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Preface

The purpose of this literature review is to create a base of information to identify gaps of knowledge in the
assessment of the effects of climate change on agriculture in Sweden, and related effects of agricultural
adaptation and mitigation measures. The review is a part of a project (FANAN, Fogelfors et al. 2008) at the
Swedish University of Agricultural Sciences aiming at making a strategic analysis of future research needs for
agriculture in Sweden, and should help in answering the following questions: What are the expected impacts of
climate change on agricultural production and its effects on environment, which are the suggested methods for
mitigation and adaptation, and what is the scientific base on which these assessments stands?

The work has been done in the following way: Literature has basically been searched for on the “Web of
Science”. The review has focused on scientific literature, although the literature has also been searched on the
whole “Web”, and several references have been found elsewhere in a non-systematic way. The limited number
of researchers involved and time available for the study allowed only a few topics to be thoroughly examined.
References within many topics are though cited, but the list is incomplete. Thus the reference list should not be
regarded to be complete. Mainly abstracts have been read and analysed for results, conclusions and methods.
The text has basically the character of citations using expressions close to those of the authors of the articles,
although our own analyses were now and then unavoidable. All evaluations by us, the authors of this report, are
intended to be concentrated to the summary. The citations are structured in relation to the questions they give
answers to. The reader is recommended to use the questions to find the information of her/his interest.

The study was financed by the Faculty of Natural Resources and Agricultural Science at the Swedish University
of Agricultural Sciences and the authors would like to thank colleagues at the Departments for Crop Production
Ecology, Economy, Animal Nutrition and Management, and Soil and Environment for contributions and kind
help.



Forord

Syftet med denna litteraturstudie ar att samla information till underlag for att identifiera kunskapsluckor vid
bedémningar av klimatforandringars effekter pa svenskt jordbruk och atgarder for att anpassa jordbruket och
lindra dess effekter pa klimatet. Studien &r en del av ett projekt (FANAN, Fogelfors m fl 2008) vid Sveriges
lantbruksuniversitet (SLU) med syfte att gora en strategisk analys av framtida forskningsbehov for svenskt
jordbruk for att svara pa foljande fragor: Vilka ar de forvantade effekterna av klimatforandringar pa
jordbruksproduktion och dar tillnérande effekter pa miljon, vilka ar metoderna for att anpassa jordbruket till
dessa forandringar och mildra dess effekter, och pa vilken vetenskaplig grund baserar sig dessa
framtidsbedémningar?

Studien ar utford pa foljande satt: Litteratursokning har framst skett pa "Web of Science”, och fokuserat framst
pa vetenskaplig litteratur. Men litteratursokning har ocksa utforts pd hela "Natet”, och ett antal referenser har
hamtats fran ej valdefinierade vetenskapliga kllor pé ett icke systematiskt satt. Beroende pa den begransade
arbetsinsatsen har endast ett farre antal amnesomraden kunnat behandlas utforligt, &ven om referenser fran ett
storre antal amnesomraden citerats. Av det skalet gor referenslistan inte ansprak pa att vara komplett. | de allra
flesta fallen &r det framst abstrakt som lasts och analyserats vad avser resultat, slutsatser och metoder. Citering
av referenser har gjorts i form av referat dar forfattarnas egna uttryck har anvénts i mojligaste man. Vissa
tolkningar har dock varit nédvandiga. Sammanfattningen &r dock var egen analys av innehéllet i referenserna.
Referenserna har strukturerats i relation till de frdgor som studierna besvarar. Lasaren rekommenderas att
utnyttja de uppstallda frdgorna for att styra uppmarksamheten till sitt eget intresse.

Studien har finansierats av Fakulteten for naturresurser och lantbruksvetenskap vid Sveriges lantbruksuniversitet
och forfattarna vill tacka kolleger vid institutionerna for vaxtproduktionsekologi, ekologi, ekonomi, husdjurens
utfodring och vard samt mark och miljo for bidrag och hjélpsamhet.
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Introduction

Climate is an important factor regulating agriculture in Sweden. The seasonal

variation in climate is large and during more than half of the year, and in some parts the whole year, crop
production is limited by low temperature and low solar radiation, and in some areas growth is zero for almost
half of the year. However, the climate of Sweden is by the meteorological scientists expected to change
significantly the coming century, and we might anticipate a significant effect on agriculture. Atmospheric carbon
dioxide (COBg) is expected to double in concentration, and temperature to increase and become more similar to
that of central and southern Europe of today. However, the extreme seasonal variations in day length and low
solar elevations at Nordic latitudes will remain the same, and also in the future give low radiation levels during
autumn, winter and spring, and high levels during summer, compared to more southern latitudes. Water
conditions are also expected to change compared to present. Although it is more difficult to generalise this
change, and large spatial differences might occur, a general expectation is that precipitation will increase during
the dark time of the year.

The relations between climate and crop production, cropping systems, grasslands and use of agricultural land are
complicated and, although much research has been done on parts of these subject, general relations useful for
climate change impact studies are a major weak point. Climate change (in the following mostly abbreviated: CC)
will also influence other parts of the society than agriculture, as well as agriculture in other parts of the world,
which will influence the use of agricultural land in Sweden by means of social, economical and political factors.
During the last 5-10 years, methodology for making climate change impact studies on cropping systems has been
developed (cf. Rounsevell et al., 2003; Ewert et al., 2005). For Sweden, only very few climate change impact
studies for crop production and cropping systems have been made (Sigvald et al. 2001; Eckersten et al., 2007),
and there is a strong need for further research. To plan this research there is a need to investigate research made
elsewhere and to evaluate its relevance for Swedish agriculture.

The main objective of this study is to analyse and describe the present knowledge on how climatic change, in the
range proposed by climate scenarios for Sweden, might influence the use and production of agriculture land in
Sweden. The aim is to give a reasonably well covering list of scientific literature on studies of (i) principal
relations between climate and agriculture of use for assessing impacts of a climatic change, and (ii) climatic
change impacts assessments, of relevance for agriculture in Sweden.

The literature review is structured in six topics (Chapters 1-6): (1) The future climate scenarios that are the prime
reason for, and superior driving factor behind this study; (2) The present relations between climate regions and
agricultural production regions, of relevance for Sweden; (3) The current knowledge of the principal relations
between climate and agricultural crop production and related environmental factors. These relations are the bases
for extrapolation assessments of climate change scenarios; (4) Climate change impact assessments made until
now, of relevance for Sweden; (5) Assessments of adaptation and mitigation of agriculture production to climate
change, and (6) Climate change assessments that are linked to other expected changes in the society, due to for
instance globalisation and to changed availability of natural resources. To give an overview of this literature
review the report begins with a summary.



Summary

This summary is structured in a similar way of as the literature review presented below. No references are
explicitly given in the summary and instead it is referred to the main review. The summary is then limited to
reflect the content of this review and try to avoid including facts not found in the cited literature. This summary
is synthezising the facts, and includes subjective evaluations, whereas the main review has the character of more
or less direct citations of the publications referred to.

S1. Climate change scenarios

The climate change scenarios appearing during last decades are the underlying reason for climate impact studies
on agriculture, and provides different sets of driving forces for these studies. Details in climate scenarios are
uncertain and vary with the underlying assumptions, of notably the future use of energy, land use and other
socio-economic factors. These uncertainties are formulated in a number of alternatives, in turn causing
uncertainties in the impact assessments. It is of crucial importance to know these uncertainties, as well as the
spatial and time resolution in predicted climate variables. This section aims at describing briefly methods and
assumptions for making climate scenarios; which scenarios that are available on different geographical and time
scales; which variables that are predicted on the different scales, and what the uncertainties are. In this context,
the term climate sensitivity, meaning the change in the global mean temperature (4T,,) due to a doubling of the
atmospheric carbon dioxide concentration, is frequently used. Uncertainty in the ‘real’ climate sensitivity is one
of the main sources of uncertainty in projections of future climate change.

Driving forces of agriculture (S1)

Meteorological variables like temperature and precipitation are known to influence agriculture, in terms of for
instance average dates of first and last freezes, frequencies of heat spells, frequencies of heavy rains and drought
periods, soil water availability etc. Some derived variables are frequently used as agroclimatic indices, e.g. crop
heat units (CHU), growing degree-days (GDD) and water deficit (e.g. defined as the difference between
potential evapotranspiration and precipitation).

Methods (S1)

Climate modelling and projections (climate scenarios) on the global scale are usually based on General
Circulation Models, GCMs (GCM sometimes also meaning “Global Climate Model”), developed at a quite
limited number of research centres and institutes around the world, e.g.: (i) Commonwealth Scientific and
Industrial Research Organisation (CSIRO)/Australian Climate Change Science Program (ACCSP), Australia; (ii)
European Centre for Medium Range Weather Forecasts (ECMWF)/Hadley Centre for Climate Prediction and
Research, UK and Max Planck-Institute, Germany (Echam); (iii) Geophysical Fluid Dynamics Laboratory
(GFDL), Princeton, US; (iv) National Centre of Atmospheric Research (NCAR), Boulder, US, to mention about
half of them. Separate GCMs for the atmosphere/land —surface system (AGCMs ) and for the ocean system
(OGCMs), respectively, have been developed, but also models integrating the two systems in the same model, so
called coupled models ((AOGCMs); often with the addition of other sub-models describing e.g. sea ice,
biospheric processes or the carbon cycle. The Intergovernmental Panel on Climate Change (IPCC) compiles and
assesses results/climate scenarios from dominating GCMs and presents the conclusions in the IPCC Assessment
reports.

On the regional scale a higher spatial resolution is desired. This higher resolution may be achieved by either of
the following approaches: (i) using an AGCM with a high resolution grid and boundary conditions from a
coupled GCM,; (ii) statistical downscaling to the regional/local scale from outputs of a driving AOGCM,; (iii)
dynamic Regional Climate Models (RCMs) — with a typical horizontal resolution of 50x50 km — with boundary
conditions derived either from GCM simulations or from observations. In Europe RCMs have been developed
both at Hadley Centre, UK, at Rossby Centre (SMHI), Sweden, DMI (Danmarks Meteorologiska Institut),
Denmark, and in many other countries.

Scenarios, global (S1)

Future climate projections/climate scenarios based on GCM/RCM-simulations are (highly) dependent on
underlying assumptions concerning future socio-economic development in terms of emission levels of
greenhouse gases (GHG) — these mostly considered to be a key forcing factor for the climate change. A set of



possible future scenarios (emission scenarios), widely used as external “driving forces” /background conditions
in climate model simulations, are given and described in a report by IPCC (Al, A2, B1, B2).

Projections of future climate in Europe, based on different GCMs, indicate that annual temperatures may rise at a
rate between 0.1 and 0.4 °C per decade, with the strongest warming over southern Europe and north-east Europe,
and least along the Atlantic coastline. There are also indications that the occurrence of severe heat-waves over
Europe (and North America) may be more frequent in the future. The general pattern of future change in
precipitation indicates increases in northern Europe (of the order +1-2 % per decade) and smaller decreases
across southern Europe (up to -1 % per decade) in the yearly amounts, but with a marked seasonal contrast; for
instance, southern Europe in summers may have a decrease of up to -5 % per decade.

Some, but comparatively few studies, so far, have analysed the effects of a rapid or abrupt climatic change, for
instance as a result of a collapsed or significantly weakened thermohaline circulation (THC, sometimes called
the “[Thermohaline] Conveyor Belt”) in the North Atlantic, or as a result of strong positive feedback
mechanisms in a warming climate, due to for instance further release of greenhouse gases from thawing tundra.

Scenarios, Nordic (S1)

According to climate scenarios from SWECLIM (SMHI, Swedish EPA) the yearly mean temperature in Sweden
will rise more than the global average, with a possible AT ~ +3-6 °C during this century. Increases both in
precipitation (P) and the difference between P and evaporation are projected to be largest during the winter (up
to 30- 60 %), while during summers there may be a decrease by 20 — 40 % in the south of Sweden, similar to
Denmark and southern Norway.

For the Nordic region the fate of the Atlantic meridional overturning circulation (AMOC or MOC) is of specific
interest since the Gulf Stream and its extension into northly latitudes — the North Atlantic stream — is part of this
circulation. This circulation is to a significant extent driven by the THC (see above) and a collapse or weakening
of the THC would probably have a significant influence on the Nordic climate. At the same time, some analyses
give no clear indications of a significant weakening of this circulation. However, many of the mechanisms
involved remain so far poorly understood, and other studies of the THC argue that this oceanic circulation is
quite sensitive to small disturbances, particularly in the form of changes in the freshwater influx into the system.

Uncertainties (S1)

Uncertainties in the climate scenarios are inevitable and are primarily due to: (i) uncertainties in the assumed
future emission scenarios, (ii) uncertainty about the natural background climate variability, and (iii) model
uncertainty. The model uncertainty may to some extent be reduced by using so called ensemble averages of the
results from many different climate models, and thereby use probabilistic, instead of (single) deterministic,
predictions. An illustrative example of model uncertainty is given in a simulation experiment with four different
GCMs, projections for European climatic zones to the year ~2080, with a detailed analysis of southern Sweden.
The four models gave markedly different results for the future climate zones over the south of Sweden.

Spatial patterns (S1)

In the environmental stratification of Europe (Metzger et al., 2005a), climatic zones for Europe until ~2080 were
projected. By using the Canadian model CGCM2 and emission scenario Al as input conditions, they found the
following climate zones for Sweden: Today south of Skéne is classified as Atlantic North, Oland and Gotland as
Continental and the remaining parts of Gotaland and Svealand, except Varmland and Dalarna, as Nemoral,
whereas Norrland is Boreal. By ~2080 the zonal distribution is projected to become more complex: Skane and
Blekinge has now become Atlantic Central, the eastern part of Smaéland and Gotland is Continental. The
remaining parts of Goétaland, Varmland and the southern parts of Svealand have become Nemoral, whereas the
northern parts of Svealand and the south of Norrland including Halsingland are Atlantic North.

S2. Climate and agricultural patterns

There are relations, more or less clear, between agriculture and regional climate - in Sweden as well as in other
parts of the world. The agricultural patterns, however, are only partly a consequence of climate. Therefore, these
patterns can probably not be used straightforward for extrapolations of changes in climatic zones to give the
corresponding changes in agricultural zones. However, to a certain extent these patterns might be useful. The
aim of this section is to present information probably useful to evaluate to what extent present patterns, and



changes of those in the past, are general, and possibly useful for assessments of climate change impacts on
agricultural production and land use in Sweden in the future.

Climate patterns (S2)

Beside the well established and widely used system for climate classification by Koppen (with later
modifications by e.g. Trewarta), Metzger et al.(2005a) have recently used Principal Component Analysis on a
number of environmental factors, including both topographical and climatic such as altitude, oceanicity,
temperature and precipitation, with a spatial resolution of 1 km? to establish an Environmental stratification
scheme of Europe (EnS).Thus, 84 minor strata or classes were achieved which then are aggregated into 13 major
“Environmental zones” (compared with about 10 subdivisions for Europe in the K&ppen system).

Agricultural patterns (S2)

There are 8 basic agricultural production zones in Sweden used by the statistical authorities (SCB), basically
representing gradients in south-north and lowland-highland. The first four (1-4) are lowland areas from south to
north in Goétaland and Svealand predominantly covered by good agricultural soils, 5 and 6 are highland areas in
the same region with predominantly poor soils cultivated by forest, and 7 and 8 are the southern and northern
parts of Norrland, respectively. The Regional Experimental Service of agriculture divides Sweden into 9 zones
(i-ix). To a large extent they are similar to the SCB zones. Zones i and ii are almost similar to 1 and 2, zone iii
and half iv is included in 3, and v is mainly 4. For Norrland the correspondence between zones are also high
although less detailed, ix is the whole 8 and half 7. However for the central Sweden and especially the forest
(highland) the zones vi - ix relation to the agricultural production zones 5 — 7 are more irregularly.

There are also classification zones for garden plants and forests. For garden plants the 8 zones should reflect
growing zones also related to climate hardiness. The most southern zone is the SCB zones 1 and 2 together,
possibly indicating that the separation of these zones in SCB might represent something else than differences in
climate. Also, the coastal region of Norrland is separated in the classification of garden plants. This is also the
case for the 8 forest zones, which also, in addition to the common south north gradient, have a separation into
western and eastern zones for the northern part of Gotaland and Svealand.

Agricultural and climatic patterns (S2)

Agricultural patterns are related to climatic patterns. The northern limit of agriculture in Finland is suggested to
depend on low solar angle and temperature, short growing season and frost during the growing season, and deep
snow cover. The limit of agriculture is suggested to be located where the accumulated sum of temperatures
above 5°C is lower than 600-1200 d°C (degree days above the given base temperature), where the upper limit
(1200 d°C) is the limit for crop production, and 600 d°C for animal production.

Different approaches have been tested for relating crop yields to climate. Pure correlations to climatic factors
might give very different results. Spatially, high temperatures in Sweden correlate with high crop yields, whereas
in Southern Europe high temperatures correlate with low yields. The strongest negative correlation has been
found to high incident solar radiation, indicating a high evaporative demand and water shortage. In case of
climate change we might expect that European climatic conditions are shifted northward, and an interesting
question is how yield correlations to single climate variables holds in future. To overcome this problem more
advanced approaches have started to be developed where simulated crop yields, considering integrated weather
effects, are used to create climatic zones, for instance for Ireland. This approach is based on functional
(ecophysiological) relationships between yield and climate.

It has also recently been developed advanced multivariable statistical methods (in the Netherlands), where so
called “Environmental zones” are estimated using PCA-analysis of a large number of climate and site variables.
As a first step the production levels of natural vegetation has been classified in zones by correlating altitude,
slope, latitude, oceanicity, temperature, precipitation and sunshine. Sweden is basically divided into four classes:
North Atlantic in south Skéne, continental in Oland and Gotland, Nemoral in the rest of Gétaland and Svealand
south of a line from Stromstad at the west coast to Gévle at the east coast, and boreal north of that. The second
step is to relate the “Environmental zones” to crop yields. The advantage of the method is its applicability. The
disadvantage is that it is based on statistically derived equations, instead of functionally derived equations, not
allowing a functionally understandable evaluation of their generality under changing climate.
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Fig. S1. Annual mean air temperature in Sweden 1961-90. Fig. 2.1a. Agricultural production areas of Sweden used
The scale is from -8 to +10 °C. The warmest zone on the presenting regional yield statistics (source SCB).

map is +7 °C in Skane and along the south coast lines. The

+1 °C isoterm pass through Haparanda. (source SNA

(Sveriges Nationalatlas) 1995, SMHI-data

(http://www.smhi.se/))

There are systematic differences in climate between the agricultural production regions (SCB regions; Fig. S2),
mainly as regards the temperature, that decreases from south to north (Fig. S1). For the reference period (1961-
90) the annual mean temperature decreases, from about 8°C in Skane (in the far south), by 1°C within Gétaland,
a further 1°C in Svealand and the Gotaland forest region, a further 2°C in Svealand forest areas, and a further 2°C
in southern Norrland, and finally a further 2-4°C in northern Norrland where the average temperature is below
zero. There is a corresponding decrease in the temperature sum above the base temperature than 5°C from 1800
to 600 d°C (degree days). The suggested limit of crop production (1200 d°C for Finland, see above) is found in
the Svealand forest area, whereas the limit for animal production (600 d°C) is satisfied in all regions. The length
of the vegetation period decreases by about 3 weeks from region Gétaland-Svealand, and another 4-5 weeks to
southern Norrland. The forest areas have about 1.5 week shorter vegetation period than the lowlands. The start of
the vegetation period differ only a little (a few days) in Gétaland, another 1.5-2 weeks later in Svealand, and
another 1.5-4 weeks later in Norrland.

The differences in precipitation between agricultural regions are not as pronounced and systematic as for
temperature. The precipitation during the vegetation period is fairly similar for most regions 400-500 mm. There
is a tendency of less precipitation (50-100 mm less) in the lowland regions 2 and 4 of Gétaland and Svealand,
and northern Norrland. The incident solar radiation sum during April to September is very similar for all regions.
The variation within lowlands of Gétaland and Svealand is only a few percent, and the variation within the
whole Sweden except for mountain areas in the north is less than 10% (lower radiation in the north).

Changes over time (S2)

Climate change of Sweden has recently been evaluated as the difference in average temperature and precipitation
between the period 2005-1991 and 1961-1990. This might be interpreted as the changes that have occurred from
1975 to 1998, a 23-year period. As an average over the whole year the increase is about 1°C. Within the year the
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largest changes have occurred for the winter (1.2-2.2 °C), with the largest increases in the north and especially in
the eastern parts north of 62 °N (approx. the latitude of Hudiksvall). In summer the largest changes are found in
the south and along the east coast (0.8 °C) and smallest in the north (0.4-0.5 °C). In spring the largest increase
(1.0 °C) has occurred in Svealand and north-eastern parts of Gétaland, and otherwise mostly 0.8 °C and no clear
pattern within the country. In autumn the changes are comparatively small (0.2-0.4 °C).

Concerning precipitation the increases, for Sweden as a whole, are largest in summer followed by winter and
spring. In autumn the changes are small. In summer it is mostly the eastern parts of Norrland (north of
Sundsvall) except for the coast line that has experienced an increased precipitation by about 30%. Then there are
inland areas in Gotaland that have got a 20% higher precipitation during the 23-year period. Lowest or no
increase is mainly along the coasts in southern Sweden, and north and eastern Svealand. In winter the regional
differences are larger and there are two clear maxima of increase (about 30%) along the Swedish west coast, and
in the northernmost mountain areas (Lappland), and an area of decrease (-10%) in central Norrland. In spring,
the pattern is similar to the winter but not equally pronounced and the maximum over Lappland has shifted
eastwards. In autumn, there are small changes and/or a slight decrease (-10%) all over Sweden.

S3. Climate impacts on agriculture

Crop productivity (S3)

Over long periods (25-85 years) crop yields of commercial cultivations are found to correlate with air
temperature. For winter wheat the correlation is best to winter temperatures both in Sweden and Denmark. The
correlation to precipitation was less clear, but high yields were related to low precipitation in March in Sweden
(also for spring wheat), and July in Denmark. The correlations support the importance of winter survival for the
regrowth in spring, dry conditions during regrowth in spring, alternatively sowing, and dry conditions during
grain filling. A large problem in those types of correlations are that several other factors than climate influence
the results, however. Regional yield have been found to correlate better with spatial variations in climate than to
soil types and economic measures.

High temperatures during summer might be negative to crop growth as warming accelerates plant development
and reduces grain filling, and might reduce nutrient and water use efficiency. At present conditions in Sweden,
daily mean temperatures above 18 °C have found to be non-beneficial. This might reflect an optimisation of the
whole cropping system for current Swedish climate. In other climates, with other varieties of wheat, daily mean
temperatures of up to 25 °C has been reported not limiting growth, and for daily maximum temperature the limit
has been reported to be 32 °C.

The effects of elevating atmospheric CO, on crop growth have been studied thoroughly during the last decades.
These studies have revealed a large variability in response to CO, indicating the need of a process oriented
research trying to find generalities on a functional basis. The results show that the CO, response is strongly
related to water and nutrient conditions, and the responses have been expressed in terms of effects on functional
parameters like radiation, nutrient and water use efficiencies, rather than effects on yields. The results indicate
higher resource use efficiencies under elevated CO,. Knowledge on a physiological level is high, whereas on a
field (ecological) level the responses still are difficult to predict, possibly because the responses are so dependent
on the availability of other resources, which are difficult to predict.

Climate variability influence crop production. Under CC climatic variability might change. The problem has
been to evaluate the importance of changed variability compared to changes in mean climatic conditions. Studies
of influences of climatic variability are few in comparison with studies of changes in the means. Effects of
drought on crop production are evident and well documented, historically. Basically studies concern the effects
on production, trying to estimate for instance the water use efficiency, rather than to relate the effect to when the
drought occurs in relation to the development stage of the crop. Studies of drought effects on crop production for
Swedish conditions are few. Concerning temperatures, controlled experiments, especially in Denmark, have
exposed the crops to different temperature at different development stages. For winter wheat it has been shown
that extreme high temperatures in the vegetative growth (around double ridge) might have no effect, whereas at
anthesis it might have large detrimental effects on quality, and might cause a yield decrease higher than that
caused by increased average temperatures. The response to different factors at different times reflects a non
linear response of crop to climate, calling for a need to develop methodologies (models) that can evaluate non
linear responses to temperature and droughts. Modelling applications have suggested that increases in variability
of precipitation cause a larger yield variability and crop failures, than increases in temperature variability do.
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Process based models are mostly used for climate applications. A large number of crop models exist and have
different degree of complexity. Separate models, basically temperature driven, are used to estimate development
stages. The growth models are dependent on development stages. Most growth models involve leaf area
development and capturing of sun light, as a base for estimating potential growth. Then light is converted into
biomass accumulation in accordance to radiation use efficiency. Allocation, respiration and litter fall (root
turnover etc) are other important processes often included. The growth models are often linked to water and
nutrient availability models that have a strong base in soil processes, often make the modelling complex, and
input data demanding.

The number of input data needed is often substantial and the applicability to field conditions is difficult. This has
asked for simplifications of the models in terms of reducing the number of needed inputs, which often is
achieved on the expense of model structure representation of processes. Complicated models have not proven to
better predict growth than models with simpler structure, rather the opposite. The validity of the models is of
central importance for the reliance in climate impact scenarios in which they are used. There are several studies
showing model applications not able to predict growth satisfactory. In many of these applications it is difficult to
evaluate if miss predictions depend on the model structure or uncertainties in inputs. Nevertheless, it has been
found more difficult to predict weather-induced variability on sandy soils than less sandy soils. It has also been
suggested that process representations should be improved as regards leaf area development, morphologic
development and sink. Several authors have found that the models reasonably well predict growth. A personal
feeling is that the model predictability seems to at an unspecified degree, being dependent on the user, indicating
the influence of a human factor. The scientific goal would be to minimize this influence, asking for further
development of strict application methods and more applications to large field data sets.

Ozone in the lower troposhere is taken up by plants through stomata. Although dry conditions are expected to
close stomata and to reduce ozone uptake, this is not always the case.

Grasslands (S3)

Effects of elevated CO, on grasslands are strongly related to site N conditions. Substantial amount of research
has been made to clarify these complex relations, where experimental data has been analysed with help of
process based dynamic modelling. The models seem able to fairly well explain the observed principal effects of
elevated CO,. For instance, increased C uptake of the grassland tightens the N cycle, and stimulates N fixation
and the abundance of N fixating species. When considering also effects of increased temperature the models can
give reasonable explanations of the observed outcomes, for instance that decomposition rates increase and
thereby N mineralization, making more N available to growth and the CO, response becomes higher than
without an accompanied temperature increase. However, if higher temperature results in dryer conditions the
opposite response can be the case. This indicates that all major processes determining effects of CO, and climate
on C and N dynamics in the grasslands are identified. The model simulations tell us that the experimental
observations represent only a very small sample of all possible outcomes of a change in elevated CO, and
climate. To apply the models under field conditions the process rates has to be quantified. Those rates are
estimated from the driving variables (for instance water and temperature), and from the characterisation of the
objects, in terms of parameter values of for instance, radiation and water use efficiency, decomposition rates etc.
There is little information available about the variation of these parameters under field conditions.

Crop quality (S3)

Effects of climate on quality of crops have mainly been studied for protein and N concentrations (g N (g d.w.)™)
of the harvested products. Most studies made indicate that increased atmospheric [CO,] ([CO,] = concentration
of CO,) decrease the N concentration of the plant. In a few cases there was no change, and in one case an
increased N concentration was reported. Also at non-limiting N supply there is a reduction in N concentration
(“critical N concentration for non N limited growth”). However, at limiting N supply the N concentrations more
easily drop at elevated CO, and the ratio between actual N concentration and critical N concentration has been
reported to decrease at high shoot biomass. For a doubling of [CO;] (from about 350 to 700 ppm) the reported
reductions, for different N conditions, range 5 to 20 %, including studies of spring wheat and natural grasslands
in Sweden. When the effect of elevated CO, is combined with increased temperatures the N concentration
decrease becomes higher. Reported decreases are 25-33 % for a 3 °C temperature increase. Water supply
(irrigation) has both been found not to influence the N concentration reduction and to make the effect less
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pronounced. The plant N content (g/m?) has been reported to increase under elevated [CO,], however figures
appears to be strongly related to site conditions.

During the last 40 years, air temperature in Sweden has increased by 0.6-0.8 °C. For Europe there are
observations indicating an advanced beginning of the growing season by 9 days during this period (2.8
days/decade). It has been observed that a delayed sowing of Swedish malting barley have a negative effect on its
protein concentration, suggesting that there might be a link between temperature, sowing date and protein worth
to be investigated.

Studies for nutrients other than N, and other quality parameters are less well examined. The few results that exist
should, rather than be regarded as generally valid, be looked upon as a few points of a large surface of response
not well known. Reported single results of elevated [CO,] are: decreased plant concentrations of K and Na,
increase of Ca and unchanged P; decline in cell wall content; increased soluble carbohydrates and total non-
structural carbohydrates before anthesis but a faster decline thereafter. Combined CO, and ozone effects are
reported for 1000-grain weight. Increased ozone concentration decreased it but elevated [CO,] counteracted the
decrease.

Weeds (S3)

The following review of weeds is only fragmental. Climate change will alter the climatic limits that ultimately
constrain the geographical range of a weed species. Weeds have a greater genetic diversity than most crops.
Consequently, if a resource (water, nutrients, carbon dioxide, etc,) changes within the environment, it is more
likely that weeds will show a greater growth and reproductive response and cope better with altered conditions
such as higher temperatures, drought, very wet years, etc. Climate change might also be expected to favour
invasive plants over established native vegetation, especially if accompanied by more variable conditions, as
weeds are more adaptable to variable conditions and changes in selection pressure.

Pests (S3)

The following review of pests is only fragmental. The effect of climate on pest development involves firstly
direct influences on insects and fungis. Second, climate influences crop development which in turn influences
pest development. Finally there is also a more indirect effect of land use that to a certain degree depends on
climate. Concerning the direct effects temperature affects development, survival, range and abundance.
Increasing winter temperatures has been identified as a main factor increasing the abundance of some insects due
to increasing winter survival. However, for more northerly latitudes also growth and reproduction are influenced
by increasing temperature. While temperature seems to have a positive effect on aphid numbers, the correlation
to rainfall has been found to be negative. As concerns the development of fungal diseases, it might become
favoured in areas of Sweden where high temperatures will be combined with high humidity.

