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1. Introduction  

Bark beetles (Coleoptera: Scolytidae) have an important role in forest ecosystems as pioneers 

in the recycling of nutrients in dead or dying trees (Edmonds and Eglitis 1989). However, some 

species from the genus Dendroctonus (e.g D. brevicomis, D. frontalis and D. ponderosae) or 

Ips (e.g I. typographus) are also able to attack healthy living trees, and kill them as result of 

mass colonization . When colonizing living trees, the beetles use an aggregation pheromone for 

a mass attack and introduce an associated blue-staining fungi into the tree tissue . Additionally, 

the fungus reduces the water uptake by the tree and disseminates through the wood causing 

discoloration and reducing the quality of the timber, making it unsuitable for the wood industry 

(Gitau et al. 2013; Paine et al. 1997).When the bark beetle populations are at high densities they 

can rapidly destroy millions of hectares of living forest, causing significant economic and 

ecological impact (Goheen and Hansen 1993; Kärvemo and Schroeder 2010a; Williams et al. 

2018) The outbreaks are often triggered after wind damage, fire or drought (Aukema et al. 

2008; Kausrud et al. 2012; Wermelinger 2004). 

 

In order to reduce beetles outbreaks, different control strategies have been used (Wermelinger 

2004). A common practice in the control of beetles, such as I. typographus, is the use of 

synthetic versions of the bark beetle pheromones (Jakuš 1998). Here, pheromone traps are 

developed to catch as many flying beetles as possible and reduce the population density in the 

area under attack. One negative aspect of using pheromone traps is that not only the beetles are 

caught, but also their natural enemies are being, as well, attracted and killed by the same traps 

(Aukema et al. 2000b), since a significant number of natural enemies among parasitoids and 

predators are known to respond to beetles pheromone components as kairomones, especially 

clerid beetles, such as Enoclerus and Thanasimus are attracted and traped (Erbilgin and Raffa 

2001; Pettersson 2000; Pettersson and Boland 2003). 

 

Over the years, the use of natural enemies for biological control of beetles, has increased 

(Aukema et al. 2000b, 2000a). One group of potentially important, but currently not used, 

natural enemies of Scolytidae are the long legged flies (Dolichopodidae) of the Medetera genus 

(Aukema and Raffa 2004; Beaver 1966). The biological control process is as follows: the flies 

are attracted to bark beetle attacked trees, where they lay their eggs on the bark surface, and the 

enclosed larvae migrate into the beetle galleries, where they feed on the beetle larvae. Larvae 

from this genus can consume between 5 to 20 individuals depending on bark beetle density 

(Beaver 1966) and more than ten Medetera larvae can be found per 100 cm2 of attacked bark 

(Dippel et al. 1997). Together with other dolichopodidadae predators, they can account for 

more than 80% of the bark beetle mortality (Wermelinger 2002).  
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Although the importance of these predators for biological control of bark beetles have long time 

ago been identified, little information is available regarding Medetera biology and ecology. 

This lack of information despite the fact that the these flies are widespread in the forest, their 

life cycle is concealed and occurs under the bark of attacked trees. In additional, the available 

keys used for identification are incomplete and do not include all the species found. Therefore, 

a thorough compilation of Medetera biology is important to synthetize the existing knowledge, 

which is the first step for later understanding how these predators can be used to prevent or 

reduce future epidemic bark beetles attacks.  

 

In this introductory essay, I start by providing an individual survey on the spruce bark beetle I. 

typographus and Medetera spp. in Sections II and III. Then, Section IV addresses several state-

of-the-art contributions that study relevant aspects of their behavioral interplays. Finally, 

Section V wraps up the paper and suggests directions to future work that, based on the 

discussion in this review, which is believed to be valid hypotheses when it comes to 

understanding the use the Medetera as controling agents of I. typographus.   
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2. Bark beetles (Coleoptera: Scolytidae) 

Bark beetles occur in different regions around the world and are associated with most major 

groups of terrestrial plants (Raffa et al. 2015). They spend a significant part of their life, to feed 

and reproduce, under the bark surface, in the inner bark or phloem of dead or dying trees and 

contribute among others to nutrient recycling, soil structure, forest regeneration and 

biodiversity (Edmonds and Eglitis 1989). Some beetles have a relative narrow host range and 

may utilize only one species of host tree, while others may utilize several species within a genus 

and sometimes more than one genera (Raffa et al. 2015). 

 

Several bark beetles species can also colonize healthy mature standing trees and, when the 

weather and local forest conditions are favorable, their population can increase and infest large 

areas of conifer forests (Gitau et al. 2013; Kärvemo and Schroeder 2010a). These species are 

described as “aggressive bark beetles” where some of them, like D. frontalis, are “obligate tree 

killers”, only attacking living, healty, standing (pine) trees, while others, like I. typographus, 

are “facultative tree killers”, since they also attack wind fallen and weakened or dying (spruce) 

trees. 

 

The most “aggressive” tree-killing species of bark beetles are from the genus Dendroctonus 

(e.g D. ponderosae, D. frontalis and D. brevicomis) in North America (Klutsch et al. 2009; 

Williams and Liebhold 2002) and the spruce bark beetle I. typographus in Europe (Christiansen 

and Bakke 1988). Beetles from the Dendroctonus genus, are usually more damaging compared 

to the beetles from the Ips genus. The most destructive one is used to be the Southern Pine 

Beetle (SPB, D. frontalis) attacking different species of pines in southeastern USA. But 

nowadays, the Mountain Pine Beetle (MPB, D. ponderosae) has an enormous outbreak in the 

district of British Columbia (B.C.) in Canada, where it is generally associated with the 

lodgepole pine (Pinus contorta Dougl.). However, the MPB can also attack and reproduce in a 

dozen others species of Pinus in North America. This beetle caused tree mortality of more than 

600 million m3 of logopole pine (Pinus contorta) in British Columbia between 1960 and 2009. 

During the same period in Sweden, three major outbreaks with I. typographus have occurred 

resulting in a 9 million m3 of killed Norway spruce trees (Picea abies) (KärvEmo and Schroeder 

2010b). And in continental Europe, bark beetles are estimated to have attacked more than 3 

million ha of spruce forest, resulting in more than 32 million m3 of killed trees, between 1990 

and 2001 (Grégoire and Evans 2007).  
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The colonization and establishment of the so called “aggressive” bark beetles in alive and 

healthy host conifer trees always occur via a characteristic two step sequence of behavior: (i) 

first, a pioneer beetle (male or female depending on the species) identifies a suitable host tree 

and releases aggregation pheromones to attract more members of same species; (ii) second, 

when the beetles start excavating galleries, they introduce an associated fungi into the host tree. 

 

In the next sections of this chapter we will focus on the biology of “aggressive” bark beetles 

giving special attention to the European spruce bark beetle I. typographus. 

