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ABSTRACT 

Fisheries management is slowly evolving from its traditional single species focus to a more 

holistic ecosystem based approach. Yet, limits for exploitation are almost always set based on 

single species models, treating species as isolated entities. This is problematic since the 

sustainability of a fishery hinges on its effects on the exploited community as a whole. Here, 

we develop a novel analytical approach of estimating exploitation rates that are sustainable 

with respect to the state of whole fish communities. Our approach simultaneously addresses 

species interactions, environmental covariates and natural variability of population sizes, yet it 

is framed around a simple and accessible objective. We derive Ecologically Sustainable 

Exploitation Rates, i.e. exploitation rates associated with a maximum acceptable probability 

(determined by management) that any interacting species decreases to an unacceptably low 

population size. Using models fitted to an exploited fish community we show how accounting 

for species interactions constrains the possibilities for ecologically sustainable exploitation. 

The conventional omission of species interactions may thus result in overestimated 

exploitation limits. Moreover, our application rendered a counterintuitive result: it suggests 

that the exploitation of one species should increase, as compared to mean historical levels, for 

the purpose of conservation of the community as a whole. Such insights could impossibly be 

gained using single species approaches, illustrating the need to adopt multispecies models in 

fisheries management. Analytical derivation of Ecologically Sustainable Exploitation Rates 

offers a mean to do so.  

 

Keywords: Multispecies exploitation; Multispecies objective; Reference points; Stock 

assessment; Viability modeling; Statistical modeling. 
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INTRODUCTION 1 

Reference points for fisheries management have traditionally been set based on a single 2 

species perspective, and are most often still derived using such an approach (Collie et al., 3 

2014; Holsman, Ianelli, Aydin, Punt, & Moffitt, 2016; Skern-Mauritzen et al., 2016; 4 

Möllmann et al., 2014). However, selective fishing also indirectly affects non-target, 5 

ecologically interlinked species (Baum & Worm, 2009; Cury et al., 2011; Smith et al., 2011). 6 

In the worst case this might even lead to extinctions of other dependent species (Matsuda & 7 

Abrams, 2006; Säterberg, Sellman, & Ebenman, 2013), thus questioning the viability of a 8 

single species approach in fisheries management. Moreover, limits for exploitation rates based 9 

on single- and multispecies approaches can differ substantially (EC, 2012; Gislason, 1999; 10 

Gårdmark et al., 2013; Holsmann, Ianelli, Aydin, Punt, & Moffitt, 2016; May, Beddington, 11 

Clark, Holt, & Laws, 1979; Tyrell, Link, & Moustahfid, 2011), because species interactions 12 

govern how populations respond to fishing (Gårdmark et al., 2013). Increased fishing of 13 

forage fish might, for example, decrease the sustainable fishing limit of their predators due to 14 

food-shortage. Fishing on predators may instead lead to increased sustainable fishing limits of 15 

their prey fish when they are released from predation (Gislason, 1999; May, Beddington, 16 

Clark, Holt, & Laws, 1979; but see Huss, de Roos, Van Leeuwen, & Gårdmark, 2014). A 17 

successful management of exploitation of interacting species therefore requires a multispecies 18 

approach. 19 

 20 

However, population dynamics and thus exploitation limits of fish populations are also 21 

affected by other factors besides species interactions and exploitation. Population dynamics of 22 

fish species result from stochastic processes, and environmental conditions affect fish 23 

productivity (Lindegren, Möllmann, Nielsen, & Stenseth, 2009). Moreover, uncertainty about 24 

any biotic or abiotic process propagates to uncertain fishing limits (Thorpe, Le Quesne, 25 



 

Luxford, Collie, & Jennings, 2015). Therefore, to set sustainable and precautionary limits for 26 

exploitation, approaches should not only be multispecies, but also account for exogenous 27 

environmental variables (Gårdmark et al., 2013; Lindegren, Möllmann, Nielsen, & Stenseth, 28 

2009), uncertainty in parameter estimates (Link et al., 2012; Thorpe, Le Quesne, Luxford, 29 

Collie, & Jennings, 2015) and natural variability of population sizes (Lindegren, Möllmann, 30 