Increasing [CO,] reduces crop N, which may retard many pests increased [CO,] while in other cases enhances
pest and decease resistance. Species with a large geographical range will tend to be less affected. Under field
conditions climate, land use and geographical location all play a role in determining patterns of aphids, and using
models it has been found that predictions of aphid distribution is improved by the inclusion of temporal land use
data. Observations have shown that M. persicae annual numbers are positively correlated with area cultivated
with oilseed rape. Statistical model approaches has been defended by difficulties in identification of the
processes involved due to numerous of interactions between different factors.

Soil (S3)

Several soil processes like soil respiration is stimulated by increased temperature. Soil heating experiments has
shown that N mineralisation might be more stimulated by higher temperatures than soil respiration and that the
relation to moisture conditions might be complicated. For instance drought during summer might decrease
mineralisation during summer and increase it during the following autumn and winter. Other experiments
suggest, in line with this, that CO, fluxes are equally or more dependent on the variability of rainfall over time
than the average change in the amounts, and that the two together can enhance the effect. Which qualities of soil
organic matter that reacts most to increased temperatures seems unclear. Also allocation of carbon to mycorrhiza
fungi is reported to increase with increased temperatures.

Increasing [CO,] is expected to increase root litter fall and increase the C/N ratio of the litter fall, suggesting that
there will be a higher availability of dead organic matter to decompose but with reduced decomposability. In line
with this it has been reported an increased soil C storage under elevated CO,. But there are also FACE
experiments suggesting very small effects, reporting increased soil respiration during first two weeks and
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increased mineralisation thereafter. Between-season effect was found for soil C and N contents, but not for CO,
treatment effect. There is a debate of the role of N conditions for the sequestration of C into soil, and that it
might be limited by progressing N limitation.

Environment (S3)

Agriculture emits greenhouse gases (GHG), and its contribution to the total GHG emissions of the European
society is estimated to be significant. The N,O emission is estimated to be the major (about 80%) contributor to
GHG from agriculture, although not high in relation to other flows of nitrogen in the agricultural soils (about
0.5-3% of applied fertilizer N). The other two GHG emissions: CH, and CO, shear the rest of the agricultural
emissions, although the variation in between them might be large. Especially CO, emissions might in some
systems be large.

N,O emission under current CO, levels predominately originates from the microbial processes of the
nitrification, whereas under elevated [CO,] denitrification becomes more important and the N, emissions
increase its importance in comparison to N,O emission. The microbial activity depends on soil water and
temperature conditions, and on available carbon used as energy source. Model calculations for Danish conditions
have been used to evaluate the relative importance of increasing rainfall, temperature and CO, concentrations on
N,O emission. Largest increase was achieved with a 50% increase of CO,, slightly smaller by a 4°C increase of
temperature, whereas the increase was essentially smaller in the case of an increase in rainfall by 20%. The
effect depended on crop rotation and varied by a factor 4-5 in the case of increased rainfall and temperature, but
much less in the case of elevated CO,. In another study winter temperature and summer precipitation could
explain 35% of the variation in N,O emission from cropland, whereas for grassland only the influence of winter
temperature was significant. N,O emission from N fixing cropping systems has been estimated to be of similar
magnitude to that of other crops (0.5-2 kg N ha* y*) and have been found insensitive to elevated [CO,]. The
effect of elevated [CO,] has also been found to depend on crop and fertilisation. In fertilised grass more CO; is
allocated to below ground growth and turnover under elevated [CO,], resulting in more carbon access to the
denitrification process. N,O emissions are also found to vary considerably with soil type, being higher for clay
than sandy soils.

The main N,O emissions are often concentrated to short periods (2-20 days). The variation between years has
been modelled to be small for grasslands but significant for cropland.

Main sources of N,O emissions are fertilisers and manure and urine deposit from grazing animals. The main
source of methane (CH,4) emissions is the rumen of the cattle, and substantial amounts originate also from
manure (cattle, pig and poultry).

The IPCC method to estimate N,O emissions from soils is simply a fraction (1.25%) of the applied N. More
sophisticated methods have been proposed taking into consideration variations in climate, and soil organic and
sand content. Model validity and/or applicability seems still to be a major problem.

Biodiversity (S3)

The following review of biodiversity is only fragmental. The influence of CC on biodiversity is often studied in
terms of the effects of rising CO, levels. Elevated [CO,] is expected to favour C3 plants over C4 plants, and this
is expected to influence also the species distribution of grazers, referring to that such changes have in the past
during glacial periods of decreasing CO, levels, been related to the expansion of C4 grasses. High temperature
favours C4 plants. Therefore, both increasing temperature and [CO,] both C3 and C4 are stimulated and in a
competitive environment there is a need to estimate the relative stimulation. It has been proposed that at present
CO, levels the C4 plants have advantage over C3 plants if the temperature of the warmest summer month is
above 22 °C.

In agriculture it is mainly the composition of grasslands in terms of the abundance of forbs and legumes versus
grasses that are studied. The abundance is often expressed in terms of above ground biomass. The effects of
elevated [CO,] are reported to be strongly influenced by especially the cutting frequency of the grassland. Low
cutting frequency favours those plants that are strong competitors for light, that could be expressed as the
absorption of light per unit leaf area and the rate of leaf area development, and forbs and grasses are favoured
over legumes. The opposite is reported for high cutting frequencies. The competition is also related to the
nutrient availability, and both observations and modelling studies suggest that legumes are favoured by their N
fixation, but also that this improves soil N availability, which also grasses can benefit from.
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In soil, an increased amount of labile organic content under climate change is suggested to increase the
biodiversity.

Animal husbandry (S3)

The following review of animal husbandry is only fragmental. Twenty year old studies suggest that elevated
[CO,] does not have a significant impact on herbivore preferences or fitness. It is also suggested that plant
biomass is not influenced; however, later research has proved that there is an effect but that it might be limited
by for instance nutrient availability. Later studies suggest that elevated CO, levels will likely alter food quality to
grazers both because of increasing C/N ratio and changes from C3 to C4 grasses. Under elevated [CO;] a greater
proportion of dietary N has been found to be partitioned to urine, probably because of the higher proportion of
legume N in the diet, which might result in greater N loss through volatilization, compared to present CO; levels.
Trials to assess climate effects on animal husbandry include considerations of fodder growth and quality, intake
and grazing behaviour, and animal nutrient demand. Using a simulation model based on those processes grazing
system was found to be most sensitive to stocking rate, milk output per cow and nitrogen fertilizer inputs.

Land use (S3)

Land use changes have been evaluated, using dynamic modelling, to be related to the idea that the farmer uses
the land to maximise the economic net income of the farm. Before year 2000, land use models seem to have been
largely single disciplinary, for instance trying to explain land use only from economical factors. Thereafter,
socio-economic and biogeophysical processes have been combined in a number of models. One such model
(ATEAM) is based on the mass balance, that all produced biomass is either used by the market (demand) or put
into a category of oversupply. In case the market demand is higher than the production the oversupply is turned
into an undersupply. The climate influences the production by means of the hectare yields being sensitive to
atmospheric CO, and climate. It is unclear in what way climate influences the demand in the model. The main
model seems to be quasi dynamic in that, for instance, a changed production due to a climate change of
productivity not necessarily influences the prices of the demand submodel. The sub models are to a large extent
dynamic. The model have been tested for Europe for the period 1960-2000, when the productivity increased by
140%, the demand increased by 50%, and the oversupply factor increased from a 10% undersupply to a 20%
oversupply. The model predicted a 19% reduction in agricultural area. The observed value is a 15% reduction.
The concept of the model has been extended to include also other ecosystem services than crop production
produced on agricultural land.

Observed changes of land use that can be related to climate changes are difficult to find. In Denmark the area of
maize production has increased from 0.4% in 1980 to 4.4% in 2003 of total agricultural land. The change might
be related to changing climate, and a more careful analysis show a strong increase after year 2000 when the
accumulated temperature sum of preceding 2 years became higher than about 2500 d°C per vegetation period.
For Scotland it has been proposed (in 1999) that increasing length of vegetation period would result in more
areas cultivated with fodder maize, sugar beat and oil seed rape.

S4. Climate change impact assessments on agriculture

Crop productivity (S4)

The general pattern in predictions of future crop production is that C3 crops will increase their yield levels most
(10-50%) and C4 crops less (0-10%). The increases are basically due to a doubling of the atmospheric CO,
concentration. Increased average temperature climate will have both positive and negative effects. Positive
effects are caused by earlier start of growing in spring, a potential for longer growing seasons and a greater N
availability. For Western Europe some estimates suggest that earlier planting dates (up to 60 days) might
increase yield with 15-22%, and the use of cultivars with longer vegetation duration might bring 1.5% yield
increase per one extra day of vegetation period. A personal reflection: In Sweden the difference in harvest date
between Skane and Malardalen, for the same variety of winter wheat, is estimated to be around 7 days. In reality
different varieties are used and maturity occurs at about the same date.

Also less negative frost and over-wintering effects are expected, although not quantified. Concerning over-
wintering it should be noted that damage might theoretically become more severe, due to increased respiration
losses during warmer winters, still having low CO, assimilation rates because of low solar input. However,
clarifying experiments are lacking.
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Increased temperatures are also expected to have a negative effect on crop production, especially as concerns
shortening the time between sowing and maturity. The effect is quite large but is expected to be overcome by the
positive effect of increased CO,. For Finland this was specifically evaluated for wheat and potato. Also, there is
an unknown potential in having new varieties that mature less rapid. Comparison of regional differences in
Sweden, show a clear pattern of higher yields in more warm regions. In southern Europe the opposite pattern is
found; warm regions are those with the lowest yields. This is because high temperatures also increase
evaporation losses and decreases water availability for plant growth. For Northern Europe the expectations are
that high rain fall rates also under CC will compensate for the increased evaporation losses. However, this seems
to be an average picture, and regionally large differences might occur. A question to be answered; Are there
parts of Sweden that might get a relation to temperature similar to that of Southern Europe? A serious estimation
of available water requires information of local soil properties. For Canada is estimated a +50 mm change in
available water.

At last, periods with extremely high temperatures are expected to have negative effects on crop production, both
as concerns quality and yield. One year of this type has already occurred in 2003, when primary production in
Europe was far below normal. In Sweden the commercial regional winter wheat yield reduction ranged 7-22%
compared to normal (SCB-data). In France the wheat yield reduction was about 22%, whereas for fodder
production the reduction was larger than 50% (J.Olesen, personal communication 2006).

Three climate factors influencing growth are usually discussed: Temperature, rain fall and CO,. The factors act
differently on different crops. C4 plants benefits from high temperature, whereas C3 plants benefit less. The
opposite is true for CO,. All crops suffer from water stress, but seldom is explored differences in sensitivity to
CC between crops as concerns water. The evaluation of the net effect of these factors on crop productivity differs
between studies. For UK for instance the effect is estimated to be positive for wheat, whereas for sunflower there
might be a decrease during the first decades and thereafter an increase. For grasses the C3 species has been
predicted to be favoured over C4 species. Looking to regional difference of current crop production in southern
Sweden, it has been suggested that a 2°C increase in temperature climate might result in an increased crop
production ranging between 3-50% depending on crop type.

The net outcome of the three factors (temperature, rain fall and CO,) most of all depends on the regional climate.
For US (Kansas, Oklahoma bread basket regions) a large decrease (30-40%) is predicted for yields depending on
a decrease in precipitation. A similar but smaller decrease has been predicted for Scotland for wheat and bean,
but an increase for potato. For Scotland fodder maize has already become an important high energy crop and
grain maize is expected to become important. Soybean is expected to become only a protein supplement crop. In
Finland maize and winter crops are believed to increase. For Ireland an increased water deficit is expected in the
eastern parts and that the crop production might shift towards the west, especially for non-irrigated potato.
Nevertheless the increase in crop productivity due to climatic change is expected to be greater in northern parts
of Europe than in southern parts more influenced by water stress. In Canada decreased yield are expected for
especially grains and oilseed, but otherwise positive effects are expected.

In Denmark the maize production area has increased by a rate of about 25000 ha per year since 2000. The start
of increase is related to the accumulated air temperature sum becoming larger than a certain value. Compared to
climate conditions 1961-90, an increase of 1°C is estimated to make maize for grain yield suitable for Southern
parts of Skane and the Swedish west coast. Current climate statistics show that this would today (2006) already
have happened. A 2°C increase is needed for major parts of Gétaland and southern Svealand, and a 3°C would be
needed for Smalandska hoglandet and other parts of Svealand. By 2080 whole Gotaland and Svealand is suitable
for grain maize production. However, the current trend is that earlier maturing varieties might make the
northward propagation faster. The same scenarios do suggest that sunflower and sorghum will not be cultivated
on a commercial level in Sweden by 2080.

Several studies have shown, especially for grasslands, that the expected response to CC can become absent
because of nutrient deficiency. However, the N mineralization from soils has been estimated to increase as well
as nutrient use efficiency, which would moderate this problem.

Irrigation needs are expected to increase for the majority of today irrigated areas. The variation between crops

and region is high. In Ireland neither irrigation nor fertilisation need is expected to increase for spring barley
under CC, whereas for potato a considerable increased irrigation need is expected. In the estimates current

17



relations between fertilisation and yield have been used, although we might expect increased nutrient use
efficiency.

Most climate impact assessments are made using simulation models driven by climate scenarios. Uncertainties in
the impact assessments are related both to impact models and the climate models. The variation in wheat yield
due to variations in GCM model used, given a certain emission scenario (SRES) have been estimated to range
between 8-25%. The effect of if the GCM model assumes an accelerated change in climate instead of a gradual
change is that the pattern of increased yields in Northern Europe and decreasing yields in Southern Europe is
strengthen. Assuming a thermohaline circulation collapse (reduction of the “Gulf Stream”) leads to reductions in
suitability across large parts of Western Europe, as well as in southern Europe. The effects of emission scenarios
(SRES: Al, A2, B1, B2) on global crop productivity is that regionalised world scenarios (A2, B2) give higher
productivity than the globalised world scenarios. Most scenarios give a slight reduction in global productivity (0
to -5%).

Grassland (S4)

Effects of climate change on grassland is similar to that on crop productivity, except that these studies more
focus the interaction with N conditions, and that increased temperature causes earlier maturation is not
mentioned. The grassland productivity benefits from increased growing periods. So, basically there is a positive
effect of CC on grassland yields that, however, is retarded by N availability and water availability that is related
to soil conditions. Consequently effects of specific site conditions are often mentioned in the impact
assessments. Up to 50 % increase in net primary production (+2°C and 2x CO,) has been estimated for
favourable conditions.

Few studies have looked on quality aspects of fodder due to CC. The effect of decreased N concentrations has
been mentioned but regarded to be a minor effect.

Crop quality (S4)

Climate change assessments on crop quality are quite few, and quantitative results are rare also in an
international perspective. For Swedish conditions simulations (only a few) for winter wheat N concentrations
gave at most a 0.3%-units decrease. Threshold temperatures for crop processes have been identified as key
parameters in those assessments.

Weeds (S4)

The following review of weeds is only fragmental. Nearly all weeds in Sweden are C3 plants and CO,
concentrations are currently sub-optimal for photosynthesis in this type of plant. An increase in CO,
concentration would increase net photosynthesis in C3 plants, whereas for C4 plants the effect would be small,
and the competitive advantage of the C3 plants would increase. However, a situation with a warmer climate and
drier conditions during the summer, especially in southern Sweden, might favour the C4 plants due to their
possibility to grow also under water shortage. This might result in an increased frequency of C4 species, such as
cockspur (Echinochloa crus-galli) and common amaranth (Amaranthus retroflexus) and a more permanent
establishment of species that are very sporadic today, e.g. Johnston grass weed (Sorghum halepense). On the
other hand, many C4 plants are short-day plants, which is a disadvantage under the Swedish long-day climate.

Increased temperatures give rise to faster development in plants which in combination with a longer vegetative
period will create favourable conditions for more southerly species to invade and establish as weeds. This
applies to a number of species, like wild oats (Avena ludoviciana) or littleseed canarygrass (Phalaris minor) that
is a ‘super weed’ fairly recently observed in Ireland and orginates from Asia. In general, species with efficient
dispersal mechanisms will be promoted. Frost-intolerant species can also be expected to shift their ranges further
northwards due to milder winters. Increasing temperatures might also allow some native ‘sleeper weeds’ to
become invasive and move into habitats (arable land, etc.) where they have not previously been found in modern
agriculture. Such an invasion is also strongly linked to the design of future cultivation practices and cropping
systems. A more frequent use of row sown crops like maize competes poorly against weeds early in the season.
This would favour weed species with late development and poor competitive ability, e.g. millet species, common
amaranth and black nightshade (Solanum nigrum). The expected increase in autumn-sown crops would favour
winter annual weeds such as black-grass (Alopecurus myosuroides) and loose silky-bent (Apera spica-venti), and
promoting the establishment of some new species such as Avena ludoviciana.
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Pests (S4)

The following review of pests is only fragmental. Assessments of the role of pests in crop production under
climate change has to predict both pest and crop development as function of climate change, as well as the
interaction between them. Already in 1995 it was stated that there are methods available for modelling impact of
changed pest pressure due to global climate change. But even recently it was argued that interactions are so
complex that realistic predictions are very difficult, for instance genetic changes in the pest populations due to
CC, and statistical approaches has been used. Long term records of climate impact on pest population changes
are central to develop and test methods for predictions. However, those types of data are rare. A model based on
such data has predicted that a fungus on grasses could extend its range. Another model also based on long term
data suggested a slight increased ant colony growth by 2050 and by 20% in 2100, in Japan. Generally, different
studies suggest an increase in pests, however, cereal aphids in southern Britain were predicted to decrease,
mainly in response to increased temperature and changed precipitation, between -5 to -90% depend on degree of
climate change. Qualitative predictions are often based on speculations of consequences of important
mechanisms rather than assessments, like that short periods of hot temperatures may lead to the creation of novel
vector species. In line with that higher winter temperatures increase winter survival pests are expected to shift
northward in Finland

As a consequence of the changed pest development there is expected a change in the need of control measures.
For wine Italy the control of downy mildew epidemics might require two more fungicide sprays. In USA the
costs for pesticides are expected to increase in case of increased precipitation for corn, cotton, potatoes, wheat
and soybeans, and also due to increased temperature except for wheat.

For Sweden insect and virus attacks on crops can probably be expected to generally increase under a warmer
climate during the winter that will insects more numerous in the spring. Fungal diseases are favoured by both
temperature and moisture. The moisture situation will be altered more irregularly in different parts of Sweden
than the temperature. This means that we can expect large differences between regions. In line with these
speculations, countries with a warmer climate than Sweden currently use considerably more herbicides than
Sweden.

Soil (S4)

The effects of CC on soil dynamics have been investigated for more than a decade and there are several studies
to review. The literature list in this review contains only occasionally found references when searching for other
information. The topics concern the influence of CC on carbon sequestration to soil, often based on modelling
studies, and assessments of the net effect of changed decomposition and changed litter fall under CC. Several
studies suggest that the increased C input by litter fall will be larger than the increased losses by decomposition.
Also regional soil C budgets have been assessed. Soil water assessments have suggested that the increased
transpiration demand by rising temperatures is offset by a larger decrease due to rising CO,

Environment (S4)

Runoff and drainage is estimated to change under CC, basically because of increasing precipitation but also due
to limitations of transpiration due to increased stomatal resistance at higher CO, levels. In Sweden the pattern is
complicated due to freezing temperatures, and changes in snow cover. Warmer climate and decreasing snow
cover is expected to increase freezing and thawing cycles especially in the sandy soils with less water content.
More frozen soils can result in increased surface runoff and less drainage. At larger temperature increases this
phenomena would become rarer. Drainage of clay soils has been estimated to increase by up to 15-80% under
moderate climate change (+1.7 °C, + 7-20% precipitation, 515 ppm).

Increased drainage is estimated to result in increased leaching of nitrate-N out of the soil profile. In addition
mineralisation is also expected to increase resulting in higher soil nitrate-N. The increase of N leaching of
different sites in southern Sweden has been estimated to range (+ 10-70%) similar to that of the drainage. The
variability between 15 crops is estimated to range between 10-25 kg N ha™ y™* for pastures and leys to 85-95 kg
N ha™y™* for oat and potato, which is a variation as large as the variation related to uncertainties in precipitation
predictions.

N,O emissions are expected to increase under CC. For Scottish conditions a relative increase of 14% has been

estimated if fertilisation levels remain the same. For Ireland larger increases (+50%) have been suggested, and
that those increases are far larger than can be regulated by management.
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Biodiversity (S4)

The following review of biodiversity is only fragmental. According to all cited references biodiversity seems to
decrease under CC. Few studies refer to agricultural production. Some studies speculate in an increased demand
for intensive agriculture under CC and that this would decrease the number of species. Studies of heathland in
Denmark and the Netherlands suggest that nutrient availability will increase under CC leading to increases in
grasses and a loss of biodiversity. Increased drought might though reduce grass invasion but also influence the
heather vegetation negatively. Increased drought in southern Europe is expected to decrease biodiversity,
possibly because of decreased soil carbon content. In model assessments of 15 different types of habitats,
agricultural habitats were not among the three most sensitive (basically northern habitats) to loss of biodiversity.
In another model assessment (using neural network) of 10 habitats (45 species) the most cloudberry (decreasing)
and hairy green-weed (increasing) were most sensitive. There was a general shift in suitable climate from south-
west towards north-east.

Animal husbandry (S4)

The following review of animal husbandry is only fragmental. Assessments of climate change effects on animal
husbandry usually consider grassland production, livestock feeding, thermal balance of animals and buildings.
Some predictions suggest that there is likely to be small increases in grass production in Britain. Others suggest
considerable increases for Sweden. In Finland the length of the fresh fodder season is expected to increase.
Integrated model assessments suggest that animal husbandry with sheep, beef calves and dairy cows in England
should be able to adapt to the expected CC. For both pigs and chicken the frequency of severe heat stress is
expected to increase substantially under CC, with a consequent risk of mortality and making it necessary to
reduce the stocking densities considerably, or to invest in improved ventilation or cooling equipment. There will
be an increased possibility of animal diseases.

Land use (S4)

Under climate change it has been suggested that the cereal crops have the potential to move northward in Finland
by a rate of almost 150 km per one °C increase in annual mean temperature. In Sweden, the air temperatures
have increased in the range of 1°C during the last 25 years, suggesting that we might expect an observable
northward movement of crops in regional statistics, in case climate has dominated the changes. In line with this
it has been stated that the current trend of agricultural production in Europe shifting towards west and North, will
be accentuated under CC. For current Swedish conditions it has been estimated that the regional production is
potentially equally much influenced by changes of choice of crop due to CC as increased productivity under CC.

For Europe model calculations at IIASA have predicted an increase of agricultural land area by 2080 by 16%.
The increase is much larger (40%) for North America and Russia (64%) resulting in large potential increase of
cereal production. At the same time developing countries is expected to decrease their potential cereal
production. Other model predictions, though, result in opposite results for Europe. The estimates suggest that the
production increases more than the demand and the agricultural area used for food production decreases by about
5-50% depending on model application. The reductions are estimated to be smaller in the North of Europe, and
larger in the south with even as high reductions as 100%. Area used for bioenergy crops on agricultural land is
estimated to increase by about 5% by 2080 for Europe as a whole, and by up to 15% for Northern Europe.

The large reduction (50%) of agricultural land area for crop production in Europe was predicted with the
ATEAM model in which the assumptions about increased productivity due to technological development was
the outstanding most important factor in the high emission scenarios. The technological development was
assumed to go on in the same rate (kg per ha and year) as since 1960. This gave the highest relative increase for
rye and triticale (2.5%/year) and lowest for oats (0.9%/year). According to this assumption (model) the relative
increases decrease over time towards a similar value for different regions. In the low emission scenarios the
climate change factors were about equally important as the technology factor.

The surplus area is suggested to be partly used for bio-energy crops, but will also lead to severe planning
problems. The surplus area for such purposes is assumed to be even larger for former USSR, East Asia and
South America. A more specific analysis of southern Sweden, using the ATEAM model suggests that the
ultimate limit of how large area that can be used for agricultural production depends on soil properties, like
acidity. The same analysis tested the effect of different climate change scenarios of the socio-economic scenario
A1l on the land area used for a winter crop (winter wheat) and a spring crop (oat), for regions from Skane in
south to Vastergdtaland in the north. At current conditions the proportion of winter wheat decreases from 43% in
the south to 29% in the north, and for oat the area increases from 5% to 35% of total cropped agricultural land.
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The predictions for 2080 gave a slightly larger decrease for the winter wheat area from 43 to 19-26%, and a
similar increase of the oat area from 2 to 28-32%, from south to north. Three GCMs gave very similar results
whereas a forth differed as concerns winter wheat area in Skane (south) which became high (64%) in comparison
to the prediction of the other three. In conclusion, almost no changes of relative area of the crops were achieved
for year 2080.

S5. Adaptation and mitigation of agriculture to climate change

Crop production (S5)

Farmer’s adaptive behaviour is expected to be governed by ambitions to minimise risks and to maximise profits.
It is suggested that policy should support flexibility of for instance land use to encourage the farmer applying
adaptation measures. Also there is a need of flexibility among farms. For instance, it has been estimated that the
tax on crop production to reduce N leaching, should be different for a pig production than arable production
systems. Tax on fertilisers favours pig production and tax on farm N surplus favours arable production.

Adaptation measures of crop production to CC except for using alternative management also include changes in
the genetic material. It has been estimated that the current maize varieties in USA would get a decreased yield
due to earlier maturity under a warmer climate. Introduction of later varieties would reverse this response to an
increased yield. In case of warmer and drier climate in the future it is suggested that the wheat crop should be
more efficient in exploring the soil water and that the crop has a slower leaf area development to reduce the
transpiration losses. Methodologies for doing these evaluations are quantitative estimates with numerical models
of the effects of differences in plant properties, on for instance plant water dynamics. In other cases qualitatively
judgements are made from principal effects on different processes. For instance it is suggested that in the case of
a thermohaline circulation collapse, resulting in a colder climate in Europe, a wheat crop not only has to be frost
tolerant during winter, but also as it develops during summer.

Other measures to adapt crop production include timing and changes of cultivation practices, maintenance of soil
properties and modified pest, as proposed for Finland. For African conditions windbreaks are used to reduce
negative effects of drought.

Soil (S5)

The adaptation measures concerning soil mainly concerns carbon sequestration into the soil. About half of the C
assimilated by plant is estimated to potentially be transferred into the soil. Already in the beginning of the 1990s
global estimates were done for the potential of use land use and practices to enhance it. Suggested methods were
agroforestry, fuel wood and fibre plantations, intercropping systems etc. In comparison with total CO, emissions
the potential was regarded low. Globally, only one tenth of the emission from fossil fuel and industrial
combustion could be stored and only one third of the emissions caused by deforestation and land use changes.
For Europe the potential was about twice as high. Later estimates has suggested that in Europe cropland is the
largest biospheric source for atmospheric carbon (about 80 MtC y™), but that the biological potential for carbon
storage is about 25% higher. However, the actual storage in cropland is much lower, in Switzerland the stocks
has been reduced by 16%, and instead it is forested areas that account for the increased C storage of European
soils.

Conversion of arable land into grassland is an efficient way to increase soil C sequestration (about 1.5 tonnes C
ha™ y') whereas several management operations have essentially less potential (10-20%), however, manure
application is of the similar range. In a long term study for the past century the residual C added to the soil was
estimated to have been most important. Gross C sequestration might is suggested to be four times higher under
cool and humid climate compared to dry and warm climate and the soil C depletion has been suggested to be
larger for tropical soils than for temperate soils.

Environment (S5)

The contribution from agriculture to total CO, emissions of the society is small (1%), and the ability of
agricultural practices to reduce the emissions have been estimated to be only 10% of the 2010 commitment of
the Kyoto-protocol, as concerns Belgium. The most efficient measure is the choice of crop or cropping system
on the agricultural soil. Introduction of short rotation energy crops were most efficient, followed by manure
application on grassland, new forest plantation, no till, and last organic farming, among the investigated types.
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The fact that the alternative use of agricultural soil is the most efficient measure to regulate the CO,-emissions
argues for an intensified production of food and fodder crops, so that more land can be available for alternative
use. Suggested intensification measures are conservation tillage and residue mulching, integrated nutrient
management, crop rotations with cover crops, water use efficiency measures, and plant nutrient and energy use.
Globally still there is a contribution of CO, to the atmosphere due to deforestation, mainly in the tropics. The last
300 years the contribution has been in total 170 Gt carbon, and still there is a contribution by 1.2 Gt carbon per
year.

Carbon sequestration is argued to mainly be a short term (2020-30) measure to mitigate rising atmospheric CO,
levels, whereas in long term (2100) it probably only has a minor role.

N surplus of a farm is suggested to be the best measure of N,O emissions on a farm level, and reduction of the
surplus is an efficient adaptation measure. Reduced fertilisation would then reduce the N,O emissions, although
exceptions with no beneficial effects are found. Optimised lifetime of dairy cows and frequent removal of
manure are adaptation measures with significant effects whereas several other measures have almost no effect.
Combining reduction of emission targets and economy it has been estimated with models that the most cost
effective methods are to eliminate intensive beef production, reduce stored manure and increase frequency of
manure spreading, substitute concentrate feed for grass and conserved grass in milk production, and to apply less
mineral N to grassland.

For reducing methane emissions the most efficient adaptation measures have been found to optimise the reuse of
methane gas for energy use, and to change the animal’s diet towards greater efficiency. For Denmark it is
expected that there will be only a minor reduction in methane emissions from agriculture in future.

The reduction of ammonium emissions is expected to have a very small contribution to the total GHG emissions
from agriculture in Denmark. The shortening of exposure time of spread manure is estimated to be the most
efficient method to reduce ammonium losses. The total reduction of GHG emissions from Danish agriculture is
estimated to be 12% by year 2030. Stopping the increasing trend in pig production would add another 5%, which
also a 25% reduction in run off would do.

N leaching might be reduced by applying cover crop and spring ploughing, late termination of leys and fallow,
and spring application of manure. For southern Sweden the estimated potential of management is a 20%
reduction which is less than half of the suggested increase in N leaching due to CC. For French conditions it has
been suggested a 40% decrease in fertilisation, and introduction of catch crops, to balance the estimated
increased N leaching under CC.

