a function of heritability as described in Galwey (2014, 

p.169).  

Shrinkage thus reduces the spread of the predictions in comparison to fixed 

effects estimation (Robinson, 1991). Means higher than the overall mean are 

shrunk downwards to the overall mean, as also can be seen for some cultivars 

such as Festival and Rivero, which were not listed among the best 10 cultivars 

by the EBLUP method. Therefore, the shrinkage property avoids otherwise over-

optimistic estimates of cultivar performance. On the other hand, the means that 

are lower than the overall mean are slightly increased (shrunken upwards 

towards the overall mean) using SR models. In this case, the shrinkage property 

also mitigates too pessimistic predictions of performance for relatively poor 

cultivars. For example, regarding the best performers, Ohio and RGT Reform 

were not listed among the best 10 cultivars in the E-BLUE model but listed 

among the best 10 cultivars by the E-BLUP method.  

The ranking of the cultivars is different between the EBLUE and EBLUP 

methods. The best cultivar according to the EBLUE method was cultivar G 

0512LT3, while using the EBLUP method cultivar Etana was the best. The 

ranking of the other cultivars was also different between the two models. For 

cultivar recommendation, where a correct ranking of cultivars is essential, the 

EBLUP method should be preferred due to its smaller MSEP. 
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Table 5. Example of different cultivar ranking in the winter wheat 2016 from Zone A, fungicide-

treated. More than half of the cultivars differed in ranking. 

Cultivar EBLUE (SF 3)  EBLUP (SR 5) 

Ranking DMY  Ranking DMY 

  g m-2   g m-2 

Brons 3 915  6 900 

Creator 5 913  9 898 

Effekt 7 905  3 908 

Ellen 4 913  4 906 

Etana 2 938  1 928 

Festival 6 907  - - 

G 0512LT3 1 963  2 912 

Mariboss 9 903  10 893 

Ohio - -  5 903 

RGT Reform - -  8 898 

Rivero 8 904  - - 

Rockefeller 10 903  7 899 

 

Table 6 presents the example of different cultivar ranking between EBLUE 

with the MF model and EBLUP with MR 5 model in the winter wheat dataset 

2012–2016. Again, we can see a considerable shrinkage in the DMY predictions 

using EBLUP in some cultivars, e.g., G0512LT, Lw 06W607-10, RGT 

Universe, and Torp. Also, the ten top-performing cultivars also differed a lot 

between the EBLUE and EBLUP methods. For example, G0512LT was the best 

cultivar according to EBLUP, while RGT Universe was the best cultivar with 

EBLUE. 

Therefore, the multi-year example also clearly shows that the ranking 

between EBLUE and EBLUP differed a lot and that EBLUP provided more 

accurate ranking due to the shrinkage, as indicated by the lowest MSEP in the 

MR 5 model. 

The best variety by EBLUE ranked 6 by the EBLUP method. Some varieties 

that were not listed among the best 10 cultivars in the EBLUE model were listed 

among the best 10 cultivars by the EBLUP method, e.g., Hereford, Audi, and 

Hymack. Again, this example reaffirmed the CV results, suggesting that for 

cultivar recommendation, where a correct ranking of cultivars is critical, the E-

BLUP method should be preferred. 
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Table 6. Example of different winter wheat cultivar ranking in the multi-year analysis (2012–2016) 

from South Zone, fungicide-treated. More than half of the cultivars differed in ranking. 

Cultivar 
EBLUE (MF)   EBLUP (MR 5) 

Ranking DMY   Ranking DMY 

  g m-2   g m-2 

Hereford - -  7 1047 

Audi - -  9 1046 

Hymack - -  8 1047 

Sj 6286003 - -  10 1045 

Memory 6 1076  3 1059 

SJ 7343505 4 1081  5 1053 

Torp 5 1078  4 1054 

R 11224 10 1067  - - 

G0512LT 3 1092  1 1060 

Lw 08DH642-26 2 1142  2 1059 

Lw 06W607-10 1 1143  6 1053 

Hacksta 9 1069  - - 

RGT Universe 8 1073  - - 

Maradona 7 1076  - - 

3.3 Cross-validation of single-stage versus two-stage 
analysis (Paper III) 

The first two studies confirmed that the EBLUP outperformed EBLUE. 

