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SUPPLEMENTARY TEXT 71 

Baltic Sea Application 72 

Data description 73 

The biomass index time series (for 1988-2014) for cod (Catch per unit effort, CPUE, kg/h 74 

trawling) were assembled from trawl surveys (ICES subdivisions 25-28) and retrieved from 75 

the ICES DATRAS database (www.ices.dk). Biomass time series for sprat and herring (ICES 76 

subdivisions 25-29) were assembled from hydro-acoustic surveys (years 1988-2014). Total 77 

biomass of the fish populations only included fishes > 30 cm (i.e. spawning fish) for cod and 78 

fishes above one year of age for sprat and herring (i.e. excluding recruits). Time series for sprat 79 

and herring were based on surveys from quarter 4 whereas the time series for cod was 80 

composed of data from quarter 4 where available (years 1998-2014), and back calculated from 81 

quarter 1 for the beginning of the time series (years 1988-1997). The back calculated data was 82 

based on predictions from a linear regression analysis for 1998-2014 (n=17) 83 

(𝐶𝐶𝐶𝐶𝐶𝐶 𝑏𝑏𝑏𝑏𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑞𝑞4 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑡𝑡 = 𝛾𝛾 + 𝜑𝜑 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶 𝑏𝑏𝑏𝑏𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑞𝑞1 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑡𝑡), showing that quarter 1 and quarter 84 

4 cod data are strongly correlated (𝛾𝛾 = 55.64; 𝜑𝜑 = 0.72).  85 

Exploitation rate was modeled in a similar way as other studies (Bell, Fogarty, & Collie, 2014; 86 

Langangen et al., 2017; Lindegren, Andersen, Casini, & Neuenfeldt, 2014), i.e. total landings 87 

divided by survey data from the same year. The exploitation rate data was standardized to a 88 

mean of zero and unity variance, and species biomasses were ln-transformed and centered prior 89 

to model fitting. This centering of variables infer that the MAR-model is centered on zero 90 

mean, otherwise model intercepts need to be fitted.  91 

 92 



Critical biomass limits 93 

Critical biomass levels for the fish stocks in the Baltic Sea are the Blim-values for spawning 94 

stock biomass, which have been used in stock assessments. These points refer to the biomass 95 

levels below which there may be reduced recruitment (ICES, 2015). To be applicable, Blim-96 

values from stock assessments (Cod=63000 tons, Sprat=410000 tons, Herring=430000 tons; 97 

ICES, 2014), were rescaled to the magnitude of survey data by relating the mean of stock 98 

assessment data, from the same years as the survey data, to Blim-values. This results in Blims 99 

on a ln-transformed and centered scale (cod=-0.71, sprat=-0.98, herring=-0.50).  100 

 101 

Model fitting and model selection 102 

MAR-models with covariates can be fitted to time series of species abundances using for 103 

example ordinary least square (Ives, Dennis, Cottingham, & Carpenter, 2003), generalized 104 

least square (Lütkepohl, 2007), maximum likelihood (Ives, Dennis, Cottingham, & Carpenter, 105 

2003) or Bayesian approaches (e.g. Langangen et al., 2017). We used generalized least square 106 

implemented in the MTS-package in R (Tsay, 2015). The benefits of using the generalized 107 

least square method includes its computational speed, asymptotic normal properties and more 108 

precise estimate than ordinary least square for constrained models (Lütkepohl, 2007), i.e. for 109 

models with certain parameters set to zero. For normal distributed data generalized least 110 

square further gives the same estimates as the maximum likelihood approach (Lütkepohl, 111 

2007). 112 

A true exhaustive search was implemented to find the final model (the model with the lowest 113 

AICc). Two restrictions on potential model structures were made: (i) the diagonal of the B 114 

matrix was always included in the model fitting because intraspecific competition for food 115 

resources tend to be important for both the clupeid fish populations (Casini, Cardinale, & 116 