On a global scale land use in terms of agricultural land or natural vegetation is estimated to be a very important
measure for regulating the effect of agriculture on CO, air concentrations. Under high CO, emission scenarios
the natural vegetation is the largest terrestrial sink of carbon. If agricultural land also in future expands on the
expense of natural vegetation, the high CO, scenarios would be regarded as an underestimation of the high
emission alternatives.

Biodiversity (S5)

Number of species is reported to be largely dependent on land use and management practices. Pastures and
planted fallows are believed to result in higher diversity than cropping. Conservation tillage, mulching,
integrated management systems, and mixed farming systems are supposed to promote biodiversity. As the effect
of CC on biodiversity is not well expressed this might indicate a high potential of regulating biodiversity within
agriculture with the choice of management practices and cropping systems. In a study in South Africa communal
maize had double the number of species (7 species/m?) compared to conventional maize which had similar
numbers of species as ryegrass and pasture. The study also showed that protecting the grassland from grazing
increased biodiversity; the number of species doubled during 50 years.

In the landscape agriculture and intensive land use are related to loss of habitats for endangered species.
Nevertheless, protected areas in Canada were in 2004 found not to correlate with endangered species.

Policy (S5)

Concerning the need of adaptive measures to CC within agriculture there are different opinions found in the
scientific related literature. In Scotland CAP (the Common Agricultural Policy) is believed to influence the
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farmer’s actions more than CC that is believed to become a driver of little importance to Scottish agriculture. In
line with this, by 2005 there have not been identified almost any ongoing or planned adaptations to CC within
the agricultural sector in Sweden. The importance of socio-economic and environmental issues is often
addressed as more important than CC issues. It is though unclear how CC is defined in this context, and how an
action, that might be classified as an adaptation measure, is made because of CC or/and some other driving force
of change.

Others have investigated how Europe could adapt to potential rapid CC. As alternative rapid climate changes are
evaluated to still be possible, and climate might become both warmer and colder, it is difficult to see how
organisations could adapt. And when you do not know what to do, you do what? Our simple logic would suggest
the adaptation measures to focus the source creating the uncertainty.

Economical interests have proposed that more efforts should be put on decreasing the scientific uncertainties
concerning the future projections, and that this could be done on the economical expense of trying to estimate
the storage carbon by biological sinks. Sometimes it is difficult to evaluate to what extent this type of
argumentation is a result of scientific knowledge or a demand of resources to certain research topics.

In several reports it is not evaluated how large CC is in comparison to other driving forces of change in
agriculture. In Finland for instance it is listed a number of possible important policy measures to encourage
adaptation: flexible use and allocation of land; relocation of zones having comparative advantages;
compensation of loss of agricultural advantages; farm diversification grants; adjusting guidelines for water
protection and N leaching; aid for the adaptation of new technology; plant breeding programmes and research on
adaptation; developing new farming systems; developing new foods.

S6. Climate change impacts in relation to natural resources and globalisation

Natural resources (S6)

A current issue in European and Swedish agriculture is to investigate and evaluate the capacity of agriculture to
produce biomass for energy use. Also globally this is a coming question reflected by estimated increased
demand of biofuels by a factor of 5-11 by 2050, compared to a factor of about 1.5 for crops. An issue is to what
extent agriculture can become self supported. For Ireland it has been estimated that 10% of the agricultural land
is needed to support agricultural energy input needs. It is evaluated that already today it might be feasible to use
this amount of land without disturbing the food production. Another way of closing the energy budget is to
reduce the energy needs. Engine fuel is the largest direct energy input to agriculture. Mineral fertiliser is the
largest indirect energy input. It has been estimated that a 20% reduction of mineral N fertilisation would be
possible to compensate by higher precision in N management and application of slurry N.

For Ireland to produce bio-energy so as to cover the demand of the whole society, all present agricultural land
would be cultivated with energy crops.

Effects of other drivers in relation to CC (S6)

Several studies has proposed that effects of climate change on cropping are of minor importance compared to
possible changes in socio-economic conditions. For Europe as a whole and central Europe it has been suggested
to be negligible, whereas for today marginal regions the effect might be significant. An important reason for this
conclusion is that the dominating factor for changes is expected high yield increases due to technological
development.

Land use (S6)

Sweden has a productive are of about 3.65 ha/person of which agriculture is 0.41 ha/person. This has been
suggested to be enough to feed the population. In the future estimates have suggested that the need of area for
food and fodder production will decrease in future, basically due to increased yields due to the technology
development. However, this conclusion depends also on model assumptions concerning criteria for using the
land for the food and fodder production. A model based on profitability suggest that only in the Al scenario
there will be a decrease, whereas in a model assuming that the overall demand for food and fodder would be
determining, the total area would decrease. In another assessment with another model it suggested that the total
area needed for food production globally will increase by 10-20% during the coming 50 years.
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Land use in Sweden was by 2000 regarded not to try to set aside any land to reduce nutrient leakage. It was
neither trying to get a net store of carbon in the forests, as a large part was harvested and exported from Sweden.
In most European scenarios forested area is increased and there is some increase in the area for bioenergy crops.
For Sweden the effect of increased price for oil to 100 dollars per “fat” would be that 34% of the agricultural
land would be profitable for bioenergy crops.

Market (S6)

The global population is estimated to increase by about 50% and peak sometime during the current century. For
certain regions the increase can become very high. Globally is expected an increased intensification of
agriculture and for Europe is estimated a decrease in agricultural land. Some studies suggest reduced prices
under climate change and others the opposite.

Vulnerability (S6)

Vulnerability of food security is assessed in different ways. First socio-economic factors are assessed, like
demographic and economic development. This gives implications on which climatic scenarios to apply, and third
what are the effects of climate change on factors of importance for the food security. These factors may be
flooding, land use, water availability, fishing and pollution. In other cases the effects on wealth, connectivity
(connections of the system) and diversity (financial risks) are assessed.

In other studies vulnerability is assessed by qualitatively evaluation of the comparison between potential effects
of environmental changes and the adaptation capacity. The potential impact is assessed for ecosystem services
represented by five indicators: food production, fibre production, energy production, farmer livelihood, and
outdoor recreation. ES of these indicators are estimated as function of land use, which is divided into nine
categories. The adaptation capacity was assumed to be driven by twelve indicators.

In other studies economic and ecosystem models are coupled and adaptation is represented as an endogenous
process in terms of economic response to climate change. Vulnerability has been assessed to be higher for areas
with the poorer resource endowments.

In a review it has been suggested that for Europe as a whole the vulnerability due to climate change impacts on
agriculture is small, because the agricultural sector is only a small part of the society sector. However, for
southern Europe it might be high, whereas agriculture in Western Europe is well prepared to cope with the
changes. Pest, diseases and weeds are generally assumed to increase in abundance and the use of pesticides and
fungicides may increase. Particular vulnerable regions are those where there is a reliance on traditional farming
systems.

Assessments have suggested that vulnerability of agriculture and species are inversely related. Adaptation for

reduced vulnerability of biodiversity, by for instance agricultural land abundant, increases the vulnerability of
farmers. It is suggested that vulnerability assessments link these to two systems.
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1. Climate change scenarios

The climate scenarios are the reason and driving forces for climate impact studies on agriculture. Details in
climate scenarios are uncertain. This uncertainty causes uncertainties in impact assessments, and it is therefore of
interest to know spatial and time resolution in predicted climate variables. This section aims at describing briefly
methods and assumptions for making climate scenarios, which scenarios that are available on different
geographic and time scales, which variables that are predicted on different scales, what the uncertainties in the
predictions are, and which are the consequences for making impact assessments on agriculture.

1. Driving forces of agriculture

Which climatic factors are important?

-To asses the effect of global change it is important that future models describe shifts in average dates of first
and last freezes, the frequency of heavy rain events and intensity of severe storms (in the USA), (Changnon and
Kunkel, 1992).

-Long-term measurements of soil and meteorological parameters are necessary to test models for prediction of
impacts of global change. A station for such measurements exists at Uppsala (Marsta), Sweden (Halldin et al.,
1999). Results from the first 5 years of operation have given valuable information about the microclimate of
agricultural fields.

Which important agricultural relevant climate parameters are used in Canada?

-Impacts of potential climate change on three agroclimatic indices (crop heat units (CHU), effective growing
degree-days (EGDD) and water deficit (DEFICIT)) in the Atlantic Canada are discussed in (Bootsma et al.,
2005). The crop heat units is defined as: CHU = (Ymax + Ymin)/2, with Ymax = 3.33(Tmax-10.0) —
0.084(Tmax-10.0)? (if Tmax <10, Ymax=0.0), and Ymin = 1.8(Tmin-4.44) if Tmin <4.44, Ymin=0.0, where
Ymax and Ymin are the contributions to CHU from average daily maximum (Tmax) and minimum (Tmin) air
temperature, respectively. Water deficit (DEFICIT) is defined as the difference between potential
evapotranspiration and precipitation, accumulated over a specified time.

1. Methods
Which climate change models (GCMs, RCMs, EMICs and DGVMs) exist?
-See Appendix 1.

How can projections of a GCM model be related to that of a simple global model?

-Ruosteenoja et al. (2007) present seasonal GCM-based (Global Circulation Model) temperature and
precipitation projections for the end of the 21st century for five European regions (one of which encompassing
the Nordic region), and also compare these projections with corresponding estimates given by nine different
RCMs (Regional Climate Model) within the EU project PRUDENCE (Prediction of Regional scenarios and
Uncertainties for Defining European Climate change risks and Effects; a review of this project is given by
Christensen et al., 2007). Mostly, only results corresponding to the SRES A2 and B2 scenarios were available.
To formulate projections also for the A1Fl and B1 scenarios, a so-called ‘super-ensemble pattern-scaling
technique’ was developed, that uses linear regression for the relationship between the local GCM-simulated
response, and the global mean temperature change simulated by a simple climate model. (Among the GCMs
included in the analysis were ECHAM4, HadCM3 and GFDL R30, and among the RCMs the Danish HIRHAM,
the Swedish RCAO and the Hadley Centre HadRM3P. For estimates of temperature change from this study see
“1. Scenarios” in this report.)

Who is making climate change assessments for Sweden?
-Intergovernmental Panel on Climate Change (IPCC, 2002, 2007), Climatic Impact Research Centre (CIRC,
Umea universitet; http://www.emg.umu.se/circ/), Rosshy Centre (SMHI, 2007).

Does regional climate modelling improve climate simulations?

-The latest progress in regional climate modelling studies is reviewed, including RCM (Regional Climate
Model) development and applications of RCMs to dynamical downscaling for climate change assessment and
seasonal climate predictions, in a paper by Wang et al. (2004). It is stated, that regional climate modelling has
proven to be able to improve climate simulation at the regional scales, and especially in regions where forcing
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due to complex orographic effects, land-sea contrast, and land use patterns regulate the regional distribution of
climate variables and the variations. (The paper includes several references to RCMs.)

In which ways can high-resolution climate change scenarios be obtained?

-Jones et al. (2004a) describe the regional modelling system “PRECIS” in a “handbook”. PRECIS is a personal
computer (PC)-based modelling system to provide regional climate information for impact studies, which can be
run over any area of the globe. It is based on the third-generation Hadley Centre regional climate model
(HadRM3P), with implicit maximum resolution of 25 km. Techniques for obtaining regional, fine scale climate
change information from GCM outputs such as statistical and dynamical downscaling, are discussed.

What is the effect of assumed increased variability to the predictions of heat waves?

-Schar et al. (2004) found that an event like that of summer 2003 is statistically extremely unlikely. They
propose that a regime with an increased variability of temperatures (in addition to increases in mean
temperature) may be able to account for summer 2003. To test this proposal, possible future European climate
was simulated with a regional climate model in a scenario with increased atmospheric greenhouse- gas
concentrations, with the result that temperature variability might increase by up to 100%, with maximum
changes in central and Eastern Europe.

1. Scenarios, global

Which greenhouse gas emission scenarios are formulated by IPCC in SRES?

-The emission scenarios given by IPCC (2000b), which are commonly used in many climate models as
(external) forcing factor, are fully described by Nakicenovic et al. (2000): the ‘Special Report on Emission
Scenarios’ (SRES). These scenarios comprise 4 scenario “families” (Al, A2, B1, B2) with the Al family
containing three different groups (A1FI, A1T, A1B). The Al family assumes a future world of rapid economic
growth, a global population that reaches its maximum in the mid-century, and a rapid introduction of more
efficient technologies. The A2 family assumes a heterogeneous world, where economic growth and
technological achievements are slower than for the other scenarios. The B1 family assumes a world with the
same population development as for Al, but with a rapid change in economic structures, and with the
introduction of clean and resource efficient technologies, while the B2 scenario family describes a world with an
intermediate rate of economic growth, and a less rapid technological change than in Al and B1, oriented towards
environmental protection and social equity on the local and regional levels. In fact, for each scenario family
several different scenarios are developed so as to encompass the current range of uncertainties of future
greenhouse gas (GHG) emissions, resulting in a total of 40 scenarios (for instance A1FI refers to fossil-fuel
intensive use, A1T predominantly non-fossil fuel, and A1B ‘balanced’ use). Normally, however, only four
illustrative “marker scenarios” are used as “driving scenarios” in e.g. climate model studies.

Which socio-economic and emission scenarios were formulated by IPCC 1992?

-Six alternative scenarios — 1S92a to f — were published in the 1992 Supplementary Report to the IPCC second
Assessment (Leggett, Pepper et al., 1992). These scenarios, like the above-mentioned SRES scenarios,
encompass a wide spectrum of assumptions on how future greenhouse gas emissions might evolve. Especially
1S92a has been widely used previously as the emission scenario in many impact assessments or future climate
change simulations. In brief, 1S92a (sometimes referred to as a “business-as-usual”- scenario) assumes a 1 % per
year increase in CO,-equivalents (from 1990 onwards), implying a more rapid rise in atmospheric GHG
concentrations than for example the A2 or B2-scenarios

What climate change projections are given for central agricultural regions?

-In a study of the impact of global warming on soil moisture, based on predictions of 15 global climate models,
Wang (2005) compared the after-stabilization climate in response to the emission scenario SRES A1B with the
pre-industrial climate. The models were consistent in predicting summer dryness and winter wetness in only part
of the northern middle and high latitudes. The models were especially consistent in predicting drier soils over
south-western North America, Central America, the Mediterranean, Australia, and South Africa during all
seasons. Over some of these regions, the dryness will be due to both a decrease in precipitation and an increase
in evaporation, while in others, however, precipitation is predicted to increase slightly and the drought will
primarily be due to enhanced evaporation. The author suggests that the anticipated future warming will cause a
worldwide agricultural drought, because the only major areas of future wetness predicted with a high level of
model consistency are parts of the northern, middle and high latitudes, and then for the non-growing season.
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What climate changes are expected in Europe?

-In a survey by Maracchi et al. (2005) a set of future climate scenarios for Europe (mainly derived from
modelling by GCMs; see Hulme and Carter, 2000) are quoted: Annual temperatures over Europe warm at a rate
of between 0.1 and 0.4 K per decade. This warming is greatest over southern Europe and northeast Europe
(Finland, western Russia), and least along the Atlantic coastline. Seasonal patterns indicate that in winter, the
continental interior of Eastern Europe and western Russia warm more rapidly than elsewhere.

-The general pattern of future change in precipitation is for widespread increases in northern Europe (between +1
and +2% per decade) and rather smaller decreases across southern Europe (maximum: -1% per decade), but it
appears to be a marked contrast in the patterns between winter and summer: Most of Europe gets wetter in the
winter season (by +1 to +4% per decade), whereas in summer, there is a strong gradient between northern
Europe (with an increase of up to +2% per decade) and southern Europe (with drying of up to —5% per decade).
-Contrasting climate change scenarios were studied for different sectors in society, including a rapid or abrupt
climate change in Europe (Report from Tyndall Centre for Climate Change Research; Arnell et al., 2005).
Whereas many studies concern a future gradual climate change, there have been no published quantitative
studies of the effect of an accelerated climate change or thermohaline circulation collapse in the North Atlantic
on agricultural productivity. An initial assessment of the implications of three different types of abrupt climatic
change (i) a thermohaline collapse, (ii) an accelerated climatic change, due to a positive feedback by the
additional release of greenhouse gases from thawing permafrost areas and the oceans, and (iii) a rapid rise in sea
level resulting from disintegration of the West Antarctic ice sheet) was therefore made (for impact results of this
study see “4. Crop productivity” in this report).

What will happen to climate variability? Will heat waves become more frequent in the future?

-Meehl and Tebaldi (2004) reports that present-day heat waves over Europe and North America coincide with a
specific atmospheric circulation pattern that is intensified by ongoing increases in greenhouse gases, indicating
that it will produce more severe heat waves in those regions in the future. Global coupled climate model shows
that there is a distinct geographic pattern of future changes in heat waves. Model results associated with the
severe heat waves in Chicago in 1995 and Paris in 2003, show that future heat waves in these areas will become
more intense, more frequent, and longer lasting in the second half of the 21st century.

- Vidale et al. 2006 (see also Schar et al. (2004) and the PRUDENCE project) studied European summer climate
variability in the time period 2071-2100 compared with the control period 1961-1990 as simulated by a number
of different GCMs and RCMs in a multi-model ensemble experiment. The experiment analyses results from the
PRUDENCE project and includes simulation results from 3 GCMs and 9 RCMs — mostly using Hadley Centre
data and the SRES A2 scenario — over a large-scale Central European area also including most of Scandinavia.
For the summer, there was a rather dramatic shift to warmer and drier conditions, especially in the southern parts
of Europe. In winter, there was an increase in precipitation in Central Europe, and a pronounced warming in the
continental north-eastern parts of the continent. There was also indication of an increase in the variability in
summer mean temperatures (between 20 and 80 % increase of the standard deviation) for Central Europe. While
all models agreed in such an increase in variability, there was a disagreement regarding the amplitude and the
geographical distribution. One of the key results was that the soil moisture reservoirs by 2071-2100 are accessed
earlier during the spring, resulting in peak summer water deficit.

-Barnett et al. (2006) used a large ensemble of GCM simulations to study, primarily, the uncertainty (see also
under ‘Uncertainties’) in the occurrence of extreme temperature and precipitation events in response to a
doubling of atmospheric carbon dioxide concentration [CO,]. Changes in extremes are quantified by calculating
the frequency of exceeding of a fixed threshold. Large increases in the frequency of extremely warm days are
simulated in the 2 x [CO,] case. For example, the global ensemble-mean of the relative frequency of extremely
warm days (when the extreme threshold was defined as the 99™ percentile of the “present” (1x [CO,])
distribution) was found to be 20 in January and 28 in July (i.e. extreme events would become 20 and 28 times
more frequent, respectively). In July, the largest increases were found over the western parts of US, much of
southern Europe, northern Africa and in some other regions. They also found that simulated increases in the
frequency of extremely warm or wet seasons under 2 x [CO,] are almost everywhere greater than the
corresponding increase in daily extremes.

-Ruosteenoja et al. (2007) present seasonal GCM-based temperature and precipitation projections for the end of
the 21st century for five European regions, one of which encompassing the Nordic region, and also compare
these projections with corresponding estimates given by nine different RCMs within the EU project
PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining European Climate change risks
and Effects). 95 % probability intervals were calculated for regional temperature and precipitation change to
2070-2099 from 1961-1990 for four forcing scenarios: A1lFI, A2, B2 and B1. For the high-end of the AlFI
uncertainty interval, temperature increases up to more than 6 °C in summer and close to 10 °C in winter are
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projected for the northern European region, whereas at the low-end of the B1 interval, the corresponding values
are ~1 °C in summer and ~ 2.5 °C in winter. For the southern European summer, the high-end value of A1FI is
close to 10 °C, and the low-end B1 value close to 1.5 °C. The uncertainty intervals of precipitation change were
quite broad, but the mean projection show a marked increase during winter in the north, and a drastic decrease
during summer in the south.

What changes in frost, snow and ice conditions for Europe might be expected?

- Jylh& et al. (2007) analysed changes in frost and snow in Europe by the period 2071-2100 from simulation
experiments performed with seven regional climate models (RCMs) within the PRUDENCE project, but mostly
run with the same driving GCM (HadAM3H) and emission scenario SRES A2. There was a distinct tendency
towards fewer frost days and shorter frost seasons throughout Europe. The proportion of those frost days for
which the diurnal temperature range crosses the freezing point will increase. The number of days with snow
covers, and the average equivalent water content of the snow pack, will be notably smaller by the end of the
century, the largest absolute changes occurring around the northern Baltic Sea. For the Baltic Sea-ice, a drastic
decrease in annual maximum ice extent was projected. These results were consistent across all model
simulations considered.

What might happen to the Atlantic meridional overturning circulation (MOC, Gulf Stream)?

-The Atlantic meridional overturning circulation (AMOC or MOC) is often also mentioned as the “Thermohaline
circulation” (THC) or the “Conveyor belt”. Rahmstorf (2000) gave a brief elucidative description of this
circulation system, and its potential sensitivity to external disturbances in connection with anthropogenic climate
change, in the review article: “The Thermohaline Ocean Circulation: A system with dangerous thresholds?”

- Broecker, W. (1997) gives an initiated description of how the today’s ocean circulation functions, especially
regarding the Atlantic MOC. He also discusses how the Earth’s climate during the last glacial period underwent
frequent large and abrupt global changes, and argues that this behaviour appears to reflect the ability of the
ocean’s thermohaline circulation to assume more than one mode of operation. The trigger mechanism for these
reorganizations may have been associated with the orbital cycles of the Earth. Finally he discusses the possibility
of future reorganizations of the THC as a consequence of the ongoing build-up of greenhouse gases in the
atmosphere, and warns for the possible severe impacts on e.g. food production of such an event.

-Dickson et al. (2003) provides no convincing evidence of any significant, concerted slowdown in the Atlantic
overturning circulation. However, the mechanisms remain poorly understood and our ability to detect these
changes remains incomplete. They mention four main types of ocean change with greenhouse-gas forcing. These
are: (i) a slowing of MOC overturning rate; (ii) changes in northern seas which might affect a change in Atlantic
overturning, including changes in the freshwater flux from the Arctic, and changes in the transport and/or hydro-
graphic character of the northern overflows which ventilate the deep Atlantic; (iii) a change in the trans-ocean
gradients of steric height (both zonal and meridional) which might accompany a change in the MOC; and (iv) an
intensification of the global water cycle.

-According to Latif et al. (2006) analyses of ocean observations and model simulations suggest that there have
been considerable changes in the THC during the last century. These changes are likely to be the result of natural
multi-decade climate variability and are driven by low-frequency variations of the North Atlantic Oscillation
(NAO). According to the authors, no indications of a sustained weakening of the THC are seen during the last
few decades. Instead, a strengthening since the 1980s has been observed. They claim that combined assessment
of ocean hydro-graphic data and model results indicates that the expected anthropogenic weakening of the THC
will remain within the range of natural variability during the next several decades.

Which factors might cause a sudden global cooling?

-Engvild (2003) listed a number of possible causes for a sudden global cooling: changes in the solar output,
volcano eruptions, impacts of comet or asteroid collisions with the earth and changes in ocean currents. The
present interglacial climate is probably maintained by the so-called "Thermohaline Conveyor" (TC, or
“thermohaline circulation”, THC) (Rahmstorf, 2002, Broecker, 1995, 1997, Stocker, 2000). One branch of this
"conveyor belt" is the Gulf Stream; the other is a dense cold, high-salt water deep-ocean return flow. This total
system of ocean currents seems to be quite sensitive to small disturbances, especially of fresh water influx
(causing some climatologists to talk about "chaotic climate™). The review gives no quantitative estimates,
however, of the risk for a collapse of the THC.

-In a paper by Stouffer et al. (2006) the simulated response of the THC to freshwater perturbations (and the
associated climate changes) as simulated by a large number of models, ranging from earth system models of
intermediate complexity (EMICs) to fully coupled general circulation models (AOGCMs), are inter-compared
(within the frame of the World Climate Research Program (WCRP) Coupled Model Intercomparison Project
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(CMIP)). In response to a 0.1-Sv (1 Sv = 106 m*> s™) freshwater input in the northern North Atlantic (by
comparison, the present-day strength of the THC, expressed in terms of the southward flow of North Atlantic
deep water at latitude 30 °N, is estimated to be about 14-18 Sv) the multimodel ensemble mean THC weakens by
30 % after 100 years. All models simulated some weakening, but no model simulated a complete shutdown of
the THC at this assumed external input. In response to 1.0-Sv freshwater input, however, the THC switches off
rapidly in all model simulations, is resulting in a large cooling over the North Atlantic area. The models
disagreed in terms of the reversibility of the THC after its shutdown.

What might be the effects of a collapse of the North Atlantic THC on vegetation and soil?

-Kohler et al. (2005) discuss results from simulations with the Lund-Potsdam-Jena dynamic global vegetation
model (LPJ) forced with climate perturbations from glacial freshwater simulations with the ECBILT-CLIO
(modules of the Earth system model LOVECLIM is discussed under “1. Methods” /EMICs in this report). The
simulated North Atlantic THC collapses in response to a freshwater discharge linearly increasing to 0.5 Sv
during a period of 500 years, then decreasing back to zero in the following 500 years, at which time the THC
recovers again (1 Sv = 106 m® s™). The resulting initial cooling of several degrees C over Eurasia causes a
reduction of boreal and temperate forests, and a decrease in carbon storage in high northern latitudes, whereas
improved growing conditions and slower soil decomposition led to enhanced storage in mid-latitudes according
to the simulations. However, the magnitude and evolution of the carbon storage changes were quite sensitive to
the initial climate conditions, and varied between —67 and +50 PgC for a range of conditions during the past 21
thousand years simulated with the HadSM3 coupled model.

1. Scenarios, Nordic

How might temperature and precipitation change in Sweden?

-In a report from Swedish EPA and STEM (Naturvardsverket/Energimyndigheten, 2004a, b) it is stated that
according to the scenarios from SWECLIM from 2002 (SMHI, 2003b) the yearly mean temperature in Sweden
will rise somewhat more than the average for the globe as a whole (with possible AT ~ +3-6 °C during the next
100 years). This warming would imply a lengthening of the vegetation period in Sweden with 1-2 months. The
calculated regional changes in precipitation and evaporation show considerable variations, both within the region
and between the seasons. The increases both in precipitation (P) and in net precipitation (difference between
precipitation and evaporation) are largest during the winter (with a calculated possible increase in precipitation
by 30-60%). During the summer the precipitation may, on the other hand, decrease by 20-40% in the south of
Sweden (as well as in Denmark and the south of Norway).

How will regional climate in Scandinavia change under a 2 °C global warming?

- Christensen (2006) made a regional downscaling of a GCM-simulation corresponding to a 2 degrees warming
relative to pre-industrial conditions. The background to this simulation experiment is the decision of the
European Union to work towards limiting the anthropogenic induced global warming to just 2 °C. In the
experiment, GCM transient simulations (with ECHAMS5/MPI-OM; horizontal resolution 150 km) for the two
time periods 1961-1990 (control) and 2071-2100, respectively, were downscaled to 50 km resolution — over an
area enclosing Europe and the North Atlantic — with the regional climate model (RCM) HIRHAM. The
simulation used the SRES A1B emission scenario until 2020, and thereafter kept the year 2020 concentrations of
greenhouse gases constant (labelled the “EU2C” experiment). In winter, the largest warming — around 2-3
degrees — was found over Scandinavia and northern Russia, whereas southern Europe warms around 1 °C and the
North Atlantic mostly below 1 degree. In summer, Southern Europe shows the largest heating of around 2-2.5
°C, whereas Northern Europe warms about 1-1.5 °C. The amplitude of the changes between the period 1961-
1990 and 2071-2100 for the EU2C scenario was lower than for corresponding downscaling results for the A2
and B2 scenarios used for comparison. The precipitation and related indices appear to be much more uncertain,
and did not scale with the choice of scenario to the same extent as in the case of temperature.

1. Uncertainties

How well can climate sensitivity be modelled based on paleo-climate data?

-Uncertainty in climate sensitivity is a main source of uncertainty in projections of future climate change
according to Schneider von Deimling et al. (2006). They present a new approach for constraining this
uncertainty by combining ensemble simulations of the last glacial maximum (LGM) with paleo-data. For this
purpose the CLIMBER-2 climate model (cf. Appendix 1) was used to perform a large set of equilibrium runs for
(1) pre-industrial boundary conditions, (2) doubled CO, concentration, and (3) a “complete set” of glacial
forcing. Using proxy-data from the LGM the authors constrained the set of realistic model versions. They found,
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that irrespective of model-parameter and feedback uncertainties, there was a close link, within the model,
between the simulated warming due to doubled CO,, and the cooling obtained for the LGM. Based on this close
relationship regarding past and future temperature evolution, they argue that paleo-climatic data can help to
reduce uncertainty in future projections. Their inferred range for climate sensitivity is 1.2-4.3 °C, almost
identical to the IPCC-2001 estimate (1.5-4.5 °C).

What is the relative importance of different sources to uncertainty in CC scenarios?

-In an inter-comparison of a number of regional climate simulations for Europe (Déqué et al., 2007) the
PRUDENCE (the Prediction of Regional scenario and Uncertaities for Defining European Climate change risks
and Effects project) database was used for estimating the relative importance of different sources to uncertainty
in regional climate projections. Ten regional climate models (RCMs) have been run with the SRES A2 radiative
forcing scenario, and some of these RCMs also with the SRES B2 scenario. Three different GCMs were used to
provide the RCMs with lateral boundary conditions. The RCMs have been used to simulate the winter and
summer mean seasonal temperature and precipitation, expressed as the difference between the periods 2071-
2100 and1961-1990. The results are averaged over eight sub-domains of Europe. The uncertainties in the
projected mean values are measured by the variance in each of the sub-domains. The total variances were
decomposed into: V(R)- variance due to RCM, V(S) — due to scenario, V(G) — due to driving GCM, and V(M) —
variance due to sampling of a finite number of years (30) from a climate system with a natural variability. Some
conclusions: The uncertainty introduced due to the choice of GCM is in general the largest of the four sources
considered, except for summer precipitation, where the choice of RCM (including inputs) is the major source for
the European domain as a whole, and also for some of the sub-domains. The uncertainty due to choice of
scenario is at maximum for summer temperature in the southern regions of Europe.

