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Cod (Gadus morhua) is a key fish species of the Baltic Sea, economically as 
well as ecologically. Stocks declined during recent decades due to factors 
such as high fishing pressure, loss of spawning and feeding habitats caused 
by eutrophication, changing climate and widespread hypoxia. The growing 
seal population preys on cod and increased contact has resulted in the trans-
mittance of parasites to cod, causing additional stress. In order to manage 
fisheries, age distribution and growth history of fish are needed to run stock 
assessment models. Based on these biological references, decisions are 
made for fishing quotas and restricting catches. Fish age is usually deter-
mined from counting annual growth zones in otoliths, calcium carbonate 
structures situated in the skull of the fish. Otoliths grow incrementally, depos-
iting layers of material, forming annual rings reflecting growth, like a tree’s 
rings. Baltic cod otolith readability has always been somewhat difficult; today 
the poor condition of Baltic cod has worsened the problem. Unclear seasonal 
growth zones in otoliths have made age data unreliable, resulting in an un-
certain forecast for stock size and suspended Marine Stewardship Council 
(MSC) certificate for sustainable seafood. However, invisible to the eye, the 
chemistry of the otolith contains a “hidden code” that could validate conven-
tional ageing methods. The otolith takes up trace elements and isotopes from 
the surrounding water; hence the fish’s seasonal migration among areas with 
different environmental conditions is recorded in the otolith. Microchemical 
analyses enable us to track seasonal changes in trace elemental and isotopic 
composition in the otolith throughout the fish’s life. The aim of this thesis is to 
(1) explore the potential use of otolith chemistry as an age validating tool, (2) 
provide alternative ways to age fishes when other methods fail, as well as (3) 
provide novel information for aquatic monitoring. 
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Scientific advice from stock assessments is an important tool in order to 
achieve sustainable fisheries management. Life history characteristics of the 
managed species as well as catch data from the commercial fisheries are 
included in the analytical models to assess the current status of the stock. 
Without the key biological reference parameters, i.e., fish age and growth 
rate, the estimation of spawning stock biomass and fishing mortality rate is 
unpredictable (ICES 2014). In 2014, the ICES (International Council for the 
Exploration of the Sea) Baltic Fisheries Assessment Working Group re-
ported that age estimates of Baltic cod (Gadus morhua) had become very 
uncertain (ICES 2014). Fish age is routinely determined from otoliths, the 
small, calcified structures that form part of the hearing and balance system 
in fishes. Cod otoliths generally form readily discernable, opaque and trans-
lucent annual growth zones, similar to the rings seen in a tree trunk (Figure 
1A). The age of the fish is estimated by counting these paired seasonal 
growth zones. There are two separately managed cod stocks in the Baltic 
Sea which differ biologically and are spatially separated west and east of the 
island of Bornholm, including a mixing zone in between (Bagge et al. 1994). 
Otoliths from the Eastern Baltic cod show low visual contrast between 
growth zones (Figure 1B) and are therefore more difficult to interpret and 
assign ages to (Hüssy et al. 2016b). Poor condition of the Eastern Baltic cod 
might be one of the reasons for the lack of contrasting growth zones and 
hence increased uncertainty in age estimation (ICES 2014). 

  

1 Introduction 
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Figure 1. Transverse sections of cod otoliths.  A. a North Sea cod otolith with clear annual 
rings; B. an Eastern Baltic Sea cod otolith with unclear annual rings. Photos: Y. Heimbrand 

 

Age determination of a given fish species requires profound knowledge 
about its biology and behaviour, as well as environmental conditions in the 
different regions where it occurs. Inter-annual differences in otolith growth 
zone formation depend on exogenous (e.g., environment, food availability) 
and endogenous (e.g., reproductive status) factors (SLU-Aqua 2012). For 
the case of Baltic Sea cod, international age-validation calibration exercises 
are organized where age readers from countries around the Baltic meet and 
assign ages to the same sets of cod otolith samples. To ensure that all age 
readers follow the same criteria, a manual for age estimation of Baltic cod, 
based on international consensus was developed (ICES 1999).  This manual 
includes interpretation guidelines of otolith growth zone formation, descrip-
tion of preparation and microscopy methods. The results are then summa-
rized, discussed and reported. When inconsistencies among the experts oc-
cur, ageing problems can sometimes be resolved by using other preparation 
methods or “chronometric structures” (e.g., scales, operculum, cleithra 
bones, etc.). For Eastern Baltic cod, otolith weight was suggested as an al-
ternative means to age cod (Cardinale et al. 2000), but, due to lack of a 
validation data set of adequate known-age samples this has not been appli-
cable (Hüssy et al. 2009).  

At present, the age of Eastern Baltic cod cannot be reliably estimated. 
Subsequently the changes in growth and natural mortality cannot be identi-
fied. Lacking these biological parameters, no analytical age-based stock as-
sessment has been produced since 2014 for the Eastern Baltic cod, result-
ing in diminished quality of the ICES Advice on fisheries quotas to the EU 
Commission (ICES 2014). The stock was benchmarked in 2015 (ICES 2015) 
but it was not possible to conduct an analytical assessment of the stock. 
Therefore, no maximum sustainable yield (MSY) estimates are available for 
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this stock (ICES 2017). Finding means to estimate Baltic cod age has be-
come a priority. 

Otoliths incorporate trace elements and isotopes from the surrounding 
water. From the chemical composition of the otoliths and from the distribu-
tion of elements within the otoliths, information about the life history of the 
fish can be obtained. In fisheries research this information has been used to 
identify fish stocks, migration patterns, physiological mechanisms, recon-
structing environmental history, indicate pollution of the environment, and 
for the purpose of chemical marking (Campana 1999, Campana and 
Thorrold 2001). The aim of this research project is to apply otolith micro-
chemistry analyses to search for seasonal variations in trace elemental up-
take in cod otoliths. If chemical constituents are incorporated differently in 
the otoliths during summer compared to the winter in the Baltic Sea, the 
chemical profiles could serve as time recorders. Thus, microchemical anal-
ysis is, in itself a potential method for age estimation and validation tech-
nique in order to ensure correct age estimation of the Eastern Baltic cod. A 
driving question, then, is: which combination of chemical constituents pro-
vides the best aid to age determination, in a cost-effective manner? 

What follows are reviews of cod in the Baltic Sea (Section 2), geophysical 
setting (the Baltic Sea, Section 3), age estimation (Section 4), otolith chem-
istry (Section 5), analytical techniques (Section 6), research questions to be 
addressed in this project (Section 7) and approach (Section 8). The scope 
of this introductory essay is larger than stated in the writing instructions, due 
to the interdisciplinary nature of this research. 
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2.1 Geographical distribution 
The Atlantic cod (Gadus morhua) belongs to the family Gadidae. Named by 
Linnaeus in the 10th edition of Systema Naturae, Gadus comes from the 
Greek word for fish (gados) and morhua comes from the Latin name for cod 
(morua). 

 

Figure 2. Illustration of an Atlantic cod by Wilhelm von Wright. 

 

The geographical distribution of cod ranges from the east coast of North 
America, Greenland, Iceland, Barents Sea, across the Atlantic Ocean, from 
the Bay of Biscay up north along the coast of Europe and into the Baltic Sea. 
In their wide range, cod experience in temperatures ranging from near 0°C 
up to 20°C and salinities from oceanic to brackish water (Cohen et al. 1990). 
Cod is distributed throughout the entire Baltic Sea, although it is less com-
mon in the Bothnian Bay due to the low salinity. Successful reproduction is 
limited to the regions of the Baltic Proper where salinity is over 11 PSU, 
which provides sufficient buoyancy for fertilized cod eggs (Nissling and 
Westin 1997, HELCOM 2013), the depths where this salinity occurs are also 
often hypoxic (Nissling and Westin 1997).  

2 Cod in the Baltic Sea  
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Cod is a coastal marine species, categorized as demersal (Cohen et al. 
1990). In the Baltic Sea, however, cod often are found in pelagic habitats 
due to the lack of oxygen at lower depths (Schaber et al. 2009). Information 
from hydro-acoustic surveys and studies with data storage tags measuring 
migration, temperature, depth and salinity show evidence of vertical move-
ments and a distribution from shallow waters to the deep during spawning 
and feeding and a strong homing behaviour (Schaber et al. 2009, Svedäng 
et al. 2010, Nielsen et al. 2013).  

2.2 The Baltic cod stocks  
Regionally, three, three separate cod stocks have been identified by mor-
phometric characters, genetics, tagging experiments and combinations of 
these. The two stocks in the Baltic Sea and the one in the Kattegat ICES 
Sub-Division (SD) 21 are managed separately. The Western Baltic cod stock 
includes SD 22-24 and the Eastern Baltic stock is found in SD 25-32 (Figure 
10), (Bagge et al. 1994). A mixing zone occurs between the Eastern and 
Western Baltic cod stocks in SD 24, which the present assessment has 
taken into account (ICES 2017).  