However, those studies only focused on the second stage of the analysis. The 

current-practice strategy is the two-stage unweighted strategy, which can be 

improved by single-stage analysis or two-stage weighted analysis, as mentioned 

by Möhring and Piepho (2009) and Welham et al. (2010). However, it should be 

noted that in this study the main objective is to obtain prediction accuracy for 

zone-based prediction, while Welham et al. (2010) aimed for individual trials. 

The zone-based prediction is also more favourable for breeders since breeders 

want to provide a cultivar that performs well in large TPE.  

In this study, based on the MSEP averages in Table 7 (partly shown), the 

single-stage and the two-stage weighted outperformed the current-practice 

method. For both crops, the single-stage with identity random effects VCOV 

structures and location-specific residual variance structure (1S-ID-LR) 

performed the best, since this approach had the lowest average MSEP. However, 

the differences between 1S-ID-LR and the three weighted two-stage analyses 

(2S-ID-W-FE, 2S-ID-W-AVSED, and 2S-ID-W-S) were minor for both crops. 

Thus, these four analyses performed very similary. 

On the other hand, the current practice analysis (2S-F-U-ZR) was the least 

performing analysis for winter wheat and the second least for spring barley. 
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Furthermore, none of the weighting methods improved the fixed-C∙Z effects 

strategies (2S-F-AVSED and 2S-F-S) compared to the current approach. 

Similar to the first two studies, the complex VCOV structures for C∙Z did not 

improve the predictive model performance. The FA1 structure was far less 

performant than the ID structure for single-stage analyses as well as two-stage 

analyses. No model with FA structure was among the top-five performing 

models. In spring barley, the 1S-FA1-ID performed least well, even worse than 

the current practice. In general, the MSEP of US VCOV was similar to the MSEP 

of FA1. The exception was US in the single-stage analysis with heterogeneous 

residual location-specific variance (1S-US-LR), which for both crops, showed 

the fifth best average MSEP. 

The simple two-stage unweigthed analysis, 2S-ID-U-ID, performed better 

than the 1S-AID in both crops. Thus, this result revealed that the simple EBLUP 

two-stage unweighted analysis produced better predictions than the far too 

simple single-stage EBLUP analysis so using adjusted means from stage 1 were 

more accurate than using a single-stage analysis that is neglecting heterogeneity 

in replicates and incomplete blocks across locations. 

Table 7. Mean of MSEP of winter wheat (𝑁 = 5) and spring barley (𝑁 = 5) 

Ranking 
Winter wheat   Spring barley 

Strategy Mean   Strategy Mean 
  g2m-4   g2m-4 

1 1S-ID-LR 5041  1S-ID-LR 1723 

2 2S-ID-W-FE 5045  2S-ID-W-FE 1726 

3 2S-ID-W-AVSED 5049  2S-ID-W-S 1727 

4 2S-ID-W-S 5051  2S-ID-W-AVSED 1728 

5 1S-US-LR 5057  1S-US-LR 1728 

⋮ ⋮ ⋮  ⋮ ⋮ 
20 2S-F-S 5334  2S-F-U-ZR† 1850 

21 2S-F-U-ZR† 5389   1S-FA1-ID 1870 
†The current-practice analysis in Swedish cultivar testing. 

3.3.1 Application of the best strategies as comparison to the current-

practice strategy in winter wheat 2016 and spring barley 2015 

datasets 

Figure 7 shows the zone-pairwise scatter plot of each cultivar predictions 

(EBLUP) and estimates (EBLUE) of C∙Z effect for each model and crop. Figure 

7A depicts the predictions/estimates of C∙Z effect of the same cultivar from 

South and North zones. Figure 7B presents the predictions/estimates of C∙Z 

effect of the same cultivar from Middle and North zones, and Figure 7C shows 

the prediction/estimates of C∙Z effect of the same cultivar from South and 
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Middle zones. In general, it can be seen that the EBLUP methods (1S-ID-LR, 

2S-ID-W-FE, 2S-ID-W-AVSED, 2S-ID-W-S) have narrower ellipses than the 

EBLUE method (2S-F-U-ZR). Thus, in the EBLUP method, the cultivar 

predictions and rankings between each two zones were more similar than in the 

EBLUE method because the assumption of random effect (EBLUP) cultivar 

exploited the genetic correlation between zones.  