-Fowler et al. (2007b) used six RCM integrations from the PRUDENCE ensemble together with extreme value
analysis to assess changes in extreme precipitation over Europe by 2070-2100 under the SRES A2 scenario, and
for investigation of the uncertainties in the climate scenarios introduced by the driving GCM and the choice of
RCM respectively. A key finding is, that all the RCMs project increases in the magnitude of short- and long-
duration extreme precipitation, but that the individual model projections vary considerably. The magnitude of the
changes is strongly influenced by the driving GCM but moderated by the RCM, which also influences spatial
pattern. The authors therefore recommend, that when designating (model) ensemble experiments 1) the number
of GCMs should at least equal the number of RCMs, and 2) if spatial pattern is important, then integrations from
different RCMs should be incorporated (see also Fowler et al., 2007a).

How large are the uncertainties in the projections of future extreme weather events?

-Uncertainties in simulations of the occurrence of extreme events under a doubling of atmospheric CO, are
explored by Barnett et al. (2006). In this paper, equilibrium changes in daily extreme near surface air
temperatures and precipitation events were simulated in an ensemble of 53 versions of HadSM3 (HadAM3
coupled to an ocean model), are examined. Changes in extremes are quantified by calculating the frequency of
exceeding a fixed threshold in the 2 x CO, simulation relative to the 1 x CO, simulation. The ensemble-mean of
this relative frequency is considered as the best estimate of the expected change, while the range of values across
the ensemble provides a measure of the associated uncertainty. Due to its design, the resulting uncertainty arises
both from model uncertainty, and from inherent, natural, climate variability. For example, the global ensemble-
mean of the relative frequency of extremely warm days (when the extreme threshold is defined as the 99"
percentile of the “present” distribution) was found to be 28 in July (i.e. such extreme events would become ~28
times more frequent than today), but with considerable uncertainty in the magnitude of the increase. The
ensemble range of changes in precipitation extremes was typically larger than in the case of temperature,
indicating a greater uncertainty in the simulated precipitation changes.

-Fowler et al. (2007) assessed changes in precipitation extremes over Europe by 2070-2100 under the A2
emission scenario for investigating the contribution of the formulations of global (GCM) and regional (RCM)
climate models to scenario uncertainty. A key result was that all RCMs projected increases in the magnitude of
short- and long-duration extreme precipitation for most of Europe. However, individual model projections varied
considerably, and the magnitude of change was strongly influenced by the driving GCM, but moderated by the
RCM, which also influenced the spatial pattern.

What is the uncertainty of statistically downscaled precipitation projections in Sweden?

-When statistical downscaling is used to obtain regional climate change scenarios, the uncertainty originate from
uncertainties in the global climate models (GCMs) used, the skill of the statistical model, which forcing scenario
is used, and from the natural (internal) variability in the climate. The uncertainty associated with the GCMs used
can be evaluated by examining the differences in the predictors and in the downscaled climate change scenarios
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with standardized simulations with a set of different GCMs. Chen et al., (2006) applies this method to the
estimation of GCM-related uncertainty in regional precipitation change scenarios for Sweden, using results from
downscaling based on 17 GCMs. The results show an overall increase in annual precipitation over Sweden,
although with a considerable spread in the simulated changes. The estimated uncertainty was nearly independent
of region. However, there was a seasonal dependence, where the estimates for winter show the highest
confidence, while the estimates for the summer season show the least.

Which factors might explain projected future summer drying over Europe?

-A common feature of many regional climate change scenarios is their anticipation of drier summers in large
parts of Europe (see e.g. Giorgi et al, 2001). Rowell and Jones, (2006) propose a methodology that partitions
some of the mechanisms of regional climate change, and apply it to the problem of the causes of this summer
drying. They claim that a plausible partitioning of the working mechanisms of future mid-Ilatitude continental
summer drying might comprise the following parts: (a) an earlier and more rapid decline in soil moisture (SM)
during spring (‘Spring SM’), (b) conditions in the lower tropospheric warming leading to reduced relative
humidity in the air, and hence reduced rainfall (“Warming’), (c) other large- scale atmospheric changes (‘Large-
scale’), and (d) a positive feedback due to the beginning dryness of soils, reducing the convective activity further
(‘Summer SM Feedback’). The authors attempt to assess their relative importance by using an appropriate mix
of inputs to the model (HadAM3P). For continental and south-eastern Europe, it was found that both the
‘Warming’ and ‘Spring SM’ mechanisms are the primary drivers of the projected summer dryness, and ‘Summer
SM Feedback’ played an important secondary role. The authors claim, that we have reasonable confidence in the
processes of the two dominant mechanisms, and therefore also a high confidence in the sign of the anticipated
summer drying over these regions. Over Great Britain and southern Scandinavia, however, their experiments
indicated that the rainfall anomaly is dominated by opposing effects from the ‘Warming’ and ‘Large-scale’
mechanisms in this area. Due to this rivalry, even the sign of the projected change in this region is uncertain.

How well do precipitation predictions fit empirical data?

-Uncertainties in projected future European drought characteristics are also discussed by Blenkinsop and Fowler
(2007). The skill of six regional climate models (or, rather, 4 different RCMs: HIRHAM, RCAO, HadRM3P and
Arpége, which in combination with different GCMs providing the driving data makes a total of six) in
reproducing the mean precipitation for the 1961-1990 period for six European catchment areas are compared.
Some of the conclusions are: Considerable variation in model skill in reproducing monthly mean precipitation
and drought statistics was observed (many model estimates falling significantly outside the 95 % confidence
interval for the observed (grid-interpolated) 30-year means for smaller or greater parts of the year). In broad
terms, the models indicate decreases in summer and increases in winter precipitation across Europe. On the
regional scales required for impact analysis, however, considerable model uncertainty was demonstrated for
future projections. For shorter-duration droughts, projections of future changes even “encompass the direction of
change”. It is suggested that probabilistic scenarios for specific hydrological impacts have a considerable
potential to incorporate this uncertainty in climate change projections as to make them more informative for
decision-makers.

Which are the expert evaluations of a future decrease of the “Gulf stream”?

-In a paper by Zickfeld et al. (2007) the results from detailed interviews with 12 climate scientists about the
possible effects of global climate change on the Atlantic meridional overturning circulation (AMOC), which
encompass the Gulf stream, are presented. The inquiery sought to examine the range of opinions within the
climate research community about which physical processes that are determining the current strength of the
AMOOC, its future evolution under a CC and the potential consequences of possible changes in the AMOC. All
experts anticipated a weakening of the AMOC under scenarios of increasing greenhouse gas concentrations.
Assuming a global mean temperature increase to the year 2100 of 4 °C, eight experts assessed the probability of
an AMOC collapse as significantly different from zero, three of them considered this risk as larger than 40 %.
Their estimates of a weakening of the AMOC to the year 2100 in response to a 2x [CO,] and a 4x [CO,] of the
atmospheric [CO,], respectively, ranged from ~2 % to 55 % for the doubling, and from 10 to 90 % for the
quadrupling scenario. This latter is much larger than the range of responses simulated by present climate models
(10 to 50 %, see e.g. Gregory et al., 2005). Concerning the ability of these models to represent the physical
processes relevant to the state of the AMOC, most experts considered some of these processes to be relatively
well represented in the models, while some other, also relatively important, are less well understood and
simulated.
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How might the timing of a sudden reorganization of the North-Atlantic circulation depend on emission
scenario?

-Schaeffer et al. (2002) used an ensemble climate-model experiment to explore the timing and nature of an
abrupt regional climate change within the 21st century. In response to global warming a North-Atlantic climate
transition occurs, which affects climate in north-western Europe. For a high IPCC emission scenario (SRES
Alb) the transition was found to have a high probability to occur before 2100 (in fact, for the Alb scenario the
transition occurs between 2040 and 2080 for all of the ten ‘runs’ in the ensemble), whereas in a lower emission
scenario (SRES B1) the probability was lower and the transition threshold is approached more gradually. The
authors found that close to the transition threshold the evolution of the system becomes sensitive to small
perturbations. As a consequence, natural climate fluctuations limit the predictability of the timing of a threshold
crossing, and thus of an abrupt climate change. This limited predictability of North-Atlantic climate change adds
to the uncertainty in projections of ice-sheet melting and other impacts of global warming in this region. (The
ocean general circulation model CLIO coupled with the ECBIlt atmosphere model of ‘intermediate complexity’
was used for the simulations.)

What are the effects of uncertainties in GCM scenarios on climatic zones in southern Sweden?
-Metzger et al. (2005) made projections for European climatic zone classes, and a more detailed analysis of
southern Sweden. In the baseline (1990) Skane is Atlantic North, Halland south west Smaland is Nemoral6, and
north of that Nemoral3. In 2080, four different GCM models (for A1l emission scenario) gave quite different
climate patterns. (i) NCAR PCM (‘Parallel Climate Model’) gave similar pattern of today except that Atlantic
North moved north along the Halland and Blekinge coasts, moving Nemoral6 and Nemoral3 north accordingly.
(ii) HAdCM3 gave Skane similar of today and north of that almost only Nemoral6 (high temperature increase
and increased winter but decreased summer precipitation). (iii) CSIRO2 gave Atlantic North moving north to a
line Goteborg-Kalmar, north of that Boreal (related to increased spring precipitation). But there were also
patches of Nemoral6 and 5, and Continental in Smaland. (iv) CGCM2 gave Atlantic Central in Skane and
Blekinge and patches of east Smaland, Continental in east Smaland, Nemoral6 in west Sméland and Halland.

How important is it to have high resolution CC information?

-A spatial resolution of 1° x 1° of soils and climatic data was found optimal for simulation of wheat and maize
production on the Great Plains of America (Easterling et al., 1998).

-Easterling et al. (2001) have studied the effect of resolution of climatic input data used in simulating global
change impacts on yield. They simulated “adaptation” in terms of using earlier planting date and late maturing
varieties of various crops in USA. They conclude that more decisive results are obtained with high-resolution
data. However, they are not convinced “that the use of high resolution climatic change information provides
insight into the direct effects of higher atmospheric CO, levels on crops beyond what can be obtained with low
resolution”.

1. Physical parameters

What determines predictions of frost days?

-Meehl et al. (2004) found that the numbers of frost days are most consistently related to sea level pressure, with
more frost days occurring when high pressure dominates on the monthly time scale in association with clearer
skies and lower night time minimum temperatures. They pointed out that the regional changes of frost days are
generally most influenced by changes in regional atmospheric circulation. There is a general decrease in the
number of frost days with global warming. Soil moisture, clouds, sea level pressure, and diurnal temperature
range have effects that were quantified by a statistical multiple regression model. Coefficients for present and
future climate are similar among the predictors, indicating that the physical processes that affect frost days in
present and future climates do not appreciably change. Only the intercept changes, in association with the
significant warming of the mean climate state.

1. Spatial patterns

How will the climatic zones of Sweden be changed by 20807?

-Metzger et al. (2005) made projections for Europe climatic zone classes (Environmental stratification of
Europe, EnS) until 2080. For Sweden today (1990) south Skane is classified as Atlantic North, Oland and
Gotland as continental, and the rest of Gétaland and Sveland (except Varmland and Dalarna) as Nemoral, and
north of that Boreal. By 2020 (CGCM2 —-A1 models and inputs) the only change is that Blekinge and Kalmar
region partly has become Continental. By 2050 Skane and most of Smaland also have become Continental (no
Atlantic North zones are available). The Nemoral zone has moved northward accordingly to include also
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Varmland, Dalarna and parts of Halsingland. By 2080 the picture has become complex. Skane and Blekinge has
become Atlantic Central. East Sméland and Gotland Continental. The rest of Gétaland, Varmland and south

Svealand Nemoral. Uppland, Véastmanland, Dalarna, Gastrikland, Halsingland Atlantic North. North of that,
Boreal.



2. Climate and agricultural patterns

There are relations between regional agriculture and climate, in Sweden. Regional agriculture, however, is only
partly a consequence of climate. Of this reason the patterns can probably not been used straightforward to
extrapolate changes in climatic zones to give corresponding changes in agricultural zones. However, to a certain
extent these patterns might be useful. The aim of this section is to present information likely to be useful to
evaluate to what extent present patterns and changes in the past are general, and possibly useful for assessments
of climate change impact on agricultural production and land use in Sweden in the future.

2. Climate patterns

Which climate region classification methods exist for Europe?

-Metzger et al. (2005) classified the whole of Europe into climatic zone classes (Environmental stratification of
Europe, EnS) by comparing combinations of a number of climate variables for different regions (1 km?
resolution). They used a PCA (‘principal component analysis’) model based on altitude, slope, latitude,
oceanicity, temperature, precipitation and sunshine to assign a certain climatic zone class to each region. Outputs
of the first principal component of the PCA model correlated best with annual mean temperature and length of
vegetation period, R® being 0.95 and 0.83, respectively, taken from another European dataset (MARS).
Altogether, the three principal components accounted for 88% of the variability in the total data set. They used
ISODATA (lterative Self-Organizing Data Analysis Technique) to assign an environmental classification to the
continent according to the outputs of the PCA model. 84 environmental strata (‘classes’) were achieved and
aggregated to 13 ‘Environmental zones’.

2. Agricultural patterns

Along which principles may an agroclimatic zonation of the Nordic countries be done?

-A principal discussion of possible methods to be used in agroclimatic mapping for the Nordic countries is
presented in a ‘working-group report’ by Skjelvag et al.(1992). The report also gives a comprehensive summary
of the prevailing climatic conditions in the Nordic countries regarding the most relevant climate parameters in
this context (e.g. solar radiation, temperature climate (incl. temperature-sum indices) and water supply) but also
concerning questions like weather imposed pests and diseases, over-wintering, phenological development etc.,
and the praxis utilized in climate mapping at that time.

Which are the vegetation zones of Sweden?

-On a continental scale Sweden covers six vegetation zones, classified according to the dominant tree species:
Alpine-, Northern boreal-, Middle boreal-, Southern boreal-, Boreonemoral- and Nemoral zone (National atlas
of Sweden, Geography of plants, 1996, p 27.(Limes Norrlandicus). These zones have been predicted not to shift
significantly in response to climate change (Bengtsson, 1994).

- As a finer pattern within this broader scale and as a base for the Regional Experimental Service in the
agricultural sector, Sweden has in the past been divided into 9 regions (Fig, Larsson, 2004).

Which cultivation region classifications exist in Sweden?

Which are the regions of the Swedish regional yield statistics (SCB)?

-SCB (Statistics of Sweden) divides Swedish agricultural area into 8 production areas for the yearly yield
statistics of different crops (Fig. 2.1). These eight areas are based on 18 minor production areas, which in turn
originally were formed from 61 “natural agricultural areas” (jordbruksomraden) (SCB/Jordbruksverket 2005).
The borders of these areas have changed several times during the past century, but the numbers of different areas
have remained unchanged (i.e. 8, 18, and 61) until year 2000.

On which criteria are borders of SCB regions established?

-The criteria used when establishing the SCB regions are a combination of natural growing conditions (including
e.g. climate) and practical - administrative reasons (Larsson, 2004). In comparison with another regional
classification system used by the Regional Experimental Service in Sweden (data published in “Sortval”) it
seems that the SCB regions are somewhat more adapted to the natural conditions than to administrative regions
(Larsson, 2004).
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Fig. 2.1a. Agricultural production areas of Sweden used Fig. 2.1b. Growing zones for garden plants published by

presenting regional yield statistics (source SCB). Riksforbundet Svensk Tradgard (source:
http://www.tradgard.org/)

Which are the regions of Regional Experimental Service in Sweden?

-The Regional Experimental Service divides Sweden into 9 major crop production zones (A- 1), described
(including a map) in Lantbrukshogskolan, 1967: “Planer for Hushallningssallskapens...” (see also Larsson,
2004). These 9 show a rather high correspondence with the 8 SCB regions (see HSF-67 in Table 2.1)

Which are the regions of gardening in Sweden?

-For garden plants, especially lignified plants like fruit trees and bushes, Sweden is divided into 8 growing zones
(“odlingszoner” or “vaxtzoner”), widely used, and published by Riksforbundet Svensk Tridgard, originally
established by “Sveriges Pomologiska Forening” (http://www.tradgard.org/). This zonal division is based on
climatic data and knowledge about the climatic hardiness by, primarily, ligneous garden plants. These 8 zones

correspond to a certain extent, and sometimes coincide with the 8 production areas used by SCB (see Fig. 2.1b
and RST in Table 2.1)
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How are the different Swedish cultivation regions related?

Table 2.1. Cultivation regions for agricultural production, agricultural experimental service, garden plans and forest in
Sweden. In the table is given the parts of other classifications that fit into the SCB areas.

Agricultural production area: Regional Experim. Service Garden plants Forest regions
HSF-67 RST ("véxtzoner”) SNA:"Skogen"
SCB (""produktionsomraden”) (“jordbruksomraden") ("klimatzoner")
1: Gétalands sodra A | 8
slattbygder (Gss)
2: Gotalands mellan- B (mainly) + A (small | 7 (mainly), 8
bygder (Gmb) part)
3: Gotalands norra D (~50% of prod.area 3) + Il (~50%) + 111 (~50%) 6 (western part of Gns), 5
slattbygder (Gns) E (~50%) (eastern part of Gns)
4: Svealands slattbygder (Ss)  mainly F + E (smaller 111 (60-65%) + IV (35-40%) 5 (mainly), 6 (N Vénern)
area)
5: Gotalands skogsbygder C (~80-85%), small areas IV + V (~60%), 11 + 111 8 + 7 + 5 (approx. equal
(Gsk) in zone D and E (<10% (~40%) parts)
each)
6: Mellersta Sveriges G (80-85%), F (15-20%) IV +V 3 (the major, nothern, part)
skogsbygder (Ssk) minor areas in 4, 6, 7
7: Nedre Norrland (Nn) I (~50%) + G (~30%) + H VI + VII (major part), IV 3 (major part), 4 (along the
(~20%) (along the coast) coast), 2 (area in NW)
8: Ovre Norrland (N6) | VII (major part), V, VIII 1 (major part in W and NW),

2 (central part of area), 4
(along the coast)

2. Agricultural and climate patterns

Which climate factors limit production?

Which climate factors limit production in Northern Sweden and Finland?

-Low solar angle, low temperature, short growing season, frosts in the growing season, long winters and thick
snow cover are the main constraints to crop production in Finland (and Northern Sweden) between the 600 and
1200 degrees sum C isopleths above +5 °C. In Finland the growing season varies from 180 days (60 °N) to 120
days (70 °N). The most advanced agriculture in northern areas has more than 1200 degreessum (°C) above +5 °C.
North of that limit animal production becomes more common than grain production (Mela 1996).

-Reilly et al. (2003) found that non-climatic forces have likely dominated the north and westward movement of
crops in US.

How important is water as a production-limiting factor?

-A model was developed and tested to describe in particular the water and radiation-use efficiency relations in
production (Richter et al., 2001). This model was then applied to analyse sugar beet production 1961-95 in
Europe, where irrigation is uncommon. Drought losses were greatest in the east (Ukraine, southern Russia, 40%
of potential yield), intermediate (15-30%) in central Ukraine, Poland, East Germany and sandy soils in England,
and lowest in NW Europe and west Ukraine (Pidgeon et al., 2001). Model output was used to examine the
efficiency of beet production: NW European farmers deliver 80% of potential production, Polish farmers only
40%.

How could climate and agricultural patterns be related?

Which techniques are used to spatially relate agriculture to climate?

-Using a clustering technique and hydrothermal and simulated crop yield data on a 10 km x 10 km grid, three to
seven agricultural regions were defined in Ireland (Holden and Brereton, 2004).

-Xiao and Moody (2004) correlated a normalized vegetation index, integrated over the growing season, (QNDVI)
with mean precipitation, maximum temperature (T-max) and minimum temperature (T-min) over 11 years for
six biomes in the US. Within- and across- biome variance of means of gNDVI was correlated with spatial
gradients in long-term average seasonal climate. This gave relations between seasonal precipitation and
temperature regimes and productivity.

Which climate factors correlate with regional production?

-Bakker et al. (2005) found that wheat yield in central and southern Europe correlated strongly with several
climatic factors separately. There was strong negative correlation to solar radiation (-0.92 to —0.88; Pearsson
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coefficient), air temperature (-0.79 to —0.53), potential evapotranspiration (-0.87 to —0.72), respectively. There
was a positive correlation to soil water available to plants (0.64 to 0.74), and also to soil depth (0.71 to 0.83).

May the classification of climatic regions be better adapted to agriculture?

-A more process oriented analyses of climatic production conditions has been done with various growth indices,
e.g. Fitzpatric and Nix (1970).

-Apart from the preliminary reports of Torssell (1984) and Kornher and Torssell (1983) this technique has been
little used in Sweden. It was shown that the high summer growth index for Lund in the south and Vojakalla
above the Artic Circle were equal, and that the difference between these sites was the length of the growing
season.

-There is for Sweden empirical knowledge of the relations between climate, weather and crop production
(Osvald, 1959).

Which are the climatic characteristics of the SCB regions?
-In Table 2.2a an attempt is made to characterise the climatic conditions of the 8 major production areas used by
SCB (Data sources: (a): SNA, 1990, (b): SNA, 1991, (c): SNA, 1995, (d): Angstrém, A., 1974).

Table 2.2a: Ranges of climate variables within agricultural production regions in Sweden

SCB Global radiation ~ Sunshine hours/year  Yearly average temp. T-sum during
production area April- Sept. [MJ/m?]  (b,c) [°C] (b) vegetation period
(d) [ddgr>5°C] (b)
1 Gétalands 2930 -3145 1800 - 2000 +7-+8 1600 — 1800
sOdra slattbygder
2 Goétalands 2930 -3350 1800 - 2000 +7 - +8 (south) 1400 - 1600
mellanbygder (Gotland>2000) +6 - +7(Gotland)
3 Gotalands 2930 —-3145 1800 — 2000 +6 - +7 (domin) 1400 - 1600
norra slattbygder (minor area <1800) +5 - +6 (minor area)
4 Svealands 2930 -3150 1800 - 2000 +5- 47 1400 -1600 (~70%)
slattbygder (minor area >2000) (+5-6 dominates) 1200 -1400 (~30%)
5 Gotalands 2720 -3140 1600 - 1800 +5-+7 1200 -1400
skogsbygder (perif. area >1800) (+4 — 5 minor area) (1400-1600 minor area
along coast)
6 Svealands 2850 -3140 1800 - 2000 +3-+45 1200 -1400
skogsbygder 1000-1200 (<25%)
7 Nedre Norrland 2725 -3140 1600-1800(~40%)?, +1 - +4, 1000 -1200 (~50% of
1800-2000(~40%)?2 area)
(typically ~2930) >2000 (coastal area) +4 - +5 (minor coastal 800 —1000 (~50% of
area) area)
8 Ovre Norrland 2510 -3145 <1600 - >2000 -3 - +2, 600 — 1000,

(dom. 2725-2975)

(+2 - +3 minor coastal
area )

1000 - 1200 (minor
coastal zone)

1) ddgr = daydegrees
2) % of actual SCB prod. area given in left column

How does radiation differ between SCB regions?

-One striking pattern in Table 2.2a is that the differences in solar radiation (April to September) and sunshine
hours (all year) are very small. Thus, average solar radiation sum of SCB area 8 (upper Norrland), excluding the
most mountainous regions in the eastern part, is about 91-95% of southern areas 1, 2, 3 or 4. The total number of
sunshine hours is similar (1800-2000) in the dominating parts of SCB areas 1-4, 6 and for about 40% of areas 7
and 8. Area 5, the hilly forest districts in Goétaland (Gotalands skogsbygder), has about the same conditions in
this respect as area 7, the southern parts of Norrland (nedre Norrland).

How does temperature differ between SCB regions?

-The yearly average temperature of the three production areas 1-3 in the south are fairly similar (+6 to +8 °C;
[SNA, 1991]). The areas 4 and 5 are also fairly similar but about 1 °C colder (i.e. +5 - +7 °C), than regions 1-3.
For the remaining three areas, 6,7 and 8, temperature decreases gradually from +3 - +5 °C to about -3 - +2 °C
going from south (area 6) to north (area8).

-There is a pronounced decrease in temperature sum of about 800 — 1000 day-degrees (Tbase +5 °C) from
production area 1 in the south to area 8 in the north. However, the production areas 2 and 3 and most of 4 have
about the same T-sum (1400 — 1600 ddgr), and T-sum of regions 5 and 6 and a minor part of region 4 is also
similar (1200 — 1400 ddgr). Finally, a minor coastal zone of area 8 has an equally high T-sum as those parts of
area 6 with lowest values (1000 — 1200 ddgr).
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How does length of vegetation period differ between SCB regions?

-The length of the vegetation period is often defined as the (continuous) period of the year when the daily
average temperature exceeds +5 °C (SNA, 1995, p.57). However, some authors, i.e. Angstrém, 1974, use the
temperature threshold +3 °. Thus, the length of vegetation period, roughly, shows the same pattern as for the
temperature. Some parts of area 8 in the upper parts of Norrland thus have a vegetation period almost three
months shorter than region 1, whereas it is similar for temperature areas 2 and 3, and regions 4 and 5,
respectively. However, areas 5 and 6 are not so similar, as in the case of the T-sum.

Table 2.2b. Ranges of climate variables within agricultural production regions in Sweden

SCB Beginning of Length of veget.  Precipitation during  Average number of
production area vegetation period period [days] (c)  veget. period [mm] days with snow
(b)

[date] (a) cover (d,c)

1: Goétalands sédra 31/3 -10/4 200 - 220 Appr. range: 400 — <40-60

slattbygder (Gss) 650, typ. 450/500

2: Gotalands mellan- 31/3 - 20/4 190 - 210 Range: ~300 — 450, 40-380

bygder (Gmb) typical: 350/400

3: Gétalands norra 5/4 — 15/4 190 - 200 Range: 400 - 550, 60 — 100, typical: 80-

slattbygder (Gns) typical: 450/500 100

4: Svealands slattbygder 10/4 — 20/4 180 - 195 Range: 350 — 450 60 — 140, typical:

(Ss) 100-110

5: Gotalands skogsbygder <190 - 200 Range: 400 — 750, 40 - 120, typical:

(Gsk) typical: 450/500 ~80-100

6: Mellersta Sveriges ~170 - 190 Range: 350 — 550, 80 - 160, typical:

skogsbygder (Ssk) typical: 400/450 120-140

7: Nedre Norrland (Nn) 140 - 175 Range: 350 — 500, 120 - 200, typical:
typical: 400/450 ~150-170

8: Ovre Norrland (N6) <120 - 160 Range: 250 - 400, 160 — 240, 140 - 180

typical: 300/350

in coastal reg.

(Data sources: a) —d) as for the table above)

How does snow cover differ between SCB regions?

-The average number of days per year with snow-cover increase from less than 40 days in area 1 to 6 to 8
months per year, in area 8.

How does precipitation differ between SCB regions?

-The average seasonal (vegetation) precipitation ranges from about 750 mm as most in parts of area 5, down to
250 — 400 mm in area 8. However, comparing typical values for different regions some of the areas are similar.
Typical seasonal precipitation within areas 1, 3 and 5 are similar (450-500 mm). For areas 6 and 7 the typical
values are 50 mm less (400-450 mm), and for areas 2 and 4, a further 50 mm less (350-400/450).

How are agricultural and forest regions of Sweden related to climate regions?

Which are the regions of forest climatic zones in Sweden?

-SNA (1990, Skogen, B28, p.49) divides Sweden into 8 forest zones as concerns effects of climate on forests.
The characteristic of a region is mainly based on accumulated temperature sum (base temperature 5°C), and
humidity (Table 2.3; see also Table 2.1 in (Zonjamférelse — SNA/Skogen).

Table 2.3. Climate characteristica of forest regions in Sweden.

Character Criteria
Tsum in day-degrees

Zone  Region

Favourable to very favourable temp. climate. T-sum >1300
Mainly high to very high humidity

7 Central parts of the highlands of southern Sweden Medium good to favourable temp. climate. T-sum 1100 — 1500
Weak to normal humidity

8 Western part of Gétaland

6 A zone around lake Vénern Favourable to very favourable temperature T-sum >1300
climate. weakly humid climate
5 Eastern parts of Gotaland and Svealand Favourable to very favourable temperature T-sum >1300
climate. Summer dry and weakly humid
climate
4 40-60 km broad zone along the coast of Norrland ~ Summer dry and weakly humid climate T-sum >900
3 Central parts of southern Norrland and the part of  Relatively cold — medium good temp. T-sum 900- ca 1300
Svealand north of Limes Norrlandicus
2 Inner parts of Norrland and north-western parts of ~ Cold temperature T-sum 750 — 900
Svealand
1 Western half of upper Norrland Extremely cold T-sum <750
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How do climatic zones correlate with land use?

-Metzger et al. (2005) classified Europe into environmental classes using a PCA model based on altitude, slope,
latitude, oceanicity, temperature, precipitation and sunshine to assign a certain climatic zone class to each region
(1 km?). Outputs of the first principal component of the PCA model correlated fairly well with production of
“potential” natural vegetation (R>=0.85 Pearsson coefficient=0.92) but less good with land use patterns zones (R?
= 0.23-0.34, P=0.45; data from PELCOM (Micher et al. 2001) and CORINE databases), indicating a strong
influence of the human factor in land use.

2. Changes over time

How has climate changed over a recent decade in US?

-Xiao and Moody (2004) correlated a normalized vegetation index, integrated over the growing season (QNDVI)
with mean precipitation, maximum temperature (T-max) and minimum temperature (T-min) over 11 years for
six biomes in US. According to IPCC increases in temperature minima and fall precipitation have been dominant
contributing components of US increases in temperature and precipitation, respectively.

How has climate changed in Sweden since the reference period 1961-90?

-SMHI, 2006, has presented changes in temperature and precipitation for the last 15-year period (1991-2005)
compared to the reference 30-year period (1961-90). Temperature has generally increased, from most in winter
and along the coast of Norrland, to least in southern Sweden during autumn (Figs. 2.2a-b). Corresponding
comparison for precipitation shows also a general increase except for autumn which show small changes. During
winter precipitation has increased most in south-west and north-west parts of Sweden. During summer there has
been a pronounced increase inland in Norrland, but also in Goétaland (Figs 2.3 a-b).
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Fig. 2.2a and b. Changes in seasonal temperature for the last 15-year period (1991-2005) compared to the reference 30-year

period (1961-90) for periods winter (December to February), spring (March to May), summer (June to August), and autumn
(September to November), respectively (source SMHI, 2006; http://www.smbhi.se/).
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Fig. 2.3a and b. Changes in seasonal precipitation for the last 15-year period (1991-2005) compared to the reference 30-year
period (1961-90) for periods winter (December to February), spring (March to May), summer (June to August), and autumn
(September to November), respectively (source SMHI, 2006; http://www.smbhi.se/).