Nielsen, & Stenseth, 2009; Link et al., 2012). 31 

 32 

Although it is desirable to address biotic, abiotic as well as statistical factors when estimating 33 

exploitation limits in a multispecies context, accounting for such factors may lead to complex 34 

modeling outcomes (Collie et al., 2014). Conventional reference points derived from 35 

statistical multispecies models are, for example, highly uncertain (Holsman, Ianelli, Aydin, 36 

Punt, & Moffitt, 2016) and contingent on exploitation exerted on all species in a community 37 

(Gislason, 1999; May, Beddington, Clark, Holt, & Laws, 1979). Basing management actions 38 

on such reference points may thus be a difficult task (but see Norrström, Casini, & Holmgren, 39 

2017). However, viability modeling offers an alternative procedure (Cury, Mullon, Garcia, & 40 

Shannon, 2005; Doyen et al., 2012). This modeling framework infers that all trajectories of a 41 

dynamical system under uncertainty remain within predefined boundaries of its state 42 

variables. Thus, rather than estimating uncertain reference points that depend on exploitation 43 

exerted on all species in a community, viability modelling can be used to estimate ranges of 44 

exploitation rates leading to a viable status of the community as a whole. 45 

 46 

Multispecies models are needed when estimating sustainable exploitation rates in 47 

communities of interacting species. Yet, designing such models is difficult, since knowing 48 

which specific ecological processes are at work in a large ecosystem is intricate (Planque, 49 



 

2016). Most modern statistical multispecies models are therefore to some extent dependent on 50 

assumptions of ecological processes and preset parameter values (Plagányi et al., 2014). 51 

However, an alternative is to statistically fit all parameters of a stochastic multispecies model 52 

with no prerequisite assumptions about parameter values (Ives, Dennis, Cottingham, & 53 

Carpenter, 2003). This has been argued as the preferable approach for tactical fisheries 54 

management advice (Plagányi et al., 2014), because species interactions can completely 55 

determine both qualitative and quantitative effects of fishing (Gårdmark et al., 2013). Fully 56 

statistically fitted stochastic multispecies models may further be preferable for assessing 57 

communities’ long-term responses to exploitation, since the net effects of species on each 58 

other are then based solely on observation data. Thus, it is somewhat surprising that fully 59 

statistically fitted stochastic multispecies models have not, at least to our knowledge, been 60 

used for estimating long-term exploitation rates associated with a viable status of fish 61 

communities (cf. Lindegren, Möllmann, Nielsen, & Stenseth, 2009). 62 

 63 

Here we introduce a novel analytical time series approach of estimating exploitation levels 64 

associated with a viable status of communities of interacting fish species (see Methods). The 65 

approach relies entirely on statistically fitted model parameters and it can handle both 66 

environmental covariates and natural variability of fish populations. We derive Ecologically 67 

Sustainable Exploitation Rates, i.e. exploitation rates associated with a low probability (lower 68 

than a predefined maximum acceptable probability) that any interacting species in a 69 

community goes below its predefined critical biomass limit. We show how such Ecologically 70 

Sustainable Exploitation Rates can be analytically derived from purely statistically fitted 71 

models, and demonstrate the approach using models fitted to long-term observation data for 72 

the fish populations dominating the fisheries in the Baltic Sea.  73 

 74 



 

RESULTS AND DISCUSSION 75 

Estimating Ecologically Sustainable Exploitation Rates  76 

An ecologically sustainable exploitation rate (hereafter ESER) can quantitatively be defined 77 

as a mean exploitation rate associated with a low probability (lower than a predefined 78 

maximum acceptable probability) that any fish population goes below its critical biomass 79 

limit (here we use Blim; a biomass limit below which a fish population’s productivity risks 80 

being impaired [ICES, 2015]). ESERs are thus related to a quantitative and probabilistically 81 

well-defined objective at the community level. They require three inputs before application: 82 

(i) a statistical multivariate model fitted to time series of interacting fish populations, 83 

exploitation rates and potentially important environmental covariates; (ii) biological 84 

information on critical biomass limits for the interacting fish populations; and (iii) a 85 

maximum probability a manager is willing to accept. Further, in contrast to how conventional 86 

reference points previously have been derived using statistical multispecies models, i.e. 87 

through extensive computer simulations, ESERs can be derived analytically (see Methods; 88 

