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Little is known about the paleoecological histories of the three spruce species (white spruce, Picea glauca; black spruce, P. mariana;
and red spruce P. rubens) in eastern North America, largely because of the difficulty of separating the three species in the pollen
record. We describe a novel and effective classification method of distinguishing pollen grains on the basis of quantitative analysis of
grain attributes. The method is illustrated by an analysis of a large sample of modern pollen grains (522 grains from 38 collections)
of the three Picea species, collected from the region where the three species co-occur today. For each species X we computed a binary
regression tree that classified each grain either as X or as not-X; these three determinations for each grain were then combined as
Hamming codes in an error/uncertainty detection procedure. The use of Hamming codes to link multiple binary trees for error detection
allowed identification and exclusion of problematic specimens, with correspondingly greater classification certainty among the re-
maining grains. We measured 13 attributes of 419 reference grains of the three species to construct the regression trees and classified
103 other reference grains by testing. Species-specific accuracies among the reliably classified grains were 100, 77, and 76% for P.
glauca, P. mariana, and P. rubens, respectively, and 21, 30, and 22% of the grains by species, respectively, were problematic. The
method is applicable to any multi-species classification problem for which a large reference sample is available.

Key words: classification and regression-tree (CART) analysis; modern pollen grains; Picea glauca; Picea mariana; Picea rubens.

Identification of fossil pollen usually involves a combination
of analyst experience and taxonomic keys (e.g., Faegri and
Iversen, 1964; Moore, Webb, and Collins, 1991) that requires
binary decisions based on the morphology of the grain in ques-
tion. Such keys, together with modern reference material, usu-
ally allow reliable identification of most pollen taxa. The tax-
onomic precision of the identifications depends on the natural
variability of the group involved and on the degree to which
the taxonomic variability has been recognized by palynolo-
gists. In many cases, only small and subtle differences in pol-
len morphology exist between closely related taxa, making
precise identifications difficult or even impossible, and in other
difficult taxa variability is evident only through careful statis-
tical analysis. In some cases, changes in statistical distributions
through time can reveal shifts in abundance of taxa (e.g., spe-
cies within a genus), even though the identification of individ-
ual grains is often problematic.

Many difficult groups exhibit interesting ecological vari-
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ability that would make reliable identification of species valu-
able. Pinus, Quercus, Rosaceae, Poaceae, and Picea are ex-
amples of genera or families that fall into this category. In a
few cases, numerical and statistical approaches have been used
with notable success. Hansen and Cushing (1973), for exam-
ple, gained useful paleoecological insights by applying nu-
merical methods to differentiate pollen grains of five species
of Pinus from southwestern North America.

Another interesting challenge involves Picea in northeastern
North America. Given the difficulty of separating the three
Picea species—Picea glauca, P. mariana, and P. rubens
(white, black, and red spruce)—in the pollen record, little is
known about their specific histories in eastern North America
following deglaciation. Previous attempts to differentiate the
pollen of these species were based on relatively limited ref-
erence collections and on collections from different parts of
North America (Cain, 1948; Richard, 1970; Birks and Peglar,
1980). In this study, we present the results from analysis of a
large sample of modern pollen grains from the three north-
eastern Picea species. We examined 522 pollen grains from
38 different collections and made seven quantitative and six
qualitative measurements on each grain. All collections were
from Maine and Maritime Canada, the only region where the
three species co-occur today. Previous studies demonstrated
clearly that a single character would not suffice for identifi-
cation of the Picea species. Accordingly, Birks and Peglar
(1980), Hansen and Engstrom (1985), and Brubaker, Graum-
lich, and Anderson (1987) used discriminant function analysis
for separation of P. glauca and P. mariana. Although this
method is widely available in modern statistical packages, and
although the species assignments can be made with an indi-
vidual probability estimate, the procedure lacks the transpar-
ency of the traditional taxonomic key. In this study, we applied
a classification and regression-tree (CART) analysis to the data
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TABLE 1. The mean size, standard deviation, and 5% confidence interval for the quantitative measurements of the modern pollen grains of three
Picea species. All measurements are in micrometers.