Hjelm, 2006) and cod in the Baltic Sea (Casini et al., 2016); (ii) exploitation rate was also 117 



always included since the main objective of this study was to investigate the effect of altered 118 

exploitation rate on species biomasses.   119 

An Akaikes information criterion intended for constrained multivariate models fitted to small 120 

sample sizes (AICc) (eq. 7.91 in Burnham & Anderson, 2002), was used to find the final 121 

model structure: 122 

AICc = 𝑇𝑇 ∗ ln��∑�𝑬𝑬�� + 2𝑛𝑛𝑝𝑝𝑦𝑦𝑦𝑦 + 2𝑛𝑛𝑝𝑝𝑦𝑦𝑦𝑦(𝑛𝑛𝑝𝑝𝑦𝑦𝑦𝑦 + 𝑣𝑣)/(T ∗ S − 𝑛𝑛𝑝𝑝𝑦𝑦𝑦𝑦 − 𝑣𝑣), (S1) 123 

where the first term, T*ln (|∑�𝑬𝑬|), defined as T times the natural logarithm of the determinant 124 

of the estimated process error covariance matrix, measures goodness of fit and the other 125 

terms penalizes for the number of parameters, npar. T is the length of the time series, v is the 126 

number of estimated parameters in the process error covariance matrix, which are also 127 

included in the total number of parameters, and S is the number of rows in the (SxT) time 128 

series matrix of observed data. 129 

R2-values refer to conditional R2, i.e. the proportion of the variance in ln(biomass) change 130 

between subsequent years that is explained by the model (Ives, Dennis, Cottingham, & 131 

Carpenter, 2003). 132 

In order to investigate the effect of model complexity on ESERs we additionally fitted two 133 

model structures: one model assuming that species are decoupled, i.e. do not affect each other 134 

(Single species model), and one model assuming that all species affect each other (Full 135 

model).  136 

 137 

Final model 138 

To exemplify the approach we fit MAR-models to survey data for the three commercially 139 

most important fish populations in the Baltic Sea: cod (Gadus morhua), sprat (Sprattus 140 



sprattus) and herring (Clupea harengus). The final model (Tab. S1), following model 141 

selection (see “Model fitting and model selection” above), gives a good fit to the observed 142 

time series (Fig. 2). This model includes three parameters related to interspecific trophic 143 

interactions (Tab. S1): mutual negative effects between sprat and herring, and a negative net 144 

effect of sprat on cod. The negative effects between sprat and herring are expected as they 145 

compete for food (Casini, Cardinale, & Hjelm, 2006), and the somewhat counterintuitive 146 

negative net effect between sprat and cod could result from competition between sprat and 147 

cod larvae for zooplankton, or sprat predation on cod eggs (Köster et al., 2005; but see 148 

Gårdmark et al., 2015). Residual plots do not indicate any strong violations of model 149 

assumptions (Fig. S3 & S4) and the model is stationary (max (λB) = 0.78[0.59 0.87]), making 150 

it suitable for estimating ESERs.  151 

It is further interesting to note that after model selection we end up with a completely 152 

different MAR-model of the three dominating fish stocks in the Baltic than what was found 153 

in an earlier study using MAR-models (Lindegren, Möllmann, Nielsen, & Stenseth, 2009). 154 

Here we have used survey data from 1988-2014, whereas the previous MAR-model 155 

(Lindegren, Möllmann, Nielsen, & Stenseth, 2009) used model output from a Multispecies 156 

Virtual Population Analysis from 1974-2005. Moreover, since the Baltic Sea fish community 157 

has undergone a regime shift during the end of 1980:s (Möllmann et al., 2009), our estimated 158 

model reflects the current regime, whereas the previous Baltic MAR-model (Lindegren, 159 

Möllmann, Nielsen, & Stenseth, 2009) reflects a time span covering also the transition 160 

period. This is probably a major reason for the more stable dynamics of the current model 161 

(max (λB) = 0.78[0.59 0.87]), compared to the previous Baltic MAR-model (Lindegren, 162 

Möllmann, Nielsen, & Stenseth, 2009) (max (λB) =0.93).   163 

 164 



Out-of-sample test of the final model 165 

We tested the prediction accuracy of the final model on out-of-sample data. The time series 166 