Which crop yield data are available for Sweden?

-There are basically three sources of data for studies of time series in Swedish crop production: SCB, the variety
trials in the plant breeding institutions and long-term field trials conducted by the Regional experimental
Program. The SCB data describes time series of commercial crop production including the combined effects of
several management and genetic factors at a time. The possibilities for analysing climate effects are limited. In
the variety trials, long time series may be found, where only the weather and pest damages are the external
factors that are varying over time. There are few Swedish studies of such data sets. One such is Torssell (1953)
where the genotypic and phenotypic plasticity of different varieties were examined and discussed in relation to
the growing value of the varieties.

How have yield levels developed in Sweden?

How have hectare yields developed since 1960 in Sweden?

-Hectare yield of cereals in Swedish agriculture (SCB) have shown a linear increase since 1950. There has been
stagnation during the last 5-10 years. This trend is more pronounced in Svealand than in Gétaland. Annual
increases of winter wheat are 83-86 kg/ha (Fogelfors ed., 2001; see also Figs. 2.4-7).
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Fig. 2.4. Regional “standard yields” of winter wheat for every fifth year, as calculated by SCB. Squares are Kristianstad county,
triangles are Malmohus county, crosses are Halland county, and rhombs are average of “Gotaland sédra slattbygder”.
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Fig. 2.5. Regional “standard yields” of winter wheat for every fifth year, as calculated by SCB. Squares are Stockholm county,
triangles are Uppsala county, and rhombs are Sédermanland county. Average values of “Svealands sléatthygder” are similar to those of

Stockholm county.
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Fig. 2.6. Regional “standard yields” of spring barley for every fifth year, as calculated by SCB. Squares are Kristianstad county,
triangles are Malmdhus county, crosses are Halland county, and dotted lines are average of “Gétaland sodra slattbygder”.
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Fig. 2.7. Regional “standard yields” of spring barley for every fifth year, as calculated by SCB. Squares are Stockholm county,
triangles are Uppsala county, and rhombs are S6dermanland county. Dotted line is average values of “Svealands slattbygder”.

How have yields developed on Gotland since 1913?
-Michael (2002) showed a pronounced increasing trend in yields per hectare, of both winter and spring wheat in
Gotland county during the period 1913-1999, at least from 1940 and onwards.

How have yields developed in Sweden since 18667

-In a report from Jordbruksverket (Jordbruksverket 2005) the actual yields .of different grain crops and potatoes
for 1866-2004 and of oilseed crops for the period 1961-2004, given as 5-year averages, are presented. The yields
per hectare of grain increased gradually but slowly during the period 1866/70 to 1931/35. Then, after a minor
decrease between 1936 and 1945, they increased very markedly until present years (e.g. for winter wheat from
an average of 2240 kg/ha in 1946-50 to an average of 6100 kg/ha for the period 2001-04; for barley from 2060
kg/ha to 4270 kg/ha; and oats from 1390 kg/ha in 1941-45 to 3960 kg/ha in 2001-04). The yields from oilseed
crops have also increased over the (shorter) time period 1961 to 2004: for winter rape with 38%, spring rape
48%, spring turnip rape 67%, but for winter turnip rape only with 4%.

Which methods exist to consider the influence of weather variations on SCB yield statistics?

How is the weather influence on SCB vyields estimated?

-Actual yield data are, since 1961, recalculated by SCB to compensate for influence of the current year weather
on yield. This standard yield. (“normskérd”) is defined as the expected yield during “normal” weather
conditions in the production area (or county) concerned. Such standard yield calculations are performed both for
420 “minor harvesting areas” (“skérdeomrade”) and on the county scale; SCB 1986). Crops included are those
considered in the “objective crop yield surveys”, i.e. winter wheat, spring wheat, rye, barley, oats, grass on arable
land for hay or silage, potatoes, oilseed crops and sugar beets. Standard yields are published yearly in SCB/
Statistiska meddelanden (Statistical reports), SM, serie J (from year 2000 on in “serie JO”’). During the period
1961 to 1987 the method used for these calculations may be summarized as follows (SCB/Statistiska
meddelanden, 1986): The standard yields refer to yield values which have been standardized with respect to
changes over time, and are estimated on a county scale. First an average county value is calculated as the mean
of all hectare yields for all years from 1958 until present. Then yearly values are calculated by adding the
average linear increase from 1922 to present. Yearly values during 1922-1957 are using the average value for
this period as a base, and then adding the same linear increase rate, i.e. from 1922 to present. In summary, the
time scaling method split the trend line into two parts — one for the “subjective” and one for the “objective”
period. This procedure is used because the two periods are not fully comparable since the yields were
underestimated, in general, during the period with subjective estimates (1922-1958) (see Fig. 2.8). This method
has been used for the period 1961-87. The estimates of “standard yield” form 1988 t01997 used a similar
procedure as above, except that only data for the latest 25 years were considered. From 1998 only the latest 15-
year period data are used. The standard yield of the minor harvesting areas is obtained by multiplying the county
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standard yield by a value representing the average relation between the yield of the minor harvesting area and
that of the county during 15 years. The difference between the standard yield and the actual yield of the minor
harvesting areas has been used as a measure for economical compensation to farmers in that area.
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Fig. 2.8. Schematic description of the calculation procedure of the “standard yield” (source SCB, 1986).

How has land use of agricultural area changed in Sweden?

How has the area of cultivated land changed since 1960 in Sweden?

-In 2005 the areas cultivated with winter wheat and barley were about similar due to mainly decreasing barley
area but also increasing winter wheat area. Barley has decreased more in “Svealands slattbygder” than in
“Gotalands sodra slattbygder”. The area of winter wheat has fluctuated strongly in “Svealands slattbygder”, but
no obvious trend, whereas in “Gotalands sddra slattbygder” it has increased (Figs 2.9-10).
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Fig. 2.9. Area cultivated with winter wheat given for every fifth year. Triangles are for whole Sweden, rectangulars are “Svealands
slattbygder” and rhombs are “Gotalands sddra slattbygder”.
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Fig. 2.10. Area cultivated with spring and winter barley given for every fifth year. Crosses are for whole Sweden, triangles are
“Svealands slattbygder” and rectangulars are “Gotalands sodra slattbygder”.

Which other databases than SCB exist for agricultural land use in Sweden?

-Naturvardsverket /The Swedish Environmental Agency, SNV/ (Naturvardsverket 1997, 1998, 2004) reported
changes in agricultural land use, primarily during the period 1991-2001 but also for 50 years backwards
(basically due to environmental and biodiversity issues, and as part of projects Livsmedelspolitikens
Miljoeffekter and later the CAP-project, CAP= Common Agricultural Policy). The cultivated landscape is
classified, using GIS, in three geographical scales: national, regional and local, with the emphasis on the regional
scale. The data includes agricultural statistics from SCB from 1951, 1981, 1991, 1995 and 2000 (data aggregated
to parish-level). Secondly there are data on land use, vegetation etc. (focus on grassland) from interpretations of
aerial photographs from twenty parishes spread over large parts of Sweden from 1992, 1996 and 2001 (see,
“NILS: Nationell Inventering av Landskapet i Sverige www-nils.slu.se, Esseen, P-A. et al., 2003).

How has the use of Swedish agricultural land changed over time?

-Jordbruksverket (Jordbruksverket 1999; a study focused on environmental influences) reported statistics
showing the changes of the areas of certain crops, like cereals, oil-plants and leys, and total area of arable land
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during the period 1961-1998 for Sweden as a whole. For 1985-1998 the average yearly changes are given for
each of the eight major production areas (Ch. 2.1-2.4, pp.30-33). For 1994-1998 some groups of crops are
presented in greater detail (Ch. 2.3-2.4, pp.33-40 and Bilaga 3). Some conclusions for recent years (after Sweden
joining to EU) are: The area of managed pasture has increased; abandonment of arable land is greater in
Norrland and in the wooded districts of southern Sweden than elsewhere; the area of arable land increased in the
middle of Sweden, promoted by CAP.

-Jordbruksverket (Jordbruksverket 2003a; in principle similar to Jordbruksverket 1999) reported that during
1998-2002 the total area of arable land in Sweden decreased, and since 1995 (the beginning of CAP) it has
decreased with about 85000 ha or 3%. Regarding the distribution on different crops it is more difficult to see any
clear trends, explained by the authors to be partly due to weather-conditioned differences between years and
varying market prices. On the national level, the relative share of land used for leys and green crops has
decreased marginally since 1998, whereas cereals has decreased with 12% (152 000 hectares) over the period
1998-2002. The area used for oleiferous plants show a marked variation between years but has decreased
significantly from 160 000 ha in the 1980"s to 67 700 ha in 2002.

- Jordbruksverket (2003b) gives (in Ch.2, pp.9-12) a historical résumé of the development of the Swedish
agricultural land use. They also discuss the most probable influencing factors, and also expected future changes.
Of about 4 600 000 ha total agricultural land (including pastures and also semi-natural grasslands
(“naturbetesmarker™)) in 1945, about 2/3 remains today (2002). About 800 000 ha of arable land, and a very
large part of the meadow land have been lost during this time. They present a chart showing the changes over
time of the total area of pasture between 1989 and 2002. Before 1994 there was a slow but steady increase in
pasture area from about 330 000 ha in 1989 to about 350 000 ha 1994. Thereafter the increase has been larger
until last record in 2002. In 1999 the pasture area was about 450 000 ha.

-In a publication from Jordbruksverket (2005): “Swedish Agriculture in figures 1800 — 2004”, the development
of both animal stocks and crop husbandry — during roughly the last 200 years are described in detail, including a
discussion of the reliability of the statistical material. The area of leys and pasture peaked around 1940-1950 and
has since then decreased rather steadily until 1990, but has since then showed an irregular increase. The total
area of grain shows a bimodal distribution over the period 1866 to 1990 (Diagr.1.5, p.9) with two maxima: one
around 1910/20 (just below 1 700 000 ha) and a second in the beginning of the 1990"s (about 1 650 000 ha), and
a minimum around the early 1950"s (about 1 300 000 ha). Since the last maximum in the 1990°s this area has
decreased markedly to become the lowest in 200 years (less than 1.2 million ha in the early 21st century). The
acreage of wheat has undergone a “steady” but rather irregular increase during the whole period 1866 — 2004
(from about 50 000 ha 1866/70 to just below 400 000 ha 2001/04), the most marked increase occurring between
1926/30 and 1956/60 and after 1996. The area of barley decreased steadily from 1876/80 until the early 1950’s
(down to about 100 000 ha). Between that time and to the beginning of the 1990°s a very large increase occurred
(up to more than 700 000 ha), but the area has since then again showed a rapid decrease (down to 400 000 ha)
(Diagr.1.6, p.9, ibid).

Which factors have influenced yield per unit area over time?

-Non-climatic factors have dominated the trends in yield variability in the US (Reilly et al. 2003)

-1t was concluded that those crops exhibiting the highest increase in yield in the Czech Republic over the 75
years were also the most adaptable to inter-annual variability in weather, cultivars grown and to cultivation
techniques used. The least adapted crop in the 10 European countries was sugar beet. Fertilization was an
important factor in the adaptability (Chloupek et al. 2004).

How have European crop yields evolved over time?

Which crops have had the strongest yearly increase?

-Officially published yield data for the Czech Republic (1920-2000) and for Europe (1960-2000) was analysed
by Chloupek et al. (2004). The fastest yield growth was found for flax (2.15% per yr), maize and wheat (1.61
and 1.53% per yr), while growth was slower for hops and root crops and slowest for grassland hay (0.22% per

yr).

Which crops show highest yield variations between years?

-The highest yield variation between individual years was for wine grapes (32%), poppy (“valmo” in Swedish),
edible legumes and flax (18.5-18.3%), while the lowest level of variation was for cereals (oats, barley, wheat,
rye) and hay from arable land (9.7-12%). For many crops yield variation decreased with time (Chloupek et al.
2004).
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-Torssell (1953) reported on coefficients of variation for grain yields over the periods 1915 — 1947 for wheat,
1929-1949 (oats) and 1925-1950 (peas). They were for winter wheat 27,0 - 27,7 %, for white oats 17,4 - 24,7 %,
for black oats 15,5 - 22,1 %, and for peas 23,3 - 42,2 %, respectively.

Which crops responded best to favourable conditions?

-The most adaptable crops, whose yield increased most in favourable years, were flax, wheat, edible legumes,
maize, rape and barley, while the lowest level of adaptability was shown by hops, sugar beet, hay and poppy.
The higher the level of adaptability, the higher the yield growth over the 75 years analysed (Chloupek et al.
2004).

How large area is used for cropping?

-The decrease in agricultural land use in Sweden, arable land and pasture together, over the last four decades
(1961 — 2004) is ~ -623 000 ha (or about 16 %), or, for arable land alone, ~ -635 000 ha, corresponding to
almost 19 % (SJV, 2005).

-The decrease in agricultural land use in Europe over the last four decades is 13% (Rounsevell et al., 2003).

-The decrease in agricultural land use in Denmark over the last four decades is 14%, and for Greenland there is
an increase by 89% since 1990 due to fodder production (Danish EPA, 2005).

2. Current trends in agriculture

Which are the current trends in live-stock?

-From 1970 to 2003, in Denmark, cattle population decreased by 39%, pig increased by 55%, sheep increased by
100%, and poultry was roughly unchanged (Danish EPA, 2005).

Which are the current trends in greenhouse gas emissions due to agriculture?

-From 1990 to 2003 agriculture in Denmark has reduced its greenhouse gas emissions by 24%, the reason being
initiatives in nutrient management (Danish EPA, 2005). It accounted in 2003 for 17-19% of Denmark’s total
emissions. Today CH, annual emissions are 3.7 M tonnes CO, equivalents, and for N gas emissions 6.2 M
tonnes CO,_equivalents (43% from manure, 31% from run-off (Olesen et al., 2004), 6% from ammonium
(mainly manure handling in animal housing (Mikkelsen et al., 2005)). Of the reduction of about 2.4 M tonnes
CO, equivalents per year almost all (2.2) are due to reduction in N-gas emissions (Danish EPA, 2005).

Which are the current trends in N leaching?

-In 2003 the N leaching was reduced by 1 k tonnes N per year for whole Denmark (Olesen, 2005, Grant et al.,
2000).
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3. Climate impacts on agriculture

Principal relations between climate and agricultural crop production are the bases for making climate change
impact assessments. The assessments concern different scales, ranging from the yield/quality changes of a
specific crop in a s specific field, to changes in crop types and crop sequences on farm level and regional scales.
The evaluation also concerns different factors like crop production and its impacts on the environment in terms
of pollution and sequestration, as well as spread of diseases. General principles for how such factors react on a
change in climate exist for some factors but not for others, and have different generality. The principles are
derived from observations and application of models. The aim of this section is to describe available principals
and methods, already used or potentially useful for assessments of agricultural production and land use in
Sweden under climate change, as well as observed data on relations to climate confirming or falsifying these
principles.

3. Solil

How do soil processes respond to climate?

How does the microbial respiration react on temperature?

-Rustad et al. (2001) found that increased temperature (0.3 — 6 °C) increased soil respiration by 18-22%, for
different types of biomes: grassland, forest and low tundra. The effect was highest in the forest. They used
physical heating methods including electrical ground cables, greenhouses, field chambers, infrared lamps and
passive night time warming.

-An increase of 5 °C in atmospheric temperature could have the potential to produce a significant increase in
enchytraeid (“sma varelser” in Swedish) activity resulting in a near twofold increase in soil CO, release from the
soil. The interaction between temperature and soil biology will clearly be an important determinant of soil
respiration responses to global warming (Briones et al., 2004).

How does the microbial respiration react on drought?

-Sowerby et al. (2005) investigated the effect of periodic drought and increased temperature on microbial
activity in four heathland ecosystems along a geographical and climatic gradient across Europe. The effect of
drought on microbial activity and soil physic-chemical properties was more pronounced in the northern
European sites than in the southern European. This suggests that the effect of temperature increases may be
observed across all regions; however, the soils of northern Europe may be more sensitive to changes in rainfall
patterns than more moisture limited Southern European soils. The study was within the large pan-European
projects, CLIMOOR and VULCAN. Fluorogenically labelled substrates for four enzymes (glucosidase,
sulphatase, phosphatase, leucine amino peptidase) were used to measure extra-cellular enzyme activity in soil
samples from each of the CLIMOOR sites.

How does nitrogen mineralisation react on temperature?

-Rustad et al. (2001) found that increased temperature (0.3 — 6 °C) increased N mineralisation by soil respiration
by 30-64%, for different types of biomes: grassland, forest and low tundra. (For method see the same section
above).

How do mycorrhiza fungi react on temperature?

-Rillig et al. (2002) indicated that ecosystem warming may stimulate carbon allocation to AMF (abuscular
mycorrhiza fungi), using infrared heaters in a field experiment in an annual grassland, USA. AMF soil hyphal
length was increased by over 40% in the warmed plots, accompanied by a strong trend for AMF root
colonization increase. In the second year, AMF root colonization increased significantly in the warmed plots.
Concentration of the soil protein glomalin, a glycoprotein produced by AMF hyphae with importance for soil
aggregation and soil aggregate water stability, was decreased in the warmed plots. There were no effects on
measured weight, length and average diameter of roots. They observed small changes in soil aggregation, and if
widespread among terrestrial ecosystems, they suggest that this could have important consequences for soil
carbon storage and erosion in a warmed climate, especially if there are cumulative effects of warming.

How does the temporal distribution of precipitation influence soil moisture and growth?

-In a field experiment in a Kansas tall grass prairie, Fay et al. (2002) studied the effect of reduced rainfall
quantity (30 % smaller rain events, no change in rainfall pattern) and an altered more extreme distribution of
rainfall (no reduction in quantity, 50 % increased inter —rainfall pattern). It was concluded that, (1) temporal
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variability in rainfall inputs can have as much impact on soil moisture as simple reductions in rainfall quantities
with no change in temporal distribution and (2) that altered rainfall patterns may have the potential to offset
elevated CO, impacts on grassland vegetation (same experiment as Harper et al., 2005).

-Fang et al. (2005) found that more frequent precipitation significantly increase growth of grasslands and
broadleaved deciduous trees in China.

How does temperature influence soil C stocks?

-Knorr et al. (2005) concluded that soil organic carbon pools with longer turnover times are more sensitive to
temperature.

-Reichstein et al. (2005) concluded that it is premature to conclude that stable soil carbon is more sensitive to
temperature than labile carbon. They showed that the conclusion by Knorr et al. (2005) is equivocal, largely
dependent on the specific selection of data and does not persist when the data set of Katterer et al. (1998) is
analysed.

How do soil processes respond to CO,?

How does the root- microbial system react on elevated CO,?

-Net primary productivity below ground and CO,-C production in the soil was stimulated by elevated CO,,
consistent with increased input of root biomass and readily decomposable material, evaluated in controlled
environment experiments (Newton et al., 1995). Microbial biomass was unchanged, but enchytraeids were more
abundant.

How does the soil fauna react on elevated CO,?
-There was in general an increase in soil fauna community of grasslands (1-2 years) under elevated CO,, from
reviewed literature (90 references) (Tate and Ross, 1997).

How does N mineralisation react on elevated CO,?
-No effect on N mineralisation was observed under elevated CO, in controlled environment experiments
(Newton et al., 1995).

How does decomposition rate change under elevated CO,?
-Sindhdj et al. (2006) measured that the C loss from root of a semi-grassland, under doubled CO, increased from
53 % to 57 % during a 160 day period. A six-year experiment with open top chambers was used.

Is C and N storage influenced by elevated CO,?

-There was in general no increase of soil C of grasslands (1-2 years) under elevated CO,, from reviewed
literature (90 references) (Tate and Ross, 1997).

-Ross et al. (2004) concluded for grasslands in New Zealand that rising concentrations of atmospheric [CO,] in a
multi-species ecosystem had a significant increasing effect on microbial N, CO,-C production (0-14 days) in
field-moist soil, and net mineral-N production (14-56 days) in soil at 60 % of water-holding capacity. It had a
small predictable effect on soil C storage and nutrient availability. After 5 years' CO, exposure soil metabolic
activity tended to increase, with little changes in soil C pools. They used a free-air [CO,]-enriched (FACE)
system (475 pL/L) and seasonal sampling over a 5-year period, the influence of elevated atmospheric [CO,] on
soil C and N pools and mineralization in a fertilized (P, K, S), sheep-grazed pasture of mixed grass, clover, and
forb species on a seasonally dry sand (Mollic Psammagquent) in New Zealand. Most properties in 0-50 mm-depth
soil differed significantly with year of sampling, but [CO,]-treatment effects were non-significant for moisture,
pH, total C and N, extractable C and organic N, microbial C, and mineral-N. However, increased availability of
N is suggested, probably because of increased inputs from N-fixing clovers.

How is below ground allocation influenced by elevated CO,?
-In general below ground net primary productivity and C cycling rate increased of grasslands (1-2 years) under
elevated CO,, from reviewed literature (90 references) on global C budget (Tate and Ross, 1997).

How does increased CO, influence drainage?

-In a series of experiments with perennial ryegrass Casella et al. (1996) found for elevated CO, (700 ppm)
slightly reduced evapotranspiration during the growing season and increased drainage by 9 % during winter.
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How is CO, and temperature influencing C-N relations in soil?

-The effect of elevated CO, and +3 degrees temperature increase on C accumulation in a grassland soil (Rye
grass) was investigated in a long-term experiment (2.5 yr) (Loiseau and Soussana, 1999). Elevated CO,
increased the C/N ratios of the below ground phyto-mass and of the macro organic matter. A supplementary
fertilizer N or a 3 degrees temperature increase in elevated CO, reduced it. At the last sampling date elevated
CO, did not affect C/N ratio of the soil organic matter, but increased significantly the accumulation of roots and
macro organic matter.

How is CO, and soil moisture influencing C-N relations in soil?

-Ross et al. (2004) found in a FACE-experiment in New Zealand that relationships with soil moisture were
mainly non-significant for microbial C and N, but mainly significant for net mineral-N production in field-moist
soil, and highly significant for CO,-C production.

How is exchange of CO; between soil and atmosphere related to climate?

-Seasonal mean soil CO, flux decreased by 8 % under reduced rainfall amounts, by 13 % by altered rainfall
timing and by 20 % when both were combined in a tall-grass American prairie (Harper et al., 2005; same
experiment as Fay et al., 2002). The effect of timing highlights the complexity of the grass ecosystem.

How large are the C fluxes to the soil?
-A net carbon sink between 135 — 205 Tg .1 ) per year in Europe’s terrestrial biosphere is estimated, which is
equivalent to 7 — 12 % of the 1995 anthropogenic carbon emissions (Janssens et al., 2003).

How much does C transfer into soil vary between fields?
- A comparison (162 references) between eight studies showed that 0.1 —2.8 t C /ha was transferred to the soil
during one growing season (Ress et al., 2005).

How is C sequestration dependent on soil N availability?

-Daily net C assimilation was increased in elevated CO, by 29 % and 36 % at low and high N supplies
respectively in ryegrass swards in a 2-year experiment (France) (Casella and Soussana, 1997). On average a 35%
increase in below ground respiration was measured in elevated CO,. The below ground C storage was increased
by 32 % and 96 % at the high and low N respectively, with no significant effect of 3 degrees temperature rise.
-Lou et al. (2004) formulated the term “progressive N limitation” (PNL). A highly discussed issue in global
biochemistry is the regulation of terrestrial C sequestration by soil N availability. This causes a great uncertainty
in predicting future global terrestrial C sequestration. In PNL, available soil N becomes increasingly limiting as
C and N are sequestrated in long-lived plant biomass and soil organic matter. Testing and validation of the PNL
hypothesis remains to be done.

What is the contribution of agricultural land to the total potential European C storage?

-Recent studies have suggested that although the overall quantity of C stored in European soils is increasing, this
increase is confined to forested areas, and that many cropped soils are loosing organic matter. The biological
potential for C storage in European cropland lies between 9 —120 Mt C /year. Better process understanding is
needed to take advantage of this large potential (Ress et al., 2005).

-Leifeld et al. (2005) estimated that about 16 % of the national SOC (soil organic carbon) stock in Swiss
agricultural soils has been lost historically due to peat land cultivation, urbanisation, and deforestation. It seems
unlikely that future changes in agricultural practices could compensate for this historical SOC loss in Swiss
agricultural soils.

Which methods exist to predict soil C?

-Evrendilek and Wali (2001) developed a simple dynamic model to quantify long-term C dynamics in cropland.
(for results see “4. Soil” and “5. Soil”).

-In order to account for changes in net CO, emission a method for full carbon cycle analysis of agricultural
systems was developed. (West and Marland, 2002a,b).

-A model was developed to calculate carbon fluxes from agricultural soils. (Vleeshouwers and Verhagen, 2002).

Y1 Tg = 10" g = 1 million metric ton
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-Also, based on long-term observations, a conceptual model of the dynamics of soil carbon in Swedish soils has
been developed (Andrén et al., 2004). The model is intended to be used for estimates of soil carbon in a climate
change perspective.

Which methods exist to observe soil C?

-The natural abundance tracer technique can provide a rapid new clue to the fate of slurry in agricultural C and N
budgets, which is important for environmental impacts, farm waste management and climate change studies
(Glaser et al., 2001)

3. Crop productivity

How does climate influence crop production in Nordic countries?

How does Swedish crop production relate to climatic variations over time?

-Michael (2002) studied the climatic influences, on the hectare yields of both winter and spring wheat in Gotland
county during the period 1913-1999. The pattern of covariance between yields during “bad” and “good” years
respectively were related to the monthly temperature and precipitation conditions at Visby. It was concluded that
temperature conditions seems to be more decisive for the yields of winter wheat than for spring wheat, and for
winter wheat it is primarily the temperature during the winter (January-March) which seems to be most
important. The co-variance between yields and precipitation appeared more erratic and difficult to interpret, but
small precipitation amounts in March seem to be favourable both for winter and spring wheat. For spring wheat
it was favourable with an early sowing date.

Which climatic factors correlate with observed winter wheat yields in Denmark?

-Observed winter wheat grain yield for 7 sites in Denmark during 1971-97, were positively correlated with
temperatures in October, November and January, and radiation in April, but strongly negatively correlated with
precipitation in July (Olesen et al., 2000b).

How large part of observed crop variability is explained by variation in weather?

-Only 0-20 % of variations in observed (de-trended) winter wheat yield for 7 sites in Denmark during 1971-97,
could be explained by a weather driven model for crop growth (Olesen et al., 2000b). The predictability
depended on soil type. The observed yield was correlated with 5 climate factors (temperatures in October,
November and January, radiation in April, and precipitation in July), whereas the simulated yield was correlated
only with radiation in April.

Is water shortage to plant a problem in Scotland?
-Kerr et al. (1999) stated that water stress is not a problem in Scotland except for the south east, and specific
water demanding crops like potatoes.

Is water logging a problem in agriculture in Scotland?
-Kerr et al. (1999) reported that in 1998 many potatoes fields could not be harvested because of water logging.
They conclude that water logging is a larger problem to the Scottish farmer than water stress.

How does crop production in other countries respond to climate?

-Variations between years in growth in response to CO, can be largely explained by differences in weather
conditions (especially temperature) between growing seasons (Grashoff et al., 1995).

-In C; crops increased CO, stimulates yield, improves resource use efficiency and reduces Os toxicity (Fuhrer,
2003). Many of these advantages may be lost to some extent in higher temperatures.

-Warming accelerates plant development and reduces grain-fill, reduces nutrient use efficiency and increases
water use (Fuhrer, 2003)

-Xiao and Moody (2004) correlated a normalized vegetation index with mean precipitation and temperature over
11 years for six biomes in US. Within and across biome variance of means of gNDVI (normalized vegetation
index, integrated over the growing season) was correlated with spatial gradients in long-term average seasonal
climate. This gave relations between seasonal precipitation and temperature regimes and productivity, indicating
that these variations have particularly significant consequences for above ground plant productivity, especially
for grassland, shrub land and evergreen needle forest. Further increases in productivity can be expected with
associated consequences in C budgets.

-Bakker et al. (2005) found that wheat yield in central and southern Europe was strongly correlated also to gross
domestic product, on both national and local scale. In conclusion, climatic variables showed highest correlation
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to regional yield levels (0.83-0.88), whereas these yields were less correlated to economic as well as to soil
variables (0.51-0.73).

-Ciais et al. (2005) estimated for the dry year 2003 a 30 % reduction in gross primary productivity over Europe,
which resulted in a strong anomalous net source of CO, (0.5 Pg C/yr) to the atmosphere and reversed the effect
of 4 years of net ecosystem C sequestration. Productivity reduction in Eastern and Western Europe can be
explained by rainfall deficit and extreme summer heat. Ecosystem respiration also decreased, together with gross
primary productivity, with the temperature rise. For this evaluation they used measurements of ecosystem CO,
fluxes, remotely sensed radiation absorbed by plants, and country- level crop yields taken during the European
heat wave in 2003, together with a terrestrial biosphere simulation model that assessed continental scale changes
in primary productivity during 2003, and their consequences for the net C balance.

How is grain yield influenced by temperature?

-Pettersson et al. (2006) reviewed temperature effect on barley grain yield. Daily mean temperatures above 18 °C
decrease grain yield of wheat by 5 % per °C. For rice, though, the decrease does not start until above 27 °C, at a
similar rate 4.4 % per °C (Tashiro and Wardlaw, 1989). Wardlaw and Wrigley (1994) defined daily mean
temperature between 15-25 °C and maximum temperatures below 32 °C during grain filling as moderate
temperature not negatively affecting wheat. Higher temperatures were regarded as heat shock conditions. Several
other studies have used 32 °C or higher values as lower limit for injurious conditions (Mac Nicol et al., 1993;
Savin and Nicolas, 1996; Savin et al, 1996; Wallwork et al., 1998). However, other studies have observed
dramatic effects on wheat and barley also under moderate temperature conditions (Triboi and Triboi-Blondel,
2002; Passarella et al., 2002).

How has phenology been influenced by climate trends since 19707?

-Chmielewski, F.-M. (2003) reports the importance and use of phenological observations in agricultural practise,
and particularly the already observed effects of climatic change are discussed. It is stated that between 1969 and
2000, the average beginning of the growing season in Europe has advanced by 9 days, corresponding to a
significant trend (p<0.05) of -2.8 days/decade, and a relatively smaller shift of the end of the growing period (by
about 1 day/decade). Such changes in the length of the growing season can influence crop management in areas,
for example, such as cultivar selection, catch cropping and crop rotation.