Variable

P. glauca (N 5 173)

Mean SD CI

P. mariana (N 5 176)

Mean SD CI

P. rubens (N 5 173)

Mean SD CI

Total grain size (X1)
Corpus breadth (X2)
Corpus height (X3)
Saccus height (X4)
Saccus width at base (X5)
Cap thickness (X7)
Saccus attachment (X8)

98.87
70.90
54.97
33.22
48.77

2.45
18.64

8.01
6.68
7.30
4.96
6.53
0.61
3.58

1.19
1.00
1.09
0.74
0.97
0.09
0.53

84.60
61.49
46.61
28.35
39.86

2.53
17.53

9.91
7.43
6.54
4.53
5.56
0.54
2.95

1.46
1.10
0.97
0.67
0.82
0.08
0.44

89.69
60.46
46.55
29.17
40.17

2.95
16.14

8.03
7.82
5.56
4.25
5.63
0.66
3.81

1.20
1.17
0.83
0.63
0.84
0.10
0.57

Fig. 1. The seven quantitative variables measured in this study. The var-
iable designation (X1, etc.) are the same as in Birks and Peglar (1980).

in order to distinguish pollen grains of all three Picea species.
We wished to determine whether a classification method that
combines the transparency of the traditional key with an ob-
jective and optimized numerical analysis of the data could be
used to differentiate the reference grains.

METHODS

Pollen—We used pollen available from reference collections housed at the
University of Maine Orono, Maine, USA, and the University of Minnesota,
Minnesota, USA. In addition, we received pollen from two separate tree nurs-
eries: Sussex Tree Nursery, New Brunswick, and Department of Natural Re-
sources, Nova Scotia, Canada. All collections were from different individual
trees from northeastern North America, where ranges of the three species
overlap.

The pollen grains were washed in potassium hydroxide. They were treated
with glacial acetic acid and then acetolysed with acetic anhydride and sulfuric
acid for 2 min at 908C. Silicon oil was added after the samples were dehy-
drated with tert-butyl alcohol. We avoided glycerin, as studies have shown
that pollen may swell and to some extent change in morphological character
when stored in this medium (Andersen, 1960). The samples were not stained.
Prepared slides were sealed with paraffin. We added small amounts of sand
grains (63–74 mm) to the slides in order to avoid flattened pollen grains
because of cover-slip pressure (Cushing, 1961; Hansen and Engstrom, 1985).
This was done in all but eight collections equally distributed among the three
species. The mean grain size for the non-sand slides was slightly, but not
significantly, bigger in P. glauca (Student’s t test, P 5 0.33) but was nonsig-
nificantly smaller in P. marina (P 5 0.97) and P. rubens (P 5 0.64).

We examined a total 522 grains from 38 different collections. At least 20
grains were counted from each collection. Only grains that were unbroken,

symmetrical, and fully expanded in equatorial view were used. The same
person using a Leitz light microscope with 4003 magnification and an ocu-
larmeter that was calibrated to a stage micrometer did all the counting and
measuring.

All except one of the seven quantitative variables measured by Birks and
Peglar (1980) were measured in this study (Table 1, Fig. 1). We also tested
all the qualitative variables suggested by other authors (Richard, 1970; Birks
and Peglar, 1980; Hansen and Engstrom, 1985) as possibly useful for distin-
guishing Picea species (Table 2). Following a preliminary analysis, we ex-
cluded three of these as unimportant, either because there were no significant
differences among the species or because the character was regarded as un-
clear or difficult to judge. The three excluded were: ‘‘thinning exine at the
end of cappus,’’ ‘‘ratio of the saccus/corpus area,’’ and ‘‘saccus shape.’’

Each qualitative variable were given a score from 1 to 5, with 1 corre-
sponding to a positive judgment of the variable in question, 3 an intermediate,
and 5 a negative judgment. For example, a grain with a very high ‘‘degree
of verrucation of the exine in the sinus area of the corpus’’ was given a score
of 1.

Of the 13 remaining variables tested in this study, only four quantitative
and two qualitative characters were ultimately determined to be useful in
distinguishing the species. The four quantitative characters used were ‘‘total
grain size’’ (X1), ‘‘corpus breadth’’ (X2), ‘‘cap thickness’’ (X7), and ‘‘position
of attachment of saccus to corpus’’ (X8) (hereafter termed ‘‘saccus attach-
ment’’) (Table 1). The two qualitative characters were the ‘‘degree of undu-
lating margin of the corpus cap’’ (Y2) (hereafter: ‘‘cap undulation’’) and the
‘‘degree of verrucation of the exine in the sinus area of the corpus’’ (Y6)
(hereafter ‘‘exine verrucation’’) (Table 2).