(n=27) was divided into training (n=17) and test data sets (n=10). The matrix-structure of the 167 

final model (Final model Tab. S1) was fitted to training data and thereafter used for prediction. 168 

Two tests were performed: a test of the models mean prediction accuracy (i.e. eq. 2 in Methods) 169 

and a true forward prediction. The model gives a decent forward prediction for cod (Fig. S2b), 170 

and out of phase predictions for sprat and herring (Fig. S2c-d). Further, observed means are 171 

within the 95% prediction bounds of the model (i.e. eq. 3 in Method section), but the predictions 172 

are very uncertain (Fig. S2a). This points to a very important aspect with this modelling 173 

approach, that is, uncertainty in parameter estimates should be accounted for when estimating 174 

ESERs; as with any type of assessment model (Link et al., 2012; Thorpe, Le Quesne, Luxford, 175 

Collie, & Jennings, 2015). 176 

 177 

Assumptions and future directions of the ESER approach 178 

MAR-model assumptions  179 

A critical assumption of the ESER approach, if using MAR-models, is that long-term changes 180 

in exploitation rate affect species’ biomass linearly on a ln-scale. The fitted model should 181 

thus be scrutinized in terms of potential non-linearities. In our example, residual plots do not 182 

indicate any strong non-linearities within the ranges of observed data (Fig. S3). Ideally, the 183 

functional form of relationships between all variables should be known beforehand and 184 

estimated using a mechanistically complex model; but such a model requires a large number 185 

of parameters (but see e.g. Ye et al., 2015), some of which are preset before fitting 186 

multispecies fisheries models (Plagányi et al., 2014). Further, with an increasing number of 187 

parameters, the risk of overfitting increases; that is, the model might describe random errors 188 

rather than the underlying mechanistic relationships. A MAR-model could thus, due to its 189 



simplicity and entirely statistically fitted parameters, be referred to as a model of intermediate 190 

complexity for ecosystem assessment (Plagányi et al., 2014). Moreover, linear stochastic 191 

models often give good approximations of non-linear stochastic models (Ives, Dennis, 192 

Cottingham & Carpenter, 2003; Ripa & Ives, 2003), and tend to describe the general 193 

dynamical features of many ecological systems (Ripa & Ives, 2003). For long-term effects 194 

caused by changes in covariates, as implemented in the current study, one study has also 195 

shown a fitted MAR-model to have greater prediction accuracy than a non-linear model fitted 196 

to data simulated by the same non-linear model (Ives, 1995). Thus, the prediction accuracy of 197 

a linear stochastic model might outperform the prediction accuracy of a non-linear model 198 

fitted to time series; but this result is contingent on the specific way the non-linear model was 199 

fitted (Ives, 1995). Further, MAR-models have also given reasonable predictions of plankton 200 

abundances to long term changes in covariates (Beisiner, Ives, & Carpenter, 2003; Ives, 201 

Carpenter, & Dennis, 1999). Yet, it should be noted that strong non-linear signals, which set 202 

in when large changes in exogenous variable are induced in non-linear models, are not well 203 

captured by MAR-models (Certain, Barraquand, & Gårdmark, 2018).   204 

The analytical approach of estimating ESERs relies on the stationary distribution of MAR-205 

models (Note, however, that ESERs can be derived based on any statistical multispecies 206 

model, using extensive computer simulations). Two important assumptions inherent in MAR-207 

models are that process errors should be normally distributed and temporarily uncorrelated. 208 

Thus, when applying the analytical ESER approach, a biologically plausible MAR-model 209 

should be built, and model residuals should be checked for normality and autocorrelation. 210 