 

Figure 3. Distribution of eastern Baltic, western Baltic and Kattegat stocks (Orton et al. 2011). 
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The cod stock in the Eastern Baltic was low in the beginning of the last 
century, held in check by marine mammal predation and low nutrient avail-
ability (Österblom et al. 2007, Eero et al. 2011). The combination of low fish-
ing mortality, favourable environmental conditions for reproduction and 
abundant prey for cod larvae in the beginning of the 1980s resulted in the 
“cod boom” (Casini 2013). The Eastern Baltic cod stock reached a histori-
cally record high biomass peak in 1982-1983, and then plummeted to its 
lowest level in 2004-2005, followed by minor temporary recoveries. The fac-
tors causing the decline have been much debated and include overexploita-
tion and changes in environmental and ecological conditions (Eero et al. 
2015). 

2.3 Size, age and maturity 
Atlantic cod can reach a total length of 2 m and a weight of almost 100 kg 
(Cohen et al. 1990) and have an estimated life span of between 25-40 years 
old. In the Baltic Sea today, however, few fish reach a total length over 45 
cm (Svedäng and Hornborg 2014). The oldest Baltic cod on record was es-
timated to be 22 years old (HELCOM 2013). Studies of the mean total-
length-at-maturity of Baltic cod show a decrease in size from 49.6 cm in the 
late 1980s to 33.2 cm in 1996 for females with an slight increase in 1997 
(Cardinale and Modin 1999). Catch data from the Swedish part of the Baltic 
International Trawl Survey (BITS) 2017, quarter 1, show that maturity today 
occur from the age of 2 and from around 20-25 cm in total length in the Baltic 
Sea. 

2.4 Reproduction 
The two Baltic cod stocks differ with respect to reproductive adaptations to 
salinity. Activation of the spermatozoa commences at a salinity level of 11 
to 12 PSU for the Eastern Baltic cod stock (Nissling and Westin 1997) and 
at 15 to 16 PSU for Western Baltic cod (Nissling and Westin 1997). In the 
Eastern Baltic, neutral egg buoyancy occurs at 14.5 ± 1.2 PSU and in the 
Western Baltic between 20 and 22 PSU (Nissling and Westin 1997). Studies 
of the respons to different salinities suggest that these characteristics are 
specific to each population and that the salinity gradient in the Baltic Sea 
restricts spawning. They can interact in zones such as SD 24, where salinity 
conditions are suitable for both stocks. However, the low salinity in the East-
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ern Baltic immobilizes the sperm of the Western Baltic cod and the unferti-
lized eggs, lacking buoyancy, sink to the sea bottom where low oxygen lev-
els may be lethal. The major Baltic inflows regulate the salinity and oxygen 
level and are imperative for successful spawning (Nissling and Westin 1991, 
Nissling and Westin 1997). For the Eastern Baltic cod the reproductive vol-
ume is set to conditions of salinity above 11 PSU and oxygen exceeding 2 
ml/l (Plikshs et al. 1993). 

The spawning areas for the Western Baltic cod (Figure 4) are located in 
the Sound, the Belt Sea and the Arkona Basin (Bagge et al. 1994). Histori-
cally, the Bornholm Deep, the Gdansk Deep and the Gotland Deep served 
as the major spawning areas for the Eastern Baltic cod stock. After the 
spawning stock biomass collapse in the 1990’s, the spawning ceased at the 
Gdansk and Gotland Deep. Only in the Bornholm Deep have environmental 
conditions remained acceptable for recruitment. However, degradation of 
that spawning area has occurred as well (Cardinale and Svedäng 2011, 
Köster et al. 2016). 

Cod are batch spawners (Kjesbu et al. 1996), which means that an indi-
vidual fish may spawn multiple times during a given season. In the Kattegat 
and in the Sound, the spawning season begins in late winter or early spring 
with peak activity in January to February. It then progresses eastward, peak-
ing in July to August in the Bornholm Basin. The Arkona Basin is considered 
to be a common spawning ground for both the Western and Eastern Baltic 
cod stocks and spawning season here spans from February to July. The 
timing of peak spawning can vary by up to 2 months depending on the sea 
water temperature (Hüssy 2011, HELCOM 2013). 
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Figure 4. The two maps illustrate the change in distribution of spawning areas for the Western 
and Eastern Baltic cod stocks. The major spawning grounds in Gotland Deep and Gdansk 
Deep (a) were degraded and decreased in the 1980s and are negligible today (b), while cod 
reproduction still occurs in the Bornholm Deep.  From Cardinale and Svedäng (2011), 
redrawn from Bagge et al. (1994). 

2.5 The effect of fisheries 
Fisheries are known to affect ecosystem (Christensen et al. 1996) and food 
web structure (Pauly et al. 1998), hence knowledge and understanding of 
total fishing mortality is important. Fishing quotas are based on biological 
advice but decisions on the size and distribution of fishing quota also take 
into account political and socioeconomic issues. During recent decades, not 
all factors affecting total cod mortality rate have been recorded. The illegal, 
unreported landings, discards, and recreational catches that all contribute to 
the under-estimation of catches have not been included in the scientific data 
(Persson 2010). Fisheries management improved the selectivity in the trawl 
fishery to target larger sized fish. This may have unintentionally resulted in 
a continuing increase in the number of small-sized and young cod, leading 
to density-dependent reduction of growth rates, and today few fish reach a 
total length over 45 cm (Svedäng and Hornborg 2014). Subsequently the 
crowding and increased competition for prey has induced a decline in fish 
condition (Casini et al. 2016).  

Baltic cod is on the IUCN Red List as a vulnerable species (HELCOM 
2013). In late 2015, the Marine Stewardship Council (MSC) announced that 
they suspended their “ecolabel” certificate of sustainable fishing for all five 
cod fisheries in the Eastern Baltic Sea. The reason for this was that stock 
assessment for Eastern Baltic cod failed to provide advice on stock status 
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or reference points for effective long-term management of the fisheries 
(MSC 2015).  

To minimize the wasteful discard of undersized fish, EU adopted a land-
ing obligation implemented gradually from 2015 to 2019 (Havs och 
Vattenmyndigheten 2016b). At present, around 90% of the catches in the 
Baltic Sea come from the Eastern Baltic cod stock. The minimum catch size 
is 38 cm for both Western and Eastern Baltic cod (Havs och 
Vattenmyndigheten 2016a).  

2.6 Environmental effects 
Low oxygen areas (hypoxia, see Section 3.5) have increased over the past 
half century in the Baltic, producing inimical conditions for cod and other 
demer-sal/benthic organisms. The effect of hypoxia-induced habitat com-
pression on cod condition exacerbates the crowding and density-dependent 
processes (Casini et al. 2016). Hypoxia has a negative effect on the meta-
bolic performance with less energy available for growth and activities of 
swimming and feeding (Chabot and Claireaux 2008, Claireaux and Chabot 
2016). This has given rise to a syndrome of starvation, higher disease inci-
dence, and increased burdens of the parasitic nematodes cod worm 
(Pseudoterranova decipiens) and liver worm (Contracaecum osculatum) 
vectored by seals. These changes led to increased natural mortality 
(Mehrdana et al. 2014, Nadolna and Podolska 2014). 

The collapse of Baltic cod, a top predator, unleashed a cascade of effects 
that have been reviewed in the context of food web theory (Casini et al. 
2009, Casini et al. 2011, Gårdmark et al. 2015). Regime shifts, likely in part 
driven by some environmental change, resulted in the system moving to-
wards a bottom-up, planktivore dominated system (Figure 5).  Competition 
for zooplankton prey increased between the dominant planktivore (sprat, 
Sprattus sprattus) and larval cod during the 1990s (Köster et al. 2003).  
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Figure 5. Time-series of (a) cod abundance, (b) sprat and herring biomass and (c) seal abun-
dance. From Casini et al. (2016). 

 

Sprat and cod were earlier distributed uniformly throughout the Baltic 
Proper. However, since the beginning of the 1990s, sprat density relocated 
geographically towards the northern Baltic Proper, while the opposite spatio-
temporal changes occurred for the cod (Casini et al. 2011). 