How does crop production respond to El Nifio?

-Amissah-Arthur et al. (2002): The 1987-88 El Nifio had a significant effect on the growing season rainfall with
consequent positive influence on national maize yield in Kenya. However, it was found that the spatial and
seasonal variations in El Nifio influence on rainfall are highly inconclusive, except for some highland high
rainfall sites and seasons, in Kenya. Significant event-to-event variability was observed during the October-
January (OJ) crop-growing season. Furthermore, 'super El Nifio’s may give rise to larger rainfall responses than
normal El Nifio’s at some sites: the magnitude varies from site to site and the effect is not obvious at some sites.
They concluded that all El Nifio’s are not equal in terms of their regional manifestation, indicating that the
ability to predict rainfall variability a season in advance could have a major impact on the fragile Kenyan
(African) economy

How does elevated CO, affect growth?

-Yield (regrowth over 3 week interval) of temperate grassland species increased only slightly when subjected to
elevated CO,_ in controlled environment experiments (Newton et al., 1995). Net primary productivity below
ground was stimulated by elevated CO,.

-In contrast to the Newton et al. (1995, 1996) experiments, above ground production of two limestone grassland
communities was not stimulated by elevated CO, (enriched with 250 ppm CO,) at any time during two seasons
(Wolfenden and Diggle, 1995). However, rate of photosynthesis was increased, but also respiration. The results
suggest that increasing atmospheric CO, concentration is unlikely to cause large changes in net primary
production in these grasslands.

-In a controlled environment experiment with native short-grass steppe swards, elevated CO, (700 pL /L)
increased total biomass after two seasons with 19 %, with no significant differences between C3 and C4 grasses,
(Hunt et al., 1996).

-In field experiments with ryegrass at a doubled atmospheric [CO,] (Jones et al., 1996), harvestable annual yield
increased with 20%, but the effect differed during the season and between years. Other effects were decrease in
LAl and canopy conductance.
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-Harvest index of spring wheat was not affected by a doubling of CO,-concentration in an open top chamber
experiment, over three seasons (1994-96) close to the Swedish west coast (Pleijel et al., 2000). In two seasons
the straw yield increased (+21% in 1996). Grain yield increased significantly in one year (+21% in 1994). There
was a positive chamber effect on grain yield.

-Pearson et al. (1997) also found production in lettuce to increase 32% with an increase in CO, from 350 to 700
ppm.

- Batts et al. (1998) observed a 7-35 % increase in production after 500 degree-days, at elevated CO..

-Tuber yield of potato was not significantly affected by a doubling of CO,-concentration in an open top chamber
experiment in 1998, north of Gothenburg (Persson et al., 2003). Number of tubers with lower size increased,
though. Haulm dry weight decreased (15 %) as did haulm/tuber ratio. They conclude that potato growth response
to CO; and a (potential) effect of ozone are not simply additative.

-The production of soybean increased by 18-15% when grown in open-air experiments (USA), where the
concentration of CO, had been raised to 550 ppm (Morgan et al., 2005). This yield increase is smaller than
predicted from growth chamber studies. The findings are important since soybean is planted on more land on the
globe than any other dicotelydonous plant.

How do elevated concentrations of CO, influence effects of water conditions on growth?

-In grassland experiments under controlled conditions Newton et al. (1996) observed different strategies in
response to soil moisture stress, depending on CO, concentration. At ambient CO, concentration, growth
stopped, but plants were able to respond strongly on rewatering. At elevated CO, growth continued (particularly
below ground), but no additional growth was evident on rewatering. After 428 days the total amount CO, fixed
was 33% higher in the elevated CO, atmosphere. Thus interactions with water availability and elevated CO,
have the potential to be important factors in determining future forage supply from temperate pastures.

-Soil moisture increased in spring wheat at a doubling of CO, concentration in one (1996) out of three seasons
(1994-96), in an open top chambers experiment, close to the Swedish west coast (Pleijel et al., 2000).

-Raising the atmospheric CO, concentration from 363 to 484 umol /mol reduced midday latent heat fluxes by 50
W m for wheat fertilised with 35 g N m?, and by 100 W m™ for wheat fertilised with only 7 g N m?, when N
deficits developed later in the season (Grant et al., 2001). These reductions were dependent on wind speed. At a
seasonal time scale the above raise in CO, reduced simulated and measured evapotranspiration of wheat by 7-9%
at high N and by 16-19% at low N. Models of changes in atmospheric CO, concentration in mass and energy
exchange studies should therefore reflect N availability and wind.

How does elevated CO, influence temperature effects on growth?

-In a controlled environment experiment with native short-grass steppe swards Hunt et al. (1996) found that the
positive effect of CO, was greater at normal temperatures in the C4 grass, and greater at elevated temperatures in
the C3 grass. Intermediate watering regime gave best response. There was no effect on root/shoot ratio or
production of seed heads.

What do we know, and not, so far, concerning CO, effects on growth?

-In a report from “Australian Greenhouse Office” in the Department of the Environment and Heritage, Australia
(Steffen, W. and Canadell, P., 2005) the current knowledge on “Carbon Dioxide Fertilisation and Climate
Change Policy”, also outside Australia, are discussed. There is an agreement that different water balance
processes operate at different scales from the leaf to the plant to the ecosystem. Any attempt to extrapolate the
effects of elevated CO, on plant water use efficiencies from micro-level studies to macro-level understanding
must be undertaken with extreme care. The knowledge based on the effects of step-wise increases in atmospheric
CO, on fundamental physiological effects at leaf level appears quite robust. There is, however, an increasing
uncertainty concerning the effects of elevated CO, on growth, yield and water use when scaling up to
monoculture cropping systems, perennial pasture/rangelands systems and short-rotation plantation forests.
Uncertainty increases further when the effects are scaled up to mature forests over long timescales. In addition,
little is known about the effects at the system level when other effects of elevated CO, (e.g. carbon allocation,
nutrient interactions, inter-species competition) are considered concurrently.

How is ozon affecting plants under waterstress?

-Jaggi et al. (2005) concluded that in species such as T. pratense stomatal Oz uptake can be maintained during
dry periods when roots can reach deeper soil layers where water is not a limiting factor. The strongest effect of
05 on 8"3C occurred in the absence of irrigation, suggesting that under field conditions lack of moisture in the
topsoil does not always lead to protection from O, uptake. They measured stable carbon isotope ratios (§**C) and
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leaf conductance (2002, 2003) in four dicotyledon plant species at two levels of ozone (Os) with or without
irrigation.

How does climate variability influence crop production?

-Mearns et al. (1992) performed sensitivity analyses of how crop-climate models respond to changes in climate
variability. Wheat yields were simulated for two regions in Kansas. Increases in variability of both temperature
and precipitation resulted in significant increases in yield variability and crop failures, but precipitation changes
had a more pronounced effect. It is concluded that not only mean but also variability changes of climate
variables must be considered in estimates of the impact of climate change on production.

-Semenov and Porter (1995) question the rationale in formulating average climatic change scenarios when used
in combination with the many non-linear responses of crops to their environment. Accordingly, they coupled a
wheat model, AFRCWHEAT2, with a stochastic weather generator and found that modelled changes in
temperature variability may have more profound effect on simulated grain yield than changes in mean values.
-Mitchell et al. (1995) observed wheat growth in a controlled environment facility at two CO, concentrations
(350 and 700 ppm) and two temperature regimes (tracking ambient and ambient +4 °C). Dry matter production
and grain yield increased 27 % and 39 % respectively for CO, and decreased by -16 % and —35 % for increased
temperatures. The results were analysed with AFRCWHEAT1. It was found that the model could be improved in
the earlier vegetative phase of the growth.

-Ferris et al. (1998) suggested that crop responses to increased temperature must be considered in terms of not
only mean temperature but also in terms of variability. The frequency of episodes of brief hot temperatures can
be detrimental to annual crop seed or grain production.

-Wheeler et al. (2000): Evidence is presented for the importance of variability in temperature, independent of
any substantial changes in mean seasonal temperature. Seed yields are particularly sensitive to brief episodes of
hot temperatures if these coincide with critical stages of crop development. Hot temperatures at the time of
flowering can reduce the potential number of seeds or grains that subsequently contribute to the crop yield.
-Richter et al. (2001) and Pidgeon et al. (2001) developed a model for sugar beet and tested it to describe the
water and radiation use efficiency relations in production. European sugar beet crops suffer from drought stress
and climatic change is likely to increase the frequency of drought situations.

-Wollenweber et al. (2003) found that biomass accumulation of winter wheat plants experiencing high
temperatures during the double-ridge stage was not affected, but reduced by 40 % when plants were subjected to
a heat event at anthesis. Grain number on the main and side tillers declined by 41 %, and individual grain weight
declined by 45 % with heat stress applied at the double-ridge stage and anthesis or at anthesis alone. The harvest
index was reduced from 0.53 to 0.33. The maximum rates of CO, assimilation increased with heat stress at the
double-ridge stage and higher rates were maintained throughout the growing season.

-Wollenweber et al. (2003) stated that increased climatic variability and more frequent episodes of extreme
conditions may result in crops being exposed to more than one extreme temperature event in a single growing
season and could decrease crop yields to the same extent as changes in mean temperature. The developmental
stage will determine the severity of plant damage. It was not known if the damaging effects of heat episodes at
different phenological stages are additive, but results of this study (Denmark) clearly indicate that an extreme
heat event at the double-ridge stage does not affect subsequent growth or the response of wheat to heat stress at
anthesis.

-Porter and Semenov (2005) pointed out that crops can respond nonlinearly to changes in growing conditions,
exhibit threshold responses and are subject to combinations of stress factors that affect growth, development and
yield. Increasing temperature and precipitation variability increases the risks to yield, (computer simulation,
experimental studies). Thus, climate variability and changes in the frequency of extreme events are important for
yield stability and quality.

-Porter and Semenov (2005): Using models of wheat, the concentration of grain protein is shown to respond to
changes in the mean and variability of temperature and precipitation events.

What further research is needed for predicting effects of climate variability?

-Wheeler et al. (2000) review evidence for the importance of variability in temperature for annual crop yields,
and consider how the impacts of these events may be predicted. Three research needs are identified: reliable
seasonal weather forecasts, robust predictions of crop development, and crop simulation models which are able
to quantify the effects of brief episodes of hot temperatures on seed yield.
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How does scale influence climate effects on crop production?

How do regional effects differ from those on the field scale?

-Simulation of the spatial crop yield variability (on a regional scale) requires data from more than one weather
station and a spatial resolution of soil data of 10 x 10 km? or finer in Denmark (Olesen et al., 2000).

How are climate effects on crop production modelled?

Which methods could be used for predicting effects of variation in climate?

-Bakker et al. (2005) found that wheat yield in central and southern Europe correlated strongly with several
climatic factors, separately, concluding that there is a high risk of confounding results using empirical regression
models on the regional scale.

Which factors are modelled and how do they respond to climate?

-In the beginning of 1990 the EPIC model was modified so it would account for the combined effect of increase
in CO, and the CO, induced climatic change (Stockle et al., 19923, b).

-Version GEM2 of the grassland ecosystem model links biochemical, ecophysiological and ecosystem processes
in a hierarchical approach (Chen et al., 1996). The model includes biochemical level mechanisms of C3 and C4
photosynthetic pathways to represent direct effects of CO, on plant growth, mechanistically simulated
biophysical processes which control interactions between the ecosystem and the atmosphere, and linked with
detailed biogeochemical process submodels. The model has been satisfactorily validated and can therefore
represent the interactions between several levels: photosynthesis and stomatal movements at the leaf level,
energy and gas exchanges at the canopy level, and water budget and nitrogen cycling at the ecosystem level. (For
model predictions, see below)

-Kleemola and Karvonen (1996) developed a model for snow dynamics and soil temperature in Finland. The
model was used in relation to barley production.

-Riedo et al. (1998) have developed a detailed pasture dynamics model for dry matter production, and fluxes of
carbon, nitrogen, water and energy. The model was validated and found suitable for global change assessments
in mid-European conditions between 500-1000 m above sea level. Similar work in lettuce by Pearson et al.
(1997), but this model was restricted to growth in relation to environmental changes.

- CO, effects on simulated wheat growth acted through effects on light use efficiency in three crop growth
models (AFRCWHEAT2, FASSET and Sirius; Jamieson et al., 2000).

-Curd initiation and harvest of cauliflower was modelled by Olesen and Grevesen (2000) basically as a function
of temperature and solar radiation influencing development, LAI and intercepted radiation.

-Models that predict radiation penetration in a plant stand on the bases of canopy architecture have been
developed (Birch et al., 2003). Such models can generate virtual plants and could be useful for studying details
in canopy responses to a changing climate. In this context the role of LAl in relation to increased CO, has been
pointed out by Ewert (2004). The modelling of LAI must be improved, which requires better understanding of
substrate allocation, leaf area development and senescence, and the role of LAl in controlling plant adaptation to
environmental changes.

-Detailed process models and simple parametric models for primary production and transpiration can be
effectively combined to scale leaf photosynthesis and transpiration up to large spatial scale (Chen and
Coughenour, 2004). Simulation with the GEMTM process model showed that net carbon assimilation was
proportional to intercepted PAR (photosynthetic active radiation), but RUE (radiation use efficiency) changed
with leaf N concentration, temperature and CO, concentration. Transpiration was linearly correlated with the
product of net primary production (NPP) and atmospheric water vapour deficit, and the slope varied with leaf N
concentration. RUE increased with leaf-N content asymptotically, and responded to temperature in an
asymptotic bell shaped pattern with a 22 °C and 26 °C optimal temperature at current ambient and doubled CO,
concentration, respectively. A simple parametric NPP model and a regional transpiration model were developed
from these relationships.

How well do models mimic observations?

-CENTURY is a general grassland model of the plant-soil ecosystem (Hall et al. 1995). It has been validated at
11 sites of tropical and temperate grasslands and then been used to model climatic change effects at 31 other
such sites. Predictions of plant and soil organic matter C and N requires knowledge of climate, soil texture, N
inputs and fire and grazing patterns. (Simulation results are shown below)

-A larger part of the yield variation between years was captured by the model on loamy soils than compared to
sandy soils. (Olesen et al., 2000).

-Models for describing the impact of climate and climate change on production have performed erratically when
tested against field measurements (Monteith, 2000).
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-Observed values on green area index, and shoot and grain biomass of wheat were reasonably well predicted by
three crop growth models (AFRCWHEAT?2, FASSET and Sirius; Jamieson et al., 2000).

-The interpretation and synthesizing of experiments with increased CO, and temperature in wheat has been
difficult because of the large variation in the experimental results (Wolf et al., 2002). Simulation of data from a
large number of wheat experiments in Europe and USA has shown poor agreement between observed and
calculated responses. A model improvement in terms of morphologic development and sink size is suggested for
improving the consistency and interpretability.

-Chen and Coughenour (2004) derived from the more detailed GEMTM process model a simple parametric net
primary production (NPP) model and a regional transpiration model. This model simulated well the seasonal and
inter-annual variation in regional NPP in the Central Grassland Region in USA.

3. Grassland

How does plant production react on temperature?

-Rustad et al. (2001) found that increased temperature (0.3 — 6 °C) increased plant production by 15-23 %, for
different types of biomes: grassland, forest and low tundra; most for tundra. Above ground production increased
most for cold regions. No correlations were found to geographic, climatic or environmental variables. (For
method see section 3. Soil)

How fast do grassland systems respond to a combination of CC and grazing?

-From Hurley Pasture Model simulations (Thornley and Cannell, 1997) it was concluded that; (1) initial
ecosystem responses to step wise (or gradual) changes can be different in both magnitude and sign compared to
the response to a new equilibrium state, and this can continue for many years; (2) grazing can drastically alter the
magnitude and sign of the response of grassland to climate change, and be highly site specific; (3) experiments
should try to lessen uncertainties about processes within models rather than try to predict ecosystem responses
directly. (For results, see section 4. Soil)

How does CO, influence growth?

How does increased CO, influence yield?

-Swards of monocultures of white clover and perennial rye grass and a mixture of the two were exposed season
long to ambient (380 ppm) and elevated (670 ppm) CO, concentrations (Schenk et al., 1997). Swards were
harvested four times at monthly intervals. The CO, related increase in seasonal yield was 16-38 % in white
clover monocultures, 12-29 % for mixed swards and 5-9 % for ryegrass monocultures.

How are radiation use, allocation and water use efficiency influenced by elevated CO,?

-In experiments with perennial ryegrass in the Wageningen Ritzolab (Schapendonk et al., 1997) light use
efficiency ranged between 1.5 g CO,/MJ for high light and ambient CO, to 2.8 g CO, /MJ for low light and
doubled CO,. The above ground NPP was greater by 29 % in 1994 and by 43 % in 1995 in the doubled CO,
treatment, but only 20 % and 25 % respectively was recovered in the periodical cuts. Thus there was a
preferential allocation of extra C to the root and soil. Elevated CO, decreased the specific respiration rate of the
shoots but total canopy respiration was not affected, due to higher amount of standing biomass. Allocation of C
to the roots was highest in the spring, low in the early summer and increasing again in late summer and autumn.
The total amount of C partitioned to roots and soil during the two years was 57% more in doubled CO,. The
average water use efficiency of the swards was increased by a factor of 1.5 in doubled CO,.

Does the initial growth stimulating CO, effect disappear in the long-term perspective?

-The initial stimulation of photosynthesis observed at elevated atmospheric CO, concentration in grasslands has
been predicted to be a transient phenomenon that will be constrained by the loss of photosynthetic capacity due
to other limitations, notably nutrients and sinks for carbohydrates (Ainsworth et al., 2003a). Legumes might be
expected to escape these feedbacks by N, fixation. This was tested for years 8-10 of a 10-year experiment at
FACE in Switzerland with white clover and high and low N supply. Elevated CO, increased both vegetative and
reproductive growth at both N-treatments. There was a strong effect of season on photosynthesis. The results
show that acclimation of photosynthetic capacity can occur in a N,-fixing species, in the field where there is no
restriction on sink capacity. However, even with acclimation there was a highly significant increase in
photosynthesis at elevated CO..

-In an experiment parallel to that of Ainsworth et al. (2003a), the response of 10 years of exposure of perennial
rye grass to elevated CO, at two nitrogen levels was studied by Ainsworth et al. (2003b). Over the 10 years as a
whole, growth at elevated CO, resulted in 43 % higher rate of light saturated leaf photosynthesis and a 36 %
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increase in daily integral of leaf CO, uptake. Photosynthetic stimulation was maintained despite a 30 % decrease
in stomatal conductance. In contrast with theoretical expectations and the results of shorter duration experiments,
the present results provide no significant change in photosynthetic stimulation across a 10- year period, or
greater acclimation in maximum carboxylation velocity or maximum rate of electron transport in the later years
of either nitrogen treatment.

How is root- shoot partitioning influenced by increased CO,?

-Sindhgj et al. (2004) measured root shoot partitioning of semi-natural grasslands in Uppsala (Sweden) in open
top chambers with elevated CO, (ambient +350 ppm). Root biomass of elevated CO, was 25 % higher than
ambient treatment in the first year, and 80 % higher in the 5:th year. The shoot biomass increased more in the
beginning (+50 %) but less in the end (+5%). This resulted in a clear shift in root to shoot ratio due to elevated
CO,, being 15 % less than that of ambient treatment in the first year and 70% larger in the 5:th year.

How are effects of elevated CO,-concentrations related to the N conditions?

How do effects of CO, depend on N conditions?

-Daepp et al. (2001) concluded from a 2-yr field experiment with swards of Lolium perenne that plant response
to elevated concentrations of atmospheric CO, may depend on the carbon sink strength, determined by the
availability of resources other than CO,, and the developmental stage. Biomass allocation and the height of the
plants, clearly depended on N fertilization and developmental stage. During vegetative growth, the greatest
increase in DM vyield occurred in high N treatment; with no change in DM allocation. At low N, residual
biomass, but not yield, increased, and the tillers were shorter. During reproductive growth, DM vyield increased
similarly across all N treatments; no change in DM and N partitioning. Mean weight and height of the
reproductive tillers increased. At high N availability, or during reproductive growth, carbon-sink limitation were
overcome and showed a strong yield response.

Will N use increase at higher CO, -concentrations, and how is this related to N uptake?

-Soussana et al. (1996) studied swards at two sub-optimal (160 and 530 kg N ha™ yr and one non-limiting
(1000 kg N ha™ yr' N fertilizer supplies. At elevated CO, leaf N concentration per unit mass at cutting was
reduced by 25 to 33 %. Under non-limiting N conditions, the leaf N concentration (% N) declined significantly
with shoot dry-matter (DM); in ambient CO,: %N = 4.9DM %, and in elevated CO,: %N = 5.3DM %2, The
results indicated a lower critical leaf N concentration in elevated than in ambient [CO,] for high, but not for low
values of shoot biomass. Under sub-optimal N conditions the ratio of the actual to the critical leaf N
concentration, was significantly lower in elevated CO,. This indicated a lower inorganic N availability for the
grass plants in elevated CO,, which was also apparent from the significant declines in the annual N yield, and the
N leaching during winter. For most cuts the harvested fraction of the plant dry-matter decreased in elevated N,
due to a 25-41% increase in the N contents of the roots. The annual means of the DM and N harvest indices were
highly correlated to the ratio between actual N and critical N concentration.

Which questions arise concerning N availability to plants?

-Riedo et al. (1998) made simulations that revealed the importance of a parameter for the nitrogen concentration
of the structural plant dry matter.

-The impact of elevated CO, on terrestrial ecosystems C balance is not clear because the resulting alterations in
C input, plant nutrient demand and water use efficiency often have contrasting impacts on microbiological
decomposition processes (Hu et al., 2005). One major source of uncertainty stems from the impact of elevated
CO, on N availability to plants and microbes (Hu et al., 2005). In a controlled environment experiment with
Avena, elevated CO, increased the plant N acquisition from the soil. The results suggest that elevated CO, may
tighten N cycling through facilitating N acquisition. It is uncertain if these results can be extrapolated to the
field. Long- term field experiments are needed to determine whether the effect of CO,-enhancement on plant N
acquisition can significantly increase N availability for plant growth in an elevated CO, environment.

In what way is CO; influencing plant uptake of N from soil and fertilizer?

-In a rye grass sward elevated CO, reduced the total amount of N harvested in the clipped parts of the sward
(Loiseau and Soussana, 2000). The harvested N derived from soil was reduced to a greater extent than that
derived from fertilizer. At two N-levels, elevated CO, modified the allocation of fertilizer N in the sward in
favour of the stubble and the roots and significantly increased the recovery of fertilizer N in the soil macro-
organic matter. This increase was associated with a decline in fertilizer N uptake, which supported the
hypothesis of a negative feed back of elevated CO, on the sward N yield and uptake. A 3-°C temperature
increase alleviated the CO, effect throughout much of the N cycle, increasing soil N mineralization, N derived
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from the soil in the harvests and the partitioning of the fertilizer N to the roots. Thus, at ambient temperature the
N cycle was slowed down under elevated CO,, which restricted the increase in above ground production, and
apparently contributed to the sequestration of carbon below ground. In contrast, a temperature increase under
elevated CO, stimulated the soil N cycle, improving the N nutrition of the sward, and restricted the soil C
sequestration.

Will N use increase at higher CO,, and how is this related to N uptake?

-Growth at elevated CO, resulted in reductions in apparent Rubisco activity in Agrostis sp., perennial rye grass
and white clover at two nutrient regimes (Davey et al., 1999), associated with reductions in total leaf nitrogen
content on a unit area bases. The photosynthetic nitrogen use efficiency (the rate of carbon assimilation per unit
leaf nitrogen) increased at elevated CO,, both owing to higher values of photosynthesis at elevated CO,, and as a
result of lower leaf nitrogen contents. Contrary to previous studies, this investigation indicates that elevated CO,
can stimulate photosynthesis under a severely limited nutrient supply. Changes in photosynthetic nitrogen use
efficiency may be a critical determinant of competition within low nutrient ecosystems and low input
agricultural systems.

-(Soussana et al., 2005) found in mixtures of Lolium perenne with Holcus lanatus or Festuca arundenacia that
N-use efficiency and N-uptake were negatively correlated. A high N-use efficiency, and conversely low N
uptake, appeared to favour the grasses in response to elevated CO,.

Will N fixation change at higher CO, and how does that influence C fixation?

-Soussana and Hartwig (1996) in a literature review (94 references), states that the responses of plants to
elevated CO; is dependent on the availability of nutrients, especially nitrogen. Elevated CO, generally increases
the C-N ratio in plant residues and exudates, which promotes temporary N-immobilization. In addition, both a
CO, stimulated increase in growth (= more N requiring) and an increase in N demand for the decomposition of
soil residues with a large C-N ratio will result under elevated CO, in a larger N-sink of the whole grassland
ecosystem. To balance the high C-N ratio in an elevated CO, grassland environment the import of N by
symbiotic N, fixation is one possibility. To explore this, the following hypothesis has been tested: (1) symbiotic
N, fixation in legumes will be enhanced under elevated CO,, (2) this enhancement will result in greater input of
N in the grassland system, and (3) larger N input will allow the sequestration of additional C above or below
ground. Long-term experimental data support the first two hypotheses, since (i) both the percentage and the
amount of fixed N increases in white clover grown under elevated CO,, and (ii) the contribution of fixed N to the
nitrogen nutrition of the mixed grass also increases in elevated CO,. Concerning the third hypothesis an
increased N input to the grassland from N, fixation usually promotes shoot growth (above ground C storage) in
elevated CO,. However, the consequences of this larger N input under elevated CO,, on the below ground
carbon fluxes is not fully understood. On the one hand, the increased quantity of plant residues might result in a
long-term C storage under ground; on the other hand the increased N may favour decomposition and reduce the
C storage.

-The concept of increased legume development and symbiotic N,- fixation triggered by an increased ecosystem
scale demand of N under elevated CO,, is confirmed by experiments in south England (Picon-Cochard et al.,
2004). DM vyields were increased by 26% and N-yields by 30%. Elevated concentrations of CO, also affected
plant competition in favour of the legumes.

How fast do grasslands react on elevated CO,?

-Cannell and Thornley (1998) used the Hurley Pasture Model to examine the short and long term responses of
British upland grasslands to elevated CO, under low N (5 kg N ha'yr™) and high N (100 kg N ha™* yr). In high
N, elevated CO, quickly increased NPP, total carbon and plant biomass by 30%. In low N treatment there was a
prolonged transient period when there was little response, but eventually, NPP, total carbon and plant biomass
more than doubled. The delay in response was due to an N immobilization and severe depletion of the soil
mineral N pool. The large response in the long term was due to an accumulation of N, as a result of decreased
leaching, decreased gaseous N losses and increased N,- fixation. This amplified the CO, response much more in
the N poor, than in the N rich grassland. It was concluded that (1) ecosystems use larger amounts of fixed carbon
at high CO, to acquire and retain nutrients, (2) in the long term and in the real timescale of increasing CO, the
response of nutrient poor ecosystems may be proportionally greater than that of nutrient rich ones, (3) short term
experiments on nutrient poor ecosystems may observe only the transient response, (4) the speed of ecosystems
response may be limited by the rate of nutrient accumulation, and (5) ecosystems models must represent
processes affecting nutrient acquisition and retention to be able to simulate the real world CO, responses.

-The Hurley Pasture model has been used to assess the effect of elevated CO, on the nitrogen cycle in grasslands
(Thornley and Cannell, 2000). Elevated CO, enriches the organic matter in plant and soils with C, which leads to
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removal of N from the soil mineral N pools into plant biomass, soil biomass and soil organic matter.
Immobilization then exceeds mineralization, and the ecosystem gradually increases in N. At the same time
elevated CO, increases N-fixation. The extra C fixed in elevated CO, atmosphere is used to capture and retain
more N and so the N cycle follows the C cycle. However, the amount of extra N fixed and retained by the
ecosystem each year is small (5-10 kg N ha™ yr') compared with the N in the immobilization -mineralization
cycle (ca. 1000 kg N ha™ yr). Therefore it can take decades to centuries to gear up to higher N levels. The
consequences of these relations are so complex that they probably need to be explored by modelling, and are
practically impossible to explore fully by experimentation.

-Thornley (2001) used a submodel of the Hurley Pasture Model (Cannell and Thornley, 1998) for a simple
approach to model the grass-legume dynamics. A target legume content of the sward was assumed to depend on
the C-N ratio of the easily mobilized C and N pools of the plant. Test of the model indicates that some important
aspects of grass legume competition could operate primarily through the C-N substrate ratio. This ratio may
determine those characteristics of morphology, growth and function that largely determine the relative
aboundance of C an N in a grass legume sward. The approach may be useful for climate change (CC)
investigations.

Will the fraction of N fixating species in grassland increase at high CO,?

-The stimulatory effect of doubled ambient CO, on grassland production averages about +17 % in ecosystem
based experiments (Campbell and Smith, 2000). Species composition change is likely to be an important
mechanism altering grassland production and its value for grazing live-stock, on average the legume content of
productive grass-legume swards is increased by +10% due to CO, enrichment. Leaf nitrogen reductions due to
elevated CO, are often observed, but are generally modest compared with other management factors.

-Ross et al. (2004) concluded that rising concentrations of atmospheric CO, in a multi-species ecosystem can
influence species composition and increase plant productivity. Total yields did not increase significantly, but the
proportions of clovers and forbs increased markedly.

What are the combined effects of CO, and other factors (other than N)?

Does a positive CO, effect on production overcome a negative drought effect?

-In a series of experiments with perennial ryegrass Casella et al. (1996) studied the effect of elevated CO, (700
ppm) at two N-levels (N+ and N-, respectively) and two water levels (field capacity (W+) or summer water
deficit and drainage in winter (W-)). During both years elevated CO, increased the annual above ground dry
matter yield of the W- swards by19% at N- and by 14% at N+, with the strongest effect in summer and smaller
in spring and fall. Elevated CO, slightly reduced evapotranspiration during the growing season and increased
drainage by 9 % during winter. There were strong interactions between temperature and CO, in soil moisture.
Therefore the altered climatic conditions acted both directly on the productivity and the water use of the sward,
and indirectly, through changes in the soil moisture content.

How large is the CO, effect on yield in comparison with temperature and cutting effects?