 
Figure 7. Zone-pairwise scatter plot of cultivar estimates of cultivar×zone (C∙Z) interaction effects 

for four models with the smallest MSEP and current-practice model (2S-F-U-ZR EBLUE) in each 

cultivar. (A) Estimates cultivar×zone between North and South. (B) Estimates cultivar×zone 

between Middle and North. (C) Estimates cultivar×zone between South and Middle. The genetic 

correlation between zones is exploited in the EBLUP method compared to the EBLUE method. 
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The genetic correlation between zones for winter wheat dataset was 0.81 and 

for spring barley dataset was 0.84. Since these correlations are quite high, based 

on this study, the cultivar means between two zones are not very different. The 

genetic correlation cannot be obtained with the EBLUE method.  

3.3.2 MSEP is preferable compared to correlation coefficient 

Tables 8 and 9 present Pearson’s product-moment correlation and Spearman’s 

rank correlation of all adjusted cultivar predictions and estimates, using the four 

top-performing strategies (1S-ID-LR, 2S-ID-W-FE, 2S-ID-W-AVSED, 2S-ID-

W-S) and current-practice strategy (2S-F-U-ZR), for  the winter wheat and 

spring barley datasets, respectively. For winter wheat, both Pearson and 

Spearman correlations were high among the four strategies with EBLUP but 

were relatively low between these four strategies and the 2S-F-U-ZR. The 

correlations between the two-stage analyses were close to one. For spring barley, 

the correlations among these four strategies were relatively higher than in winter 

wheat, even the correlations between the strategies with EBLUP and the 2S-F-

U-Z were also high.  

Table 8. Correlation among adjusted cultivar estimates of winter wheat 2016 dataset (above the diagonal: 

Pearson’s product-moment correlation; below the diagonal: Spearman’s rank correlation). 

 Strategy* 

Approach 
(1) 1S-ID-LR 

(2) 2S-ID-W-

FE 

(3) 2S-ID-W-

AVSED  
(4) 2S-ID-W-S  (5) 2S-F-U-ZR 

EBLUP EBLUP EBLUP EBLUP EBLUE 

(1) 1.0000 0.9894 0.9904 0.9895 0.8986 

(2) 0.9866 1.0000 0.9997 0.9997 0.9227 

(3) 0.9881 0.9987 1.0000 0.9999 0.9243 

(4) 0.9872 0.9991 0.9997 1.0000 0.9244 

(5) 0.8889 0.9125 0.9156 0.9144 1.0000 

*1S-ID-LR, single-stage analysis; 2S-ID-W-FE, two-stage fully-efficient; 2S-ID-W-AVSED, two-stage analysis 

with AVSED weights (Möhring and Piepho, 2009); 2S-ID-W-S, two-stage with Smith’s diagonal weights (Smith 

et al., 2001); 2S-F-U-ZR, current practice method. 

Table 9. Correlation among adjusted cultivar estimates of spring barley 2015 dataset (above the 

diagonal: Pearson’s product-moment correlation; below the diagonal: Spearman’s rank correlation). 

 Strategy* 

Approach 

(1) 1S-ID-

LR 

(2) 2S-ID-W-

FE 

(3) 2S-ID-W-

AVSED  

(4) 2S-ID-

W-S  

(5) 2S-F-U-

ZR 

EBLUP EBLUP EBLUP EBLUP EBLUE 

(1) 1.0000 0.9841 0.9812 0.9812 0.9784 

(2) 0.9721 1.0000 0.9998 0.9998 0.9977 

(3) 0.9704 0.9995 1.0000 1.0000 0.9978 

(4) 0.9704 0.9996 1.0000 1.0000 0.9978 

(5) 0.9644 0.9964 0.9964 0.9964 1.0000 

*1S-ID-LR, single-stage analysis; 2S-ID-W-FE, two-stage fully-efficient; 2S-ID-W-AVSED, two-stage analysis 

with AVSED weights (Möhring and Piepho, 2009); 2S-ID-W-S, two-stage with Smith’s diagonal weights (Smith 

et al., 2001); 2S-F-U-ZR, current practice method. 
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In comparison to the MSEPs in Table 7, when exclusively using the Pearson 

and Spearman correlation, as presented in Tables 8 and 9, it is difficult to 

determine that the approaches with random effects of cultivar performed better 

than the one with fixed effects, especially in spring barley. Kobayashi and Salam 