This can be done using either statistical tests or graphical methods (in our example, we used 211 

partial autocorrelation functions and normal probability plots to assess temporal correlation 212 

and normality of model residuals, respectively). If the assumption of normally distributed 213 

process errors is not met, the multivariate normal formulation of the stationary distribution 214 



will not hold and the analytical approach is unfeasible. Further, if the second assumption, i.e. 215 

that process errors are temporarily uncorrelated, is not met, the variance of the stationary 216 

distribution will be underestimated (Ripa & Ives, 2003). Neglecting this assumption would 217 

thus lead to overestimated ranges of ESERs, i.e. that particular exploitation rates would be 218 

reckoned as ecologically sustainable, while they are in fact not, due to omission of the 219 

process error assumption.  220 

When fitting a MAR-model there is another type of uncertainty that can be acknowledged, 221 

that is, observation error. If this is explicitly acknowledged, a state-space approach can be 222 

used to separate process and observation errors when fitting a MAR-model (Holmes, Ward, 223 

& Wills, 2013). Now, since the variance-covariance of the stationary distribution of the states 224 

is proportional to the variance-covariance of the multivariate normal process errors, a state-225 

space approach would probably decrease the variance-covariance of the stationary 226 

distribution of the states, compared to the case when a state-space model is not fitted. In 227 

effect, this would decrease the ranges of ESERs. However, whether such an approach would 228 

overall decrease the ranges of ESERs also depends on parameter uncertainty. Since the 229 

number of fitted parameters for a specific model structure would increase when separating 230 

observation from process errors, such an approach would potentially lead to an increased 231 

parameter uncertainty. The overall ranges of ESERs might thus be similar using the two 232 

approaches, but qualitative differences are likely since these approaches tend to give 233 

qualitative different parameter estimates, at least for univariate models (Knape & de Valpine, 234 

2012).    235 

Before fitting a MAR-model, stationarity of time series should be assessed in order to reduce 236 

the risk of so called spurious regression, i.e. reduce the risk that erroneous relationships 237 

emerge only due to non-stationarity in the data set. To this end, there are a handful of 238 

different statistical tests that can used to test for stationarity. These tests have seldom been 239 



used in ecology, yet in other fields, such as econometrics, they are the norm (Tsay, 2014). 240 

Here, we used two of the most well-known tests, the Dickey-Fuller test (Dickey & Fuller, 241 

1979) and the Phillips-Perron test (Phillips & Perron, 1988), to test the null hypothesis that a 242 

given time series follows a random walk process (i.e. that 𝜌𝜌 = 1 in 𝑦𝑦𝑡𝑡 = 𝜌𝜌𝑦𝑦𝑡𝑡−1 + 𝑢𝑢𝑡𝑡). We 243 

used the most basic version of the tests, i.e. assuming no deterministic trend or random drift, 244 

and found that we can reject the null-hypothesis (Tab. S2). Yet, it should be noted that these 245 

tests are sensitive to the choice of test type, time series length and how close a time series is 246 

to non-stationarity (Elliot, Rothenberg, & Stock, 1996).  247 

 248 

Future directions 249 

Future research should specifically seek alternative ways of modelling exploitation rate. Here 250 

we have modelled exploitation rate as landings at time t/survey data at time t. Exploitation 251 

rates should preferably be estimated from independent data sets, e.g. effort data combined 252 

with survey data not used as observations of the biomass variables of the model. Notably, 253 

previous MAR-models for marine fish communities have either used a similar approach as in 254 

the current study (Bell, Fogarty, & Collie, 2014; Langangen et al., 2017; Lindegren, 255 

Andersen, Casini, & Neuenfeldt, 2014) or fitted MAR-models to exploitation rates estimated 256 

in other models (Lindegren, Möllmann, Nielsen, & Stenseth, 2009). 257 

Here we assume that state variables represent the temporal variation in total biomass of fish 258 

populations exploitable in the fisheries, and thus that each ln(biomass) unit of a population 259 

(e.g. independent of fish size or age) is impacted by, and impacts, other populations to the 260 

same extent. However, size-dependent feeding is very common among marine fish 261 

populations (Barnes, Maxwell, Reuman, & Jennings, 2010) and may govern their structure 262 

and dynamics (de Roos & Persson, 2013; Gårdmark et al., 2015). It might thus be important 263 



to account for size structure among fish populations when estimating ESERs. In a MAR-264 

model, size-dependent interactions could be introduced by treating the total biomass of size 265 

classes of the populations as state variables (similar to Lindegren, Andersen, Casini, & 266 