Measurements of these quantitative characters are straightforward. Of the
qualitative characters used, ‘‘cap undulation’’ is relatively easy to detect (Fig.
2). The ‘‘exine verrucation’’ is a somewhat more subtle character, but consult
Fig. 2, the drawing in Birks and Peglar (1980), or photographs in Richard
(1970). (Those wishing to apply the method presented here will find that
examination of reference grains helps enormously in recognizing the within-
and between-species variability of the two qualitative characters in question.)

Here we briefly mention one of the inherent assumptions in the procedure
of applying the results to fossil Picea grains; for a more thorough discussion
of this matter consult Birks and Peglar (1980). The assumption is that the
fossil grains originate only from the tree species of P. glauca, P. mariana, or
P. rubens. We consider this to be a reasonable assumption for eastern North
America because no other Picea species occurs today east of the Rocky
Mountains. To the best of our knowledge, no macrofossils from Holocene
sediments contradict this assumption. We cannot exclude the possibility of
occasional long-distance transport of single grains from other species, includ-
ing fossil pollen from the extinct species Picea critchfieldii, which once lived
just north of the Gulf of Mexico (Jackson and Weng, 1999).

Classification and regression-tree (CART) analysis—The CART models
recursively partition data sets on the basis of a set of independent variables.
Here such a classification analysis has been applied to the morphometrics of
the three Picea species (Fig. 3). The CART procedure first tested each mor-
phometric variable to find the best combination of variable and split threshold
that separated the entire sample into two groups that were internally as ho-
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TABLE 2. Frequency distribution by species for each qualitative variable of three Picea species (N 5 173 for P. glauca and P. rubens, N 5 176
for P. mariana).

Variable Species

Score

1 2 3 4 5

Distal saccus attachment to the corpus (Y1)

An undulating margin of the body cap (Cap undulation) (Y2)

Large lumina of the internal reticulate structure of the saccus (Y3)

Irregular lumina of the internal reticulate structure of the saccus (Y4)

Constriction at the saccus attachment to the corpus (Y5)

Verrucation of the exine in the sinus area of the body
(Exine verrucation) (Y6)

P. glauca
P. mariana
P. rubens
P. glauca
P. mariana
P. rubens
P. glauca
P. mariana
P. rubens
P. glauca
P. mariana
P. rubens
P. glauca
P. mariana
P. rubens
P. glauca
P. mariana
P. rubens

11
16
12

6
3

35
8
0
1
8
0
1

13
17
31
11
53
73

50
68
46
44
27
79
52
17
24
55
23
28
97

119
102

83
85
80

42
61
43
39
42
21
24
15
13
33
28
21
32
24
24
26
24
14

46
29
64
49
76
31
69
72
79
58
55
68
23
15
15
41
11
6

24
2
8

35
28
7

20
72
56
19
70
55
8
1
1

12
3
0

mogenous as possible with respect to species composition. In this case (Fig.
3), ‘‘total grain size’’ was the best such variable, with a size threshold of 88.5
mm. Relatively few grains of or below this size were P. glauca and most of
those above this size were P. glauca. Each of these two subsets was then
partitioned in turn, producing a substantial separation of P. rubens from P.
mariana on the basis of the score for ‘‘cap undulation’’ with P. rubens typ-
ically scoring 1 or 2 and P. mariana scoring 3, 4, or 5. In the subset of larger
grains, on the other hand, ‘‘corpus breadth’’ was the best discriminator vari-
able, with the broader grains typically being P. glauca. Note how different
criteria can apply within the two sibling subsets, allowing the types of con-
tingent rule typical of taxonomic keys to emerge in a way not possible with
multiple regression or discriminant function analysis. (There are other ways
of achieving this with statistical methods, but they are either not straightfor-
ward or they require prior knowledge not needed with the CART procedure.)
The process is repeated recursively through descendent nodes so that a de-
cision tree is grown until certain stopping rules are encountered. At this point
the resulting tree was pruned back to an optimally fitting version determined
by cross-validation. The result is a decision tree that specifies a hierarchically
organized suite of correlates of species identity.