(2000) mentioned a cogent reason that correlation was not satisfactory for model 

evaluation since the mean squared deviation (MSD) were easier to interpret and 

more useful for direct comparison between model output and measurement. For 

that reason, an additional evidence was needed, which was the MSEP from the 

CV study. The MSEP obtained in our CV study clearly showed that the four 

strategies with random effects of cultivar were more accurate than the strategy 

of current practice. Furthermore, the MSEP revealed that models with complex 

VCOV structures were likely overfitted. As also shown in our previous two 

studies, the MSEP values were larger for these complex models than for models 

with simpler VCOV structures. Based on these results, it is clear that the MSEP 

shows better discrimination between the different strategies than correlation 

coefficients. MSEP measures the predictive accuracy (Gauch et al., 2003), and 

is considered to be more informative than the correlation coefficient. 

The MSEP among the 1S-ID-LR, 2S-ID-W-FE, 2S-ID-W-AVSED, and 2S-

ID-W-S strategies were very small. For that reason, the choice of strategy 

depends on computational resources (Gogel et al., 2018). The current software 

and computational resources (Windows 10, 64-bit operating system, 16GB 

RAM) only took a couple of minutes for the single-stage approach. When the 

computational resources are limited, then employing the two-stage analysis is 

preferable. Another benefit in the two-stage analysis is that we can check 

whether any errors or correction needed from the results of  the first-stage before 

proceed to the second-stage. Nonetheless, the two-stage fully-efficient analysis 

needs more memory allocation for conducting the analysis in stage 2 and 

obtaining the EBLUPs due to the full VCOV is passed to stage 2. 

3.3.3 Why is zone-based prediction preferable to individual locations? 

As Damesa et al. (2017) pointed out, it was more informative to obtain 

predictions per agro-ecological zone (larger TPE) than predictions for individual 

locations. This is because farmers are interested in the cultivar that performs well 

on average across broad environmental conditions and the next growing season 

(the next growing season can be considered as a new environment that no trial 

has previously been conducted in). Another reason is that when a prediction is 

made for individual farmer’s field, the predictions of closest trial location can be 

used. However, in this case, the valid standard errors for the predictions cannot 

be achieved since the pattern of interaction between a farmer’s field, which is 
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the target site, and the nearest trial location and the corresponding with years are 

unknown. Nonetheless, if predictions made for zones or a whole TPE, the valid 

inferences are possible to be obtained due to the availability of random sample 

of trial locations and years for that TPE per se (Damesa et al., 2017).  

Furthermore, from a breeder’s perspective, prediction of cultivar 

performance in a specific site is rarely of interest. Swedish official cultivar trials 

has the same objective, i.e., to recommend well-performing cultivars for each 

zone, not for individual trial locations. Thus, accurate information regarding 

which cultivars perform well within zones or perform above average across 

locations is essential, for farmers as well as for breeders. 

3.3.4 Why not using BLUP in every stage?  

The cultivar effects should be modelled as random when the primary goal is 

selection of the best cultivars from the population under study, and the effects 

and residuals presumably follow normal distributions. In this case, BLUP will 

give predictions of cultivar rankings that are close to the true cultivar rankings 

(McCulloch et al., 2008, p.309; Searle et al., 1992, p.268, 269 and 273). The 

shrinkage feature of BLUP avoids over-optimistic predictions of top-performing 

cultivars and over-pessimistic predictions of less-performing cultivars. 

Furthermore, with random effects in the C∙Z interaction, the accuracy of 

predictions within zones is improved due to borrowing of information across 

zones (Atlin et al., 2000; Kleinknecht et al., 2013; Piepho et al., 2016). The 

borrowing information refers to recovering or using of information across zones. 

As pointed out by Lee et al. (2017, p.144), “With a random effect specification, 

we gain significant parsimony. In such situations, even if the true model is the 

fixed effect model, i.e., there is no random sampling involved, the use of random 

effect estimation has been advocated as shrinkage estimation (James and Stein, 

1992). 