-In Australian experiments Volder et al. (2004) studied the grass Phalaris aquatica at ambient and elevated CO,
(750 ppm) and three temperature treatments: no warming, constant warming at +3 °C and a daytime warming of
2.2 °C combined with a night time warming of 4.0 °C, and two cutting frequencies. Averaged across 20 months
of growth there was an 11% vyield (?) increase at elevated CO,, no effect of the temperature treatments and a
negative (-19%) of defoliation. All responses were strongly seasonal with positive CO, response only in the
spring.

How is growth influenced by CO, and temperature?

Pure and mixed swards of subterranean clover and phalaris grass were subjected to ambient and +3.4 degrees C
and ambient and elevated CO, in eastern Australia (Lilley et al., 2001). After more than one year under elevated
CO,, foliage clover growth in the monoculture increased by 19 % and in the mixture by 31 %. Warming reduced
clover monoculture herbage production at ambient CO, by 28 % and reduced the growth enhancement in
elevated CO, by +8 %. Grass was not affected by either factor. Foliage growth in the mixture was increased by
34 % in response to higher CO,, but unaffected by warming. The two factors combined increased mixture
growth by 23 %. Long term effects on species composition and persistence are not clear from these experiments.
-Marissink et al. (2002) measured a 30-60% higher leaf photosynthesis, an 20-40 % lower stomatal conductance,
but no change in specific leaf area in shoots in semi-natural grasslands in Uppsala (Sweden) in open top
chambers with elevated CO, (ambient +350 ppm).
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How is growth influenced by CO,, temperature, precipitation and N?

-Dukes et al.(2005): A California grassland was exposed to elevated CO,, temperature, precipitation, and
nitrogen deposition for five years. Root and shoot production did not respond to elevated CO, or modest
warming. Supplemental precipitation led to increases in shoot production and offsetting decreases in root
production. Supplemental nitrate deposition increased total production by an average of 26%, primarily by
stimulating shoot growth. Interactions among the main treatments were rare. They suggest that this grassland
will respond minimally to changes in CO, concentration, winter precipitation and warming. Increased nitrate
deposition would have stronger effects on the grassland.

How is plant response to CO, enrichment related to cutting?

-Picon-Cochard et al. (2004) subjected monoliths of a fertile (although N limited) C; grassland community to an
atmospheric CO, enrichment (600 pmol /mol), from August 1998 to June 2001, at two contrasting cutting
frequencies (3 and 6 cuts per year). Elevated CO, affected dry matter (DM) yield of the swards (+26%) only in
the second year (2000), and the nitrogen yields (+30%). With the frequent cutting, the DM of the legume was
strongly increased by elevated CO,. This effect became also significant in the second year for the low cutting
frequency, where the DM of the forbs was strongly increased in elevated compared with ambient CO,. This
increased development of the forbs apparently led to a competitive decline of the grasses. The results agree with
the concept of an increased legume development and symbiotic N, fixation triggered by an increased ecosystem
scale demand of N under elevated CO,.

Which models simulate grassland dynamics?

-Hunt et al. (1991) have designed a grassland ecosystems model which simulates seasonal dynamics of shoots,
roots, soil water, mycorrhiza fungi, saprophytic microbes, soil fauna, inorganic nitrogen, plant residues and soil
organic matter (for results, see ‘4. Soil’).

-The Hurley Pasture Model (Thornley and Cannell, 1997) is process-based and copies the carbon, nitrogen and
water cycles in the soil-grass-animal system.

-Riedo et al. (1998) developed a mechanistically based ecosystem model for managed productive pastures. The
model simulates the annual production of plant biomass and the nitrogen balance, and seasonal patterns of
growth, and of fluxes of latent, sensible and soil heat. One hour time step is used. A soil biology submodel is
included. The model is designed for analysis of climatic change effects.

3. Crop quality

How does climate and CO; influence plant N?

How does increased CO,-levels influence plant N or protein content?

-In field experiments with ryegrass in double CO, concentration (Jones et al., 1996), increased C/N ratio in the
tissues (lower protein content) was found.

-Schenk et al. (1997) studied the effect of increased CO; in grass and clover swards: The crude protein content
was reduced at the beginning of the season only, and was increased by CO; in the coarse of the experiment. The
yield of N was significantly enhanced by CO,.

-Grain protein concentration decreased in spring wheat at a doubling of CO,-concentration in two (1994 by -13
% and 1995 by -11 %) out of three seasons (1994-96), in an open top chamber experiment, close to the Swedish
west coast (Pleijel et al., 2000). For irrigation treatment only, there was a decrease in protein concentration (-
6%).

-Protein concentration of spring wheat was negatively (linearly) related to grain yield. This relation holds when
grain yield was either increased by doubling CO, or decreased by increased ozone levels in an open top chamber
experiment, close to the Swedish west coast (Pleijel et al., 2000). Effects of water treatments had a minor effect.
-Marissink et al. (2002) measured a 5-20 % decrease in shoot N concentration in semi-natural grasslands in
Uppsala (Sweden) in open top chambers with elevated CO, (ambient +350 ppm).

-Picon-Cochard et al. (2004) found in legume experiments in south England that DM yields were increased by
26 % and N-yields by 30 % at elevated CO,. Digestibility was improved by decline in cell wall constituents and
stem to leaf ratio.

How is N concentration influenced by CO, and temperature?

-Perennial rye grass swards were subjected to ambient and elevated CO, at ambient and ambient +3 degrees C at
two sub-optimal and one non- limiting N-level (Soussana et al., 1998). At cutting date elevated CO, reduced the
leaf N concentration per unit mass by 25 % to 33 % on average. With the non-limiting N supply the leaf N
concentration (%N) declined with the shoot DM in both ambient and elevated CO,. The regressions were
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significantly different between CO, levels and indicated a lower critical leaf N concentration in elevated than in
ambient CO,, but not for low values of shoot biomass. With the sub-optimal N supplies the ratio of actual to the
critical leaf N concentration was significantly lowered in elevated CO,. This indicated a lower inorganic N
availability for the grass plants in elevated CO,. For most cuts the harvested fraction of the plant DM decreased
in elevated CO,, due to a 45-52 % increase in the root phytomass. In the same way, a smaller share of the plant
total N was harvested by cutting, due to a 25-41 % increase in the N content of roots.

How does high temperature episodes influence leaf N?
-Wollenweber et al. (2003) found that winter wheat plants experiencing high temperatures during the double-
ridge stage reduced leaf N content by 10 %, and a heat event at anthesis reduced it by 25 %.

How does increased CO, -concentrations influence plant nutrient content (other than N)?

-Schenk et al. (1997) studied the effects of increased atmospheric CO; in grass and clover swards;: K and Na
decreased, Ca increased and P was unchanged by CO, enrichment. The yield of P, S, Mg and Ca was
significantly enhanced by CO,. Besides the positive effects of CO, quality should also be considered in response
to expected global changes.

-Picon-Cochard et al (2004) observed for a fertile Cs- grassland community an increase in the water soluble
sugar content of the bulk forage under elevated CO, and a corresponding decline in cell wall contents (NDF),
correlated with an increased in-vitro DM digestibility. The forage quality was also indirectly affected by elevated
CO, through changes in leaf/stem ratio and in botanical composition. At a low cutting frequency, the increased
forbs content favoured the herbage quality because of a higher digestibility of the forbs shoots and, indirectly,
through the reduction in the mass of the grass stems. The results emphasize the role of species dynamics for
elevated CO, impacts on semi-natural grassland productivity and herbage quality.

How does increased CO, influence other plant quality parameters?

-In field experiments with ryegrass in double CO, concentration (Jones et al., 1996) there was no effect on
digestibility.

-Schenk et al. (1997) studied the effects of increased CO, in grass and clover swards: Crude fibre content
decreased throughout the season.

-Soluble carbohydrates (WSC), fructans, starch and total non-structural carbohydrates (TNC) in leaves of spring
wheat was higher under doubled CO, concentration than at ambient before anthesis, indicating sink limitation.
After anthesis leaf WSC and TNC decreased faster under elevated CO,, possibly due to earlier senescence. At
harvest there was no effect of elevated CO, left. The effect was larger due to an increase from 360 to 520 ppm
than from 520 to 680 ppm. The experiment was conducted in open top chambers (Sild et al., 1999).

How does elevated concentrations of ozone influence effects of elevated CO,?

-1000-grain weight of spring wheat decreased at elevated ozone at present CO, levels, but remained unchanged
at a doubling of CO,-concentration, in an open top chamber experiment, close to Swedish west coast (Pleijel et
al., 2000).

How does a delayed sowing date influence protein concentration of barley?
-Pettersson and Eckersten (2007) found for malting barley in central Sweden a strong correlation between
delayed sowing date and decreasing protein concentration.

3. Weeds

How may increased temperature promote invasion of weeds?

-Increased temperatures give rise to faster development in plants (e.g. seeding, several generations/year), which
in combination with a longer vegetative period will create the conditions for more southerly species to invade
and establish themselves as weeds (Glemitz et al., 2000).

How does increased CO, concentration influence C3 and C4 weed species?

-An increase in CO, concentration would increase net photosynthesis in C3 plants through decreased losses as
regards photorespiration. In C4 plants on the other hand, an increase in CO, concentrations would have little
effect on net photosynthesis, which would therefore increase the competitive advantage of the C3 plants
(Patterson, 1995).

-In C3 crops increased CO, improves competition with C4 weeds (Fuhrer, 2003).

-Warming accelerates favours of C4 weeds over C3 crops (Fuhrer, 2003).
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How does decreased frost influence weed development?

-Frost-intolerant species can also be expected to shift their ranges further northwards with milder winters.
Examples of these are black-grass (Alopecurus myosuroides), green nightshade (Solanum physalifolium) and
common fiddleneck (Amsinckia micrantha) (Millberg and Andersson, 2006). At present, these species only
occur in the most southerly parts of Sweden. Increasing temperatures might also allow some native ‘sleeper
weeds’ to become invasive and move into habitats (arable land, etc.) where they have not previously been found
in modern agriculture. Such an invasion is also strongly linked to the design of future cultivation practices and
cropping systems (Fogelfors, 1979).

Which weed species might be favoured in new cropping systems?

-Maize, competes poorly against weeds, and weed species with late development and poor competitive ability,
e.g. millet species, common amaranth and black nightshade (Solanum nigrum) are favoured. (Hakansson, 2003).
-An increase in the proportion of autumn-sown crops (e.g. wheat, oilseed rape and possibly oats), favour winter
annual weeds such as black-grass and loose silky-bent (Apera spica-venti) while also opening the way for
establishment of new species such as Avena ludoviciana etc. (Fogelfors, 2001; Hékansson, 2003).

3. Pests

What is known about climate influence on pests?

-Most published work on responses to weather and microclimate has dealt with crops. Less intention has been
paid to pests (Monteith, 2000).

How does number of insect pest species depend on temperature?

-Yamamura et al. (2006) found for paddy fields in Japan that the number of rice stem borer and green rice
leafhopper in summer increases with increasing winter temperatures, but the effect was not carried over to the
next summer. They also studied small brown planthopper. They used a state-space model selected by Akaike’s
information criterion to analyse 50 year annual light-trap data.

How are herbivorous insects influenced by temperature, CO,, UVB and precipitation?

-Bale et al. (2002) found in a review that temperature is the dominant abiotic factor directly affecting
herbivorous insects. There is little evidence of any direct effects of CO,, UVB or precipitation. Temperature
directly affects development, survival, range and abundance. The main effect in temperate regions is to influence
winter survival; at more northerly latitudes, higher temperatures extend the summer season, increasing the
available thermal budget for growth and reproduction. Photoperiod is the dominant cue for the seasonal
synchrony of temperate insects, but their thermal requirements may differ at different times of year. Interactions
between photoperiod and temperature determine phenology. Species with a large geographical range will tend to
be less affected. They conclude that insect herbivores show a number of distinct life-history strategies to exploit
plants with different growth forms and strategies, which will be differentially affected by climate warming.
Future research needs to consider insect phenotypic and genotypic flexibility, their responses to global change
parameters operating in concert, and awareness that some patterns may only become apparent in the longer term.

How does elevated CO, influence the effects of herbivores on growth?

-In a work by Diaz et al. (1988) aphids and garden snails were used as herbivores. Elevated concentrations of
CO, did not have a significant impact on (1) the combined biomass of fast growing and slow growing plants, (2)
herbivore feeding preferences or (3) herbivore fitness.

How does plant quality for insects change under elevated CO,?
-Drake et al. (1997) concluded that reduced plant nutrient quality for insects is a possibility under CC that has
been observed in field studies of the effects of elevated CO,

How does land use influence number of aphids?

-Cocu et al. (2005) found that land use variables, the area of agricultural crops, in particular oilseed rape, were
positively correlated with M. persicae annual numbers. Rainfall is negatively and temperature positively
correlated with aphid numbers. The geographical components also explain a significant part of aphid annual
numbers. However, the variance partitioning procedure indicates that while each group has an effect, none is
dominant. The study was focused on the aphid Myzus persicae, and aspects of its environment. They concluded
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that climate, land use and geographical location play a role in determining patterns of aphid annual numbers and
phenology. The study also includes Sweden.

How do different methods for predicting number of aphids perform?

-Cocu et al. (2005) found that the variance accounted for by the ANN models (“artificial neural networks”) was
6 — 44 % higher than that of the MLR (multiple linear regression) models. They conclude that the ability of ANN
models to predict aphid distribution is improved by the inclusion of temporal land use data. However,
identification of the processes involved in such relationships is difficult due to numerous interactions between
the environmental factors. The study was on the aphid Myzus persicae, and aspects of its environment based on
four spatial scales in Europe, including Sweden. MLR was used to identify the variables in the Geographic
location, Climate and Land use groups, that explained significant proportions of the variance in M. persicae total
annual numbers and Julian date of first capture. A variance partitioning procedure was used to measure the
fraction of the variation that can be explained by each environmental factor and of shared variation between the
different factors. ANNs were employed as an alternative modelling approach to determine whether the
relationship between aphid and environmental variables was better described by more complex functions as well
as their ability to generalize to new data.

3. Animal husbandry

What is known about climate influence on live stock?

-Most published work on responses to weather and microclimate has dealt with crops. Less intention has been
paid to live stock (Monteith, 2000).

How will elevated CO, influence food quality to grazers?

-Surprisingly little has been published on the response to elevated CO, at the community level, where herbivores
can select their preferred food. In this work by Diaz et al. (1988) aphids and garden snails were used as
herbivores. Elevated CO, did not have a significant impact on (1) the combined biomass of fast growing and
slow growing plants, (2) herbivore feeding preferences or (3) herbivore fitness.

-Drake et al. (1997) concluded that reduced plant nutrient quality for animal grazers is a possibility that has been
observed in field studies of the effects of elevated CO,.

-Ehleringer et al. (2002) pointed out in a review paper that elevated CO, levels will likely alter food quality to
grazers both in terms of fine-scale (protein content, C/N ratio) and coarse-scale (Cs; versus C,;) changes. To
herbivores, the decreased leaf protein contents and increased C/N ratios common to all leaves under elevated
CO, imply a reduction in food quality. C4 grasses are a less nutritious food resource than C; grasses both in
terms of reduced protein content and increased C/N ratios. Today there is evidence that mammalian herbivores
differ in their preference for C; versus C4 food resources, although the factors contributing to these patterns are
not clear.

How are grazing animal returns to soil influenced by elevated CO,?

-Allard et al. (2003) compared nitrogen (N) returns from sheep grazing a temperate pasture exposed to ambient
or elevated CO, (475 umol mol™). A greater proportion of dietary N was partitioned to urine at elevated CO,,
probably because of the higher proportion of legume N in the diet, with possible differences in protein quality. A
potentially significant consequence of this change in partitioning is greater N loss through volatilization at higher
CO, levels.

How may the grazing season be simulated?

-Fitzgerald et al. (2005) developed a dairy system simulator, ‘Dairy-sim’, which was found useful for evaluating
the interaction of climate and management. Simulation results indicated that herbage production might vary by a
proportionality factor of 0.10 between regions. The length of the grazing season may vary by 0.25. The simulator
comprises three main components: a grass herbage growth model, an intake and grazing behaviour model, and a
nutrient demand model that was parameterized using the Irish National Dairy Blueprint. The simulator was most
sensitive to stocking rate, milk output per cow and nitrogen fertilizer inputs, but less sensitive to other variables.
Field data from four grazing systems were used to test the simulator.
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3. Biodiversity

How does increased CO, influence species composition?

-In controlled environment experiments with elevated CO, (Newton et al., 1995), species composition changed:
The grasses Paspalium and Lolium declined and the legume white clover increased, due to CO, induced
differences in axillary bud activity.

-Schenk et al. (1997): The white clover content of all swards was significantly enhanced by elevated CO,
-Marrisink and Hansson (2002) found that elevated CO, (ambient + 350ppm) influenced species composition in
a semi-natural grassland in Uppsala (Sweden). However, the effect was weak and difficult to distinguish from
time related effects due to changing weather conditions and changes in management (from being grazed by
horses to seasonal cutting). Diversity (Shannon index) increased during summer but decreased during spring.
The experiment was conducted in small open-top chambers over a six-year period.

-Ehleringer et al. (2002) point out in a review paper that elevated CO, levels will likely alter food quality to
grazers both in terms of fine-scale (protein content, C/N ratio) and coarse-scale (C3 versus C4) changes. The
abundance of C3 and C4 plants (particularly grasses) are affected by CO,. C4 grasses currently predominate over
C3 grasses in warmer climates and their distributions expand as atmospheric carbon dioxide levels decreased
during glacial periods. There is an indication that as C4-dominated ecosystems expanded 6-8 Ma B.P., there
were significant species-level changes in mammalian grazers.

-Teyssonneyre et al. (2002a) found that elevated concentrations of atmospheric CO, significantly increased the
proportion of dicotyledons (forbs + legumes) and reduced that of the monocotyledons (grasses). Management
differentiated the response. At infrequent defoliation elevated CO, increased the proportion of forbs, whereas at
frequent defoliation the proportion of legumes increased. They concluded that the botanical composition of
temperate C3 grasslands is likely to be affected by the current rise in the atmospheric CO, concentration (+ 0.5%
per year), and that grassland management guidelines may need to be adapted to a future high CO, world. The
experiment was monoliths of a fertile, N limited, grassland subjected to atmospheric CO, enrichment (600
pmol/mol) using a Mini-FACE system, from August 1998 to June 2001 in two contrasting cutting frequencies (3
and 6 cuts per year). Between the two dominant forbs species, only one was significantly enhanced by elevated
concentrations of CO,. Not all grass species responded negatively to high levels of CO,. At a low cutting
frequency, the observed decline in species diversity (Shannon-Weaver index) and in forbs species number under
ambient [CO,], was partly alleviated by elevated CO,.

-Ross et al. (2004) concluded that rising concentrations of atmospheric CO, in a multi-species ecosystem can
influence species composition and increase plant productivity After 5 years of elevated [CO;]-exposure
increased availability of N is suggested, probably because of increased inputs from N-fixing clovers.

How does increased CO, influence seed production and dispersal?

-Edwards et al. (2001) measured seed production and seedling recruitment over 2 years under ambient (360
ppm) and elevated (475 ppm) atmospheric CO5, in a sheep-grazed pasture on dry, sandy soil in New Zealand. In
both years elevated CO, led to more dispersed seeds of the three European grass species, two legumes and two
herb species. The increased seed dispersal reflected both more inflorescences per unit area and more seeds per
inflorescence under elevated CO,. They concluded that elevated concentrations of CO, influenced plant species
composition in the pasture through changes in the pattern of seedling recruitment.

How does temperature influence competitiveness between C3 and C4 plants?

-C4 plants are favoured over the photosynthetically more primitive C3 plants by warm humid climates and
conversely C3 plants by cold climates. Model calculations and analyses of current plant distribution suggest a
mean temperature of 22 degrees for the warmest month to be the cross over temperature at present CO,
concentration. C4 plants can be competitively excluded by trees regardless of photosynthetic superiority of the
C4 pathway (Collatz et al., 1998).

What can transects of plant diversity tell?

-A method based on multi-scale vegetation plots established across forest ecotones, which provide baseline data
on patterns of plant diversity, invasions of exotic plants species and plant migrations at landscape scales
(Colorado, USA) is proposed by Stohlgren et al. (2000). Replicate transects along several environmental
gradients may provide the means to monitor plant diversity and species migrations at the landscape scale.

-Lal (2005) mention that there is a strong relation between soil biodiversity and the increased labile fraction of
SOC.
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How to model species composition from resource use?

-Teyssonneyre et al. (2002b) hypothesized that species response to elevated CO, in mixtures can be explained by
taking into account resource partitioning between species. The dry matter yield response to CO, in a mixture
may be predicted from both the species response in monoculture and the light capture per unit leaf area in
ambient CO, of the mixed compared with the pure grasses. The hypothesis was tested experimentally on three
perennial C3 grass species (Lolium perenne, Festuca arundinacea and Holcus lanatus) grown in monocultures
and in binary mixtures (Lolium-Festuca and Lolium-Holcus) under mild competition (frequent cuts) or severe
competition (infrequent cuts) for light. N supply was high (40 g N /m?). Under mild competition for light, the
dry matter yield response to elevated CO, of the mixed grass species was similar to that observed in
monocultures. By contrast, under severe light competition, the grass species that absorbed more light per unit
leaf area (Holcus and Festuca), also had a greater response to elevated CO, in mixture compared with
monoculture.

How to address local-scale effects on biodiversity in CC modelling studies?

-del Barrio et al. (2006) made a modelling study using integrated approaches to analyse fine-scale impacts of CC
on species distributions within two contrasting regions (UK and Spain). They concluded: (i) CC involves the
development of transient conditions and fragmentation within the core of species distributions; (ii) CC would
favour the opening of gaps within the current vegetation zones, rather than a simple zonal shift of them. In the
study four models were integrated (a continental scale bioclimatic envelope model, a regional scale bio-climate
and land use suitability model, a dispersal model, and a connectivity model). Eight and six species respectively
were used to test the approach under three climate change scenarios. They conclude that dynamic and integrated
conservation policies are required, that take account of the current and potential future spatial arrangement of
species and their habitats, to assist species to respond to future environmental change.

3. Environment

How does climate influence emissions from agriculture?

How does climate influence C emissions?

-A model was developed to calculate carbon fluxes from agricultural soils. (VIeeshouwers and Verhagen, 2002).
Carbon emission from arable land and grassland was estimated to vary considerably in response to crop X soil x
climate interactions. Rise in temperature by 1 degree decreased carbon emission with 0.05 t C ha™ year,
whereas rising CO, concentrations gave an increase of 0.01t C hatyr.

How does climate influence N emissions?

-The IPCC estimates that over 50 % of the total N,O emission in New Zeeland derives from animal excreta
during grazing. In this work of de Klein et al. (2003) the N,O emission factor was refined. For cow urine it was
found for the first four months after urine application to vary greatly depending on rainfall and soil drainage
class, and ranged from 0.3 to 2.5 % of the urine N applied, suggesting that adopting a single emission factor for
New Zeeland might be wrong. The largest emission factor was found in a poorly drained soil, and the lowest on
a well drained soil. To characterise urine induced N,O emissions it was recommended to continue measurements
more than 4 months allowing the soil to return to background emission levels.

-Increased rainfall by 20 % was modelled (DAISY-model) to increase GHG emissions with 11-53 kg CO,-eq ha’
Lyr, for three types of crop rotations in Denmark (Olesen et al., 2004). Increased temperature by 4 °C increased
GHG emissions by 66-234 kg CO,-eq ha™ yr™.

May considerations of crop type and climate improve N,O emission estimates?

-Flynn et al. (2005) used a method to calculate N,O emissions that takes into account crop type or climatic
conditions, not considered in IPCC guidelines, and the trampling effects from grazing animals, for Scotland. The
new method produces significantly higher estimates of annual N,O emissions than the IPCC default method. On
a spatial basis, emission levels are closer to those calculated using field observations and detailed soil modelling
than to IPCC estimates.

How does CO, influence N emissions?

How does high levels of CO, influence N,O emissions in crops?

-The N,O emissions from spring wheat decreased at doubling CO,, from anthesis until harvest. After harvest the
N,O emissions increased, but was the same for elevated and ambient CO,. The results were from an open top
chamber experiment north of Gothenburg in Sweden (Pleijel et al., 1998). The protein content of spring wheat
was higher at elevated CO, suggesting that microbes competed harder with plant for N, than at ambient CO,.
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-Increased atmospheric CO2 by 50% was modelled (DAISY-model) to increase GHG emissions with 180-269
kg CO2-eq ha™* yr, for three types of crop rotations in Denmark (Olesen et al., 2004).

How do high levels of CO, influence N,O emissions in swards?

-Elevated CO2 increased N,O emission from high-fertilized swards of ryegrass, and a mixture of ryegrass and
white clover in an experiment in Switzerland (Baggs et al., 2003). The emission from monoculture white clover
was not affected by elevated CO,. The greater emissions from high fertilized ryegrass at elevated CO, were
attributed to greater below ground allocation under elevated CO, providing the energy for denitrification in the
presence of excess mineral N. An annual emission of 959 mg N,O m? yr (= 1.7 % of fertilizer N applied) was
measured from the high fertilized ryegrass under elevated CO,. Emission varies with rainfall and caution is
therefore required when extrapolating from short- term measurements. Thus elevated CO, may, depending on
sward composition and fertilizer management, increase green house gas emission of N,O. When applying high
rates of N fertilizer to grassland systems, pure white clover stands, or mixed swards with a greater proportion of
white clover, may minimize the negative effect on global warming of increasing atmospheric CO..

-Swiss experiments with ryegrass (Baggs et al., 2003) supported the hypothesis that increased below ground C
allocation under elevated CO, provides energy for denitrification. Nitrification was the dominant N,O producing
process under ambient CO, whereas denitrification was predominant under elevated CO,. The N,:N,O ratio was
often higher under elevated CO, suggesting that previous estimates of gaseous N losses based only on N,O
emission have greatly underestimated the loss of N by denitrification.

How large are emissions?

How large are N,O emissions?

-N,O emission from fertilized humid grassland in Ireland was continuously measured during 2003 using an eddy
covariance system (Heleh et al., 2005). For most of the year emission was close to zero, and 60% of the emission
occurred at eight major events of 2 to 20 days duration. 207 kg N /ha of synthetic N and 130 kg N /ha of organic
N was applied over the year.

How large are GHG emissions from agriculture of different European countries?

-An alternative and compatible method to the IPCC guidelines for estimates of gaseous emissions has been
developed by Fribauer (2002). It relies on emission factors and regression equations derived from all long term
measurements in Europe available by the end of 2001. As a result in 1995 European agriculture emitted 0.84 +
0.19 Tg N,O 8.1 £ 2.0 Tg CH; 9 + 25 Tg CO,, which adds up to 470 £80 Tg CO,-equivalents, 11% of the
overall GHG emissions. These figures are surprisingly close to UNFCCC inventory, but compared to the overall
EU figures, the approach taken here leads to higher agricultural CH,;-emission in Austria and the Netherlands, at
least 20% lower CH,-emission in Denmark, Germany, Greece, Spain and Sweden, and higher N,O emissions in
most EU states. It is concluded that the calculations given here are better than the IPCC guidelines.

How does cropping system influence emissions?

Do organic soils significantly contribute to overall N,O emissions?

-Fribauer (2002) estimated that in countries with even small areas of farmed organic soils, CO, emitted from
peat oxidation can significantly contribute to the overall GHG emissions.

How much do cropping systems influence emissions?

-Frank et al. (2001) used the Bowen ratio/energy balance (BREB) technique to measure CO, fluxes over a
mixed-grass prairie at Mandan, ND, in 1996-1999. Results suggest that the C budget of Northern Great Plains
mixed-grass prairie grasslands may be near equilibrium.

-Greenhouse gas (GHG) emission reduction of multi-product cropping systems is 3-4 times larger in the
Netherlands than in Poland (0.2-2.4 versus 0.9-7.8 CO, eq per ha and year. Greenhouse gas (GHG) emission
reduction is not lowered by multi-product cropping systems. Further research on large scale multi-product
systems and their impact on land is desirable (Dornburg et al., 2005).

-Two models for N,O emission from crops and grasslands were developed. The models demonstrated inter
annual variation in N,O emission from cropland but not from grasslands. The models can be used for estimation
of inter annual variation in N,O emission at the regional scale (Roelandt et al., 2005).

How much do N fixing crops influence emissions?

-Rochette and Janzen (2005) have reviewed the literature on N,O emissions from agricultural soils (73
references), and found no evidence for specific N,O emissions related to the biological N- fixation. The average
emissions from legumes are 1.0 kg N ha™ for annual crops, 1.8 kg N ha™ for pure forage crops and 0.4 kg N ha*
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for grass-legume mixtures. The N,O emissions from legumes are therefore a result of root and shoot
decomposition and not a direct result of the N-fixation process.

Which factors in animal husbandry influence greenhouse gas emissions?

-Gas abatement strategies for animal husbandry is reviewed by Monteny et al. (2006); (55 references). The
rumen is the main source for methane production, especially in cattle husbandry. Less, but still substantial
amounts originates from cattle, pig and poultry manure. The main sources for nitrous oxide are: nitrogen
fertilizers, land applied animal manure and urine deposit from grazing animals.

-The main uncertainties in estimating GHG emissions in milk production are lack of understanding of the
biological systems, poor validation of results and weather-induced variability (Gibbons et al., 2006).

How do N,O emissions respond to fertilization?

-For fertilized humid grassland in Ireland (Heleh et al., 2005) a reduction of fertilization from 207 to 170 kgN/ha
(there was organic fertilization of 130 kg N/ha, not changed) reduced annual modelled N,O emission from 22.4
kg N /ha, to 21.2 kg N /ha (to comply with recent EU water supply legislation).

How does land use and CO; influence uptake of atmospheric CO,?