Within each end node, all sample members present share common attri-
butes, i.e., those that satisfy all of the decision criteria from root node to that
end point. The same species can be classified successfully along more than
one path from root to end node, i.e., by virtue of different chains of decisions.
Note that the probabilistic nature of the classification achieved can lead to
some splitting criteria distinguishing not between species but between prob-
ability of being a species: in Fig. 3, for example, the two rightmost end nodes
are split on the basis of ‘‘Exine verrucation,’’ yet both nodes classify the
grains falling into them as P. glauca. Where they differ is that grains reaching
the rightmost node have a 96% probability of being P. glauca while those
with lower ‘‘Exine verrucation’’ scores have only a 55% probability of being
P. glauca. Finally, the order of entry of variables into CART models is nor-
mally unimportant, because it is ultimately the combination of attributes that
uniquely characterizes a species (as in standard taxonomic keys).

The classification accuracy of the classification tree constructed in this way
can be assessed in the usual way, as the proportion of the sample of known
identity that are correctly classified by the classification tree. However, this
proportion is likely to be inflated because the tree is constructed (via the
exhaustive search procedure) so as to maximize the classification accuracy.
This bias is controlled via the cross-validation pruning, but this involves a
trade-off coefficient that weights classification accuracy against tree complex-
ity (Breiman et al., 1984; Clark and Pregibon, 1992). Hence, a permissive
choice of this coefficient allows optimistic results, akin to the use of alpha

levels of 0.10 or 0.15 in admitting terms to a step-up, multiple linear regres-
sion. An independent assessment of the efficacy of the pruned tree is therefore
best obtained by making predictions from the model against a reserved sample
of data (test set) not used in the derivation of the initial CART model (in this
study we used a training set of 419 grains and a test set of 103 grains).

RESULTS

Table 1 summarizes the distribution of the quantitative var-
iables. Picea glauca was markedly larger in all metrics except
‘‘cap thickness,’’ while P. mariana and P. rubens were rela-
tively similar and P. mariana had smaller ‘‘total grain size’’
and ‘‘cap thickness’’ and larger ‘‘saccus attachment’’ than P.
rubens. Nevertheless, despite these significant differences in
the quantitative characters the considerable overlaps preclude
differentiation of the three taxa on the basis of any one char-
acter alone. The mean sizes for P. glauca and P. mariana for
all variables were considerably larger in this study compared
to the study of Birks and Peglar (1980). For example, ‘‘total
grain size’’ for P. glauca was 98.9 mm in this study compared
to 89.7 mm in the Birks and Peglar study; for P. mariana the
measurements were 84.6 and 74.7 mm, respectively. These dif-
ferences are so large they cannot be explained by the differ-
ence in sample size (i.e., number of collections) alone and
probably reflect differences in collection locality: all collec-
tions in the Birks and Peglar study were from the Midwest,
while in this study all were from eastern North America. The
collections of P. rubens in both studies were from eastern
North America, and the means of each variable were similar
in the two studies. (The mean for ‘‘total grain size’’ reported
in Birks and Peglar [1980] is actually slightly larger [91.2 mm
compared to 89.7 mm]).

Only two qualitative variables exhibited consistently large
differences among the species (Table 2). Pollen from Picea
rubens had more often a ‘‘cap undulation’’ than pollen from
P. glauca and P. mariana. On average 66% of the P. rubens
pollen had this feature, but significant variation existed among
collections (see Appendix, http://ajbsupp.botany.org/v89). The
second variable with some differences was the ‘‘exine verru-
cation.’’ It was more commonly a character on P. rubens and
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Fig. 2. Characteristic modern pollen grains of the three Picea species. (A–B) Picea glauca, (C–D) Picea mariana, and (E–F) Picea rubens.
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Fig. 3. Structure of classification tree for the simultaneous classification of all three Picea species. At each interior node the splitting variable and threshold
value are shown and at each end node the commonest species and the probability of being that species with the combination of splitting criteria from end node
to root are shown.

TABLE 3. Classification accuracy by species using a classification tree
across all three Picea species.