Nevertheless, we discourage using BLUP in the first stage when the two-

stage analysis is used. Using BLUP in the first stage leads to double shrinkage, 

since BLUP is also used in the second stage. If BLUP were to be used in the first 

stage, predictions have to be unshrunk before proceeding to the second stage 

(Smith et al, 2001), but it is not obvious how this “unshrinking” should be 

accounted for in the weighting applied in the second stage. Some progress could 

be made by taking recourse to so-called “deregressed” proofs as used in animal 

breeding (Calus et al., 2016), but we consider this step is unnecessary in plant 

breeding. Dairy cattle breeders, for example, are often forced to use BLUPs in 

all stages, essentially because bulls do not give milk and a bull’s merit can only 

be referred by “borrowing strength/information” from its female relatives. 
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3.4 A new inter-zone stability measure analysis 

In this study, a new inter-zone stability measure is proposed. The proposed inter-

zone stability measure has the similarity to those proposed by Wricke (1962), 

Shukla (1972), and Denis et al. (1997), i.e., a stability variance of each cultivar 

across environment based on the cultivar×environment interactions terms, and 

can be extended by including year term as proposed by Lin and Binns (1988). 

Piepho (1999) demonstrated the computation of Shukla’s stability (1972) by 

using a mixed-models approach. This was done by computing cultivar-specific 

variance in the interaction genotype×environment term. Piepho et al. (2016) also 

demonstrated Shukla’s stability (1972) by using a mixed-models approach for 

cultivar×zone and cultivar×zone×year for two different seeding time of wheat 

separately. The stability measure that was obtained from cultivar×zone×year 

was considered similar as type 4 stability since it included the year term.  

The drawback of this approach is that the computation time increases as the 

number of cultivars increases, and the convergence issues will occur due to the 

amount of data and the model complexity. Besides, it can occur that the stability 

estimates go to non-positive definite variance due to the model complexity and 

convergence issues. Piepho et al. (2016) performed the stability analysis 

separately for each seeding time, so it did not determine the cultivar stability by 

including the seeding time term. 

We propose a new stability measure that applies the same EBLUP model for 

analysing the MET data. In other words, there is no need to fit other models or 

covariance structures to compute the stability measure. In other words, if we 

have other terms, e.g., seeding time or fungicide level, we can obtain the stability 

measure directly from one model. The conceptual difference of the proposed 

inter-zone stability measure, as compared with other measures, is that the 

proposed measure does not directly involve the variance components estimates 

in the computation of the stability measure and is specifically not the square root 

of any variance parameter estimate of the fitted model.  

Instead, the stability measure is only a descriptive measure of the variability 

in the estimated interaction effects for each cultivar. Since the stability measure 

is the standard deviation computed from the coefficients of random-

effects/EBLUPs that includes all cultivar×zone interaction terms, it allows the 

assumption of a model with homogeneous cultivar×zone random interaction 

effects. Thus, in contrast to the Shukla (1972) approach, the proposed inter-zone 

stability measure does not require a model with “stability variances” or 

heterogeneous variance of random cultivar×zone interaction effects, which may 

not always be easy to fit, especially with a large number of cultivars and a large 

number of environments. The standard deviation is preferred to the variance, 

since this is a measure on the same scale as the observations. 
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3.4.1 Application in the winter wheat 2012–2016 dataset 

The inter-zone stability measure of each cultivar in the winter wheat 2012–2016 

dataset within each fungicide treatment is presented in Table 10. Computing the 

stability measure based on the multi-year dataset is more reliable than computing 

it based on a single-year dataset. Leon and Becker (1988) reported that there is 

no reliable estimation of phenotypic stability based on a single-year analysis. 

Stability measure of multi-year and single-year series may differ much because 

of their using different models and information. Also, it is possible that in the 

next year, the weather changes drastically. In that case, the stability measure 

between two different years become very distinct. The stability measure should 

be based on the multi-year series, since it will be more reliable than based on a 

single-year. 

Table 10. The DMY stability measure of each cultivar in each level of fungicide treatment based on 

five-year series winter wheat dataset (2012–2016). The stability measure is a standard deviation 

of each cultivar based on the combination of zones and years. 