Neuenfeldt, 2014), or by implicitly and indirectly model size structure through the inclusion 267 

of time lags (i.e. fitting a VARX(p,s)-model). The framework of estimating ESERs can be 268 

adopted independent of which of the approaches that is taken (see Lütkepohl, 2007 for 269 

derivation of the stationary distribution of VAR(p)-models). Species interactions in a MAR-270 

model are further assumed to be linear on a ln-scale. This assumption infers that strong non-271 

linearities in interactions, such as those often involved in regime shifts (Gårdmark et al., 272 

2015), cannot be accounted for by this model. As such, regime shifts often involve a 273 

complete reorganization of a system, with different states inferring different interactions 274 

among species and environmental forces (Gårdmark et al., 2015). Thus, under the potential 275 

existence of regime shifts in a system, the current approach of estimating ESERs would only 276 

be valid for models fitted to time series within regimes. Moreover, in order to avoid that a 277 

system switches from one state to another requires some prerequisite knowledge of points 278 

where changes in the biomass of one or a couple of species lead to a large overall change in 279 

the system. Such information is seldom available and extensive research is conducted on how 280 

to anticipate such critical transitions (Lindegren et al., 2012; Scheffer et al., 2012). However, 281 

for the Baltic Sea, recent research (Casini et al., 2009) actually indicates the existence of a 282 

critical population size of sprat, which separates two potential ecosystem configurations. 283 

Above this population size threshold sprat tend to control summer zooplankton dynamics, 284 

potentially hindering cod from recovery to its previous high biomass state due to food 285 

competition with cod larvae (but see Gårdmark et al., 2015). Now, assume that the Baltic Sea 286 

community was currently in a high cod state (in reality it is the opposite [Casini et al., 2009; 287 

Gårdmark et al., 2015]) and that the management objective was to keep the system in this 288 



state. Under such circumstances an upper critical biomass limit for sprat would, in addition to 289 

Blim’s for all species, be incorporated in the multispecies objective (i.e. two critical biomass 290 

limits for sprat in Fig. 1). The estimated ESERs would then, theoretically, correspond to a 291 

low risk that a regime shift occurred or that any species in the system went below its Blim. 292 

Further, the multispecies objective could be changed to have a focus on just one or a couple 293 

of the investigated species, or include other type of species, such as grey seals or some bird 294 

species dependent on forage fish (Cury et al. 2011; Österblom, Casini, Olsson, & Bignert, 295 

2006).  296 

 297 

ESERs in specious systems 298 

As described in the main text, an increasing number of species included in an ESER analysis 299 

will eventually lead to no support for ecologically sustainable exploitation. However, for a 300 

specious system, it may be more appropriate to divide species into functional groups, 301 

depending on their ecological role in a system; as for example, piscivorous and planktivorous 302 

fish. Based on such a grouping the multispecies objective could be extended in two ways by 303 

either: (i) defining that we are only willing to accept a maximum probability that any species 304 

in each functional group goes below its Blim; or (ii) defining that we are only willing to 305 

accept a certain probability that the total biomass of any functional group goes below a limit 306 

for its total biomass. In the first setting, the objective would be to derive exploitation rates 307 

associated with a low probability (lower than a predefined maximum acceptable probability) 308 

that any species in each functional group went below its Blim. Mathematically, this can be 309 

described as follows:   310 

𝜑𝜑(𝛍𝛍F) = min
𝑗𝑗∈{1,…,𝑘𝑘}

(𝛼𝛼 − 𝑃𝑃𝑗𝑗(𝛍𝛍F))    (S2) 311 



where α is a constant giving the predefined maximum acceptable probability that any species 312 

in each function group, j, goes below its Blim, and 𝑃𝑃𝑗𝑗(𝛍𝛍F) is the probability that any species 313 

in functional group j goes below its Blim, given a vector of mean exploitation rates, 𝛍𝛍F. Since 314 