Tree species

Identified as Data

P. glauca

N %

P. mariana

N %

P. rubens

N %

P. glauca

P. mariana

P. rubens

Training
Test
Training
Test
Training
Test

111
25
12

0
21

4

77.1
86.2

8.3
0.0

14.6
13.8

21
5

83
22
35
10

15.1
13.5
59.7
59.5
25.2
27.0

22
4

17
6

97
27

16.2
10.8
12.5
16.2
71.3
73.0

P. mariana grains (88 and 78%) than grains of P. glauca
(54%). Interestingly, these two characters were also identified
as critical discriminators in other studies, ‘‘cap undulation’’ by
Birks and Peglar (1980) and ‘‘exine verrucation’’ by Richard
(1970). However, none of the qualitative variables could be
used alone to separate the three spruce species without an un-
acceptable rate of misclassification. See Appendix at http://
ajbsupp.botany.org/v89 for the entire data from all collections.

Traditional classification trees—Standard CART analysis
across the three species reveals that Picea mariana grains
could be segregated from the others by a combination of a
small ‘‘total grain size’’ (,88.5 mm) and a large ‘‘cap undu-
lation’’ score (.2.75) (Fig. 3). Picea rubens grains were iden-
tifiable either by the combination of a small ‘‘total grain size’’
(,88.5 mm) and a low ‘‘cap undulation’’ score (,2.75) or by
a combination of short ‘‘corpus breadth’’ (,69.5 mm) and low
‘‘exine verrucation’’ score (,2.75) if ‘‘total grain size’’ was
.88.5 mm. Longer grains were otherwise classified as P. glau-
ca.

The probability of grains in a given end node in Fig. 3 being
of the species shown for that end node varied across nodes.
From left to right across the end nodes, these probabilities
were 0.65 (P. rubens), 0.74 (P. mariana), 0.62 (P. rubens),
and 0.66, 0.55, and 0.96 (all P. glauca). Note that the two
rightmost end nodes are both P. glauca, so what knowledge
the ‘‘exine verrucation’’ score provides is not discrimination

between two species but rather greater certainty of the iden-
tification as P. glauca when this score is above 2.25. Thus,
although the overall misclassification rate of the tree is 30.6%,
the rate of misclassification of grains varies across nodes.

Table 3 shows the classification accuracy of the tree for each
species in the training set. Species-specific classification ac-
curacies were 77.1, 59.7, and 71.3% for P. glauca, P. mariana,
and P. rubens, respectively. However, these figures reflect a
classification tree structured to optimize its fate to the training
data and therefore are likely to be overoptimistic. Table 3,
therefore, also shows the results of applying the classification
tree of Fig. 3 to the reserved data set of 103 cases (i.e., grains
not used in the training/calibration analysis), yielding figures
of 86.2, 59.5, and 73.0%, respectively. Thus, those of the test-
set analysis matched closely the accuracy estimates from the
training set.

Binary trees—Traditional discriminant function analysis at-
tempts to create functions that typically describe multivariate
axes and a multidimensional space within which the different
groups to be classified are mutually segregated. In some cases,
however, the variables measured and their distributions may
be such that individual groups could be separated from the
others by some simple criterion, e.g., group A members may
share high values of variable X1, while B, C, and D all share
low X1 values, and group B members may in turn segregate
from the pool of A, C, and D members in having a particularly
low value of variable X2. This opens the classification strategy
to becoming one of multiple binary classifications (e.g., as A
or not A) that can be combined via Boolean logic to describe
various outcomes (R. O’Connor and M. Lindbladh, unpub-
lished data). Recursive segregation of successive groups from
the residual pool of cases is, in principle, possible as a default
outcome of CART analysis, but this would have a different
probability of outcome than a strict combination of all binary
discriminants. We therefore evaluated the performance of com-
binations of binary classification trees, each discriminating one
species from the pooled data for the other two, and each op-
erating on the complete sample.

Figure 4a–c presents the binary trees for each species. Picea
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Fig. 4. Structure of binary classification trees for (a) Picea glauca, (b) Picea mariana, and (c) Picea rubens. For each end node a ‘‘1’’ indicates that the
focal species was the commonest in that node and a ‘‘0’’ indicates that individuals of the two nonfocal species for that tree were commonest there. The P value
gives the probability in a given end node for being the focal species. For example, in Fig. (a): 84% of the grains in the training set that had the combination
‘‘Corpus breadth . 69.5 mm’’ and ‘‘Exine verrucation . 1.75’’ were grains of Picea glauca.
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TABLE 4. All possible outcomes of eight ordered triplets. The order is
Picea glauca, P. mariana, and P. rubens.