Cultivar Fungicide Stability 
  g m-2 

Dante Untreated 20.52 

Dante Treated 5.87 

Torp Untreated 15.69 

Torp Treated 13.98 

RGT Hasseth Untreated 22.61 

RGT Hasseth Treated 10.03 

R 11224 RAGT Untreated 17.52 

R 11224 RAGT Treated 8.64 

Etana Untreated 13.48 

Etana Treated 7.87 

Ohio Untreated 14.51 

Ohio Treated 5.18 

Lw 08DH642-26 Untreated 3.18 

Lw 08DH642-26 Treated 7.03 

Lw 06W607-10 Untreated 21.32 

Lw 06W607-10 Treated 21.10 

Maradona Untreated 8.38 

Maradona Treated 10.32 

Informer  Untreated 7.91 

Informer  Treated 5.98 

 

The stability measure was computed using the multi-year model, i.e., the MR 

5 model. The multi-year stability measures were obtained based on the EBLUP 

coefficients of cultivar×zone (C∙Z), cultivar×zone×fungicide (C∙Z∙F), and 

cultivar×zone×year (C∙Z∙Y). This proposed stability measure can be related to 
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the type 4 stability (Lin and Binns, 1988) because the year term is included in 

the model. 

Since the stability measure is a standard deviation of each cultivar based on 

combinations of zones and years, the smaller the value, the more stable a cultivar 

is. For example, for cultivar Dane, with fungicide treated, is relatively more 

stable than without the fungicide, since the deviation with fungicide treatment is 

smaller (5.87 g m-2) than the untreated (20.52 g m-2). The computation of the 

stability measure for Dante, as an example, is available in the Appendix. 

In general, one has to fit this four-way term, i.e., cultivar×zone×fungicide× 

year (C∙Z∙F∙Y), to obtain the stability measure of each cultivar for each fungicide 

across zones and years. The drawbacks with fitting four-way term are; (1) the 

computation time will increase as the number of cultivar increases and because 

the complex interaction term has to be fitted, and (2) non positive definite 

stability estimate may occur, which leads to zero values, and this somewhat 

makes no sense that the stability of a cultivar is zero. 

The proposed stability measure can be computed using the same model that 

is used for the MET analysis so if the simpler model is adequate for the MET 

analysis, the stability can be computed without changing any factor nor VCOV 

structure of the factor in the model. We have shown that the stability for each 

cultivar in each fungicide treatment across the years can be obtained easily 

without the four-way interaction terms (C∙Z∙F∙Y), since the best model 

according to the CV was the model that excluded the four-way interaction term. 

Thus, it reduces the computation time and can provide a non-zero stability 

measure of each variety. 

In practice, the proposed new inter-zone stability measure requires that any 

missing data are missing at random (MAR) and the dataset is not highly 

imbalanced. If missing data are not missing at random and the method for 

analysis is EBLUP, then there will systematically be varying degree of 

shrinkage, which causes bias in the relative assessments of stability. For 

example, if a cultivar is very little tested, then the shrinkage of all its predicted 

effects will be large, and so this cultivar will appear more stable than it actually 

is. An alternative can be the options proposed by Edwards and Jannink (2006) 

and Orellana et al. (2014), who showed that hierarchical Bayesian methods are 

useful to model heterogeneity of both residual and cultivar×environment 

interaction variances. The Bayesian method is an appealing alternative, since, in 

our experience, a model with heterogeneous variance for cultivars is not easily 

fitted by REML to small datasets. A further study would be valuable to compare 

the new REML-based inter-zone stability measure and the Bayesian approach. 
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The general conclusions from this study are: 

1. The CV revealed that current-statistical method of Swedish cultivar testing, 

which is using EBLUE for cultivar and cultivar×zone terms has to be 

abandoned and replaced with EBLUP (random effects) to improve the zone-

based prediction accuracy and cultivar rankings. 

2. The two-stage unweighted analysis strategy needs to be replaced with either 

a two-stage weighted or a single-stage analysis. 

3. The new inter-zone stability measure has the salient features that it does not 

need a different model to compute the cultivar stability. Thus, this measure 

requires little computational time. 

The detailed conclusions of each part of this study are given in the following 

subsections. 

4.1 Cross-validation on fungicide-treated subsets 
datasets 

 The EBLUP models performed better than the EBLUE model. 

 For the routine analysis of single-year, the recommended model was the  

SYR 1 model, Z : C + L + C∙R, with heterogeneous residuals. 

 For the routine analysis of multi-year, the recommended model was the 

MYR 1 model, Z : C + L + Y + C∙Z + C∙Y + Y∙Z + C∙Z∙Y. 

4.2 Cross-validation on all fungicide levels datasets 

 The current model for routine analysis performed less well compared to the 

EBLUP models. Thus, the currenty used model should be discontinued in 

routine analysis. 