Climate change has reduced the number of major Baltic inflows (Section 
3.3) crucial for supplying oxygen and salt to create the appropriate condi-
tions for cod spawning, reducing the “reproductive volume” ” i.e., the three-
dimensional space suitable for spawning (Plikshs et al. 1993). The physical 
processes of inflows are important for controlling the environment. The spa-
tial expansion and intensity of oxygen deficiency in the Baltic Sea have in-
creased with higher water temperature, causing decreased solubility of oxy-
gen (Meier et al. 2011). Additionally, anthropogenic eutrophication caused 
by nutrient inputs has resulted in habitat loss and reduction of benthic fauna, 
which has exacerbated benthic food webs (Conley et al. 2009). Due to above 
factors, the future for the Eastern Baltic cod appears threatened. 
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3.1 General overview  
The Baltic Sea is a semi-enclosed inland sea in north-eastern Europe that 
extends from 53º to 66ºN longitude and 10º to 30º E latitude (Figure 3). It is 
a shallow sea with an average depth of 54 m and maximum depth of 459 m. 
The nine countries that surround the Baltic Sea and the additional five coun-
tries in the drainage area together accommodate ~85 million people 
(Leppäranta and Myrberg 2009). Climate zones span from the maritime At-
lantic areas with mild winters and warm summers in the southwest to the 
sub-arctic region close to the Arctic Circle in the north, ice-covered in winter. 
It is one of the largest brackish water areas in the world, with a surface of 
420 000 km2 (Kattegat included). More than a third is shallower than 30 m, 
the volume is therefore small in comparison to the surface area. The drain-
age area however is around four times the size of the sea surface area 
(HELCOM 2017), meaning that there is a strong influence of the watershed 
on the Baltic, in terms of hydrological and other inputs. The Baltic Sea (Fig-
ure 6) consists of several connected basins. For fishery management pur-
poses, these are divided into Sub-Divisions (SDs) by the International Coun-
cil for the Exploration of the Sea (ICES). The Bothnian Bay (SD 31) is the 
northernmost part, and is connected via Northern Quark to the Southern 
Quark straits. To its south lie the Bothnian Sea (SD 30), Åland Sea, and 
Archipelago Sea (SD 29) that connects to the Baltic Proper (SD 24-28). The 
Gulf of Finland (SD 32) extends northeast from the Baltic Proper and the 
semi-enclosed basin, Gulf of Riga, to the east (SD 28). In the southwest, the 
Belt Sea (SD 22, 24) is linked to the Kattegat, Skagerack and the North Sea 
through the narrow, shallow straits of Darss, the Sound and Drogden Sills 
(SD 23). 

3 The Baltic Sea 
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Figure 6. Map of the Baltic Sea with the ICES subdivisions (SDs) included (Casini et al. 2016).  

 

The Baltic Sea is a continuously changing system.  After the last deglacia-
tion, the open connection to the Atlantic closed at various times. Approxi-
mately 8000 years ago, the freshwater Ancylus Lake was inundated by sa-
line waters from the North Atlantic, creating the Littorina Sea (Kostecki 
2015). It was geographically very similar to today’s Baltic Sea but with higher 
salinity. The land uplift rate has resulted in an increasingly shallower, nar-
rower connection to the North Sea. This restriction, together with the fresh-
water runoff, has slowly turned the Baltic Sea into a more limnetic system 
(Eronen et al. 2001). 

3.2 Salinity and temperature  
During the last century, sea surface temperature has changed from a warm-
ing-up period starting in 1920 reaching its maximum in 1940, followed by a 
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cooler period. A new warm period began in 1970 and with an exception for 
the early 1980s it is still ongoing (Tinz 2000, Tinz and Hupfer 2006). Since 
1860 in Sweden, only two years, 1935 and 2014, have had mean air tem-
peratures higher than in 2015 (Larsen et al. 2016). The sea surface temper-
ature is usually lowest in February–March and highest in August (Feistel et 
al. 2008). The Baltic Sea is characterized by the dynamic interaction be-
tween salt- and freshwater, creating a surface water salinity gradient in-
creasing from almost fresh water in the northernmost part of the Bothnian 
Bay to around 8 PSU and in the central Baltic Proper. In the Sound the sa-
linity varies from 10 to 20 PSU depending on the inflow from the Kattegat, 
where the salinity ranges from around 17 PSU towards 35 PSU in the North 
Sea (Figure 7).  Although at a macro-scale, the Baltic displays a modestly 
stable salinity gradient, at finer spatial scales there is considerable complex-
ity (Kullenberg and Jacobsen 1981). 
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Figure 7. Baltic Sea hydrography: The two upper panels show the salinity and temperature 
profile from the Kattegat to the Gulf of Finland. The two smaller panels illustrate the salinity 
and temperature profiles from the Aland Sea to the Bothnian Bay. The values are long term 
averages for August. Figures from Furman et al. (2014). 

 

The Baltic is usually stratified during summer and forms layers with water of 
different temperatures. A thermocline, i.e. the water column zone where the 
temperature drops rapidly, forms at around 15-30 m depth, depending on 
the area and limits the mixing of surface and bottom layers (Fonselius 1970, 
Matthäus and Schinke 1999, Leppäranta and Myrberg 2009). In autumn the 
thermocline disappears in most areas when the temperature drops and 
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storms mix the water masses. However, in deep areas such as the Gotland 
Deep, the thermocline is permanent (Figure 5), (Furman et al. 2014). 

Salinity is also vertically stratified in the water column and a permanent 
halocline separates lighter warmer water with low salinity at the surface and 
heavier, colder water with high salinity at depth. In the Gulf of Bothnia, sa-
linity is low and stable from surface to bottom; therefore there is practically 
no halocline. In the Gotland Deep the halocline forms at depths of 40-80 m. 

 

Figure 8. The left panel shows the thermocline and halocline in the Gotland Deep from long 
term averages from August. On the right, salinity and temperature in the Bothnian Sea 
(Furman et al. 2014). 

 

Salinity strongly affects the distribution of fishes. Most species have either a 
preference for fresh or fully marine water with high salinity and are not well 
adapted to intermediate conditions. Adaptation to brackish water is energy 
consuming and physiologically stressful (Brenner 2007). The salinity gradi-
ent affects the number of species and their distribution in the Baltic Sea 
(Whitfield et al. 2012). The number of marine species decreases from Kat-
tegat to the Baltic and towards the Bothnian Bay in the north, while the op-
posite holds for fresh water species (Brenner 2007). 
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3.3 Oceanic water inflows 
The Baltic Sea is non-tidal and connects to the North Sea through the Kat-
tegat and via the narrow and shallow Danish straits, the Little Belt, Great 
Belt, and the Sound. The shallow thresholds of Darss Sill between Denmark 
and Germany and Drodgen Sill between Denmark and Sweden further re-
strict water movement between the systems (Figure 9.) Outflow conditions 
usually dominate the water exchanges with the North Sea, due to the large 
runoff volume in combination with the restricted water exchange through the 
straits. There are two main types of inflows of high salinity water from the 
North Sea to the Baltic Sea caused by wind and air pressure; each type 
occurs sporadically. 

 

Figure 9. Bathymetric map of the southwestern Baltic Sea. The pathways of inflowing, highly 
saline water are indicated by dashed bold arrows. From Mohrholz et al. (2015). 

 

Barotropic inflows form due to specific conditions of large scale wind and 
atmospheric pressure variations, forcing salt water into the Baltic Sea (Lass 
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and Matthäus 1996, Mohrholz et al. 2015). These inflows are most common 
in the winter season and are influenced by three atmospheric phases 
(Mohrholz et al. 2015). The first outflow phase starts with strong easterly 
winds lasting for around a month, raising the sea level in the Arkona Basin 
in comparison to the Kattegat. The second phase’s subsequent increased 
outflow through the straits exceeds the freshwater runoff during this period, 
draining the Baltic Sea to a lower mean sea level. In the third phase, the 
winds switch to westerlies, and the barotropic pressure gradient also 
changes direction and forces inflow of saline water from the Kattegat through 
the Sound and Belt into the Baltic Sea (Mohrholz et al. 2015). The volume 
of sea water transported into the Baltic depends on the intensity and time 
period of the westerly winds (Mohrholz et al. 2015). 

Baroclinic (density-generated) inflows occur mainly in late summer during 
long periods of calm weather conditions. The pressure is driven by the hori-
zontal salinity differences, i.e. the density gradient between the Baltic and 
North seas brings an inflow of water that is less oxygenated and contributes 
less to the ventilation than the barotropic inflow (Feistel et al. 2006, Mohrholz 
et al. 2015).  

Today, the number of major inflows with a volume sufficiently large to 
reach the bottom layer of the Baltic Proper has declined to occur only once 
per decade in comparison to five to seven per decade during the 20th cen-
tury (Mohrholz et al. 2015). The major Baltic inflow of 2014 was the third 
strongest inflow since measurements started in in 1880. It brought a volume 
of 198 km3 and 4 Gt of salt, improving the environmental condition for the 
ecosystem in the Baltic Sea (Mohrholz et al. 2015). Two barotropic inflows 
of moderate size occurred during the winter of 2015/2016 and in September 
2016 a baroclinic, low oxygen inflow entered through the Darss Sill 
(Naumann et al. 2016). Due to the sporadic nature of the inflows, turnover 
time varies between 3 and 30 years in the Baltic Sea (Kullenberg and 
Jacobsen 1981, Reissmann et al. 2009). 