Code Meaning

000
001
010
011
100
101
110
111

Not classified to any species: unidentifiable
Unequivocally classified as P. rubens
Unequivocally classified as P. mariana
Matches both P. mariana and P. rubens: equivocal
Unequivocally classified as P. glauca
Matches P. glauca and P. rubens: equivocal
Matches P. glauca and P. mariana: equivocal
Matches all three species: equivocal

TABLE 5. Extent of accurate classification, equivocal classifications, and unclassifiable cases when using Hamming-coded (1950) binary classifi-
cation trees.

P. glauca

Training Test

P. mariana

Training Test

P. rubens

Training Test

Grains of this species
Identification made of this species
Unequivocal identification
Equivocal classifications
Unidentifiable
Percentage correctly identified
Percentage unequivocal identification correct
Percentage equivocal classifications
Percentage unidentifiable

144
97

103
9

32
67.4
94.2

6.3
22.2

29
23
23

0
6

79.3
100.0

0.0
20.7

139
66
91

7
41
47.5
72.5

5.0
29.5

37
20
26

1
10
54.0
76.9

2.7
27.0

136
69
89

3
44
50.7
77.5

2.2
32.4

37
22
29
0
8

59.5
75.9
0.0

21.6

glauca (Fig. 4a) was discriminated from the other species by
the combination of narrow ‘‘corpus breadth,’’ large ‘‘saccus
width at base’’ and a high score of ‘‘exine verrucation,’’ or by
a broad ‘‘corpus breadth’’ and medium to high score of ‘‘exine
verrucation’’ (.1.75). Classification accuracy for the training
set was 84.0%. For P. mariana (Fig. 4b), classification as the
species was based on a short ‘‘total grain size’’ (,86.5 mm)
and a high score of ‘‘undulating exine’’ (.2.75). All other
cases (i.e., those not classed as P. mariana (see previous sen-
tence) were classed as non-P. mariana. Overall P. mariana
classification accuracy was 79.7%. Finally, P. rubens (Fig. 4c)
was discriminated from the other species by virtue of a low
score of ‘‘undulating exine’’ (,2.75) and narrow ‘‘corpus
breadth’’ (,64.5 mm), with overall accuracies of classification
equal to 78.5%. These classification accuracies are again from
the training set and lower estimates are assessed from the test
set, namely 79.3, 56.8, and 59.5% for P. glauca, P. mariana,
and P. rubens, respectively.

With three binary classifications (one for each species) con-
ducted independently here, maximum agreement between the
three arises when a given grain is successfully classified to
only one species and is simultaneously classified as being nei-
ther of the other two species. Conversely, total failure to iden-
tify a grain would arise if no possible positive classification
emerges for that individual. Similarly, maximum confusion
about the identity of the grain would arise were it simulta-
neously classified positively by all three species-specific de-
cision trees. Species confusion would also arise when there is
a positive classification for the wrong species tree and a neg-
ative for the other two. We can list all possible outcomes in a
list of eight ordered triplets or Hamming (1950) codes (Table
4). Three of the eight codes (001, 010, and 100) thus designate
unambiguous classification; (000) designates a complete lack
of success in classification; and the remaining four denote
some (011, 101, and 110) or complete (111) equivocation.

Table 5 summarizes the Hamming codes results obtained on
applying the trees of Fig. 4a–c to each grain, both for the
training and the test set of data. Inevitably, the raw classifi-
cation accuracies are lower than for the binary trees alone (as
above), at 67.4, 47.5, and 50.7% for P. glauca, P. mariana,
and P. rubens, respectively, in the training set and 79.3, 54.0,
and 59.5% in the test data set. However, the Hamming codes
identify both those cases where the grain was unidentifiable
and those cases where the classification was equivocal, so the
analyst knows which cases are unequivocally identified. When
only these cases are considered, classification rates rise to 94.2
and 100.0% (training and test data, respectively) for P. glauca,
72.5 and 76.9% for P. mariana, and 77.5 and 75.9% for P.
rubens. Thus, the Hamming codes yield substantially higher
classification certainty than did the binary trees alone. Much
of this increase in certainty comes from the identification of
particular cases as being unidentifiable, with 20–32% of the
grains being in this category. Ambiguities in classification
were relatively few (0.0–6.3%) (Table 5).

Table 6 presents a breakdown of grain classification failures
by Hamming code. Misclassifications of P. glauca were rela-
tively fewer than for P. mariana and P. rubens; P. mariana
and P. rubens were as likely to be mistaken for each other as
for P. glauca.