4 Conclusions 
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 Winter wheat data were more heterogeneous within zones compared to 

spring barley, which explained that the model without zonation performed 

better in winter wheat datasets than in spring barley datasets. However, the 

model that includes zone still performed better than the one without zone. 

Thus, zonation is definitely necessary. 

 Based on the MSEP, using more interaction terms, (e.g., F∙L, C∙L∙F, C∙F∙Y, 

or C∙Z∙F∙Y) or fitting more complex VCOV structures was not necessary. 

 For the routine analysis of single-year series, the recommended model was 

the SR 5 model, Z + F + Z∙F : C + L + C∙Z + C∙F + C∙Z∙F. 

 For the routine analysis of multi-year series, the recommended model was 

the MR 5 model, Z + F + Z∙F : C + L + Y + C∙Z + C∙Y + C∙L + C∙F + Y∙Z 

+ F∙L + C∙Z∙F + C∙Z∙Y. 

4.3 Cross-validation for single-stage versus two-stage 
analysis 

 The MSEP from the CV study provided a direct measure of prediction 

accuracy of single-stage and two-stage strategies compared to merely using 

the correlation coefficient.  

 The two-stage weighting analysis (fully-efficient, AVSED and Smith’s 

diagonal weighting) performed similarly to the single-stage analysis with 

location-specific residual variances. Thus, the loss of information due to 

diagonal approximate weighting was negligible. 

 The decision of using a single-stage or a two-stage analysis depends on the 

computational resources. 

 The benefit of using two-stage analysis is the possibility to check any errors 

that were produced in the first-stage and make corrections before proceeding 

to the second-stage. 

 Complex VCOV structures were not necessary, because there were only three 

zones. Moreover, the complex VCOV caused over-fitting of the model.  

 As also shown in our two first studies, the effects of C and C∙Z interaction 

effects were better assigned random than fixed, since it improved accuracy 

of zone-based prediction through borrowing of information across zones. 

 Prediction for zones is more useful and informative for farmers and breeders 

than prediction for individual locations, since zones cover broader TPEs. 
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4.4 The new inter-zone stability measure 

 The proposed inter-zone stability measure is easily computed directly from 

the predictions of the random effects, without any computational burden, and 

may include other factors that are involved in the genotype×environment 

interactions term, e.g., seeding time and fungicide level. 

 The stability measure adds additional valuable information for cultivar 

recommendation about the stability of the cultivars across zones.  

 We recommend using a multi-year dataset to obtain the cultivar stability, 

since such dataset comprises more information than a single-year dataset. 
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Background 

Swedish official cultivar testing conducts multienvironmental trials (MET) 

every year to evaluate the performance, i.e., yield, of a vast number of cultivars 

in different environmental conditions because different cultivars perform 

differently in various environmental conditions, known as genotype× 

environment interactions (GEI). The aim of a MET is to provide accurate 

information of cultivar performance so that a recommendation of which cultivar 

that performs the best in a farmer’s growing condition can be available. A robust 

and reliable statistical procedure is needed to fulfil this aim. Thus, in this thesis, 

the current-practice statistical model of Swedish official cultivar testing used for 

analysing MET data was assessed via cross-validation (CV). 

A CV study is conducted for model selection purpose. The idea of CV is to 

split a dataset into a training set and a validation set. The models that are 

proposed will be fitted to the training set. The prediction values from the fitted 

model in the training set will be subtracted with the values in the validation set. 

Then, these differences will be squared and the average computed, known as the 

mean squared error of prediction differences (MSEP). Thus, the model that 

produces the smallest MSEP is considered as the best model that provides the 

best prediction accuracy. 

 

Problems 

The current-practice statistical method in Swedish official cultivar testing 

uses fixed cultivar effects, known as best linear unbiased estimation (BLUE). 

BLUE has drawbacks that the estimation of yield will be too optimistic since it 

cannot handle missing data properly, and so decrease the accuracy of the 

cultivars’ yield information. Note that, in the MET data, the degree of 

imbalanced is usually high. We proposed to use a random cultivar effects, known 

as best linear unbiased prediction (BLUP), because BLUP will handle missing 

data better than BLUE. For example, BLUP will use all information of cultivars 
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in other environments, and so it maximises the prediction of the cultivars. 