𝑃𝑃𝑗𝑗(𝛍𝛍F) gives the probability that any species in functional group j goes below its critical 315 

biomass limit, the overall multispecies objective, 𝜑𝜑(𝛍𝛍F), is determined by the maximum 316 

probability, 𝑃𝑃𝑗𝑗(𝛍𝛍F), across all functional groups. 317 

For the second scenario, new critical biomass limits for the total biomass of each functional 318 

group should first be defined. The stationary distribution of total biomasses could then be 319 

readily retrieved, since the multivariate normal formulation of the stationary distribution 320 

infers that any linear combination of the distribution is still normal. The stationary 321 

distribution of the total biomass of functional groups, Y∞(𝛍𝛍F), can therefore be described by 322 

the following equation: 323 

𝛍𝛍Y = 𝐞𝐞Y𝛍𝛍X    (S3) 324 

𝐕𝐕Y = 𝐞𝐞Y𝐕𝐕X𝐞𝐞YT ,  325 

where 𝛍𝛍Y is the (n x 1) mean vector of total biomasses of functional groups given a vector of 326 

mean exploitation rates 𝛍𝛍F; 𝛍𝛍X is the (m x 1) mean vector of species biomasses given a vector 327 

of mean exploitation rates 𝛍𝛍F; 𝐞𝐞Y is a (n x m) zero matrix with ones in position (i,j) mapping 328 

species j to functional group i; 𝐕𝐕Y is the (n x n) covariance matrix of the stationary distribution 329 

of the total biomass of functional groups; and 𝐕𝐕X is the (m x m) covariance matrix of the 330 

stationary distribution of the species biomass.   331 

Similar to the case where conservation of each species is of concern (eq. 4 Methods), the 332 

multispecies objective would now read: 333 

𝜑𝜑(𝛍𝛍´F) = 𝛼𝛼 − 𝑃𝑃𝑌𝑌(𝛍𝛍F),     (S4) 334 



where 𝛼𝛼 is the predefined maximum acceptable probability and 𝑃𝑃𝑌𝑌(𝛍𝛍F) is the probability that 335 

the total biomass of any functional group goes below its limit of total biomass. 336 

An additional challenge in estimating ESERs in specious systems is model fitting, since 337 

models of highly diverse systems may include a large number of parameters, and thus lead to 338 

high parameter uncertainty. A high parameter uncertainty would in general lead to a low 339 

probability of attaining the multispecies objective, and thus a decreased range of ESERs. 340 

However, whether there is straightforward relationship between the number of species and 341 

the number of parameters in a model is not clear-cut as model selection may favor less 342 

complex models (Burnham & Anderson, 2002). 343 

 344 

 345 
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 375 

Fig. S1. Stationary distribution of a MAR-model with covariates. The figure illustrates a time 376 

projection of a MAR-model with covariates held at fixed values. The distributions to the right 377 

illustrate the stationary distribution, i.e. the distribution of ln(biomass) abundances that would 378 

accumulate if the MAR-model was simulated over infinite time.    379 

 380 

 381 

 382 

 383 

 384 



 385 

Fig. S2. Model evaluation of the final model in our example of applying ESERs. The final 386 

model is first fitted to 1988-2004 data and thereafter used for prediction. (a) Mean 387 

ln(biomass) for 2005-2014 data. Observed data is shown by small circles and predictions, 388 

which are based on observed mean exploitation rates, are shown as small crosses. Confidence 389 

intervals for model predictions are based on 2.5 and 97.5 quantiles of 500 bootstrapped 390 

parameter sets. The bottom panels show true forward predictions for cod (b), sprat (c) and 391 

herring (d). Grey lines with small circles show observed data and black thick lines with 392 

striped confidence bounds show true forward conditional forecasts. Forecasts are conditional 393 

on time series of exploitation rate.  394 



 395 

Fig. S3. Model adequacy for the final model in our example of applying ESERs. Left panels 396 

show normal probability plots for cod (a), sprat (b) and herring(c). Right panels show partial 397 

autocorrelation functions for cod (d), sprat (e) and herring (f). 398 



 399 

Fig. S4. Partial residual plots for the final model in our example of applying ESERs. a) 400 