 

2.1 Life cycle of the European spruce I. typographus  

During spring, when temperature exceeds 20 °C, adults disperse in the forest searching for a 

suitable host to mate and breed in (Wermelinger 2004). When a host tree is found the male 

starts excavating a nuptial chamber in the phloem under the bark (Figure 1). At the same time, 

an aggregation pheromone is released to attract conspecifics from both sexes. The I. 

typographus is a polygamous species, and each male usually mates with two or more females. 

After mating, females construct vertical maternal galleries for oviposition and the eggs are laid 

alternately along both sides of the maternal galleries (Mills 1986). The number of eggs laid per 

gallery is proportional to the gallery length (Anderbrant 1990) and each female can lay up to 

80 eggs. The eclosed larvae feed on both cambium and phloem tissue, and symbiotic microbes 

(e.g. a blue staining fungus which they are associated with and which were introduced by the 

parental beetles during the galleries construction (Ayres et al. 2000; Graham 1967; Six 2003). 

Larval galleries radiate progressively from the maternal galleries during the four consecutive 

larval instars. At the end of each larval tunnel a pupal chamber is constructed where the larvae 

pupate.  

 

 

Figure 1: A female Ips typographus bark beetle; B bark beetle larval galleries under the bark of Norway 

spruce (Picea abies) 

A 

B 

photo: Göran Birgersson 

photo: Paul Becher 

A 
B 
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Environmental conditions play an important role for beetles’ metabolism and development. If 

both the spring and the summer is hot and dry, early emerging brood adults might attack new 

trees, otherwise, they overwinter on the soil or less common under the bark of the host (Annila 

1969). In Sweden, according to Weslien (1992) less than 10% of the I. typographus populations 

overwinter in logs and the flight period generally starts in May (Hedgren and Schroeder 2004).  

During warm springs the first flight period can occur already in April, and if the warm weather 

continues, as in 2006 and 2018, they can have a true second generation flight period during the 

summer. However, in general, the parental beetles will re-emerge and make "sister brood 

flights" once, or even twice, during the summer, depending on the weather.  

 

According to Forsse (1985) when beetles colonize trees and begin to construct their galleries, 

flight ability is lost because flight muscles are considerable reduced in both sexes during this 

period. Females break down their flight muscles to produce their eggs while, males break down 

their flight muscles during the pheromone production. Both have to regenerate their muscles 

before the sister brood flight which may take days or weeks, depending on the weather 

conditions. 

 

2.2 Beetles’ associated microorganisms 

Like many other insects, bark beetles have shown complex associations with microorganisms 

that are important for their survival under the bark. In general, associated microorganisms can 

provide nutrients for the developing larvae, protection against pathogens and tree defenses or 

assist in the bark beetle pheromone/semiochemical production (Morales-Jiménez et al. 2012; 

Vega and Hofstetter 2014). Different species of fungi, yeasts and bacteria have been associated 

with bark beetles. 

 

2.2.1 Fungi  

Bark beetles are tightly associated with different genera of fungi from Ascomycetes (e.g. 

Ophiostama, Grosmannia, Ceratocystiopsis and Endoconidiophora) or Basidiomycetes (e.g. 

Entomocorticium) (Evans et al. 2011; Kandasamy et al. 2016). Depending on the bark beetle 

species, the fungi can be transported to the host trees, in the guts, exoskeleton, in special 

invaginations of the cuticle called mycangia (Six 2003) or within nematode-containing 

structures called nematangia , when they start excavating galleries (Cardoza et al. 2006). The 

I. typographus, for example, has no mycangia and their associated fungi are carried in non-

glandular pit-like structures on the exoskeleton, on pits and punctures of the head and pronotum 

on the elytra and in the gut (Furniss et al. 1990).  
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When the fungi is introduced into the host tree, it colonizes the beetle galleries and tree phloem 

tissues in close proximity to broods during larval feeding and help the beetle fitness by (i) 

detoxifying the terpene rich phloem and providing nutrients for the bark beetle larvae (Adams 

et al. 2009), (ii) exhausting tree defenses by over-stimulating the production of oleoresins or 

phenolic compounds (Hammerbacher et al. 2013; Zhao et al. 2011) and (iii) accelerate tree 

death by reducing or disrupting transpiration and vital tree processes that are important for the 

living trees (Furniss et al. 1990; Krokene and Solheim 1998). Some filamentous fungi can also 

give origin to a blue, grey or black discoloration of the wood reducing the quality of the timber, 

with high economic impact on the wood industry (Gitau et al. 2013). 

 

The I. typographus associated fungi are reviewed in Table 1. According to Kandasamy et al. 

(2006) the details of these associations are not well understood. The fungi isolates found in the 

I. typographus galleries changed according to the stage of the attack, but also between the 

different geographic areas. The different ophiostomatoid spp found associated with I. 

typographus, for example, might be due to differences in optimal temperature required by the 

fungi to grow, or due to local adaptations to climate, phloem moisture levels, host phloem 

chemistry, which may change according to tree species (Lindström et al. 1989).    

 

2.2.2 Yeast 

Yeasts are the most abundant fungi found associated with bark beetles. They have been found 

associated with all developmental stages of the beetles, gallery walls, pupal chambers and 

xylem tissues of the host tree (Hofstetter et al. 2015; Lewinsohn et al. 1994). Each individual 

adult often carry two or more yeast species and unlike the filamentous fungi, which seems to 

have species – specific associations with beetles, several species of yeasts were seen to be 

commonly carried by several bark beetle species (Six 2003). So far, many yeast species such 

as Pichia holstii, Pichia pinus, Hansenula capsulata, Candida diddensii, Candida nitratophila, 

Cryptococcus spp. and Metschnikowia spp. have been found associated with several Ips species 

in Europe (Händel et al. 2003; Leufvén et al. 1984; Lukášová et al. 2013; Vega and Hofstetter 

2014). The I. typographus associated gut yeasts are reviewed in Table 1. 

 

Bark beetle associated yeasts are known to produce volatile compounds that can have positive 

effects on beetle performance by attracting or repelling bark beetles to or from the host tree 

(Hunt and Borden 1990; Leufvén et al. 1984) or by promoting the growth of mutualistic fungi 

and inhibiting or delaying the pathogenic fungus establishment in the gallery environment 

(Adams et al. 2008). Moreover, some yeast species metabolize toxic tree chemicals such as 

terpenoids that are present on phloem resins, into less toxic compounds that may be important 
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for the beetle tolerance or survival on the host tree (Sutherland 2004). In addition, yeasts that 

are inoculated by the adult bark beetles into the host phloem can be used as food source for 

brood bark beetle larvae (Graham 1967). 

 

2.2.3 Bacteria 

Associated bacteria have mainly been identified from the beetle guts. However, a few studies 

have also showed the presence of bacteria in the exoskeleton, mycangia and gallery walls 

(Hulcr et al. 2011; Morales-Jiménez et al. 2012; Scott et al. 2008).  The bark beetle adult guts 

included bacterial species from the genera Rahnella, Bacillus, Chryseobacterium, 

Acinetobacter, Enterobacter, Klebsiella, Pantoea, Pseudomonas and Serratia (Adams et al. 