3.4 Eutrophication  
The Baltic Sea was a nutrient-poor (oligotrophic) sea in the 1940s. The bio-
logical production was low and the water clear. Food, shelter, spawning and 
nursery grounds for cod were provided by the dense growth of bladderwrack 
on the rocky shores. The top consumers were sea eagles and seals 
(Jansson and Dahlberg 1999). Then, in the mid-1900s, the discharges of 
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nutrients into the Baltic Sea increased. This nutrient enrichment harmed the 
ecosystem in many negative ways, and the Baltic Sea turned eutrophic 
(Larsson et al. 1985). The emissions of organic matter originated from in-
dustry, forestry, agriculture, waste-water, aquaculture, urbanization and at-
mospheric deposition (Furman et al. 2014). The nutrients causing eutrophi-
cation consist primarily of nitrogen and phosphorus. During the 20th century, 
the annual discharge of phosphorus increased from levels around 10 000 
tons to 80 000 tons and nitrogen from approximately 80 000 to 1 200 000 
tons (Hansson and Rudstam 1990). The excess of nitrogen relative to phos-
phorus promoted nitrogen-fixing cyanobacteria blooms in the open waters 
of the Baltic Sea (Elmgren and Larsson 2001, Vahtera et al. 2007). The 
combined mechanisms of increasing nutrient loading, denitrification, and the 
amount of nitrogen-fixing cyanobacteria can be described as a potentially 
self-sustaining “vicious circle” (Vahtera et al. 2007). As a biogeochemical 
consequence of algal decay, large amounts of dissolved oxygen are con-
sumed, leading to expansion of hypoxic areas in the deep layers near the 
bottom. Cod is negatively affected by eutrophication due to the degradation 
and deoxygenation in the deep spawning areas (Larsson et al. 1985, 
Hansson and Rudstam 1990, Nissling and Westin 1997), also see Section 
2.4, cod reproduction. HELCOM estimated that 97% of the Baltic Sea region 
was eutrophic in 2011–2015 according to their integrated status assessment 
(HELCOM 2017). 

3.5 Oxygen  
Coastal zones with low dissolved oxygen (hypoxia and anoxia) have in-
creased to become a serious problem around the globe, caused primarily by 
eutrophication and other anthropogenic induced emissions (Diaz and 
Rosenberg 2008). Hypoxia is also exacerbated by climate change, warming 
the sea water (Carstensen et al. 2014). Analyses from sediment cores in the 
deep basins of the Baltic Sea indicate previous intervals of hypoxic periods 
during the last 9000 years (Jilbert and Slomp 2013). The low frequency of 
major Baltic inflows (Mohrholz et al. 2015) in combination with a constant 
density stratification restricts circulation of the water, decreasing oxygen ex-
change between surface and bottom layers (Diaz and Rosenberg 2008).  
While the waters above the halocline at 60-70 m depth are directly supplied 
with oxygen through contact with the atmosphere, the strong stratification 
prevents the ventilation of the deep layers below the halocline that becomes 
stagnant and does not mix unless, oxygenated by lateral advection caused 
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by inflow of saline, oxygenated North Sea water into the Baltic Sea (Furman 
et al. 2014, Mohrholz et al. 2015). The lack of oxygenated water mixed into 
the deeps below the halocline during long periods has worsened the hypoxic 
and anoxic conditions at the bottom of the Baltic Sea and the affected areas 
have expanded fivefold during the last two decades (Hansson and 
Andersson 2013, Carstensen et al. 2014). Another reason is that the oxygen 
is consumed in the microbial decomposition of organic material.  If all oxygen 
is consumed, hydrogen sulfide is formed under anoxic conditions (Figure 7), 
(Furman et al. 2014). 

 

Figure 10. Oxygen profile for the Baltic Sea in August 2012 (Furman et al. 2014). 

 

With increasing water temperature, the solubility of oxygen decreases and 
the decomposition of organic matter increases as a result of the 2 °C in-
crease in bottom-water temperature in the Bornholm and Gotland basins 
over the past century, oxygen saturation has decreased about 0.5 mg⋅L−1. 
(Carstensen et al. 2014).  The Baltic Sea is considered to be the largest 
anthropogenic “dead zone” in the world (Diaz and Rosenberg 2008). The 
threshold for hypoxia proposed in the literature most often refers to a value 
of 2 mg O2/l, referring to the oxygen level for fisheries collapse (Vaquer-
Sunyer and Duarte 2008). The hypoxic situation is most severe in the deep, 
south areas and in the Gotland Deep (Figure 10), (Furman et al. 2014). Over 
the past century hypoxic areas (Figure 11) in the Bornholm and Gotland Ba-
sins have expanded from 5 000 km2 to 60 000 km2 (Carstensen et al. 2014). 
These areas correspond to a large extent to the lost spawning areas for cod 
(Fig 4), (Cardinale and Svedäng 2011). 
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Figure 11. The expansion of hypoxic (red) and anoxic (black) areas in the Baltic Sea over 
time from 1906 to 2012 (Carstensen et al. 2014). 
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4.1 Chronological structures  
To estimate fish ages by counting seasonal growth zones on hard structures 
allows for a population's dynamic variations to be studied, for example by 
estimating growth rate, age at maturity, age class strength and mortality. 
There are several chronological structures in fish that exhibit seasonal 
growth zones that can be used for age determination, e.g, scales, operculi, 
cleithra bones, vertebrae, spines and otoliths. The Swedish parson Hans 
Hederström published in 1759 his observations on the age of fishes. He 
studied the numbers of rings in vertebrae from pike (Esox lucius) and saw 
that all the vertebrae in a single fish had the same number of rings and that 
the vertebrae of small fish had fewer rings than those of larger fish. He drew 
the conclusion that the number of rings was equivalent to the age of the fish 
and examined also other fish species to test his theory (Hederström 1759). 

The otolith grows throughout a fish’s life, unlike scales that stop growing 
when the fish stops growing, or can fall off. Therefore the otolith is consid-
ered the most reliable age structure to use for ageing (SLU-Aqua 2012). 
Otoliths are calcium carbonate structures (CaCO3), mainly in the form of 
aragonite deposited onto a protein matrix. There are three pairs of otoliths: 
the sagittae, lapilli and asterisci. The shape of the otolith is species specific 
(L'Abée‐Lund 1988). The otoliths are situated in the endolymph filled semi-
circular canals end-organs: the saccule, utricle and lagena in the balance 
and hearing system in the inner ear of the skull of the fish (Popper et al. 
2005). Otoliths grow incrementally, following a circadian rhythm, forming 
continuous structures of annual and daily increments (Pannella 1971). Due 
to seasonal changes in the rates of material deposition, the annual rings 
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generally reflect growth zones, much like the rings in a tree trunk (Figure 
12).  

 

 

Figure 12. Annual growth zones on a transverse section of a North Sea cod otolith.  The red 
dots illustrate the translucent zones with slow growth, normally occurring during winter. Photo: 
Y. Heimbrand 

 

Otolith formation begins in the developing embryo as a primordium that cre-
ates the nucleus (Lundberg et al. 2015). The processes of otolith calcium 
carbonate crystal formation are complex, involving a series of temporally 
and spatially cellular and extracellular mechanisms (Lundberg et al. 2015), 
with the final otolith biomineralization controlled by the organic compounds 
in the endolymph (Allemand et al. 2008). The structure and morphology of 
the otolith are regulated by an organic matrix consisting of proteins and pro-
teoglycans (Lundberg et al. 2015). 

The basis for using otolith patterns for ageing is the assumption that the 
structures show strong seasonal contrasts and occur at the same time of the 
year, every year, in all individuals in the entire age and size range (ICES 
2014). For practical reasons, the date of birth for all fish species, regardless 
of spawning and hatching time, is arbitrarily fixed at the 1st of January. Thus 
a fish that is hatched in spring and caught on December 31 the same year 
is denoted with age 0, while the one caught one day later (1 January) would 
be assigned age 1. 
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4.2 Ageing problematics of Baltic cod 
Age determination of cod is generally considered to be difficult (Hüssy 
2010). This is certainly true for the Eastern Baltic cod. The conventional 
Swedish method to determine ages with cod otoliths is to break the otolith 
(sagitta) with forceps at the sulcus acusticus to achieve a transverse sec-
tional area through the nucleus (Figure 14). The translucent and opaque 
zones are counted under a stereo microscope with adjustable reflected light. 

 

Figure 13. Morphology of a sagittal cod otolith. Photo montage: Y. Heimbrand. 

 

Cod otoliths from the North Sea are in general easier to interpret than West-
ern Baltic cod otoliths, which in turn are more readable than the Eastern 
Baltic cod otoliths. In most cod stocks, the translucent zones are referred to 
as winter zones and begin to form at the end of the third quarter of the year 
or the beginning of the fourth quarter. They are often visible around the en-
tire otolith (Figures 12 and 13). The opaque zones (also known as growth 
zones) begin to form during the first and second quarters, generally some-
what earlier in the North Sea than in the Baltic Sea (SLU-Aqua 2012). In 
some cases, the opaque/translucent sequences reverse (Høie and Folkvord 
2006, Neat et al. 2008).  These reversals appear to be related to tempera-
ture (Neat et al. 2008), and have been observed in Baltic cod (K. Limburg, 
unpublished observations). 
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For the last four decades, expert groups have organized calibrations in 
order resolve the problems of ageing Baltic cod. At the calibration meetings, 
cod age readers around the Baltic Sea compare and discuss the results from 
the set of samples of otoliths that they all assigned ages to. The incon-
sistency in agreement can be caused by false, diffuse non-annual struc-
tures, interpreted as annual, regional differences in growth and the size and 
the structure of the first annual ring. For the Eastern Baltic cod, the major 
issue is the very low contrast between annual opaque and translucent 
zones. The last age exchange calibration that was set up in 2014, and cov-
ered SDs 22, 24 and 25. The main objectives were to examine the extent of 
the problems, identify if the problems concern the first winter ring and/or 
subsequent rings, and finally to provide a validation through daily increment 
analysis on small sized cod from SD 25 (SLU-Aqua 2012, ICES 2014). At 
the calibration, using images of otoliths, the age readers marked the struc-
tures that they interpreted as annual rings. The results yielded highly varia-
ble age estimates (Figure 14). The main conclusion from the calibration was 
that eastern Baltic cod otoliths from SD 25 do not comply with the basic 
requirements for age estimation since the diffuse, unclear translucent zones 
do not correspond to the true winter rings, validated with daily increments 
(ICES 2014). 