Figs. 1 & S1). 89 

 90 

Example of Ecologically Sustainable Exploitation Rates 91 

To exemplify the ESER approach we use multivariate autoregressive (MAR-) models fitted to 92 

survey data for the three commercially most important fish populations in the Baltic Sea: cod, 93 

sprat and herring (see “Baltic Sea application” & “MAR-model assumptions” in SI for details; 94 

Table S2). Limits for ESERs based on the final model, following model selection (Table S1 & 95 

S3; Figs. 1-2 & S2-S4), suggest that it may be beneficial for the viability of the fish 96 

community to increase sprat exploitation rate somewhat compared to mean historical levels 97 

(1988-2014). This is because a small increase in sprat exploitation rate would decrease the 98 

probability that any species declines below its critical biomass limit (Fig. 1d), and because the 99 



 

upper limit to sprat ESER (0.62 [0.39 1.16]; Fig. 1c) is more disconnected from mean 100 

historical exploitation levels (i.e. zero anomaly) than sprat’s lower limit (-0.53 [-1.75 -0.25]; 101 

Fig. 1a). Exploitation rate of sprat would thus be at maximum distance from its two ESER 102 

limits if increased slightly above mean historical levels. The reason for this seemingly 103 

counterintuitive result is the negative effect of sprat on both cod and herring found in the final 104 

model (Table S1). As a result, increased exploitation of sprat decreases the likelihood that cod 105 

and herring populations decline below their critical biomass limits (Table S4). For cod and 106 

herring, however, ESER limits suggest that lowering exploitation below mean historical levels 107 

is always a beneficial management strategy (cod upper limit: 0.84 [0.61 1.49]; herring upper 108 

limit: 0.39 [0.24 0.79]; herring lower limit: -1.64 [-6.65 -0.79]), across all models investigated 109 

(Table S3; see also Table S5). Overall, the ESER limits illustrate the importance of a 110 

multispecies approach to fisheries management since an increased exploitation of a given 111 

species may in fact - due to species interactions - be beneficial for conservation of a 112 

community as a whole; a result that impossibly can be rendered using a single species model 113 

(Fig. S5).  114 

 115 

When exploitation is concurrently varied for all populations in the final model, species 116 

interactions constrain the ranges of ESERs (Fig. 3) compared to the single species case (Fig. 117 

S5). Further, the more interactions that are included in the model, the smaller the range of 118 

ESERs (Fig. 3 vs. Fig. S6). Thus, due to interdependence among fish populations and 119 

uncertainties in these, narrow ranges of exploitation rate combinations are needed to attain the 120 

multispecies objective in multispecies models (Figs. 3 & S6). In contrast, ESERs derived 121 

from the corresponding single species models have much wider ranges (Fig. S5) and they 122 

show that decreased exploitation is always beneficial for the community. Thus, if species 123 



 

interactions and accompanying interdependencies of different fisheries are not accounted for 124 

when estimating ESERs, the range of ESERs will be overestimated and misleadingly large.    125 

 126 

The multispecies objective may be differently sensitive to exploitation of different fish 127 

populations. In our example, the multispecies objective is more sensitive to changes in 128 

exploitation of sprat than of the other species (Fig. 3a-c & g-i). This specific result stems, in 129 

our example, from three factors: (i) compared to mean historical exploitation rate for each 130 

species during 1988-2014, a change in the exploitation rate of sprat causes an almost twice as 131 

large effect on the ln(biomass) of sprat than what a change in the exploitation rate of cod or 132 

herring causes on their respective ln(biomasses) (diagonal in Table S4); (ii) the variability of 133 

mean biomass responses of all species to changes in sprat exploitation rate is larger than that 134 

of the responses to changes in exploitation of the other species (CI ranges in Table S4); (iii) 135 

the initial probability that a population declines below its Blim is initially higher for both cod 136 

and herring than for sprat (Fig. 1b), such that a relatively small decrease in sprat exploitation 137 

rate indirectly causes cod and herring to decrease below their Blims. Overall, sensitivity of the 138 

multispecies objective to changes in exploitation of a given fish population thus depends on 139 

the sensitivity of the targeted population, inter- and intra-specific interactions among 140 

exploited species, natural variability of fish populations, parameter uncertainty, and how close 141 

populations initially are to their critical biomass limits. 142 

 143 

Implications of the ESER approach 144 

The analytical approach of estimating reference levels for exploitation in fish communities we 145 

present can simultaneously addresses natural variability among fish populations, 146 

environmental covariates, species interactions as well as resulting interdependencies of 147 