2009; Bridges 1981; Moore 1971; Muratoglu et al. 2011; Sevim et al. 2012; Vasanthakumar et 

al. 2006; Vega and Hofstetter 2014).  The I. typographus associated bacteria are reviewed in 

Table 2 It was also shown that adults, larvae and pupae guts differ in bacterial diversity, which 

could be related to the different metabolic activities and may indicate that some bacteria are 

essential only during a specific developmental stage of bark beetles life cycle (Morales-Jiménez 

et al. 2012).  

 

The bark beetle associated bacteria are important for the bark beetle development, survival and 

colonization of host trees. Some associated bacteria can fix nitrogen (Bridges 1981) or recycle 

uric acid increasing the nitrogen or carbon content on the bark beetles diet, which is crucial for 

their survival (Morales-Jiménez et al. 2013). Others influence the growth and reproduction of 

bark beetles associated fungi by producing volatile compounds (Adams et al. 2009) or 

antibiotics that can inhibit the growth of an antagonistic fungus (Cardoza et al. 2006; Scott et 

al. 2008). In addition, some  of the associated bacteria help the bark beetle overcoming host 

defense by metabolizing toxic monoterpene hydrocarbons and diterpenes acids (Boone et al. 

2013; Howe et al. 2018) 

 

 

2.3 Bark beetle chemical communication  

Bark beetles often use olfactory signals to communicate and interact with their hosts and among 

individuals of the same or different species. The communication is mediated by semiochemicals 

that can be divided into pheromones and allelochemicals. Pheromones are intraspecific signals 

used for communication within species while allelochemicals are interspecific signals used for 

communication between species. 
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Table 1: List of I. typographus associated microorganisms and their volatile compounds. 

Microorganism  VOC´s emitted  Presence on Beetles Ref 

Phloem/S

apwood 

Adults Galler

ies 

Fungi 

Endoconidiophora polonica isoamyl alcohol, isoamyl acetate, 2-phenylethanol, 2-phenylethyl acetate, geranyl acetone  x  (Kandasamy et al. 2016) 

Grosmannia europhioides isoamyl alcohol, isoamyl acetate, 2-phenylethanol, 2-phenylethyl acetate, 1-hexenol,  X  (Kandasamy et al. 2016) 

Grosmannia penicillata isoamyl alcohol, isoamyl acetate, 2-phenylethanol, 2-phenylethyl acetate, benzyl alcohol, 

(E)-β-caryophyllene 

 X  (Kandasamy et al. 2016) 

Ophiostoma bicolor isoamyl alcohol, isoamyl acetate, 2-phenylethanol, 1-hexenol, geranyl acetone x X  (Kandasamy et al. 2016) 

Ophiostoma ainoae  x X  (Kandasamy et al. 2016) 

Ophiostoma piceae isoamyl alcohol, isoamyl acetate, 2-phenylethanol, 1-hexenol, 1-octanol, 1-nonanol, benzyl 

alcoho 

x X  (Kandasamy et al. 2016) 

Yeast 

Hansenula holstii α-terpineol, 2-phenylethanol, isoamyl alcohol,, isoamyl acetate, 2-phenylethyl acetate  X x (Brand et al. 1977; Leufvén and Nehls 1986; Leufvén et al. 1988) 

Hansenula capsulata borneol, α-terpineol, terpinene-4-ol, trans-pinocarvol, myrtenol, 2-phenylethanol, verbenone  X x (Hunt and Borden 1990; Leufvén and Nehls 1986; Leufvén et al. 

1988)  

Candida diddensii borneol, α-terpineol, terpinene-4-ol, verbenone  X x (Brand et al. 1977; Leufvén and Nehls 1986; Leufvén et al. 1988) 

Candida nitratophila borneol, α-terpineol, terpinene-4-ol,  myrtenol, 2-phenylethanol, verbenone  X x (Brand et al. 1977; Leufvén and Nehls 1986; Leufvén et al. 1988) 

Cryptococcus albidus borneol, α-terpineol, terpinene-4-ol  x x (Leufvén and Nehls 1986; Leufvén et al. 1988) 

Cryptococcus laurentii borneol, α-terpineol, terpinene-4-ol  x x (Leufvén and Nehls 1986; Leufvén et al. 1988) 

Pichia pinus borneol, α-terpineol, terpinene-4-ol, verbenone, isoamyl alcohol, isoamyl acetate, 2-

phenylethyl acetate 

 x  (Brand et al. 1977; Hunt and Borden 1990; Leufvén and Nehls 1986) 

Bacteria 

Bacillus sphaericus   x  (Muratoglu et al. 2011) 

Bacillus fusiformis   x  (Muratoglu et al. 2011) 

Acinetobacter lwoffii   x  (Muratoglu et al. 2011) 

Acinetobacter junii   x  (Muratoglu et al. 2011) 

Acinetobacter calcoaceticus sulfoacetaldehyde  x  (Muratoglu et al. 2011), http://bioinformatics.charite.de/mvoc/# 

Acinetobacter baumannii   x  (Muratoglu et al. 2011) 

Kluyvera sp.   x  (Muratoglu et al. 2011) 

Proteus vulgaris   x  (Muratoglu et al. 2011) 

Serratia liquefaciens   x  (Muratoglu et al. 2011) 

Vagococcus sp   x  (Muratoglu et al. 2011) 

http://bioinformatics.charite.de/mvoc/
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2.3.1 Pheromones 

 

Table 2: Pheromone candidates of I. typographus found in the hindguts of males attacking 

Picea abies according to Birgersson (1984) and Schlyter (1987). 

Compounds Structure Activity 

2-methyl-3-buten-2-ol 
 

Aggregation pheromone component 

(promote landing) 

(–)-cis-verbenol 

 

Aggregation pheromone component 

(long distance attraction) 

(+) - trans-verbenol 

 

No effect 

Ipsdienol 

 

Not clear. It has been shown that it increases the 

trap catches but not significantly 

Ipsenol 

 

Regulates density of attack 

Verbenone 

 

Only minor amounts detected in beetles hindguts. 

Mainly produced by associated microorganisms 

as anti-aggregation/inhibition pheromone 

Myrtenol 

 

No pheromone effect; “only” a detoxification 

product from α-pinene  

trans-myrtanol 

 

No pheromone effect; “only” a detoxification 

from β-pinene 

2-phenylethanol 

 

Maybe density regulation on bark surface  

 

 

Bark beetle pheromones are usually made up of a mixture of compounds that can either be 

synthesized from host precursors or by de novo pathways (Ivarsson and Birgersson 1995; 

Ivarsson 1998; Lanne et al. 1989). The quantitative and qualitative composition of pheromones 

is unique for each bark beetle species. Bark beetles are known to produce at least  two different 
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types of pheromones: the sex pheromone and the aggregation pheromone.  The sex pheromone 

is produced by males to attract and orient females for the mating site.  