Model residuals as a function of observed ln(biomasses). The panels show the potential 401 

existence of non-linear interactions among species. Subpanels are structured in the same way 402 

as the B-matrix, thus showing potential non-linear net effects (‘interactions’) between species 403 

in column j and row i. The x-axis corresponds to observed ln(biomass) of species j in year t-404 

1, and the y-axis shows model residuals for species i at time t. Cod is represented by index 405 

(1), sprat is represented by index (2) and herring is represented by index (3). b) Model 406 

residuals for each species as a function of each species’ observed exploitation rate. The 407 



exploitation rates are shown as anomalies, i.e. with a mean of zero and unity variance. Red 408 

lines show the fit of local polynomial smoothers, with curved relationships indicating non-409 

linear effects. 410 
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  419 

Fig. S5. Ranges of ecologically sustainable exploitation in the single species model. This 420 

figure shows the probability of ecologically sustainable exploitation as a function of 421 

exploitation rates, in a community of three non-interacting fish stocks. The probabilities are 422 

numerically found by evaluating if a specific exploitation rate combination is associated with 423 

a low probability (lower than a predefined maximum acceptable probability) that any 424 

interacting species in a community goes below its Blim, across 500 bootstrapped parameter 425 

sets. Top panels: (a), (d) and (g); middle panels: (b), (e) and (h); and bottom panels: (c), (f) 426 

and (i) show cases where exploitation rate of the species represented in each column (left: 427 

cod, middle: sprat, right: herring) is held at a fixed high (0.5), intermediate (0) or low (-0.5) 428 

level, respectively. Exploitation rates are represented as anomalies, i.e. as the number of 429 



standard deviations above or below mean historical levels (for 1988-2014). Dashed grey lines 430 

represent mean historical exploitation rates.  431 
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 434 
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 440 

Fig. S6. Ranges of ecologically sustainable exploitation in the full model. This figure shows 441 

the probability of ecologically sustainable exploitation as a function of exploitation rates, in a 442 

community of three interacting fish stocks. The probabilities are numerically found by 443 

evaluating if a specific exploitation rate combination is associated with a low probability 444 

(lower than a predefined maximum acceptable probability) that any interacting species in a 445 

community goes below its Blim, across 500 bootstrapped parameter sets. Top panels: (a), (d) 446 

and (g); middle panels: (b), (e) and (h); and bottom panels: (c), (f) and (i) show cases where 447 

exploitation rate of the species represented in each column (left: cod, middle: sprat, right: 448 

herring) is held at a fixed high (0.5), intermediate (0) or low (-0.5) level, respectively. 449 

Exploitation rates are represented as anomalies, i.e. as the number of standard deviations 450 

above or below mean historical levels (for 1988-2014). Dashed grey lines represent mean 451 

historical exploitation rates.  452 



 453 

Fig. S7. Ranges of ecologically sustainable exploitation in the final model for the case where 454 

a high maximum probability that any species goes below its critical biomass limit is assumed 455 

(α = 0.2). This figure shows the probability of ecologically sustainable exploitation as a 456 

function of exploitation rates, in a community of three interacting fish stocks. The 457 

probabilities are numerically found by evaluating if a specific exploitation rate combination is 458 

associated with a low probability (lower than a predefined maximum acceptable probability) 459 

that any interacting species in a community goes below its Blim, across 500 bootstrapped 460 

parameter sets. Top panels: (a), (d) and (g); middle panels: (b), (e) and (h); and bottom 461 

panels: (c), (f) and (i) show cases where exploitation rate of the species represented in each 462 

column (left: cod, middle: sprat, right: herring) is held at a fixed high (0.5), intermediate (0) 463 

or low (-0.5) level, respectively. Exploitation rates are represented as anomalies, i.e. as the 464 



number of standard deviations above or below mean historical levels (for 1988-2014). 465 