 

different fisheries. Although similar multispecies models have been developed (Collie et al., 148 

2014, Plagányi et al., 2014), very few have been applied when setting reference points for 149 

management (Collie et al., 2014; Möllmann et al., 2014; Plagányi et al., 2014; Skern-150 

Mauritzen et al., 2016). One potential reason is that multispecies models often give less 151 

conservative estimates of exploitation targets associated with maximum sustainable yield, i.e. 152 

higher estimates of fishing mortality, than single species models (e.g. EC, 2012; Gislason, 153 

1999; Holsman, Ianelli, Aydin, Punt, & Moffitt, 2016; Norrström, Casini, & Holmgren, 154 

2017). Such permissive multispecies targets lead to unsustainably low population biomasses 155 

that are particularly sensitive to stochastic perturbations (EC, 2012; Holsman, Ianelli, Aydin, 156 

Punt, & Moffitt, 2016; Norrström, Casini, & Holmgren, 2017). It has therefore been suggested 157 

that critical biomass limits of fish populations should be introduced when setting target levels 158 

for exploitation using multispecies models, resulting in lower recommended target catches 159 

(Holsman, Ianelli, Aydin, Punt, & Moffitt, 2016). Thus, if conservation of fish populations is 160 

of concern, target reference setting based solely on maximizing yield will not suffice in a 161 

multispecies context. Here, as opposed to target reference point setting, we have derived an 162 

approach with a single conservation objective: ESERs are associated with a low probability 163 

(lower than a predefined maximum acceptable probability) that any fish population goes 164 

below its critical biomass limit. The boundaries for the ranges of ESERs (Fig. 3) should 165 

therefore be seen as exploitation limits, and if exploitation targets based on other objectives 166 

(e.g. maximum sustainable yield) are not within these limits they could be defined as 167 

ecologically unsustainable. In a broad sense, the ESER approach could thus potentially act as 168 

a complement to traditional single species stock assessment, and exploitation rates derived 169 

from single species stock assessments could readily be evaluated for ecological sustainability, 170 

using the ESER approach.  171 

 172 



 

The ranges of ESERs depend on four factors: (i) sensitivity of fish populations to exploitation 173 

and environmental covariates; (ii) species interactions; (iii) different types of uncertainty (i.e. 174 

process error, parameter uncertainty and uncertainty in covariate projections); and (iv) the 175 

multispecies objective. The first two combined determine mean biomass responses of fish 176 

populations to changes in mean values of extrinsic variables (i.e. exploitation rates and 177 

environmental covariates); the third factor determines the variability of these fish stock 178 

projections; and the last determines how ESERs are probabilistically bounded by species’ 179 

critical biomass limits. Thus, an increase in any type of uncertainty will increase the 180 

variability of fish population projections. This increases the probability that any fish 181 

population declines below its critical biomass limit, leading to a smaller range of ESERs. 182 

Correspondingly, reduced uncertainty will instead increase the range of ESERs. Thus, if 183 

uncertainty of any type increases, the statistical support for exploiting a given multispecies 184 

community in an ecologically sustainable way decreases. Exploitation rate combinations 185 

suggested by the ESER approach are therefore strongly contingent on the quality of input data 186 

(e.g. precision and time series length).  187 

 188 

The range of ESERs inevitably depends on the multispecies objective, i.e. on the predefined 189 

maximum acceptable probability, the critical biomass limits, as well as the number of species 190 

it accounts for. If a manager is willing to accept a large risk (i.e. a high probability that any 191 

population declines to the extent that its productivity is impaired) or low critical biomass 192 

limits, a wide range of exploitation rates would be accepted (Figs. S7 & S8 vs. Fig. 3, 193 

respectively). Further, similar to viability models, where the viability kernel shrinks with an 194 

increasing number of boundaries of its state variables (Cury, Mullon, Garcia, & Shannon, 195 

2005; see Doyen et al., 2012 for an example), the range of ESERs decreases with the number 196 

of species’ critical biomass limits incorporated in the multispecies objective. This result is an 197 