 

    The aggregation is an essential behavior in the life of “agressive” bark beetles, such as I. 

typographus and several species of Dendroctous, as it helps beetles to colonize living host trees 

and coordinate their attack. The aggregation pheromone is released by a male or a female, 

depending on the species, after a suitable host tree has been identified and attracts conspecifics 

of both sexes for mating and a coordinated mass attack on a selected host tree (Kandasamy et 

al. 2016). Additionally, the aggregation pheromone from one bark beetle species may also work 

as inhibitory signal for other species indicating that this specific tree has already been occupied 

(Birgersson et al. 1994). 

 

The aggregation pheromones from bark beetles generally include a mixture of oxygenated 

hemi- and monoterpenes, cyclic acetals and often in combination with host tree produced 

monoterpene hydrocarbons. The monoterpene hydrocarbons are usually host tree produced 

kairomones that enhance/synergize the bark beetle produced compounds. In some Pityogenes 

species, fatty acid derivatives can also be part of the aggregation pheromones (Birgersson et al. 

1990; Birgersson et al. 2000; Byers et al. 1990). 

 

Pheromone candidates found in the I. typographus males’ hindguts are shown in Table 2. The  

I. typographus has an aggregation pheromone composed by  (–)-cis-verbenol and 2-methyl-3-

buten-2-ol (Birgersson et al. 1984; Krawielitzki et al. 1977). While methylbutenol is a short 

range attractant and promotes landing, cis-verbenol is a heavier and less volatile compound that 

acts at longer distance (Schlyter et al. 1987). The 2-methyl-3-buten-2-ol is de novo produced 

(Lanne et al. 1989), but the (–)-cis-verbenol is one of very few bark beetle produced pheromone 

components that are detoxification/hydroxylation products from host tree defense toxic 

monoterpene hydrocarbons: in this case from (–)--pinene; the other is (+)- and (–)-trans-

verbenol, in several Dendroctonus species, from (+)- and (–)--pinene, respectively. I. 

typographus, on the other hand, detoxify (+)--pinene to (+)-trans-verbenol, but do not use the 

compound in the pheromone blend (Birgersson 1989; Per Ivarsson and Birgersson 1995; PRJ 

Ivarsson 1998; Renwick et al. 1976). 

 

The corresponding keton, verbenone, is produced also by males of some Dendroctonus species 

as an anti-aggregation compound. "All other" monoterpene alcohols used by bark beetles are 

de novo produced (Blomquist et al. 2010). 
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The pheromone compounds accumulate in the male hindguts right after they start boring a host 

tree and the pheromone blend is exuded or excreted with the beetle fecal pellets (Evans et al. 

1985). According to Birgersson et al. (1984), the proportion of these pheromone candidates 

varies in relation to the attack sequence of the bark beetle. For example, the maximal amounts 

of methylbutenol, the pinene alcohols, and the aromatic alcohol 2-phenylethanol were detected 

when the males were excavating their nuptial chambers, before accepting the females while 

ipsenol and ipsdienol were only detected in male’s hindguts after the acceptance of females and 

the amounts increased when the females started laying their eggs.  

 

2.3.2 Microbial produced compounds  

Bark beetle associated microorganisms are also known to produce compounds that may be used 

as subtracts by other associated microorganisms or directly by the beetles for the production 

and regulation of pheromones and other allelochemicals. For example, when I. typographus 

associated yeasts are established in their host tree, this indicates that this spot of the host tree is 

"taken"/"concurred" by the beetles, and they do not need any more attacks on the host tree to 

kill it. Therefore, the male beetles reduce their production of aggregation pheromone, and 

instead the yeasts produce trans-verbenol and verbenone, which prevents new attacks nearby 

on the tree surface, and reduces larval competition (Bakke 1981; Leufvén et al. 1984).   

 

In Table 1 I have summarized the associated I. typographus microorganisms and some of their 

volatile products described in literature. Most of the compounds produced by the fungi and the 

yeast are oxygenated hemi- and monoterpenes or low molecular weight aliphatic and aromatic 

alcohols and ketones. Many of these compounds have already been described to influence bark 

beetle behavior. For example, isoamyl alcohol, isoamyl acetate and 2-phenylethyl acetate are 

synergic attractants thought to play a role in bark beetles’ attraction to their symbionts or to 

symbiotic habitats (Brand et al. 1977). The 1-hexenol produced by Ophiostoma spp. and 

Grosmannia spp. is known to interrupt pheromone response of I. typographus (Zhang et al. 

1999). Although the benzyl alcohol has no antennal or behavioral response on I. typographus 

it has been shown to disrupt aggregation pheromone of D. ponderosae (Borden et al. 1998). 

And the verbenone produced by both Candida spp. and Hansenula capsulate has shown to 

inhibit attraction of I. typographus to its aggregation pheromone (Schlyter et al. 1989). 

 

Compounds such as α-terpineol, terpinen-4-ol, trans-pinocarvol and borneol are oxygenated 

monoterpenes thought to be produced by the tree as defensive response against bark beetles. 

However, it has been observed that, the production of these compounds starts at the beginning 

of the bark beetle attack but increases while females elongate their galleries, especially when 

the gallery walls are brown stained, which might be an indicator of the establishment of 
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associated microorganism and a sign that these microorganisms are participating in the 

production of these compounds (Birgersson and Bergström 1989). However, the exact effect of 

these four compounds on the beetles is not yet known.   

 

2.4 Bark beetle natural enemies 

Natural enemies such as predators and parasitoids have an important role in the population 

dynamics of bark beetles (Vega and Hofstetter 2014). Parasitoids are organisms that spend a 

significant part of their larval development by feeding on arthropod hosts. One single arthropod 

host can sustain the development of one or more parasitoids and it is usually killed during the 

development of the parasitoids (Pettersson 2000). Most of Scolytids parasitoid species belong 

to the Hemynoptera order (Braconidae and Pteromalidae) and can attack various developmental 

stages of bark beetles. One parasitod larvae consume only one bark beetle larvae or pupae. The 

Coeliodes bostrichorum was the most efficient parasitoid of I. typographus reported, and the 

species seems to be entirely confined to the bark beetles breeding in spruce (Feicht 2006; Kenis 

et al. 2007). 

 

Predators, on the other hand, are carnivorous species that normally feed on more than one prey 

during their development or during their adult life stage. Most predators, like clerid beetles, 

arrive shortly after the bark beetle attack started and often colonize the lower parts of the 

boles/trunks, while parasitoids come a bit later and often prefer the upper parts of the tree where 

the bark is thinner (Wermelinger 2002).  

 

Many species of predators are associated with the bark beetle galleries. However, only a few 

are known to forage on eggs, larvae, pupae or adults bark beetles. Most Scolytids predators 

belong to the Coleoptera (Cleridae, Trogossitidae and Rhizophagidae) (Billings and Cameron 

1984; Grégoire et al. 1991; Mills 1985; Weslien 1992) and Diptera (Dolichopodidae and 

Lonchaeidae) (Hopping 1947; Mills 1985; Wermelinger 2002).  The Coleoptera (beetles), such 

as Thanasimus formicarius (L.), are so far the most investigated predators of I. typographus 

(Kenis et al. 2007); the adults can prey on up to three bark beetle individuls per day, while 

larvae can prey on approximately fifty bark beetle larva during their whole larval 

stages/development (Dippel et al. 1997; Mills 1985). 
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Both predators and parasitoids are known to exploit bark beetle pheromones (Erbilgin and Raffa 

2001; Grégoire et al. 1992), bark beetle larval frass odours ( Grégoire et al. 1991), volatiles 

emitted by the tree under attack (Gijzen et al. 1993), or the volatiles produced by the introduced 

microorganisms on the surrounding bark tissue (Boone et al. 2008). 