 

Figure 14. Example of difficulty ageing a Baltic cod otolith.  The coloured dots illustrate struc-
tures in the cod otolith that different age readers have interpreted as annual rings. The result 
is highly variable with an estimated age between 2 and 6 years. (ICES 2014). 
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Hüssy et al. (2010) evaluated the consistency of three methods for as-
signing annuli in adult Baltic cod otoliths. The three methods examined were 
daily increment patterns, opacity profiles, and traditional age reading. The 
results showed that seasonal patterns in daily increment widths can be a 
way to validate at least the first annulus. However, otolith opacities were not 
consistently associated with seasonal patterns in daily increment structure 
and consequently, conventional age determination based on otolith opacity 
gives highly uncertain estimates of age (Figure 16). This poses a serious 
problem to stock assessment, and the need for development of new meth-
ods of age determination. Validation of the first annual ring is possible using 
increment width analysis. However, other techniques are required to validate 
the ages of older individuals (Hüssy et al. 2010). 

 

 

Figure 15. The image illustrates the translucent zone that 5 out of 7 age readers interpreted 
as the first annual ring (yellow dot). However, validation with daily increments shows that this 
zone was formed in mid-July and had no signs of diminishing increment widths typical for true 
winter rings. The true winter ring is marked with a green dot. Redrawn from ICES (2014). 

 

Other validation techniques can involve tagging experiments. Recapture of 
externally tagged fish is a cost-effective way to validate and measure cod 
growth, assuming that measurements are accurate. Chemical tagging is an 



32 
 

internal lifelong marking of the hard parts, including the growing otolith 
(Beamish and McFarlane 1983). It enables researchers, in the case of re-
capture, to examine the growth of the otolith and hence validate the age and 
growth of the fish.  
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5.1 The application of otolith microchemistry in fisheries 
research  

The chemical incorporation of trace elements in the otolith CaCO3 aragonite 
lattice depends on a combination of environmental and physiological mech-
anisms. Inorganic trace elements in the water can be taken up through the 
gills into the blood or from the intestines and transported to the endolymph, 
ultimately reaching the otolith (Campana 1999, Payan et al. 2004). Trace 
element discrimination can occur at any or all of the water-gill, blood-endo-
lymph and endolymph-crystal interfaces. The degree of discrimination differs 
among trace elements and interfaces; however most reported trace ele-
ment:Ca otolith ratios are much lower than that in the blood plasma or am-
bient water (Campana 1999). 

The conceptual basis for the use of otolith chemistry as a life history 
tracer in fish is that crystallization of calcium carbonate aragonite in the oto-
lith is a continual process, and that variable incorporation of trace elements 
reflects different life stages and environmental conditions. The interest in 
exploring ways to use otolith chemistry has increased during the last dec-
ades as the development of high resolution analytical instruments has ad-
vanced The beginnings of otolith chemistry are unclear and go back to the 
1940’s. In 1950, H.T. Odum completed his doctoral dissertation, “The Bio-
geochemistry of Strontium”. He discovered that the concentration of Sr was 
highly correlated with salinity and also that otoliths incorporated Sr in pro-
portion to the Sr:Ca ratio of the environment (Limburg 2004). Degens et al. 
(1969) studied the otolith content of amino acids and carbon and oxygen 
isotopes. The conclusion was that oxygen and carbon isotope levels were 
related to the isotopic equilibria in the sea. This information could be used 

5 Otolith chemistry  
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to determine the mean water temperature where the fish lived, categorize 
fresh water and marine fish from ancient deposits, and study migration be-
haviour. For Baltic cod, however, the constant migration through the variable 
salinity gradient may limit the possibility to use oxygen and carbon isotope 
analyses in order to evaluate the water temperature and alternative proxies 
for seasonality should be developed.  

Technological advances of elemental and isotopic microchemistry anal-
yses in the field of geochemistry and paleoclimate research have enabled 
otolith research to develop further. As described in a review by Campana 
(1999), applications today include stock identification, migration patterns, 
detection of anadromy, natural tags, chemical mass marking, reconstruction 
of temperature and salinity history and  age validation. 

The use of otolith microchemistry patterns as a potential method for age 
estimation of difficult-to-age species such as the Baltic cod was studied by 
Hüssy et al. (2016a). The approach was to first identify elements with signa-
tures matching growth zones with respect to maxima and minima on “easy 
to age" cod otoliths with clear, strong patterns of contrast and opacity and 
then compare these elemental patterns to the eastern Baltic cod otoliths with 
low visual contrasting growth zones. For the North Sea and Western Baltic 
cod, patterns of copper (Cu), zinc (Zn), and rubidium (Rb) showed highest 
incorporation during the summer growth season, matching the growth zones 
with respect to maxima and minima in otolith opacity, whereas Mg and Mn 
showed inverse patterns. For Pb, Ba, and Sr, no match was found. For the 
“difficult to age” Eastern Baltic cod, Cu, Zn, Rb and Pb showed defined syn-
chronous cycles when employing a combined finite differencing method and 
structural break models approach. In all the three areas examined, Cu, Zn, 
and Rb concentrations were similar and strongly correlated in all individuals 
suggesting a common incorporation mechanism, independent of environ-
mental concentrations.  

The chemical properties of the water in which fish live can provide infor-
mation about the environment, habitat, migration and provenance of an in-
dividual fish. Here follows a more detailed description of some of the ele-
ments that will be included in the microchemical analyses of the cod otoliths 
that shows potential to be utilized for validating age estimations. 
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5.2 Strontium 
Strontium (Sr) is an informative and useful tracer in otolith chemistry studies 
of aquatic environments. Sr has the atomic number 38 and the atomic weight 
87.62. It is an alkaline earth metal, distributed in the bedrock, like the five 
other chemical elements in group 2 of the periodic table, beryllium (Be), 
magnesium (Mg), calcium (Ca), barium (Ba), and radium (Ra). Structurally, 
these elements have two electrons in their outermost shell, and oxidation 
states of +2. Strontium dissolved in water mainly occurs as Sr2+ or SrOH+. It 
is generally accepted that since both Sr2+ and Ca2+ are 2+ valence ions and 
similar in radius, they compete for the same uptake in the otolith to form 
SrCO3 or CaCO3 (aragonite) respectively (Campana 1999, Bath et al. 2000, 
Kraus and Secor 2004, Doubleday et al. 2014). It is the ratio of Sr relative to 
Ca (Sr:Ca in mmol:mol) in the water that gives the strongest, positive linear 
relationship between ambient water and otolith uptake of Sr (Chowdhury and 
Blust 2001, Elsdon and Gillanders 2002, Kraus and Secor 2004). However, 
there is also a relative influence from temperature (Martin and Thorrold 
2005, Stanley et al. 2015, Nelson et al. 2017). This relationship enables 
studies to investigate migration patterns of fish species moving between 
Sr:Ca gradients (Elsdon and Gillanders 2002). A Sr:Ca gradient can be seen 
in some aquatic systems, including the Baltic Sea, as a salinity gradient, as 
the Sr:Ca level in water increases with higher salinity, giving the possibility 
to study for example anadromous fish species when they migrate from fresh-
water to the sea (Figure 16). 
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Figure 16. The image to the left is a two-dimensional map of the Sr concentration in percent 
of the total mass of the analysed part of an otolith from a whitefish (Coregonus maraena) 
generated with micro-PIXE at the Lund Ion Beam Accelerator Facility. The Sr:Ca ratios reflect 
to large extent salinities experienced by this fish, with light orange for low salinity and red for 
higher salinities. The numbers mark the annual translucent rings. The blue arrow indicates 
the otolith growth transect from the core (i.e. primordia formation in the early larval stage) to 
the edge (i.e. death). Corresponding Sr:Ca ratio values along this transect are shown in the 
diagram to the right.  Based on the heat-colour map and the graph, it can be concluded that 
this individual has spent its first year in freshwater surroundings and then migrated to water 
with higher salinities. Redrawn from Heimbrand et al. (2014). 

 

Although high salinity marine water generally contains higher Sr:Ca ratios 
than freshwater, there are exceptions since the Sr level in freshwater can 
vary considerably due to geological properties and range from very low to 
actually exceeding those in marine waters (Kraus and Secor 2004). The 
Sr:Ca uptake in otoliths depending on the salinity in the Baltic Sea is illus-
trated in Figure 17. The mixing curve’s nonlinear relationship shows that it 
is generally in the low range of salinity that interpretation of variability in oto-
lith Sr:Ca displays most sensitivity (Limburg et al. 2003). This conclusion has 
significance for research of fish in estuarine habitats and migration patterns 
between freshwater and brackish habitats (Chowdhury and Blust 2001). 
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Figure 17. Sr:Ca ratio in Baltic eel otoliths in relation to salinity.  Sr:Ca was quantified by 
micro-PIXE analysis in outer portions of eel otoliths collected at different locations; the data 
are expressed as ratios of raw counts, i.e. not calibrated to concentrations.  Nevertheless, 
the pattern is the same as for concentration ratios. Source: background material from Limburg 
et al. (2003). 