 

inherent property of the multispecies objective, and for a fixed maximum acceptable 198 

probability, an increasing number of species included in the analysis will eventually lead to no 199 

support for ecologically sustainable exploitation. Yet, for diverse ecosystems, it may be just 200 

as important to consider conservation of the ecological functions inherent in a system as it is 201 

to consider conservation of the populations of all species (e.g. Bozec, O’Farrell, Bruggemann, 202 

Luckhurst, & Mumby, 2016; Cury et al., 2011). To this end, the ESER approach could be 203 

extended by redefining the multispecies objective as a probability lower than a maximum 204 

acceptable probability that either (i) the total biomass of any functional group goes below a 205 

predefined group specific critical biomass limit, or (ii) that any species within each functional 206 

group goes below its critical biomass limit (see “ESERs in specious systems” in SI). The 207 

former means that limits for exploitation are associated with conservation of the total biomass 208 

of each functional group, whereas in the latter case they are associated with a maximum 209 

acceptable probability that any species, in the most sensitive functional group, decreases 210 

below its critical biomass limit. Thus, if the mere conservation of ecosystem functions is of 211 

concern the former approach could be used, whereas if conservation of individual species is 212 

also of concern the latter should be used. Importantly, any of these modifications makes it 213 

possible to derive ESERs also in specious ecosystems.  214 

 215 

The ESER approach is not only useful for deriving quantitative exploitation limits; it also has 216 

an important qualitative application in management. It can be used to single out species of 217 

specific management concern for the conservation of the community as a whole. A species 218 

may be pinpointed because it induces strong indirect effects in a community of interacting 219 

fish species, or due to uncertainty in how these effects are induced, given data at hand. For 220 

such species it may be especially important to keep exploitation rate within ecologically safe 221 

limits, since changes in exploitation may have a strong effect on the rest of the community, or, 222 



 

because the magnitude of these effects are statistically uncertain. Both of these aspects are 223 

probabilistically captured and quantifiable when estimating ESERs.  224 

 225 

As with any modelling approach, the ESER approach is strongly dependent on the underlying 226 

mathematical model. This relates both to the variables included in the model and to the model 227 

structure itself. Although any multivariate model can be used to estimate ESERs, we have 228 

here used a MAR-model to allow for analytically derivation of ESERs. This model assumes 229 

that time series are stationary and interactions are linear on a ln-scale, and this is indeed a 230 

simplifying assumption since interactions (e.g. feeding relationships) among species are often 231 

non-linear (Jeschke, Kopp, & Tollrian, 2004). However, the model can be seen as a first order 232 

linear approximation to other non-linear stochastic processes around an equilibrium (Ives, 233 

Dennis, Cottingham, & Carpenter, 2003), and could thus provide a good starting point even 234 

for somewhat non-linear dynamics. 235 

 236 

Final remarks  237 

The ESER approach demonstrates how species interactions, and a multispecies objective, set 238 

narrow bounds for sustainable exploitation in communities of naturally fluctuating fish 239 

populations. This novel analytical approach for deriving sustainable exploitation limits can 240 

simultaneously address important statistical properties as well as abiotic and biotic factors 241 

affecting community dynamics. Yet, it is framed around a simple and applicable multispecies 242 

objective, which can easily be extended in various ways (see “future directions” in SI). Our 243 

example application to the Baltic Sea further demonstrated a seemingly counterintuitive 244 

result: the exploitation rate of one population is suggested to increase, as compared to mean 245 

historical levels, for the purpose of conservation of the community of interacting fish 246 

populations as a whole. Due to the ubiquity of interactions among exploited species, such 247 



 

management strategies are likely applicable also in other systems. Yet, using conventional 248 

single species assessment models, it is inherently impossible to obtain this type of insights. 249 

Our results thus illustrate the need to adopt multispecies approaches in fisheries management, 250 

and that for precautionary applications, natural variability of fish populations, parameter 251 

uncertainty and influential environmental drivers should also explicitly be addressed. The 252 

ESER approach probabilistically addresses all of these, and may therefore be a useful tool for 253 

setting exploitation limits at the community level - an important part of ecosystem based 254 

fisheries management. 255 

 256 

METHODS 257 

MAR-models 258 

We use mean-adjusted multivariate autoregressive models (MAR-models) with exogenous 259 

variables (Ives, Dennis, Cottingham, & Carpenter, 2003) in order to analytically derive 260 