 

3. Medetera long-legged flies (Diptera: Dolichopodidae)  

The long legged flies (Dolichopodidae) is one of the largest families of Diptera, where most of 

the species are predators and play an important ecological role as natural enemies of a wide 

variety of organisms. Many species from the Medetera genus, for example, are known to prey 

on Scolytidae brood at early developmental stages (Fisher von Waldhem, 1819). In this chapter 

I will describe the most important aspects of Medetera life, known so far. 

 

3.1 Biology of Medetera genus 

Species of the Medetera genus are among the less studied and most difficult dolichopodidae 

flies to identify. So far, the genus includes more than 250 described species, however new 

species are frequently discovered and none of the current available keys seems to be enough 

for identification (Bickel 1985; Pollet et al. 2011).  

 

In general, the adults from this genus are described as relatively small flies (length 1.2 to 4.4 

mm) with a body coloration usually from dark, metallic green to black. The head is strongly 

concaved dorsally with adjacent antennae covered in small sensillas, the sacape and pedicel are 

usually yellow and short. They have a long arista almost at the tip of the antenna. The eyes are 

large, oval, widely separated, usually dark green, appearing dark red in dried specimens. The 

palpi are typically dark brown with strong apical seta and short hairs. The proboscis is normally 

large and massive. They have a concaved thorax covered with heavy pruinosity. The abdomen 

is cylindrical covered with short setulae, female sterna abdomen presents color like bands, 

while, the male sterna is modified to receive the hypopygium, which is bended and tucked up 

against and slightly enfolded by the abdomen. The male hypopygium is a very complex 

structure that contains a range of different characters used not only to differentiate between 

males and females but also for species recognition or identification. The legs are elongated with 

poorly developed bristles and the wings usually hyaline (Figure 2) (Bickel 1985; Teskey et al. 

1981). 

 

Distribution and hosts 

Species from the Medetera genus are globally distributed (Pollet et al. 2011). The geographic-

ecological variation seems to be related to their habitat (Bickel 1985). Most of Medetera spp. 
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are sensible to cold and have been mainly found from early spring until late summer. Adults 

are typically found in largest numbers at vertical surfaces such as tree trunks (Beaver 1966; 

Bickel 1985). During field experiments, Bikel (1985) observed that smooth barked trees are 

preferred over trees with rough, gnarled bark. In Scandinavia for example, it has been observed 

that among conifers, Norway spruce trees are preferred over Scots pine. Besides the bark 

texture, the size and position of the tree seems to be important criteria used by adults.  

 

Adults concentrate at the lower parts of trunks (Kenis et al. 2007; Nicolai 1995; Wermelinger 

2002). For example, adults of M. jacula were observed to mostly concentrate on the trunks 

between 0 – 3 m high or on the grass around the tree (https://diptera.info/articles.php?article_id=12). 

While landing on the tree bark, Medetera flies keep their head always facing upward and the 

forelegs positioned so that the body is inclined from the surface. If disturbed, adults fly off 

immediately and land in a short distance nearby in the same tree always maintaining the upright 

position (Bickel 1985). 

 

According to Bickel (1985) Medetera spp can also be found in very dry habitats or in non-

wooded areas such as grasslands, deserts and/or beaches. 

 

 

 

    

 

Figure 2: Adults and larvae from Medetera genus. To the left a male and in the middle an ovipositing 

female. To the left a Medetera larvae which is recognized by the V-shape mandibular. The larvae is in a 

cocoon shape, normally formed before pupation. The samples were collected from a bark beetle attacked 

spruce tree at Asa, Sweden. 

 

 

Feeding  

Medetera adults possess a massive and powerful proboscis used to predate on small arthropods 

with a soft integument (Kenis et al. 2007; Nicolai 1995). Feeding has been reported on spiders, 

mites, small chilopods, Collembola, Psocoptera, Thysanoptera, small Diptera (Sciaridae, 

photo: Göran Birgersson photo: Göran Birgersson 
tree 

(https://diptera.inf

o/articles.php?arti

cle_id=12) 

photo: Maria Sousa 

https://diptera.info/articles.php?article_id=12
https://diptera.info/articles.php?article_id=12
https://diptera.info/articles.php?article_id=12
https://diptera.info/articles.php?article_id=12
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Psychodidae, Cecidomyiidae), Homoptera, especially aphids, and early instar caterpillars 

(Bickel 1985).  

 

The prey is detected by their movement from a distance of 0.5 - 7 cm and usually followed 

before the attack. Dead or inactive preys are not attractive. Preys that are too large or to active 

are usually abandoned. The fly strikes rapidly capturing the prey between the extended labella. 

Small preys are completely swallowed by the flies. Depending on the prey size, the swallowing 

process can take from five seconds to ten minutes. Large preys are held by their abdomen and 

slowly ingested. The cuticle or appendages of the prey are discarded (Fitzgerald 1968) 

(https://diptera.info/articles.php?article_id=12).  

 

The predatious larvae of Medetera live under the bark of dead or dying trees (Bickel 1985), 

where they prey on Scolytidae larvae, pupae and new emerged adults (Kenis et al., 2007; Vega 

and Hofstetter, 2014). However, Medetera larvae are not entirely confined to a diet of 

Scolytidae but was also observed to attack Diptera, Hymenoptera and even penetrate Braconid 

coccons (Beaver 1966). According to Aukema (2004), which has observed the killing action of 

M. bistriata. Medetea larvae uses a toxin to first immobilize or kill the prey before start feeding. 

Moreover, morphological observations suggest a structure of a peptide neurotoxin.  

 

 

Courtship and mating 

Courtship and mating among Medetera spp is not well described and  no available information 

was found regarding sound and scent. Mating has been observed to occur only after a serious 

of unsuccessful attempts by the male to copulate (Fitzgerald 1968). During mating, the male 

approaches the female from behind, without face to face courtship, and arches over the 

receptive female, he curls his abdomen forward so that hypopygium gets in contact with the 

distal end of female abdomen. While copulating males thrust repeatedly forward with their 

abdomen and use their forelegs on either side of the female abdomen to help stabilizing the 

coupling. Copulation usually lasts for several minutes (Bickel 1985; Schmid 1970) or 10-25 

seconds as observed for M. jacula (Bickel 1985).  

 

Until now, it is not clear if mating occurs in the same tree where oviposition occurs. According 

to Hopping (1947) mating may occur on infested bark beetle trunks. However, according to 

Bikel (1985) the aggregation trees for mating are really those on which females oviposit and 

only one Medetera species has been found at a given mating site. In my field experiments, I 

have observed the presence of both males and females on recently bark beetle attacked trees, 

however, the number of females seems to be much more high compare to the number of males 

https://diptera.info/articles.php?article_id=12
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and althrough not so frequent, I have also observed matings on the same trees where oviposition 

occurs. 