Moreover, BLUP is a prediction that predicts the future performance of the 

cultivars, while BLUE is merely an estimation of what has been done in the 

MET, since BLUE assumes the estimation will not change when the MET is 

repeated. BLUE is inappropriate, since MET should predict the future 

performance of the crop. The environmental conditions, such as weather, 

unpredictably changes from year to year.  

The analysis step of the routine procedure in Swedish official cultivar testing 

was also assessed. In general, there are single-step and two-step analyses. The 

single-step analysis has the benefit that it only needs a one-time analysis with a 

single model for the results. However, the computational time may increase due 

to the amount of data and the complexity of the model. The current method is a 

two-step analysis without any precision measure (unweighted). In this method, 

individual trials/locations in each zone are analysed separately. Then, the results 

from step 1, i.e., the adjusted means of each cultivar at each location are passed 

to step 2 to make a final analysis for the zone level. The drawback of this method 

is that without carrying the precision measure from step 1, the analysis results in 

step 2 are less precise, due to loss of information from step 1. Besides, with many 

missing data, the precision measure is essential to “weight” each trial/location 

as a “correction”. 

 

What was done in this study? 

We wanted to improve prediction accuracy in three Swedish agricultural 

zones, i.e., south, middle, and north of Sweden. Thus, a zone consists of several 

locations. In other words, a zone is a compilation of several locations that have 

similar geographical or climate conditions. Thus, a CV study was performed to 

compare the current statistical method, which uses BLUE, with BLUP for zone-

based prediction. 

We also compared the current practice of a simple two-step analysis with the 

single-step and several two-step weighted analyses with different precision 

measures via CV. The single-step analysis was able to be included in this study, 

since the availability of developed software that able to run the single-step 

analysis in a short time. 

A new inter-zone stability measure was proposed to assess the stability of 

cultivars. Stability measure is important because they provide information 

regarding the performance of cultivars across zones and years. Farmers would 

like to have not only high yield but also a stable cultivar across the years. Many 

stability measures are available. However, the computation method and time are 

sometimes a burden. For that reason, we proposed this stability measure that is 

easier and more flexible to compute. 
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The results 

The results of this thesis showed that BLUP outperformed BLUE, and the 

two-step unweighted procedure performed less well compared to the single-step 

and the two-step analyses. Thus, the routine procedure of the current-practice 

should be replaced by using BLUP in combination with, either a single-step or 

a two-step weighted analysis. The proposed new inter-zone stability measure can 

be computed easily. Moreover, the stability measure provides more information 

for farmers to choose not only a high-yield but also a stable cultivar across years 

since the stability measure may be obtained from a multi-year series analysis. 
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The dry matter yield (DMY) coefficients of cultivar×zone×fungicide (C∙Z∙F), 

cultivar×zone (C∙Z), cultivar×zone×year (C∙Z∙Y), and the summation of the 

coefficients for cultivar Dante in each level of fungicide treatment for computing 

the stability measure based on five-year series winter wheat dataset (2012–2016) 

fitted with the MR 5 model. 

Year Cultivar Region Fungicide EBLUP coefficients Summation 

        C∙Z∙F C∙Z∙F C∙Z∙Y   

2013 Dante South Untreated 256.51 17.87 -72.45 201.93 

2013 Dante Middle Untreated -77.54 -8.05 -20.00 -105.59 

2014 Dante South Untreated 256.51 17.87 123.09 397.47 

2014 Dante Middle Untreated -77.54 -8.05 -48.27 -133.86 

2014 Dante North Untreated -110.99 -6.27 -78.47 -195.73 

2015 Dante South Untreated 256.51 17.87 102.85 377.23 

2015 Dante Middle Untreated -77.54 -8.05 -0.90 -86.50 

2015 Dante North Untreated -110.99 -6.27 24.59 -92.68 

2013 Dante South Treated -99.29 17.87 -72.45 -153.87 

2013 Dante Middle Treated 6.70 -8.05 -20.00 -21.35 

2014 Dante South Treated -99.29 17.87 123.09 41.68 

2014 Dante Middle Treated 6.70 -8.05 -48.27 -49.62 

2014 Dante North Treated 55.81 -6.27 -78.47 -28.93 

2015 Dante South Treated -99.29 17.87 102.85 21.44 

2015 Dante Middle Treated 6.70 -8.05 -0.90 -2.25 

2015 Dante North Treated 55.81 -6.27 24.59 74.12 

*The stability measure of Dante for each fungicide is computed based on eight values of the 

summation. 
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