ESERs:  261 

𝐗𝐗𝑡𝑡 = 𝐁𝐁𝐗𝐗𝑡𝑡−1 + 𝐂𝐂𝐔𝐔𝑡𝑡 + 𝐃𝐃𝐅𝐅𝑡𝑡 + 𝐄𝐄𝑡𝑡    (1) 262 

Here Xt is a m x 1 vector with ln(biomasses) of species at time t, B is a m x m interaction 263 

matrix with elements (i, j) giving the per ln(biomass) effect of species j on the per unit 264 

ln(biomass) rate of change of species i, C is a S x m matrix with elements (i, j) giving the per 265 

unit effect of environmental covariate j on the per unit ln(biomass) rate of change of species i, 266 

Ut is a m x 1 vector with environmental covariates at time t, D is a S x S diagonal matrix with 267 

the per unit effect of exploitation rate on species’ rates of change in ln(biomass), Ft is a S x 1 268 

vector with yearly exploitation rates at time t, and Et is a m x 1 vector of process errors that 269 

has a multivariate normal distribution with mean 0 covariance matrix ∑E.  270 

 271 



 

Conditional on Ut and Ft, the endogenous part, Xt, is a stationary process provided that all 272 

eigenvalues of the interaction matrix B lie within the unit circle (Ives, Dennis, Cottingham, & 273 

Carpenter, 2003; Tsay, 2014). The mean and covariance of the stationary distribution, X∞, 274 

with environmental covariates and exploitation rates held at their mean values, is given by: 275 

𝛍𝛍x = (𝐈𝐈 − 𝐁𝐁)−1(𝐂𝐂𝛍𝛍U + 𝐃𝐃𝛍𝛍F)    (2) 276 

Vec(𝐕𝐕X) = (𝐈𝐈 − 𝐁𝐁⊗ 𝐁𝐁)−1𝑉𝑉𝑉𝑉𝑉𝑉(∑E + 𝐂𝐂∑U𝐂𝐂𝑇𝑇),    277 

where 𝛍𝛍X is the mean vector of the stationary distribution, 𝐕𝐕X is the covariance matrix of the 278 

stationary distribution, I, is the identity matrix, ⊗ refers to the tensor product and “Vec” is 279 

the vector form of a matrix in which columns of the matrix are packed on top of each other, 280 

with the first column of the matrix on top. μU and μF refers to the mean of environmental 281 

covariates and exploitation rates, respectively. If environmental covariates are included in an 282 

analysis they can be assumed to affect the stationary covariance by the term C∑UCT, in which 283 

∑U is the covariance of the environmental covariates. Exploitation rate is something that is 284 

under control and is therefore assumed not to affect the covariance of the stationary 285 

distribution. 286 

 287 

 288 

Estimating Ecologically Sustainable Exploitation Rates 289 

Eq. 2 can be used to predict changes in mean ln(biomasses), 𝛍𝛍x, from changes in exploitation 290 

rates, 𝛍𝛍F. Further, if it is assumed that: (i) the variance-covariance, 𝐕𝐕X, is an estimate of the 291 

variance-covariance that would occur if exogenous variables, i.e. 𝛍𝛍𝐅𝐅 and 𝛍𝛍U, were held 292 

constant (Ives, Dennis, Cottingham, & Carpenter, 2003; Tsay, 2014); and (ii) the process 293 

errors and environmental covariates are normally distributed and temporarily uncorrelated, the 294 



 

stationary distribution (eq. 2) can be used to analytically estimate the probability that any 295 

population declines below its Blim, 𝑃𝑃(𝛍𝛍F), for a given set of mean exploitation rates, 𝛍𝛍F (see 296 

Fig. 1). This probability thus changes depending on the mean exploitation rate subjected to 297 

each species in a community. To derive ESERs we then define a multispecies objective 298 

function:  299 

𝜑𝜑(𝛍𝛍F) = 𝛼𝛼 − 𝑃𝑃(𝛍𝛍F),     (3) 300 

where α is a constant giving a predefined maximum acceptable probability (set by 301 

management) that any population declines below its Blim, and 𝑃𝑃(𝛍𝛍F) is the probability that 302 

any species does so, given a vector of mean exploitation rates, 𝛍𝛍F. Mean exploitation rates 303 

associated with positive values of the multispecies objective function (eq. 3) are referred to as 304 