 

 Moreover, according to Bikel (1985) Medetera aggregates for mating in small groups or 

“leks”. In these “leks” the number of males are usually more abundant than females (ratio 2:1 

or 3:1) and this is because, while the females apparently leave the tree shortly after mating to 

start searching for suitable oviposition sites, the males remain in the same tree waiting for 

further females. 

 

 

Oviposition 

Gravid Medetera females has been seen searching for an oviposition site by exposing the tip of 

the long ovipositor over the tree bark (Birgersson pers. comm.). According to Wermelinger 

(2002) althrought, the bark thickness seems to not influence oviposition, females typically 

prefer to oviposit in the lower parts of the trunks. However, according to Bikel (1985) females 

have broad tastes and will deposit their eggs in various subcortical environments.  

 

4. Interaction between Medetera and I. typographus 

Medetera is one of the most abundant predators found on I. typographus attacked logs that 

seem to contribute the most to beetle mortality (Hedgren and Schroeder 2004; Wermelinger 

2002). In a recent report (Schroeder 2009), it was found that the number of successful bark 

beetle attacks, measured as number of broods per female gallery, a few years after the Swedish 

hurricanes Gudrun and Per, have decreased dramatically when the number of Medetera 

predators have increased, while the number of hymenopteran parasitoids remained at the same 

level during the last three years, see Figure 3. 

 

According to Weslien and Regnander (1992) each Medetera larvae was estimated to consume 

around five I. typographus individuals and the density of 38 Medetera larvae found per m2 of 

attacked bolts were assessed to eat in around 100-200 I. typographus offspring. Wermelinger 

(2002) also found that together with other dolichopodidadae predators, they accounted for more 

than 80% of the bark beetle mortality.  

 

Throughout the whole summer, the females of Medetera are able to lay eggs in newly infested 

trunks very soon after an infestation of bark beetles (Nicolai 1995). I have in my own fieldwork 

seen Medetera females ovipositing in mid-June, on spruce trees that were attacked by I. 

typographus in mid-May. These findings are supported by the emergence dynamics of insects 
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from bark beetles infested spruce trees, see Figure 4 from Wermelinger, (2004) which shows a 

lag of about one week after the I. typographus are peaking.  

 

 

Figure 3: Emergence quantification of spruce bark beetles and associated natural enemines. Although 

the number of female galleries remains high (A), the number of successful brood production, as number 

of female brood per female gallery, dramatically decreased (B) due the pronounced increase in the 

number of predacious dolichopodid larvae (C). The number of hymenopteran parasitoids remain constant 

(D) (all figures from Schroeder, 2009)  

 

 

 

 

Figure 4: Emergence dynamics of bark beetles and associated natural enemines from logs of bark 

beetle-infected spruce trees: I. typographus (Scolytidae)  (figure from Wermelinger 2004). 
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4.1 Predator-prey relationships 

When a suitable host is found, the females deposit their eggs in bark cervices and under scales 

always near or at the entrances of bark beetle galleries (Bickel 1985). Usually, 1- 4 eggs are 

laid at a time, and one gravid female can lay over 100 eggs (Beaver 1966) i.e. M. dendrobaena 

was observed to produce up to 120 eggs (Dippel et al. 1997). The eggs hatch after about ten 

days and the newly eclosed larvae penetrates into the bark beetle larvae galleries, where they 

seemed to orient toward mining prey (Beaver 1966). The larvae presents a well-developed 

pseudopodia that allows the movement over dry bark surfaces from the oviposition sites to the 

gallery entrance ( Fitzgerald 1968). According to Nagel and Fitzgerald (1975) predatory larvae 

are unable to penetrate unmined phloem but they can slowly move in a phloem through the 

prey galleries even if tightly packed with frass and the movement seems to be facilitated after 

the mined inner bark began to dry out/up.  

 

The initial attacks of the first instar larvae M. aldrichii occurred within 2 or 3 days of host 

eclosion. Larvae seems to be attracted by the activity of the feeding host, prior to stablishing 

physical contact. Medetera larvae are known to strike the bark beetle larvae with their tentorial 

rods and inject a toxin before they are paralyzed and consumed (Aukema and Raffa 2004). 

Beetle larvae are completely consumed with the exception of the head capsule and cuticle 

(Nagel and Fitzgerald 1975). Larvae can consume five to 20 individuals during their larval 

development stage (Beaver 1966) but the consumption rates seems to increase with an 

increasing bark beetle density (Nicolai 1995). When the number of abundant prey is high, 

Medetera larvae can kill more than necessary; but if food is scarce, they can be cannibalistic 

(Beaver, 1966). According to Dippet et al. (1997) more than ten Medetera, larvae can be found 

per 100 cm2 of attacked bark.    

 

Under laboratory conditions four larval stages of M. dendrobaena can be distinguished and the 

larval stages are well separated from each other (Nicolai 1995). When the larvae reach the 

mature stage, they pupate close to places where the adults can easily exit. According to 

Fitzgerald (1968), prepupal M. aldrichii larvae are photo-sensible and usually follow the light 

entering the bark beetle ventilation holes to locate potential pupation and exit sites. When a 

suitable site for pupation is found, a coccon is first constructed, in which the larva lies in a “U” 

shape for a week or longer (Figure 1). The pupal phase lasts for about 18-21 days (Beaver 

1966). 

 

The number of generations per year is not fixed, adults can be found on infested trunks lying 

their eggs during the whole summer, until the first periods of frost in autumn (Nicolai 1995; 

Stephen and Dahlsten 1976). However, until now, it is not clear how Medetera spp. overwinter. 
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According to Dr. Heino Öunap (University of Tartu, pers. comm), the Medetera larvae 

overwinter under the bark of bark beetle attacked trees, and pupate and emerge the next 

summer, not published results. Moreover, according to Wermelinger (2012) a substantial 

mortality of these maggots has been detected over winter. 

 

 

4.2 Predator-prey specificity  

So far, it is hard to determine/discusse host specificity of Medetera. According to Beaver (1966) 

the different Medetera species seemed to be confined to tree species or group of species, to the 

bark texture and diameter and to specific environmental conditions. However, according to 

Bicker (1985) almost all Medetera species associated to conifer attacking scolytidae, belong to 

the  M. signaticornis-M. pinacola group (for more details of the species see Table 3) and 

although some of these species appear to have a principal association with their prey/host (e.g. 

M. aldrich with the bark beetle species Dendroctonus and M. bistriata with tree genus Pinus), 

others have been found in different tree hosts, bark beetle hosts and sometimes have been found 

emerging from the same log.  

 

  4.3 Predator-prey location mechanisms 

How the different Medetera spp locate attacked trees or how they locate their prey underneath 

the bark is still not understood. But olfaction and acoustics, as well as other cues, may play an 

important role during host/prey location and capture.  