Dashed grey lines represent mean historical exploitation rates.  466 
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 477 

Fig. S8. Ranges of ecologically sustainable exploitation in the final model for the case where 478 

critical biomass limits are assumed to be 20 % lower than species’ Blims;s. This figure shows 479 

the probability of ecologically sustainable exploitation as a function of exploitation rates, in a 480 

community of three interacting fish stocks. The probabilities are numerically found by 481 

evaluating if a specific exploitation rate combination is associated with a low probability 482 

(lower than a predefined maximum acceptable probability) that any interacting species in a 483 

community goes below its Blim, across 500 bootstrapped parameter sets. Top panels: (a), (d) 484 

and (g); middle panels: (b), (e) and (h); and bottom panels: (c), (f) and (i) show cases where 485 

exploitation rate of the species represented in each column (left: cod, middle: sprat, right: 486 

herring) is held at a fixed high (0.5), intermediate (0) or low (-0.5) level, respectively. 487 

Exploitation rates are represented as anomalies, i.e. as the number of standard deviations 488 



above or below mean historical levels (for 1988-2014). Dashed grey lines represent mean 489 

historical exploitation rates.  490 
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Table S2. Dickey-Fuller and Phillip-Perrons stationarity tests for our example of applying 511 

ESERs.  512 

 Biomass Exploitation rate 

 Cod Sprat Herring Cod Sprat Herring 
Dickey-Fuller test statistic -13.12 -9.63 -8.7 -12.19 -9.2 -8.06 
P-value 0.01 0.02 0.03 0.01 0.03 0.04 
Phillips-Perron test statistic -2.97 -3.04 -2.23 -2.93 -1.69 -2.12 
P-value 0.01 0.01 0.03 0.01 0.09 0.04 

§This table shows test statistics and p-values for the biomass and exploitation rate time series used in building 513 

the final MAR-model. These tests test if the null hypothesis, that is, that the time series are produced by a 514 

random walk process, can be rejected. 515 
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Table S4. Indirect effects caused by increased exploitation rate in our example of applying 545 

ESERs.  546 

 

Sensitivity to change 
in 𝛍𝛍FCod 

Sensitivity to change 
in 𝛍𝛍FSprat 

Sensitivity to 
change in 𝛍𝛍FHerring 

Cod -0.4[-0.55;-0.26] 0.26[0.01;0.5] -0.1[-0.26;0] 
Sprat - -1.04[-1.58;-0.62] 0.39[0.1;0.76] 
Herring - 0.36[0.09;0.72] -0.53[-0.77;-0.33] 

§The response (rows) of the stationary mean (eq. 3 in Methods) of the final model to a unitary increase in 547 

exploitation rate for each species (columns). The values presented are the partial derivatives of the stationary 548 

mean (eq. 3 in Methods) with respect to a change in mean exploitation rate for each species. Values within 549 

square brackets are 95% confidence intervals based on 500 bootstrapped data sets. 550 

 551 

 552 

 553 
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 555 
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 560 

 561 

 562 



Table S5. The number of cases where it is impossible to find an ESER limit (No limit), and 563 

the number of cases where the lower limit for ESERs would represent an exploitation rate 564 

lower than zero on the original untransformed scale (Unfeasible limit), i.e. an exploitation 565 

rate inferring no exploitation, in our application example of ESERs.  566 

 Final model Single species model Full model 
  Cod Sprat Herring Cod Sprat Herring Cod Sprat Herring 
No limit 0 0 1 0 0 0 76 0 8 
Unfeasible limit 0 3 184 0 0 0 242 6 126 

§For each species and model, numbers are based on numerical investigations of 500 bootstrapped parameter 567 

sets. Note that no limits for ESERs infers that the multispecies objective cannot be attained when a given focal 568 

species’ mean exploitation rate is changed, and the other two species’ mean exploitation rates are kept at mean 569 

historical levels. 570 
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