ESERs, since the predefined maximum acceptable probability, α, is then larger than the 305 

probability 𝑃𝑃(𝛍𝛍F) that any species is below Blim. Negative values of the multispecies 306 

objective function (eq. 3), in contrast, infer that a given exploitation rate is not ecologically 307 

sustainable. Limits for ESER are given by zero of the multispecies objective function; that is, 308 

when 𝛼𝛼 equals 𝑃𝑃(𝛍𝛍F). 309 

The probability that any population declines below its Blim for a given mean exploitation 310 

rate, 𝑃𝑃(𝛍𝛍F), can mathematically be defined as:  311 

𝑃𝑃(𝛍𝛍F) = 𝑃𝑃�⋃ (𝑥𝑥∞,𝑖𝑖(𝛍𝛍F) ≤ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖)𝑛𝑛
𝑖𝑖=1 �,    (4) 312 

where 𝑥𝑥∞,𝑖𝑖(𝛍𝛍F) is the marginal stationary distribution of species i, given by the stationary 313 

distribution (eq. 2).  The probability 𝑃𝑃(𝛍𝛍F) is found using the inclusion-exclusion principle 314 

(Toufik, 2013), i.e. 𝑃𝑃(𝛍𝛍F) = ∑ �(−1)𝑘𝑘−1 ∑ 𝑃𝑃(𝐴𝐴𝐼𝐼)𝐼𝐼⊂{1,…,𝑛𝑛}
|𝐼𝐼|=𝑘𝑘

�𝑛𝑛
𝑘𝑘=1 , where the last sum is for all 315 

the subsets I of the set, {1,…,n}, which contain k elements, and 𝐴𝐴𝐼𝐼 ≔ ⋂ (𝑥𝑥∞,𝑖𝑖(𝛍𝛍F) ≤𝑖𝑖∈𝐼𝐼316 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖) represents the intersection where all species in subset I cross their associated 317 



 

thresholds. 𝑃𝑃(𝐴𝐴𝐼𝐼) are found numerically (Genz et al., 2013) using the marginal distribution 318 

for the species in set I. It follows from the properties of the multivariate normal distribution 319 

that these marginal distributions are found by dropping rows and columns in the variance-320 

covariance matrix and elements in the mean vector (eq. 2) for the species that are not included 321 

in subset I.  322 

It should be noted that the variance of mean prediction errors of a MAR-model converges to 323 

the stationary covariance over infinite time (Lütkepohl, 2007). ESERs estimated using this 324 

method should therefore be seen as conservative reference levels for exploitation rates. 325 

  326 

Analyses 327 

In the example, limits for ESERs were first estimated by changing the exploitation rate of 328 

single focal species in the community, in the final model found after model selection (see 329 

“Model fitting and model selection” in SI & final model Table S1) while maintaining the 330 

other non-focal species at their mean historical exploitation rates (for 1988-2014). A root 331 

finding algorithm (“uniroot” implemented in R [R Core Team, 2017]) was used to find these 332 

ESER limits, i.e. the zero root of the multispecies objective function (eq. 3), one for each 333 

species in the community. Innovation bootstrapping (Ives, Dennis, Cottingham, & Carpenter, 334 

2003) was used to account for uncertainties in parameter estimates and thus to create 335 

confidence intervals for ESERs. The mean of the stationary distribution (eq. 2) plus the direct 336 

effect of exploitation rates at the initial time step were used as initial point when creating the 337 

bootstrapped parameter sets. This is a preferred initial point when creating bootstrapped 338 

parameter sets for relatively unstable MAR-models (0.5<max(λB) < 1) (Ives, Dennis, 339 

Cottingham, & Carpenter, 2003).  340 

 341 



 

We investigated how much the mean exploitation rates of all species in the community could 342 

simultaneously be changed while still fulfilling the multispecies objective function. This was 343 

done by creating a (2 x 2) grid of mean exploitation rates for two species, with the third 344 

species held at a constant exploitation rate, representing a half standard deviation above the 345 

historical levels (original scale: cod=827 tons/kg*h-1, sprat=0.28 kg*kg-1, herring=0.16 kg*kg-346 