 

Diet can also affect Sr uptake. A study on reared fish with known diet 
showed that switching from fresh water zooplankton diet to artificial diet con-
taining marine fishmeal resulted in a significant increase in Sr:Ca ratio in the 
otolith (Limburg 1995).  However, this is rarely documented, and it is far 
more common that direct uptake of Sr from water is found (Farrell and 
Campana 1996, Walther and Thorrold 2006). Townsend et al. (1995) studied 
the Sr:Ca ratio in laboratory-reared larval cod otoliths in relation to the water 
temperature. The result was a curvilinear relationship with the Sr:Ca ratio 
decreasing as the temperature increased from 3-16°C. The result was sup-
ported by similar studies on juvenile cod performed by Stanley et al. (2015). 
For water temperatures ranging between 17–26°C, Martin et al. (2004) ob-
tained the opposite result with Sr:Ca increasing linearly as a function of the 
temperature on a study of larval spot (Leiostomus xanthurus); but note this 
species is from a different family, and with a south-temperate distribution). 
Limburg et al. (2011) consistently observed low Sr:Ca in the inner otolith 
portions of Baltic cod from the Stone Age to the present time, and interpreted 
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this as use of lower salinity nursery habitats. Baltic cod exhibit complex mi-
gration patterns and show both vertical and horizontal movements between 
salinity gradients in the sea (i.e., Sr:Ca gradients). Therefore it is not likely 
to expect clear annual patterns of Sr:Ca in the otoliths. Nevertheless, it can 
potentially provide useful information about migration and behavior in com-
bination with other elemental signals. 

5.3 Barium 
Barium (Ba) is a soft, silvery alkaline earth metal with atomic number 56 and 
atomic mass 137.327. Barium is chemically highly reactive, and is never 
found in nature as a free element but generally found in mineral form as 
barite or heavy spar (sulfate) and witherite (carbonate). Barium has seven 
stable isotopes, of which 138Ba is the most abundant, naturally occurring iso-
tope (Lide 2007).  

The Ba content in marine waters is influenced by riverine input as well as 
in-situ biogeochemical cycles of Ba in the ocean. Barium is released from 
river-borne suspended matter during estuarine mixing in estuaries, with the 
primary source from fresh riverine suspended particulate matter, which in 
turn is affected by the local hydrodynamic conditions (Coffey et al. 1997). 
Dissolved barium concentrations vary considerably among estuaries. The 
reason is not likely to be anthropogenic in origin, since more industrialized 
estuaries do not show consistently high or low barium concentrations. Ra-
ther, the major factors contributing to the barium concentration variations are 
different catchment rock types, weathering rates and river flow are the major 
factors (Coffey et al. 1997). In the context of estuaries, field and laboratory 
studies have shown that barium is released at higher salinity under low flow 
conditions, given that barium desorbs strongly under relatively low-salinity 
conditions (Coffey et al. 1997). These findings are supported by laboratory 
experiments with riverine suspended particulate matter (Coffey 1994), of 
which the results indicated a strong and fast desorption of Ba from the par-
ticles in suspension at salinities 1–2 psu, but very little at very low salinities 
(<1 psu). In oceans, water column dissolved Ba precipitates as barite 
(BaSO4) due to biological processes. As the decaying organic matter and 
barite sink to the bottom, Ba can re-dissolve at depth when it comes into 
contact with anoxic environments, leading to the highest concentration of 
dissolved Ba in deeper waters towards depletion in surface waters (Dehairs 
et al. 1980).  
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The, Ba:Sr ratios are elevated in soils in the Baltic drainage (Reimann et 
al. 2000). Analyses of water samples have shown that suspended particles, 
rich in Ba and sulphur (S) are common in the Baltic Proper and the Belt Sea- 
Kattegat, whereas generally low in the Bothnian Bay (Bernard et al. 1989)). 
Ingri et al. (1991) showed that the suspended Ba concentration decreased 
from the Belt Sea-Kattegat (0.4 µg l-1) to the Åland Sea (0.3 µg l-1) and to the 
Baltic Proper (0.2 µg l-1). There are different hypothesis of the causes of the 
dissolved Ba and barite gradient in the Baltic Sea (Bernard et al. 1989). Dis-
solved Ba can be delivered by input of fresh water, biogenic barite produc-
tion due to high organic productivity in combination with high dissolved phos-
phate concentration, anthropogenic input of barite from underwater work as 
dredging or drilling or from atmospheric fall-out and wash-out from fuels re-
leasing barite aerosols (Bernard et al. 1989). 

It is well known that the otolith Ba:Ca ratio generally reflects the ratio in 
the ambient water (Bath et al. 2000, Milton and Chenery 2001, Elsdon and 
Gillanders 2003). However, results of studies of the combined effect of tem-
perature and salinity on Ba incorporated into otoliths have been more varia-
ble when tested.  There have been several controlled laboratory experi-
ments examining the single-factor effect of temperature respective salinity 
of the incorporation of trace elements as Ba:Ca in otoliths as well as the two-
factor interactive effect. Bath et al. (2000) found that temperature itself had 
no effect on the Ba:Ca ratio in otoliths of spot (Leiostomus xanthurus) in tank 
experiments when comparing data from two treatments of 20°C and 25°C at 
stable salinity conditions of 20‰.  

Milton and Chenery (2001) concluded that the Ba:Ca ratio in the otoliths 
increased with decreasing salinity in an experiment where they transferred 
juvenile barramundi (Lates calcarifer) from fresh to seawater. In another 
study by Martin and Thorrold (2005) juvenile spot were reared in four tem-
perature treatments (17, 20, 23, and 26°C) and 2 salinity treatments (15 and 
25‰). They found that salinity but not temperature affected Ba:Ca uptake in 
larval spot otoliths. Elsdon and Gillanders (2002), studying juvenile southern 
black bream (Acanthopagrus butcheri) showed that both temperature and 
salinity interacted to influence the ratio of Ba:Ca in otoliths, which increased 
with increasing water temperature from 16 to 20°C at the three salinities 5, 
17, and 30‰. This interactive effect was supported by Nelson et al. (2017), 
in a study showing an exponential decrease with salinity and an exponential 
increase with temperature, with the highest otolith Ba:Ca ratios present at 
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low salinities and high temperatures. In the results from the single-factor ex-
periments, the ratio of Ba:Ca increased with increasing temperature (12-
28°C), whereas the Ba:Ca ratio displayed no trends with salinity (5-30‰). In 
a field study by Mohan et al. (2012), juvenile striped bass (Morone saxatilis) 
were placed in cages at four different locations across river habitats (Albe-
marle Sound, North Carolina, USA) to test development of habitat-specific 
otolith signatures. They discovered that the Ba:Ca ratio decreased as salin-
ity increased (3.6– 8.1‰) and also that Ba was one of the main habitat dis-
criminators. The variable results of these experiments indicate that temper-
ature and salinity are probably not the only factors controlling the uptake of 
Ba in otoliths, but that there are most likely also other mechanisms (physio-
logical or species specific).  

The utilization of Ba:Ca ratio in otoliths can determine the connectivity 
between estuarine and coastal habitats and populations, since the otolith 
uptake of Ba is reflected by environmental conditions with the highest con-
centration by the coast due to the influence of riverine inputs. Studies of Ba 
(often in combination with other elemental ratios) include migration behav-
iour (Walther and Limburg 2012), habitats (Secor et al. 2001), natal homing 
behavior (Thorrold et al. 2001) and discrimination among populations 
(Avigliano et al. 2015). Limburg et al. (2011) found an inverse relationship of 
Ba to Sr in early life stages of Baltic cod formation, but in some individuals, 
there was a positive correlation at older ages, suggesting a movement into 
waters with a different source of Ba, perhaps upwelled from dissolved barite.  
To date, little biogeochemical work has been done on Ba in the Baltic, but 
this mechanism is plausible (C.P.Slomp, University of Utrecht, personal 
communication).  This cause for further investigations and tests of the Sr 
and Ba concordance with hypoxia and assess the potential of using Ba as 
both a proxy for coastal nursery grounds for juvenile Baltic cod and for deep 
habitats for adults. 

5.4 Manganese  
Manganese (Mn) has the atomic number 25 and atomic weight 54.938. 
Combined with other elements it is distributed in minerals such as oxides, 
silicates, and carbonates. Mn has also been discovered in large nodules in 
parts of the ocean floors. There is only one naturally occurring stable iso-
tope; 55Mn  (Lide 2007). The presence of Mn in the water column is depend-
ent on the redox conditions in the water column. Redox zones are steep 
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gradients of changing concentrations between oxic and euxinic conditions; 
i.e. formed by the combination of anoxia and raised levels of hydrogen sul-
fide (H2S), in the sea. With every step the redox potential decreases. After 
the initial aerobic respiration, a sequence of redox reactions follows the de-
crease in the redox potential, starting with the reduction of nitrate, followed 
by Mn and iron (Fe) reduction (Reddy and DeLaune 2008, Bauer 2014) . 
The redox zones can be situated in the sediment or in the water column. 
Both are found in the Baltic Sea proper, while the water column of the Both-
nian Bay is well oxygenated and the redox zone only consists of the upper-
most sediment. The deeper basins of the Baltic Proper are stratified with the 
redox zone spanning between 75 and 100 m, reaching up to 20 m in the 
water column (Bauer 2014). The redox cycling of Mn is a key parameter in 
the Baltic Sea influencing trace metal cycling. In seawater redox zones Mn 
is present in dissolved form as Mn2+ and Mn3+ (Bauer 2014). 