Given that about 20–35% of all cases were unclassifiable
or equivocal, it was worth considering whether the failure to
classify these grains was associated with particular morpho-
metric features or whether it reflected a random distribution
of measurement errors affecting the classification. Considering
total grain lengths, for example, unclassifiable and equivocal
grains were in general intermediate in morphology (Fig. 5).
The unidentifiable grains that were truly P. glauca were slight-
ly smaller than was typical for P. glauca; on the other hand,
the unidentifiable P. mariana and P. rubens grains were slight-
ly longer than was typical of the species. Consequently these
grains were intermediate in size, fitting neither the smaller P.
rubens and P. mariana stereotype nor the larger P. glauca
stereotype. As a result, the classification algorithm failed to
classify them. The same phenomenon was evident in the other
morphological metrics considered.

DISCUSSION

When pollen in fossil samples are distinctive morphologi-
cally, their discrimination by direct taxonomic keys can be
rapid and efficient. Where the difference between pollen in
closely related taxa are less pronounced, however, taxonomic
keys suffer in their dependence on expert judgment, in which
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TABLE 6. Distribution of species-specific codes for grains not correctly classified to species by the combined binary classification trees.

Species Code

Training set

Frequency Percentage

Test set

Frequency Percentage Interpretation

P. glauca

P. mariana

P. rubens

000
001
010
101
110
000
001
100
101
110
000
010
100
101
110

32
4
2
4
5

41
16

9
1
6

44
10
10

2
1

22.2
2.8
1.4
2.8
3.5

29.5
11.5

6.5
0.7
4.3

32.4
7.4
7.4
1.5
0.7

6
0
0
0
0

10
3
3
0
1
8
4
3
0
0

20.7
0.0
0.0
0.0
0.0

27.3
8.1
8.1
0.0
2.7

21.6
10.8

8.1
0.0
0.0

Unidentifiable
Misclassified as P. rubens
Misclassified as P. mariana
Equivocal
Equivocal
Unidentifiable
Misclassified as P. rubens
Misclassified as P. glauca
Equivocal
Equivocal
Unidentifiable
Misclassified as P. mariana
Misclassified as P. glauca
Equivocal
Equivocal

Fig. 5. Distributions of ‘‘total grain size’’ for grains of each of the three
Picea species according to whether the binary triplet procedure classified the
grains correctly to species or whether the grain proved problematic in all cases
for the training data. From top to bottom the distributions are: Picea glauca
(unequivocally classified [black]; unidentifiable or equivocal [shaded]), Picea
mariana (unequivocally classified [black]; unidentifiable or equivocal [shad-
ed]), and Picea rubens (unequivocally classified [black]; unidentifiable or
equivocal [shaded]).

not all experts may concur, and, more importantly, in their risk
of suboptimal performance. A less subjective analysis might
well reveal fewer or more effective attributes than those in the
expert’s key, allowing discrimination among species with a
lower investment in morphological measurement. Moreover,
even with expert knowledge and a reliable key several taxa
cannot be discriminated because of overlapping attributes or
combinations of characters that are difficult to judge. These
considerations have led a number of workers to turn to dis-
criminant function analysis as an complement to taxonomic
keys (Birks and Peglar, 1980; Hansen and Engstrom, 1985;
Brubaker, Graumlich, and Anderson, 1987). Discriminant
function analysis constructs linear functions of the measured
variables, determining weights for each variable, such that the
different species receive, as far as possible, different values of
the function. Two or more functions may be needed to separate
species. This approach is often highly effective, the classic
example being Fisher’s (1936) separation of three Iris species
on the basis of petal and sepal morphology. Although discrim-

inant function analysis is widely available in modern statistical
packages, and although the species assignments can be made
with an individual probability estimate, the procedure lacks
the transparency of the traditional taxonomic key. In this re-
spect, the application of CART (Breiman et al., 1984) is ad-
vantageous, combining transparency with objective and opti-
mized analysis of morphometric data. It is, of course, impor-
tant that the classification tree method be at least as powerful
for classification accuracy as discriminant function analysis.
This appears to be the case: when we subjected our training
set to discriminant function analyses we obtained classification
rates of 76% for P. glauca, 63% for P. mariana, and 70% for
P. rubens (R. O’Connor and M. Lindbladh, unpublished data),
rates comparable to those derived from the standard classifi-
cation tree model here (Table 3).