1, see “Data description” in SI), at mean historical level (original scale: cod=622 tons/kg*h-1, 347 

sprat=0.23 kg*kg-1, herring=0.13 kg*kg-1) or at a half standard deviation below the observed 348 

historical level (original scale: cod=417 tons/kg*h-1, sprat=0.18 kg*kg-1, herring=0.10 kg*kg-349 

1). The procedure was repeated for all subsets of the three species. The objective function (eq. 350 

3) was thereafter evaluated for all of these exploitation rate combinations. A positive value of 351 

the objective function infers that the objective was met (coded as 1), and a negative value 352 

infers that the objective was not met (coded as 0). The same grids were numerically 353 

investigated for 500 bootstrap parameter sets, thus creating a probability landscape with 354 

ranges of simultaneous ESERs for all the fish species.  355 

For all analyses we assumed a maximum acceptable probability that any species goes below 356 

its Blim, α, of 10%.   357 

All analyses were conducted in the R programming language version 3.4.3 (R Core Team, 358 

2017). Computer code and data will be made publically available at github if this paper gets 359 

published. 360 
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FIGURES 

 

Figure 1. An illustration of the methodological approach of estimating Ecologically 

Sustainable Exploitation Rates (ESERs). Panels (a), (b) and (c) illustrate marginal stationary 



 

distributions of a multivariate autoregressive model of biomasses of the interacting fish 

species cod (Gadus morhua, Gadidae), sprat (Sprattus sprattus, Clupeidae) and herring 

(Clupea harengus, Clupeidae) (see Final model in Table S2 for model parameters), subjected 

to (a) low, (b) mean historical or (c) high mean exploitation rates on sprat, and mean 

historical exploitation on cod and herring. The filled areas in (a)-(c) represent the marginal 

probability that a species biomass goes below its critical biomass limit (Blim). These marginal 

probabilities make up the core of the multispecies objective function shown in (d). The y-axis 

in (d) represents the difference between a predefined maximum acceptable probability that 

any species goes below its Blim, and the probability for this to occur given a set of mean 

exploitation rates. Exploitation rates associated with positive values of the objective function 

represents Ecologically Sustainable Exploitation Rates; that is, exploitation rates associated 

with a low probability (lower than the maximum acceptable probability) that any species goes 

below its Blim, whereas exploitation rates associated with negative values of the objective 

function can be categorized as ecologically unsustainable. The lower (a) and upper (c) limits 

for ESER, i.e. where the multispecies objective function is zero, are indicated by (Low) and 

(High) sprat exploitation rate in panel (d), respectively. Exploitation rates are represented as 

anomalies, i.e. as the number of standard deviations above or below mean historical levels 

(here 1988-2014).  

 

 

 

 

 

 



 

 

 

Figure 2. Observations of biomasses of the fish populations dominating the fisheries in the 

Baltic Sea (circles) are well explained by the final model (predictions as black lines, 95% 

bootstrapped prediction bounds as dashed lines) used as a basis for deriving Ecologically 

Sustainable Exploitation Rates (ESERs) in the example application of the method. (a) Cod, 

(b) sprat and (c) herring. The model accounts for pairwise net relationships (‘interactions’) 

among species and exploitation rates (see Final model in Table S2 for estimated parameter 

values). The standardized time series of exploitation rate have a direct impact on cod (d), 

sprat (e) and herring (f). 

 

 



 

 

Figure 3. Ranges of Ecologically Sustainable Exploitation Rates. This figure shows the 

probability of ecologically sustainable exploitation as a function of exploitation rates, in a 

community of three interacting fish species. The probabilities are numerically found by 

evaluating if a specific exploitation rate combination is associated with a low probability 

(lower than a predefined maximum acceptable probability) that any interacting species in the 

community goes below its critical biomass limit (Blim), across 500 bootstrapped parameter 

sets. Top panels: (a), (d) and (g); middle panels: (b), (e) and (h); and bottom panels: (c), (f) 

and (i) show cases where exploitation rate of the species represented in each column (left: 



 

cod, middle: sprat, right: herring) is held at a fixed high (0.5), intermediate (0) or low (-0.5) 

level, respectively. Exploitation rates are represented as anomalies, i.e. as the number of 

standard deviations above or below mean historical levels (for 1988-2014). Dashed grey lines 

represent mean historical exploitation rates.  
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