 

4.3.1 Olfactory cues 

The odor surrounding a bark beetle attacked spruce tree consist of a large number of volatiles, 

in which, the sequence and the concentration variates between the different stages of the bark 

beetle attack (Birgersson et al. 1984; Birgersson and Bergström 1989; Pettersson and Boland 

2003). Until now, it is thought that multiple semiochemicals may be involved in the host 

location of Medetera, since the flies start arriving to infested logs shortly after colonization by 

bark beetles but their presence and ovipostion extends through the whole bark beetle brood 

development, even after pheromone emission is ceased. Some of the semiochemicals that may 

be involved in the host location of Medetera are e.g. (i) compounds from bark beetle 

pheromones, (ii) compounds produced by the tree in response to the bark beetle attack or (iii) 

compounds from bark beetle associated microorganisms. The semiochemicals already tested 

on Medetera are summarized in Table 4. 
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(i) Compounds from bark beetle pheromone 

Many species of parasitoids and predators are attracted to the prey pheromone compounds and 

others signals, such as interspecific repellents (Hulcr et al. 2005). The insect natural enemies 

can also respond to individual compounds or only to the exact proportions of the whole blend. 

Although little information in known, studies have shown that M. bistriata adults do not 

respond to the individual compounds of the host bark beetle pheromone, but are strongly 

attracted by the blend of (S)-cis-verbenol and 2-methyl-3-buten-2-ol (Williamson 1971). In 

another study, the attraction of adults of M. setiventris and M. melancholica was considerably 

higher when the aggregation pheromone was combined with a mixture of host tree volatiles 

such as, α-pinene and limonene (Hulcr et al. 2005; Hulcr et al. 2006). 

 

(ii) Compounds produced by the tree in response to the bark beetle attack 

Spruce host trees produce several monoterpene compounds in response to the bark beetle 

attack. These volatile products may serve as attractants for beetle predators and parasitoids 

(Gijzen et al. 1993). According to Hulcr et al. (2005) M. setiventris adults prefer freshly 

attacked trees which produce mainly unoxidized monoterpenes (e.g. α-pinene, β-pinene, 

limonene). Similarly, M. signaticornis was attracted by a solution of the spruce monoterpenes 

on ethanol (Rudinsky et al. 1971). The α-pinene and β-pinene, are the main constituents of 

attacked spruce tree and have stimulated ovipositon of gravid females and attracted the newly 

eclosed larva from the oviposition sites toward prey gallery openings (T. Fitzgerald and Nagel 

1972). According to Fitzgerald (1962) gravid M. aldrichii females were observed to respond to 

volatilized 95% -pinene by exerting their ovipositor and depositing their eggs.   

 

 

(iii) Compounds from bark beetle associated microorganisms 

Bark beetle associated microorganisms are also known to produce a range of volatiles (Table 

1) that may be used by predators to locate their prey. Medetera spp. were highly attracted to 

colonized logs, wither with the fungus Ophiostoma ips or with a bacteria strain Burkholderia 

sp., which are Ips pini associated microorganisms, compare to the non-colonized logs (Boone 

et al. 2008). However, the volatile constituents from these microorganisms that mediate 

Medetera attraction are not yet identified.  

 

4.3.2 Other cues 

In combination to olfaction, Medetera may also use other cues such as color, texture, form and 

contrast to orient and land on a suitable host. According to Goyer et al. (2004), M. bistriata 

orientation was strongly affected by color and season. In their study, it was observed that white 
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logs caught 50-56% fewer flies compare to the unpainted or black logs and that the fly 

orientation was dramatically affected by season: in spring, flies showed preference for vertical 

logs compared to the horizontal logs. However, this preference decreased during summer and 

switched during fall. Also, according to Hedgren et al. (2004) Medetera flies were ten times 

more abundant on standing living trees compared to cut or dead trees. 

 

Both adults and larvae of Medetera genus, may also use acoustic signals to detect their prey 

under the bark. Bark beetles are known to produce acoustic signals that have been implicated 

in defense, courtship, aggression, species location and recognition (Ryker and Rudinsky 1976). 

On I. typographus, a sexual dimorphism was observed on the stridulatory organs (Rudinsky 

1979). According to this author, females produce two different acoustic signals to respond to 

male attraction while entering the gallery through the boring dust. These signals can be heard 

and distinguished with an unmagnified trained observer close to the source of the sound, 

however, their exact role is still unknown. In addition, the author also observed a single pulse 

that may be produced by the males as phonoresponse to the females as observed in others 

scolytids (Ryker and Rudinsky 1976). Stress sounds, similar to brief clicks, were also produced 

by males and females of I. typographus under stress conditions (Rudinsky 1979). Although it 

is thought that scolytids predators and parasitoids use these acoustic signals to hunt their preys 

little information is available in relation to how these signals are received and transmitted 

through the air or through the wood (Gitau et al. 2013).  In addition: standing by a bark bettle 

attacked spruce tree in the spring is possible to hear them chewing the phoem. And also the 

bark beetle larvae can be heard when they chew into the phloem. If we can hear them, the the 

flies might be able to hear them (G. Birgersson pers. comm.).
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Table 3: List of conifer-scolitidae associated Medetera and list of the species recorded in Sweden. 

 

Species 

Conifer-scolitidae associated Medetera 

according to Bickel (1985) 

(M. signaticornis-M. pinacola group)  

Recorded in 

Sweden* 

Emerged from spruce 

trees attacked by Ips 

typographus Ref. 

Medetera abstruse,  Thuneberg, 1955  x   

Medetera aldrichii, Wheeler, 1899 x    

Medetera ambigua,  Zetterstedt, 1843  x x (Wermelinger et al. 2012)  

Medetera apicalis, Zetterstedt, 1843  x   

Medetera betulae, Ringdahl, 1949  x   

Medetera bistriata, Parent, 1929 x    

Medetera bispinosa, Negrobov, 1967 x    

Medetera borealis, Thuneberg, 1955  x   

Medetera breviseta, Parent, 1927 x x x (Hedgren and Schroeder 2004; Wermelinger 2002)  

Medetera collart,i Negrobov, 1967 x    

Medetera complicata, Negrobov, 1967 x    

Medetera cuspidata, Collin, 1941  x   

Medetera diadema, Linnaeus, 1767  x   

Medetera dichrocera, Kowarz, 1877 x x   

Medetera excellens, Frey, 1909  x x (Hedgren and Schroeder 2004; Wermelinger 2002; 

B Wermelinger et al. 2012)  

Medetera fasciata, Frey 1915 x    

Medetera fascinator, Negrobov & Saigusa 1998 x    

Medetera flavirostris, Negrobov, 1967 x    

Medetera flinflon, Bickel 1987 x    

Medetera fumida , Negrobov, 1967 x x x (Hedgren and Schroeder 2004) 