The Mn level in the water column and sediments of the Baltic Sea gener-
ally increases with depth (Lenz et al. 2015). Sediments in the Fårö Deep and 
Gotland Deep contain low concentrations of Mn near the sediment surface 
due to the expansion of hypoxic bottom waters and bottom water euxinia, 
formed over the past decades. This can be an effect of increased eutrophi-
cation and the reduced input of Fe oxides acting as a sink for sulphide. High 
sulphide concentrations in the sediment and water column after an inflow 
event are likely to contribute to faster dissolution of Mn oxides, promoting 
the transfer of dissolved Mn to the water column and dissolution of Mn car-
bonate (Lenz et al. 2015). Several studies have shown that Mn occurs in 
high concentrations within the core of the otoliths (Brophy et al. 2004, Ben-
Tzvi et al. 2007, Limburg et al. 2013, Thomas et al. 2017), which is probably 
caused by the maternal transfer of Mn taken up by the primordium that forms 
the otolith core in the embryo (Limburg et al. 2015). Notably, this is rarely 
seen in cod otoliths (Limburg, personal communication). After the embryonic 
stage, Mn is primarily used as a geochemical proxy and a tracker for expo-
sure to hypoxic/anoxic “dead zones,” quantified by the otolith Mn:Ca ratio 
(Limburg et al. 2015, Mohan et al. 2015, Mohan and Walther 2016). Otolith 
chemistry of adult Baltic cod shows a repeated pattern of increased Mn:Ca 
in summertime and decline in winter (Limburg et al. 2015).  
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5.5 Magnesium 
Magnesium (Mg) has the atomic number 12 and atomic weight 24.305. It 
occurs naturally only in combination with other elements and is common in 
the form of magnesite, dolomite, and other minerals. Mg crystal structure is 
similar to that of the other five alkaline earth elements; it also possesses the 
same electron configuration in the outer electron shell that forms a 2+ oxi-
dation state. Mg naturally occurs in three stable isotopes, 24Mg, 25Mg, and 
26Mg, of which 24Mg is the naturally most abundant (Lide 2007). 

The magnesium level in the sea (5 x 10-2 M) is higher than in freshwater 
(< 10-4 M), (Frausto da Silva and Williams 1991). Therefore Mg, like sodium 
(Na) will be excreted by organisms in the sea but pumped into the body fluids 
of the freshwater organisms to keep a stable Mg concentration of around 10-

3 M. The effects of temperature and salinity on the elemental composition of 
otoliths were studied by Martin and Thorrold (2005); they concluded that Mg 
was more likely related to the somatic growth rate.  Sturrock et al. (2015) 
also considered the somatic growth rate to be the primary driver of the ob-
served patterns in otolith Mg:Ca. Studies by (Woodcock et al. 2012) re-
vealed that otolith Mg:Ca did not respond to changes in Mg concentrations 
in the water or diet. These studies indicate that Mg is not a reliable environ-
mental indicator and more likely is physiologically regulated. Grammer et al. 
(2017) described physiological and environmental controls on otolith chem-
istry in an upwelling zone employing a novel modelling framework using sim-
ultaneous combinations of biogeochemical tracers and fish growth. They 
found that both growth rate and Mg:Ca were moderately influenced by both 
physiology and the environment. In an unpublished study, Limburg and 
Wuenschel (2013) analysed Mg:Ca in otoliths from 13 species of flounders.  
Expecting to find phylogenetic differences between right-eyed and left-eyed 
taxa, instead they found stronger differences reflecting seasonality of habi-
tats.  Otoliths from fish caught in seasonally varying habitats displayed 
greater variation in Mg:Ca, with maxima in summer and minima in winter. 
Preliminary results from microchemical analyses on Baltic cod otoliths dis-
play similar seasonal patterns as reported by Limburg and Wuenschel 
(2013). If this is the case, Mg could potentially reflect seasonality of fast 
growth during warm periods of the year. Therefore Mg is one of the interest-
ing analytes for validation of age of Baltic cod. 
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Quantifying and, if possible, imaging of the elemental composition in otoliths 
is an essential tool to provide spatially-resolved information on the life history 
of a fish. Two-dimensional imaging has proven to be highly powerful in oto-
lith analy-sis (Limburg and Elfman 2017) and interest in imaging of trace 
elements is growing (Becker et al. 2014). There are several imaging tech-
niques able to detect elemental or isotopic concentration at levels as low as 
parts per billion (ppb). By overlaying an elemental ratio map on top of the 
corresponding otolith image, visual correlations can be made between the 
chemical patterns and the otolith structures. As a consequence, changes in 
trace elemental compositions can be correlated with events in the fish’s life. 
To date, there is no universal technique able to measure the total range of 
elements and isotopes incorporated into the otolith. Therefore, it is important 
to apply a combination of these instruments in order to retrieve the most 
information on the elemental composition. Two of the technologies for micro-
chemical analyses are explained below. 

6.1 X-ray fluorescence with beam-based methods 
X-ray fluorescence relies on irradiation of materials and subsequent emis-
sion of X-rays for chemical analysis. When an X-ray beam irradiates an an-
alytical sample, fluorescent X-rays are generated that can be measured for 
quantitative analysis of its constituent elements. X-ray fluorescence (XRF) 
analysis is precise and non-destructive (Beckhoff et al. 2007). The physical 
principle behind XRF spectroscopy relies upon ionization theory: when a 
beam from the instrument hits and excites an atom in the sample, it dis-
places an electron from the atom’s inner orbital shells. Subsequently a re-
laxation process occurs and when another electron from a higher level de-
scends to take the vacant place. When this occurs, fluorescence takes 

6 Analytical techniques  
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place, i.e. a photon with element and level specific energy is emitted. A de-
tector quantifies the photon’s energy and flux (number of photons per sec-
ond per unit area) on the irradiated spot. Calibration standards enable quan-
titative calculation of the elemental concentration (Cook 2015).  

Examples of microchemical analysis techniques that work in different 
ways but all employ the basic theory of fluorescence are; synchrotron based 
X-ray fluorescence microscopy (SXFM), proton-induced X-ray emission 
(PIXE), fluorescent metal sensors, secondary ion mass spectrometry 
(SIMS), nano-SIMS and electron probe X-ray micro-analysis (EPMA). The 
various techniques generate fluorescence with different types of beams; 
XFM (X-rays), PIXE (protons), EPMA (electrons), and SIMS (ions), respec-
tively. 

The fluorescence yield decreases with lower atomic number and mass, 
which results in a poorer detection limit for the lighter elements (Haschke 
and Haller 2003). Traditional X-ray fluorescence instruments seldom detect 
elements lighter than sodium ((Na, atomic weight 23) (Lifshin 2008). By em-
ploying the SXFM technique for otolith micro chemical analysis it is possible 
to measure trace elements in concentrations of as low as a few parts per 
million within the otoliths (Limburg et al. 2007). The SXFM method can de-
tect trace elements such as Br and selenium (Se) in otolith material, because 
of lack of interferences from other elements. However, the large amount of 
otolith Ca swamps out many other weaker fluorescence element peaks, 
therefore it can be difficult to detect Ba reliably (Limburg et al. 2007), and 
the same goes for Mg (due to the poor fluorescence yield).  

6.2 Mass spectrometric methods 
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 
is a combined instrument for micro chemical analysis, frequently used in ge-
ological research, but also for otolith analysis. The operating principle is that 
a laser beam with a micrometer-scale spot size is focused and fired on the 
surface of the sample, which is contained in an enclosed chamber. Ablated 
material is then transported as an aerosol by a carrier gas flow to the plasma 
torch where ionization occurs. Thereafter, ions are separated in a mass 
spectrometer according to their mass-to-charge ratio and quantified for ele-
mental or isotopic analysis. It is a destructive technique since sample mate-
rial is removed, albeit a very small amount. The laser ablation can be done 
in the form of a spot, line transect or as a raster scanning for producing a 
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two-dimensional image of the elemental or isotopic composition of the oto-
lith. The LA-ICP-MS consists of three parts connected together; the laser 
(LA), the inductively coupled plasma (ICP) and the mass spectrometer (MS).  