The notion of using Hamming codes to combine the results
of binary classification trees appears to be an innovation in
classification work. The resulting raw classification rates were
necessarily lower than those for the binary trees (Table 5), but
reliance on the binary trees alone may be risky: the training
set binary classification rates were markedly higher than those
from the standard multispecies classification tree—84.0 vs.
77.1% for P. glauca, 79.7 vs. 59.7% for P. mariana, and 78.5
vs. 71.3% for P. rubens—but the values obtained from the test
set with the binary trees were lower (79.3, 56.8, and 59.5%,
respectively). It is likely, therefore, that the binary results for
individual species involve significant of overfitting to the train-
ing data. When combined as Hamming codes, however, the
species-specific binary trees have the potential to reinforce
each other in clear-cut cases and to reveal conflicting classi-
fications with intermediate grains. Thus, a major advantage of
the Hamming codes is to reveal those cases for which classi-
fication is uncertain. That it is the difficulty of classification
rather than a deficiency in the classifying algorithm is indi-
cated by the finding here that the problematic cases in our
training set were of intermediate morphology, often too large
in a given dimension to be P. mariana or P. rubens but at the
same time smaller than typical P. glauca grains (Fig. 5). In
operational terms, this ability of the Hamming codes to iden-
tify problematic grains that would otherwise reduce the overall
classification accuracy is of special value in palynological
studies. (It is, of course, possible in a discriminant function
analysis to plot the location of individual grains within the n-
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dimensional space of the n discriminant functions and to de-
termine which grains are peripheral to the species-specific
clusters identified. This approach is less direct, and more com-
plex, than the generation of an unequivocal Hamming code).
Intuitively, one would expect that conclusions based on rela-
tively reliable estimates of species composition from a subset
of available grains are scientifically superior to less reliable
estimates made from the complete sample. Furthermore, any
spatial/temporal variation in the proportion of unclassifiable
grains in the samples for different locations or times may itself
be informative. It is worth noting that the Hamming procedure
may be of relatively greater value as the number of species
involved in the study increases. In principle, Hamming codes
can be created for samples with four, five, six, etc. species,
yielding quadruplet, quintuplet, and sextuplets instead of trip-
lets (with correspondingly more values, e.g., 26 5 64 values
for a six-species mix). One would intuitively expect discrim-
inant function analysis to be relatively more difficult as the
number of species in the mixture increases, so that Hamming
codes identifying problematic cases would be increasingly
valuable. On the other hand, the possibilities for equivocal
codes increases in a binomial distribution, and one could en-
visage a relatively greater frequency of equivocal rather than
unclassified grains as species richness increases. However, this
is not a problem for analysis of grains in less diverse samples.

Conclusions—The large number of pollen (522) from many
collections (38) used in this study was the prerequisite for the
separation of the three closely related Picea species. The large
between- and within-species similarities discovered in the
study emphasize the need for a large collection of reference
grains. Furthermore, the apparently large differences in the
quantitative characters among the Picea pollen from different
regions (i.e., eastern North America and Midwest) suggest that
applying the comparative data from one region to another
might not work. It may be useful for the analysis to be re-
peated for each region of interest. Classification tree analysis
appears to provide a robust and transparent procedure, and it
is at least as powerful as traditional discriminant function anal-
ysis, while retaining the conceptual simplicity of traditional
taxonomic keys. Use of Hamming codes to link multiple bi-
nary trees allows identification and exclusion of problematic
specimens and correspondingly greater classification certainty
among the remaining grains. This study shows that there is a
large proportion of problematic specimens in a modern refer-
ence collection of Picea pollen, and thus it is likely that a
number of fossil grains will also fall into this category. Hence,
the new method allows more confidence than is possible with

previous methods about the identity of unequivocally classified
grains.

The method has successfully been applied to fossil Picea
grains from eastern North America (Lindbladh, Jacobson, and
Schauffler, in press). It is not restricted in applicability to Picea
but can readily be applied to any other taxon for which a large
reference collection is available. Extensive experience with
CART indicates that an initial sample of several hundred cases
is needed before adequate discrimination is achieved. With
smaller samples, the algorithm fails gracefully rather than pro-
ceeding to misidentify cases.
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