Medetera gaspensis, Bickel 1987 x    

Medetera impigra, Collin, 1941  x   

Medetera infumata, Loew, 1857  x   

Medetera jacula, Fallen, 1823  x   

Medetera japonica, Negrobov, 1970 x    

Medetera maura, Wheeler 1899 x    

Medetera melancholica, Lundbeck, 1912 x x   

Medetera micacea, Loew, 1857  x   

Medetera muralis, Meigen, 1824  x   

Medetera neomelancholia, Bickel 1985 x    
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Medetera nitida, Macquart, 1834 x x   

Medetera obscura, Zetterstedt, 1838 x x   

Medetera occultan, Negrobov, 1970 x    

Medetera pallipes, Zetterstedt, 1843  x   

Medetera parenti, Stackelberg, 1925  x   

Medetera penicillata, Negrobov, 1970 x    

Medetera petrophila, Kowartz, 1877  x   

Medetera piceae, Ounap, 1997  x x (Hedgren and Schroeder 2004; Õunap 1997) 

Medetera pinicola , Kowarz,1877 x x x (Hedgren and Schroeder 2004; Hulcr et al. 2005; 

Wermelinger 2002; Wermelinger et al. 2012)  

Medetera plumbella, Meigen, 1824  x   

Medetera polonica, Negrobov & Capecki 1977 x    

Medetera prjachinae, Negrobov, 1974  x x (Hedgren and Schroeder 2004) 

Medetera pseudoapicalis, Thuneberg, 1955  x   

Medetera ravida, Negrobov, 1970 x    

Medetera robusta, Ounap 1997 

 

 x  (Õunap 1997) 

Medetera stackelbergiana, Bickel 1987 x    

Medetera senicula, Kowarz, 1877  x   

Medetera setiventris, Thuneberg, 1955 x x x (Hedgren and Schroeder 2004; Hulcr et al. 2005) 

Medetera signaticornis, Loew, 1857 x x x (Hedgren and Schroeder 2004; Hulcr et al. 2005;  

Wermelinger 2002; Wermelinger et al. 2012)  

Medetera striata, Parent, 1927 x x   

Medetera sutshanica, Negrobov & Stackelberg 1974 x    

Medetera tenuicauda, Loew, 1857  x   

Medetera tristis, Zetterstedt, 1838  x   

Medetera truncorum, Meigen, 1824  x   

Medetera vales, Loew, 1861  x   

Medetera vidua, Wheeler 1899 x    

Medetera  zinojevi, Negrobov, 1967 x x x (Hedgren and Schroeder 2004) 

 

*Data was collected from Lund museum (http://www.botmus.lu.se/ent/search_new2.php?taxa=Medetera&sort=1&country=Sweden  

 

 

 

 

 

http://www.botmus.lu.se/ent/search_new2.php?taxa=Medetera&sort=1&country=Sweden
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Table 4: Review of the bark beetle associated compounds tested on different Medetera spp, their effect and occurrence. 

 

Compounds 

Bark beetles associated 

Effect Species tested Ref. Pheromone Host tree Microorganisms 

(S)-cis-verbenol + 2-methyl-3-buten-2-ol x   attractant 
M. setiventris,    

M. bistriata 

Hulcr et al. 2005; Williamson 

1971 

(S)-cis-verbenol + 2-methyl-3-buten-2-ol + 

(±)-α-pinene + limonene 
x x  attractant 

M. setiventris,     

M. melancholica 
Hulcr et al. 2005 

 Ipsdienol x   attractant M. setiventris     Hulcr et al. 2006 

Chalcogran x   attractant M. setiventris     Hulcr et al. 2005 

Bricomin x   attractant Medetera spp. Vité et al. 1969 

Frontalin x   attractant Medetera spp. Vité et al. 1969 

-pinene  

x  attractant  M. signaticornis,  Rudinsky et al. 1971 

  

ovipositon stimulus  for gravid female and 

orientation guide of the newly eclosed larva to 

oviposition sites toward prey gallery openings 

M. aldrichii, Fitzgerald and Nagel 1972 

  increases attractiveness of bark beetle kairomones M. bistriata Williamson 1971 

-pinene  x  

attractant, 

orientation guide of the newly eclosed larva from 

oviposition sites 

M. signaticornis 

M. aldrichii 

Rudinsky et al. 1971; Fitzgerald 

and Nagel 1972 

camphene  x  attractant M. signaticornis Rudinsky et al. 1971 

camphor  x x no effect Medetera spp.  

limonene  x  attractant M. signaticornis Rudinsky et al. 1971 

methyl (E, Z)-2,4-decadienoate x   no effect M. setiventris Hulcr et al. 2005 
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5. Remarks and future investigations 

In this introductory essay I provided a literature review and summarized what I consider to be 

the most relevant aspects on the interaction between bark beetles and Medetera spp. From my 

point of view, a compilation of such information is needed to understand how these natural 

enemies, and their interactions, can be used to prevent or reduce future epidemic bark beetles 

attacks.  

 

While revising the literature I verified that over the past few decades only a few studies have 

been completely dedicated to the biology of Medetera, even though their potential as biological 

agents of bark beetles was noticed already in the early 1950´s, if not before. I think that the 

very limited information available is mainly because the distinction between species is difficult 

to perform with the naked eye. Moreoever, the available keys used for species identification is 

often incomplete and most of the times do not include all the species found. Therefore, the 

biology of the Medetera genus described in literature appears to be scarse and many ecological 

aspects are still unknown. Information regarding courtship, sound and scent was not found. 

Features such as number of generations per year and where adults overwinter are not clear and 

need to be considered in future studies. 

 

Host selection and specificity are other important aspects that needs further consideration. It is 

not proved if the different Medetera spp are selective or specialized to host trees or to scolytidae 

prey. Medetera adults have mainly been found on attacked trees for oviposition, but it is not 

clear if the reason is because the predator instinctively knows that their offspring has higher 

change of survival because they can feed on the bark beetles offspring, or because the tree's 

natural defense is reduced due to the bark beetle attacks and therefore are more susceptibel to 

other plagues. Bark beetle attacked trees can have a variety of other insects which both adult 

and larval Medetra can feed on, and thereby increasing their survival rate. Further 

investigations on this matter needs to be carried out. Understanding host selection and 

specificity is a crucial step to see how, when, or which of these predators can be used as efficient 

bioregulators of a bark beetles population. 

 

When it comes to the subject on how Medetera detects bark beetle attacked trees, I believe that 

further investigations also need to be carried out. It is known that Medetera adults arrive to 

infested logs shortly after colonization by bark beetles, and the presence and oviposition of the 

Medetera has been noted throughout the entire bark beetle brood development. However, it is 

not clear exactly how they locate a tree under attack, or how they locate their prey underneath 
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the bark. From my point of view, it is important to address this issue while considering that 

multiple sensory cues (e.g., olfaction, vision, sound) may be involved in the host/prey location. 

Moreover, the odour surrounding a bark beetle attacked spruce tree varies qualitatively and 

quantitatively between the different stages of the bark beetle attack and maybe a result not only 

of the beetle itself but also its associated microoranisms. For this reason, it is possible that 

Medetera might be using a combination of multiple semiochemicals, and the multitrophic 

interaction (tree, beetles, microorganisms, flies) needs to be considered in future studies.  
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