ICP-based instruments normally use argon gas as the ion source in the 
plasma. Argon gas is inert, inexpensive, and generally available. But the 
most important reason for using argon is that argon gas has a higher ioniza-
tion energy (15.76 eV) compared to the first ionization potential for most 
other elements in the periodic table (<16 eV), but lower energy than the av-
erage second ionization potential. Consequently, the argon plasma will gen-
erally remove one electron, with varying efficiency, from the atoms and pro-
duce singly charged ions of almost all the elements present in the ablated 
material. Exceptions are barium (Ba) and strontium (Sr), which are examples 
of elements that have a significant probability to form divalent ions, and lead 
(Pb) that has a minor probability (Taylor 2001). Some elements that are in-
corporated in otoliths and are of interest for environmental or physiological 
studies have poor measurability with ICP-MS, such as selenium (Se) and 
bromine (Br). These elements can however be detected with X-ray fluores-
cence with beam-based methods 
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The age estimation problem of Baltic cod has long been an issue and it has 
become clear that the conventional method of age determining cod by count-
ing annual growth zones is not possible due to low contrast of the incre-
ments, often with unclear growth patterns. Since 2014 there has been no 
age-based assessment available, hence there is no information about the 
age composition of the cod population or knowledge about potential 
changes in growth and natural mortality (ICES 2014). As a consequence, 
advice based on maximum sustainable yield (MSY) is currently not provided 
for this stock (ICES 2017). This has diminished the quality of the ICES ad-
vice on fisheries quotas to the EU Commission. Therefore, research to esti-
mate Baltic cod age and growth correctly has become a priority and includes 
not only otolith chemistry as a validating tool for age and growth as in this 
thesis, but also as tagging experiments and development of new analytical 
stock assessment models.  

There are studies exploring the potential use of otolith chemistry as an-
other way to age fishes, but to date there are no generalized methods or 
protocols available. Therefore, I will first perform a literature review to gather 
information about the subject not only from otoliths but for other structures 
displaying age with annual growth patterns. The uptake of trace elements 
and isotopes into otoliths are influenced by both exogenous environmental 
conditions as well as internal physiology. I will try to link elemental patterns 
to seasonal changes induced by the environment, feeding and spawning 
migration patterns or biological traits of growth and metabolism in order to 
estimate age with otolith microchemistry. I will employ different techniques 
and instruments in order to find an optimal analysis approach and explore 
whether a single element or a combination of elements, isotopes or ratios 
will be the best approach. Cod otoliths with visually clear annual rings from 
different regions and time periods with different environmental conditions will 

7 Knowledge gaps and research questions 
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first be analysed with microchemistry to examine elements following the 
same patterns as the growth zones. The results will then be compared and 
tested on cod otoliths with low-contrast growth zones. In order to validate 
annulus formation, I will analyse a sub-set of otoliths for daily growth incre-
ments.  

There are also other unrelated fish species with a history of age problem-
atics. I will test the generality of the markers and methodology for Baltic cod 
also on Baltic herring; this choice was made because it also has ageing 
problems and is found in the same geographical area; but representing a 
different part of the Teleostei. There is no available method to geo-locate 
fish in the Baltic Sea. By developing markers on specimens from different 
geographical areas and time periods and relate the results to hydrographic 
information I will examine the possibility to geo-locate the fishes to region 
and date. By developing a synthetic, “readability” scoring system of the oto-
lith sample collection I will make comparisons among locations and time and 
explore readability as a function of both endogenous (e.g., body condition, 
sex, maturity stage) and exogenous (e.g. hypoxia, temperature, prey avail-
ability) variables. Based on these factors I will make recommendations for 
“best practices” in otolith age estimation. 

 

The following hypotheses are being tested:  

• Annuli with clear seasonal variations, such as those in cod found in 
the North Sea, have chemical patterns that also show similar season-
ality. 

• Annuli with poor contrast will show more diffuse chemical patterns. 

• Poor annuli and diffuse chemical patterns in otoliths may be associ-
ated with certain salinity ranges, as indexed by strontium/calcium and 
barium/calcium ratios in the otoliths, or with high variation in salinities. 

• The manganese/calcium ratio will correspond to hypoxia during the 
warm period of the year and hence act as a potential marker for sea-
sonality for cod. 
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• The barium/calcium ratio will increase during the cods’ juvenile stage, 
indicating a coastal habitat and then switch to follow the strontium/cal-
cium ratio with increased levels during the cold season in deep habi-
tats. 

• The magnesium/calcium ratio will correspond to growth during the 
warm season. 

• Different areas in the Baltic Sea will give different results in the otolith 
chemistry depending on environmental conditions and time periods. 

• The spawning and feeding migration of herring and/or cod from the 
open sea to the coast will be measurable in the strontium/calcium as 
well as the barium/calcium ratio. 

• It is possible to geo-locate cod and herring by comparing otolith micro-
chemistry to hydrographic information, by examining combinations of 
various analytes in ratio to Ca. Candidates include Sr, Ba, Mn, Se, Zn, 
Cu, Br and Pb. 
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8.1 Cod 
The project will start with examining otolith chemistry in cod with easily read-
able otolith rings, and then compare the results to the unclear cod otoliths 
from the Eastern Baltic. To then reach a spatio-temporal understanding of 
the mechanisms controlling the uptake of elements in the otoliths, addition-
ally analyses will be done on cod otoliths sampled during four different time 
periods in geographical areas of ICES SD 21, 22, 25, 27, 28 and 29 (Figure 
3). The samples will be drawn from archival material and availability may, in 
some cases, be limited. 

The four time periods studied are: 

1. The first time period is chosen for the purpose of exploring high growth 
rates. This occurred in the early 1980s when the population peaked in 
size in the Eastern Baltic, growth rates were high and the cod was in a 
very good condition. The samples will be collected from two length clas-
ses; 15-20 cm and >30 cm.  

2. The second time period is the mid-1990s. This was a period with rela-
tively low hypoxia and thus good reproductive potential.  At the same time 
the salinity in spring was at its lowest in the time series. The samples will 
be in the same length classes as for the first time period; 15-20 cm and 
>30 cm. 

3. The third period is the early 2000s. At this time, the Baltic cod spawn-
ing stock biomasses was at its lowest in the time series due to overfish-
ing. There was a big North Sea influx in 2003, increasing the salinity. 
However, the hypoxia had worsened and the anoxic areas expanded to 

8 Approach 



50 
 

cover large areas. To investigate the major Baltic inflow of 2003 effect on 
the growth rate, the daily increments on the otoliths from small sized cods 
of a total length of ~5-12 cm will be analysed from quarter 4 of 2004. If 
there are not enough samples from this year, samples from 2005 in quar-
ter 1 of around 15-20 cm will be analysed. In the time period samples of 
the two length classes; 15-20 cm and >30 cm will also be analysed as for 
the previous periods. 

4. The fourth time period consists of the most recent years. Cod are now 
in the poorest condition since intensive monitoring began and the growth 
rate is presumably very low. In 2014 and 2015 there were two major in-
fluxes, nevertheless hypoxic and anoxic areas are still pronounced. 

8.2 Preparation of samples 
Specimen preparation requirements for micro-chemical analyses vary de-
pending on the fish species, but are basically performed according to the 
same protocol. The otoliths are cleaned with ethanol and dried prior to em-
bedding in epoxy and subsequently sectioned into thin cross sections with a 
precision cut-off machine. The sections are polished by hand with grinding 
paper down to a grit of 0.5 micron until the core becomes visible and the 
section reach a thickness of 100-300 µm. The samples are photographed 
with a microscope camera, cleaned with ethanol and taped with double-
sided tape on a petrographic glass slide. The samples are placed in a holder 
in front of the instruments beam. The beam moves across the surface of the 
sample in a raster or line transect and interact with the atoms at a given spot. 
The elemental or isotopic composition of the sample is captured by a detec-
tor. The results are exported for analysis as data files to calculation pro-
grams or imported into geospatial processing software programs that pro-
duce two-dimensional maps of the trace elements. 

8.3 Herring 
Although a cost effective, multi species, generalized otolith chemical tool 
suitable to validate age would be the optimal result to achieve, phylogenetic 
traits could offer constraints (Limburg and Elfman 2010, Chang and Geffen 
2013). Accordingly, the results obtained for cod will be followed up and the 
method tested and evaluated whether it is applicable on an unrelated spe-
cies, the Baltic herring (Clupea harengus membras). The species share the 
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experience of large variations in condition over the past decades (Casini et 
al. 2010) and the plan is to analyse otoliths from herring collected in the 
Baltic Proper from two different periods. Herring in the mid-1980s had very 
high condition whereas in 1996 their condition was the lowest on record 
(Casini et al. 2010). Complex migrations and poor condition in herrings can 
also produce unclear annual growth zones in the otolith, which can be clari-
fied with help from otolith chemistry (Limburg and Turner 2016).  Thus, Baltic 
herring represent a second, excellent test species. Ageing difficulties have 
also been noted in this species and depending on region, methods for age-
ing differ (ICES 2008). Recent preliminary results from various otolith chem-
istry techniques, described in section 6 show a diversity of potential ele-
ments working as “life history recorders.”  However, further analyses to un-
ravel the patterns and mechanisms are required. 

If the research questions and issues, listed in Section 7, can be an-
swered and provide reliable age estimation of Eastern Baltic cod for analyt-
ical stock assessment, it can contribute to improve fisheries management 
and enhance the knowledge of cod life history in the Baltic Sea. 
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