-Berry and Roderick (2006) estimate an averaged rate of increase in living vegetation (roots, stems and leaves;
‘C-living’; CSI) of about 50 TgC /year over the last 200 years for the continent, due to increased CO, and
changed land use. Where wooded areas have been extensively cleared for agriculture, the CSI is negative (down
to -4g C m™ /year. Elsewhere, the CSI over the last 200 years ranges from similar to 55 g C m™ /year in the
tropical and subtropical forests to similar to 0 g C m™ /year in the most arid regions. The change resulting from
CO, alone is the difference between the nveg280.2 ) and nveg350° scenarios. The estimated ‘C-living’ for the
continent is 21 Gt for pveg350° for the present vegetation (i.e. 1988); 23 Gt for nveg350 a hypothetical natural
vegetation (in 1988); and 10 Gt for 350 umol /mol, the natural vegetation (in 1788). They used a tractable and
transparent approach (the TMSC model) to estimate the total stock of carbon (roots, stems and leaves) in (C-
living), based on gross primary productivity (GPP) estimates. The TMSC model utilises the TMS scheme of
canopy functional types and a generic allometric scheme to derive these estimates. Model estimates are
presented for the Australian continent under the following three vegetation-[CO,] scenarios: (1) the present
(1988) vegetation (pveg350) and (2) a hypothetical natural (1988) vegetation cover with atmospheric CO,
concentration ([CO,]) of 350 umol /mol (nveg350), and (3) the natural vegetation (1788) having [CO,] of 280
pumol /mol (nveg280). The change between the nveg280 and pveg350 scenarios represents the combined effects
of changes in land use and CO,.

How may emissions be predicted?

Which are the important feedback mechanisms between cropping systems and their emissions?

-In a general survey Smith and Almaraz (2004) states that crop production and climate change affect each other
because crop production (1) produces greenhouse gases, (2) is affected by climatic change, (3) will have to adapt
to changed climatic regimes and (4) has a potential role in mitigating the production of greenhouse gases.
Agriculture is a major producer of methane and nitrous oxide, but a minor producer of CO,.

Which methods exit to predict emissions?

-The IMAGE 2.0 and TVM are important models for calculation of the greenhouse gas fluxes between the
terrestrial biosphere and the atmosphere and global vegetation characteristics respectively (Leemans and
Vandenborn, 1994).

-A standard method from IPCC estimates direct N,O emissions from soils as a constant fraction (1.25%) of the
nitrogen input (Roelandt et al., 2005). This is not good enough, and therefore two empirical models (for
croplands and grasslands, respectively) were developed to calculate N,O emissions as a function of spatial and
temporal variation in environmental conditions. In the cropland model spring temperature and summer
precipitation explained 35 % of the variation. In the grassland model fertilizer rate and winter temperature
explained 48 % of the variation. The models can be used to estimate the effects of inter-annual variation in
climate and climate change on direct N,O emission from soils at the regional scale.

-Schills et al. 2006, using detailed farm data, concluded that the N surplus at the farm level is a useful indicator
of GHG emissions.

-Two multiple regression models were developed for the N,O emission as driven by fertilizer, topsoil, organic
carbon and sand content (Freibauer and Kaltschmitt, 2003). One model was derived for soils in the oceanic,

2 For explanation, see end of this summary.
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temperate west of Europe and one for sub-boreal Europe. In the first area the average emission rate was below 2
kg N,O ha' yr' and rarely exceeded 5 kg N,O ha™ yr. In the second area the variation was larger, between 0
and 27 kg N,O ha™ yr; dependent on available N. Compared to existing methods for large scale inventories, the
present regression models allow a better regional fit to measured values, since they integrate additional driving
forces for N,O emissions.

How well do models reproduce measured N,O emissions?
-For fertilized humid grassland in Ireland Heleh et al. (2005) compared measured N,O emission with model
predictions, resulting in a 32 % overestimation by the models.

3. Land use

Are components of agricultural systems sensitive?

-Kerr et al. (1999) suggested from preliminary results of a Scottish study that individual components of the
agricultural system appear to be inherently robust and adaptable.

In what ways does climate influence land use?

-Rounsevell et al. (2003) simulated the use of agricultural land using a whole farm model (SFARMOD; Audsley,
1993) based on both socio-economic and biogeophysical factors, and with the main assumption that land use is
ultimately determined by the farmer trying to maximise the profit. They tested the model for two regions in UK
and concluded that it well explains the spatial variation in land use. An important part of the model was to
simulate the timeliness and crop rotational penalties on costs for workable hours (Audsley, 1981) and crop
growth (simulated with the ACCESS model; Mayer et al., 1996).

How does choice of crop depend on climate?
-Danish EPA (2005) states that the maize area in Denmark has increased from 0.4% of total agricultural land in
1980 to 4.4% in 2003, in part as a consequence of a warmer climate.

How might a longer growing season influence the choice of crops?
-Kerr et al. (1999) stated that a longer growing season in Scotland would increase the diversity of crops, with the
potential of higher value crops, such as fodder maize, sugar beet and increased areas of oil seed rape.

How is land use modelled?

-Veldkamp and Lambin (2001) discuss different aspects of modelling land use. Most often models are either
considering a single process or a single discipline, like economy. Two new approaches for considering scales
have evolved, one with fixed spatial units combined with spatial regression analysis, and one with flexible
spatial units, like farms. Most models deal with impact of land use on biophysical processes. A new approach is
needed which should consider feedbacks between biophysical processes and land use, for instance, the influence
of C sequestration goals on land use.

-Ewert et al. (2005) described the ATEAM model used to estimate land use changes. The model is based on the
assumption that the productivity per region (P*L) is equal to the demand of that region (D) times a surplus
fraction (O) (i.e. Pa*Lo = Dg*Og). The land use in the future (L) can then be estimated assuming a value for
overproduction in future (O) and using models to estimate productivity per ha (P) and demand (D). The variables
depend on each other and an optimisation is needed.

How well is land use modelled?

-Ewert et al. (2005) applied the ATEAM model for historical data (1960-2000) and found, as an average for
Europe, that demand (D) increased by 50 %, the oversupply fraction (O) increased from 0.9 to 1.2, and the
technology factor increased ha yield (P) by 140% (P/P, = 2.4). This gave a change in land use area (L) of =19 %
(L/Lg = 0.81). The observed change in land use area was —15%.
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4. Climate change impact assessments on agriculture

Climate change impact assessments on crop production have been done for many countries in the world. Studies
directly aiming for Swedish conditions are comparable few, and therefore a question is to what extent studies
made elsewhere can be useful for assessing impacts on Swedish agriculture. The assessments have been made on
different scales ranging from controlled laboratory experiments, fields up to region and national and even global
levels. Depending on scale, different mechanisms of the agricultural system are significant. The aim of this
section is to present climate change (CC) impact assessment studies on crop production, and related effects on
the environment and the use of the agricultural land. The assumptions they are based on are presented in those
cases they are found in the abstracts concerned.

4. Methods

Which model approaches exist, to make CC assessments?

-There is insufficient information to predict the response to climate change of primary production of forests and
grasslands. However, predicting production from light interception and conversion efficiency is a promising
approach (Long and Hutchin 1991)

-The IPCC has developed a simple approach for calculating soil C sequestration and new parameters have been
determined by Ogle and Paustian (2004). The procedure provides a methodological framework for countries to
derive region specific coefficients.

-The current knowledge of carbon cycling and sequestration is discussed by Soussana et al. (2004) (58
references). They fitted a two parameter model to literature data. Temperate grasslands account for about 20% of
the land area in Europe and carbon accumulation in these systems occur mostly below ground. They also discuss
carbon fluxes within the context of farming systems, including crop — grass rotations and farm manure
applications.

-Changes in climate modify crop yield and variance in a way that is specific for the crop (Chen and
Schimmelpfennig, 2004). This variance can be estimated from observed variance projected into a climatic
change scenario.

Which climate factors are considered in CC assessments?

-Climate warming concerns based on daily temperature may be less important than rising night temperatures on
crop growth (Krupa, 2003).

-For estimation of the effect of climate change on national productivity of wheat it is not necessary to apply
detailed climatic information for Denmark (Olesen et al., 2000).

Which factors have been modelled, and which need further modelling?

-Our present knowledge of the joint effects on crops of increased [CO,], ultraviolet B-radiation and ozone is
virtually zero according to Krupa (1997).

-In a comprehensive literature survey Tubiello and Ewert (2002) conclude that about 20% of all crop modelling
studies since 1995 have focused on climatic impact studies. Half of these explicitly concerned the effect of
increased CO, on production. To improve confidence in predictions the authors recommend: (i) continued model
evaluation with existing field experiment data; (ii) increased focus on limiting factors such as pests, weeds and
diseases; and (iii) attention to temporal and spatial scaling issues.

-Effects of changing climate on crops are often based on univariate studies (Krupa 2003). Limited bivariate
studies may suggest that the effects of increased CO, and O3 may offset each other..

-To predict global change impact on agriculture much work has been devoted to models for plant production.
Some of these models concern whole cropping systems and the most comprehensive model in that respect
appears to be the work of Jones et al. (2003). This package incorporates models of 16 different crops with
modules for weather, soil (water, carbon, nitrogen, and temperature), soil-plant-atmosphere, crop growth,
management and pests. The model has capabilities to deal with the plant-soil- pest interactions in various
cropping systems under a specified sequence of years. This work is published by 10 American scientists in
European Journal of Agronomy with more than 150 references.

Are global effects of CC possible to assess from global mean temperature rise alone?

-Hitz and Smith (2004) surveyed the literature to assess the state of knowledge with regard to the presumed
benefits of reducing GHG emissions to lower levels. They reviewed published studies addressing global impacts
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of climate change. The criterion they used for quantifying the degree of climate change was increase in global
mean temperature (GMT), and their analysis focused on determining the general shape of the “damage curve”
expressed as a function of GMT. The studies examined covered a wide variety of sectors, e.g. sea level rise,
agriculture, water resources, human health, terrestrial and marine ecosystems productivity, and more. They
found that some sectors exhibit increasing adverse impacts with increasing GMT, e.g. biodiversity and possibly
marine ecosystem productivity. Other sectors are characterized by a parabolic response to temperature (i.e.,
benefits at lower GMT increases; damages at higher GMT increases), in particular agriculture, terrestrial
ecosystem productivity, and possibly forestry. One consistent pattern seemed to be that beyond approximately a
3-4 °C increase in GMT, all the studied sectors, possibly except for forestry, show increasing adverse impacts.
However, the authors found important uncertainties in the studies surveyed which prevented them from a precise
identification of this critical ‘threshold’.

4. Soils

How do CC influence soil organic matter?

-Soil organic C pool was predicted, using SOIL/SOILN models, to decrease by 5-10 gC m-2 y™* (10-15%) more
under CC (AT =+1.7 to +2.1 °C, AP =+4 to +22% and CO, =515 ppm) than at present climate for a mono crop
sequence of winter wheat in Sweden (Eckersten et al., 2001). Soil organic N storage was predicted to change in
similar relative terms.

-The rate of residual C addition to the soil is the primary factor that controls simulated soil organic matter for
Ohio cropland under continuous corn, wheat and oats for the period 1866-1996 (Evrendilek and Wali, 2001).
Also, the interaction of CO, fertilisation and a temperature increase of 0.5 °C decreased mean soil organic matter
under the same conditions and time period. Calculations show that long-term change in soil organic matter is a
measure of change in atmospheric CO..

-Sindhoj et al. (2006) projected a reduced loss of soil C under doubled CO,. Semi-natural grassland under
doubled CO, in Uppsala region lost 70 g C/m* during a 30- year period compared to 90 g C/m? at current CO,
levels. The main reason of a lower decrease under elevated CO, was due to increased litter input, which
overcomes increased decomposition rates. They used the ICBM model calibrated to a six-year open top chamber
experiment.

-In a surveying paper by Maracchi et al. (2005) on the impacts of present and future climate variability on
agriculture and forestry in Europe (ACACIA project) they quoted that agriculture may be negatively affected
with (increased) risk for nutrient leaching and accelerated breakdown of soil organic matter. Adaptation
management strategies should be introduced to reduce the negative impacts on the agricultural and forestry
sectors.

How will soil microbial community change under CC?
-Experimental results of Kandeler et al. (1998) suggest that on soils with low nutrient availability the effects of
CC on the soil microbial community and processes are likely to be small and largely unpredictable.

How will the soils C stock change under CC?

How might the European soil C stocks change under CC?

-Increased soil temperature and moisture will tend to speed-up decomposition and cause soil carbon stocks to
decrease, whereas increases in carbon input with increasing NPP will slow the loss. Technical improvement will
further increase C input. Changes in crop- and grassland areas will further affect the total carbon stock in
Europe. Considering all factors, crop- and grassland soils show a small increase in soil C under future climate: 1-
7 t C /ha for cropland and 3-6 t C /ha for grassland, but when the decreasing areas is considered the total
European C pool will decrease. (Some data on variation and uncertainties are also given). These results were
achieved in a pan European survey by Smith et al. (2005b) (45 references; similar to Ress et al., 2005),
estimating soil carbon on a European 10 x 10" grid using climate data from four global climate models.

-Schroter et al. (2005) estimated the soil organic C storage of Europe to decrease by 0.1 (IPCC scenario B1) to
4.8 (scenario A2) Pg C (0-30 cm depth) by 2080 depending on driving socio-economic scenarios. Main
contributor was a decrease in cropland C storage by 4.8 to 5.9 Pg C. C storage of grassland decreased for all
scenarios except for one (B2). Forest soil C increased by 0.7-3.6 Pg C.

How might the soil C stocks change under CC, world-wide or generally?

-A warming of ecosystems world wide caused soil carbon to decrease overall, especially in cold desert and
temperate steps. Increased production due to elevated CO, tended to make tropical savannas to soil carbon sinks
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actually. The estimates were done using the model CENTURY (Hall et al. 1995) to assess effects of climate
change.

Will the biosphere act as a C sink or a C source in the future?

-The terrestrial biosphere is predicted to be a net sink for carbon over practically all of the 21st century (Levy et
al. 2004). This sink peaks around 2050 and then diminishes rapidly towards the end of the century as a result of
climate change.

How does CC influence soil organic matter?

-Hunt et al. (1991) found by simulation that doubling CO, (1) caused persistent increase in primary production,
in despite of greater nitrogen limitation, and (2) led to greater storage of carbon in plant residues and soil organic
matter. The increased carbon storage was not great enough to keep pace with the present rate of increase in
atmospheric CO,.

-Using the Hurley Pasture Model Thornley and Cannell (1997) draw three conclusions about the operation of
grasslands as carbon sinks: (1) increasing CO, alone will produce a carbon sink, as long as it continues to
accelerate photosynthesis and increase NPP; (2) by contrast, increasing temperatures alone are likely to produce
a carbon source, because soil respiration is accelerated more than NPP, even when assuming the same
temperature function for most soil and plant biochemical processes; (3) the net effect of projected increases in
CO, and temperature is likely to be a carbon sink of 5-15 g C m™ yr'in humid temperate grasslands for several
decades, which is consistent with the magnitude of the hypothesised current global terrestrial carbon sink.
-CENTURY is a model of terrestrial biogeochemistry based on relationships between climate, management, soil
properties, plant productivity and decomposition (Parton et al. 1993). The grassland version of the model was
tested on data from 11 grasslands around the world. Soil C and N and plant biomass could be simulated within
+/- 25% of observed values. Results indicate that prediction of plant and soil organic matter (C and N) dynamics
requires knowledge of climate, soil texture and N inputs. Using the model, (Parton et al. 1995) simulated
climatic change to increase net primary production in 31 temperate and tropical grassland sites, except in cold
dessert steppe, and elevated CO, to increase production everywhere. Climate change caused soil C to decrease
overall, with a loss of 4 Pg from global grasslands after 50 years. Combined climate change and elevated CO,
increased production and reduced global grassland C losses to 2 Pg.

-Using the Terrestrial Ecosystems Model (TEM), a series of empirical regression equations were developed to
describe changes in global SOC (soil organic carbon) (McGuire et al. 1995). The study suggested that the
maximum loss of SOC to the atmosphere per °C warming is less than 2 % of the terrestrial soil carbon inventory.
Because the NPP response to elevated CO, has the potential to compensate for this loss, a scenario of an
accelerated greenhouse warming due to an enhanced CO, emission from SOC (i.e. due to a positive feedback
mechanism) is unlikely, unless a land use change or changes in vegetation distribution takes place.

How is C sequestration influenced by changes in water conditions under CC?

-In a semi-arid natural grassland in Alberta, Canada, long-term rate of C accumulation under current climate was
26 g C m? yr' (Li et al., 2004). Under CC increases in transpiration caused by rising temperatures were fully
offset by decreases in transpiration caused by rising CO,, thereby alleviating water deficits and lengthening
growing seasons. The consequent rise in grassland net primary production was largely offset by a rise in
heterotrophic respiration so that C sequestration rose by less than 2 g C m™ yr*under CC.

How is the carbon cycle in grasslands influenced by CC?

-Rising temperatures are supposed to increase decomposition of soil organic C leading to increased CO,
production and this extra CO, implies a positive feedback, which will raise the temperature further (van Ginkel
et al., 1999). Negative feedbacks also exist: more primary production is allocated to roots at elevated CO,, and
these roots decompose more slowly than roots grown at ambient CO, levels. Experimental data and modelling
showed that increased below-ground C storage will be more than sufficient to balance the increased
decomposition of soil organic matter in perennial ryegrass. Once a doubling of the present atmospheric CO, has
been reached, C equivalent to 55% of the annual CO, increase above a 1 ha ryegrass can be withdrawn from the
atmosphere. Thus, grassland soils represent a significant sink for rising atmospheric CO,.

How are run off and soil erosion influenced by CC and crop?

- A simulation study by Brown et al. (2000) showed that precipitation increases under CC resulted in greater
runoff from the traditional crops but not from switchgrass due to the crop’s increased growth and longer growing
season. Simulated soil erosion rates under switchgrass were less severe than under corn management. However,
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simulated erosion under switchgrass was considerable in eastern lowa during the period of crop establishment
because of strong winds at that time. (For the experimental description, see “4. Crop productivity” in this report.)

How will N mineralization change under CC?

-Net N mineralization rate of the grassland was modelled to decrease under doubled CO, (Chen et al., 1996). For
C3 grass the decrease was 3% and 2% at normal and high temperatures, respectively. Corresponding figures for
the C4 grass were 5% and 6%. N mineralization increased with precipitation in both C3 and C4 species. Elevated
CO, decreased N mineralization in the C4 system. The effect of elevated CO, on N mineralization varied with
precipitation and temperature. Elevated temperature decreased N mineralization under dry conditions, but
increased it under wet conditions. Thus, there were strong interactions among the effects of CO, enrichment,
precipitation, temperature and species on NPP and N mineralization. The predictions were made with the
Version GEM2 ecosystem model.

-Burke et al. (1997) used field observations, the Century simulation model and regression analyses to simulate
net N mineralisation in the central Grassland region of USA. The analysis indicates that NPP and net N
mineralisation both increase with annual precipitation; thus it is not possible to separate the extent to which
annual NPP is controlled by water or N availability. Nitrogen use efficiency increases with increasing
precipitation across the region. Above ground NPP decreased with increasing temperature across the region,
while N mineralisation increased slightly, leading to decreasing nitrogen use efficiency with increasing
temperature.

-Using soil warming cables and devices to control rainfall and irrigation, Jamieson et al. (1998) studied soil N
mineralisation in semi-natural calcareous grassland in southern England. Results from control plots showed a
strong seasonality of N mineralisation with highest rates in autumn and winter and lowest rates in summer.
Water availability appears to be the main constraint on microbiological activity and plant growth. Summer
drought significantly increased N mineralisation rates in autumn and winter. Winter warming had no direct effect
on N mineralisation in winter but decreased rates in spring. It is postulated that the observed treatment effects
result from changes in organic C and N input in plant litter, resulting from the direct impact of climatic
manipulation on perennial plant growth, death and senescence.

-Net N mineralisation was predicted, using SOIL/SOILN models, to increase by 14-26% under CC (AT = +1.7 to
+2.1 °C, AP = +4 to +22% and CO, = 515 ppm) than at present climate for a mono crop sequence of winter
wheat in Sweden (Eckersten et al., 2001).

4. Crop productivity

How are hectare yields and quality influenced by CC?

-Wheeler et al. (2000): Within temperate regions, CC will cause current cultivars of determinate annual seed
crops to mature earlier, and hence yields will decline. This negative effect of warmer temperatures should be
countered by increased rate of crop growth at elevated CO,, if water is sufficient.

-The possible impacts of climatic change on European agriculture was summarised by M. L. Parry in the 1998
Bawden Lecture (Parry, 1998). The evaluation is based on works by Parry (1990); Harrison et al., (1995); IPCC
(1997), and mostly concerns effects at ¢.2050 under the IPCC 1S92a scenario (“business-as-usual”). (i) A
doubling of atmospheric CO, concentration from 330 to 660 ppmv can be expected to cause a 10-50% increase
in growth and yield of C3 crops and a 0-10% increase for C4 crops (such as maize and sugarcane) according to
Warrick et al. (1986), much depending, however, on the prevailing growing conditions (confer the statements by
Steffen and Canadell (2005), referred to above). (ii) Concerning the overall effects on crop yields and changes in
location of zones suitable for different crops, due to the anticipated climate change: “Increased rates of
maturation, and reduced risk of early and late frosts, are likely to lead to a northward shift of crop potential
throughout Europe. There is a strong likelihood that zones of suitability for grain maize will extend into southern
Sweden, southern Finland and the Baltic states...” (iii) “Accounting for the enhancement of growth resulting
from increasing CO, concentrations, the yield of winter cereals (largely C3 crops) increases across most of
Europe. In the case of winter wheat, the rate of increase in yields across Europe could be 0.20-0.13 t/ha/decade.
The largest increase per country might occur in northern Europe, because of increased possibilities of converting
from spring to winter cereals.”

-Trnka et al. (2004) found in a simulation study that the effect of climatic change on barley yield in central and
Western Europe was mostly negative: -19% to +5%. The effect of doubled CO, concentration was 13-52 %
increase. Earlier planting dates (up to 60 days) would increase yield with 15-22% in 2 x CO, conditions. Use of
cultivars with longer vegetation duration would bring 1.5% yield increase per one extra day of vegetation period.
Initial soil water increased yields by 50-100 kg ha™ per 1% increase in available soil water.
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-Crop production and yield in Finland under CC will be influenced by lengthening of potential growing season,
accelerated development of plant, on average increased plant productivity, changed risk of frost and winter
damage and that over-wintering of plants can deteriorate (Carter and Kankaanpag, 2003).

-In Finland wheat yields will increase and become less variable, and potato yields will increase especially in
central and northern Finland (Carter and Kankaanpaé, 2003).

-Impacts of potential climate change on some agroclimatic indices in Atlantic Canada are discussed in (Bootsma
et al., 2005). The anticipated changes in heat and moisture are likely to have a significant impact on the potential
yields of crops grown in the region. The additional crop heat units (CHU), from 500 to 700, will likely promote
higher yields in heat-loving crops such as corn. The impact of increased heat is likely to be small for spring
cereals due to shifts to earlier dates for both planting and maturity. Both water deficits and surpluses (the
anticipated changes in the DEFICIT-index typically were in the range from +50 to -50 mm for both periods used
in the projections, 2010- 2039 and 2040-2069, respectively), might happen resulting in either negative or
positive effects on crop. The range of outcomes was larger when results from different GCMs were included.

-In a surveying paper by Maracchi et al. (2005) on the impacts of present and future climate variability on
agriculture and forestry in Europe (some results from the ACACIA project are quoted), it is proposed that
agriculture may be positively affected by climate change in northern areas (through the introduction of new crop
species and varieties, higher crop productivity and expansion of suitable areas for cultivation). In northern
Europe, the increased precipitation is expected to be large enough to compensate for the increased
evapotranspiration.

-Ciais et al. (2005) state that future climate warming is expected to enhance plant growth in temperate
ecosystems and to increase C sequestration. Severe regional heat waves may become more frequent in a
changing climate; their impact on terrestrial C cycling is unclear. The observed reduction in Europe's primary
productivity 2003 is unprecedented during the last century. An increase in future drought events could turn
temperate ecosystems into C sources, contributing to positive C- climate feedbacks already anticipated in the
tropics and at high latitudes.

How is yield of bioenergy crops influenced by CC?

-Brown et al. (2000) simulated biomass of switchgrass at CO, concentration of 365 and 560 ppm. It increased at
all sites with a mean yield increase of 5.0 Mg /ha under the used climate change scenario provided by the
NCAR-RegCM2 model ‘nested’ to a GCM from CSIRO. Yields benefited from temperature increases of 3.0-8.0
degrees C, which extended the growing season and reduced the incidence of cold stress. The study aimed at
exploring the feasibility for the Missouri-lowa-Nebraska-Kansas (MINK) region of the US to convert some
agricultural land to the energy crop production of switchgrass (Panicum virgatum L.), a perennial warm season
grass.

How might yield responses to CC differ between crops?

-In climatized crop enclosures the increase in yield due to increased CO, to 700 umol /mol was 58% for faba
bean, 35% for spring wheat and 19% for winter wheat in Wageningen (Grashoff et al. 1995). Harvest index was
not changed. Model simulations indicated that the differences between the crops may not be due to fundamental
physiological differences between the crops, but may be at least partly due to differences in the daily air
temperature during comparable stages of growth.

-Kleemola and Karvonen (1996) predicted that barley cultivars adapted to the longer vegetation period in
Finland due to climate change would increase production by 23% under low N and by 56% under high N.

-By 1996 Harrison and Butterfield (1996) predicted that wheat yields would increase throughout Europe for all
regions and climatic scenarios, and water-limited sunflower yields to decrease in most regions and scenarios. For
UK wheat yield increase would be 0.2 t /ha per decade up to 2020 and 0.36 t /ha per decade thereafter. For
sunflower a decrease of 0.05 t /ha per decade up to 2020 followed by an increase of 0.05 t /ha per decade.

-Peiris et al. (1996) simulated three crops of contrasting development type: field bean, potato and winter and
spring wheat in Scotland (4 sites, 5 soils) using a weather generator for 100 years. Eight scenarios (increasing
temp and rainfall) but non with CO, increase were simulated. Increased temperature increased crop development
rate, which shortens the growing season for beans and wheat, but, given a fixed harvest date, lengthens the
season for potato. Potato yield increased by up to 33% over all sites and scenarios, whereas wheat yield
decreased by 5-15% and bean yield by 11-41%. Increased rainfall reduced variability in all crops.

-In Quebec, C4 cereals (corn, sorghum) would benefit more from climatic change than other prevailing C3-crops
but would be least favoured by CO, fertilisation (EIMaayar et al. 1997)

-Collatz et al. (1998) constructed global maps of the distribution of C3 and C4 grasses and for mixed stands, for
current, past and future climates. Published floristic studies were used to test the accuracy of these predictions,
with reasonably good results. The analyses predict a substantial reduction in the area of the C4 grasses under
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future CO, conditions. These predictions are based on the assumption of greater stimulation of C3
photosynthetic efficiency at higher CO,, than inhibition by higher temperatures.

-Tubiello et al. (2002) showed that regional distribution of the simulated yields, largely depended on the
projected precipitation increases. In some important rainfed production areas where precipitation was projected
to decrease, (the Kansas and Oklahoma Bread Basket regions, Canadian Centre Climate Model scenario), CC
resulted in 30 to 40% reductions of grain yield and increased year-to-year variability. Response to additional
factors affecting the simulated US crop production, such as higher temperature and elevated CO, was discussed.
Two scenarios of CC, developed with the Hadley Centre Model and the Canadian Centre Climate Model were
used together with the DSSAT (Decision Support Systems for Agro-technology Transfer) dynamic crop-growth
models

-There will under CC in Finland be an improved potential for cultivation of new crops (like maize), a greater
variety in suitable crop species and cultivation of higher yielding winter crops (Carter and Kankaanpaa, 2003).
-Holden et al. (2005): Using the Decision Support System for Agrotechnology Transfer (DSSAT) and a
simplification of the General Soil Map of Ireland, it was concluded that maize could become a major crop in
Ireland but may suffer water stress in summer, and that soybean may become a specialist, marginal crop. The
future possibilities of maize growing was investigated because it was until recently a semi-marginal crop that is
now regarded as a good source of high energy forage in Ireland. Soybean was investigated because it is not
currently suitable for commercial production in Ireland but is used as a protein supplement by livestock
producers.

-Crop yield changes for Sweden under changing temperature conditions were estimated by comparing regional
differences at present conditions (Sigvald et al., 2001 and Eckersten et al., 2007). The results suggested that
cereals increase for the region of Malardalen would range between +15 and +30%, for leys +20%. Extremes
were found for spring rape (+3%) and potato (+109%), the latter probably strongly dependent on non-climatic
factors.

How does the combined effect of CC influence growth?

How large are the sole effects of temperature and CO, on crop yield?

-Brown et al. (2000) found that the sole effect of the higher temperatures of CC scenario in lowa had a
decreasing effect on simulated crop yields due to increased heat stress and a speeding of crop maturity. Without
the CO,-fertilization effect in CC scenarios, simulated maximum yields were lower than for baseline, by 1.5 Mg
/ha for corn, 1.0 Mg /ha for sorghum, 0.8 Mg /ha for soybean and 0.5 Mg /ha for winter wheat. Including the
CO,-fertilization effect (560 ppm) in CC scenarios, simulated yields increased for all crops compared to
baseline, by 34% of the soybean and 37% of the winter wheat farms. Water use increased for all crops under the
higher temperatures of the CSIRO scenario. The erosion productivity impact calculator (EPIC) crop growth
model was used at 302 sites within the MINK (see above) region. The analysis was done for both current
climatic conditions and a regional climate model-based scenario of possible climate change. Daily climate
records from 1983 to 1993 served as baseline and the NCAR-RegCM2 model (RegCM hereafter) nested within
the CSIRO general circulation model (GCM) provided the climate change scenario.

How does the combined effect of CO,, climate and N influence growth?

-Shaw et al. (2002) found an increased net primary production (NPP) in the third year of ecosystem-scale
manipulations in a California annual grassland due to simulated warming, increased precipitation, and nitrogen
deposition, alone and in concert. Elevated CO, also increased NPP, but only as a single-factor. Across all
multifactor manipulations, elevated CO, suppressed root allocation, decreasing the positive effects of increased
temperature, precipitation, and nitrogen deposition on NPP. The NPP responses to interacting factors differed
greatly from those to single-factor responses, indicating the importance of a multifactor experimental approach
to understand the ecosystem responses to global change.

How are the management and CC effects related?

How are the fertilisation and/or irrigation needs changed under CC?

-Doll (2002) found that two-thirds of the global area equipped for irrigation in 1995 will possibly suffer from
increased water requirements, and on up to half of the total area, the negative impact of CC is more significant
than that of climate variability. He concluded that anthropogenic CC does affect water resources and water
demand, particularly for irrigation. He used a recently developed irrigation model, (spatial resolution of
0.5degrees by 0.5degrees) for a global analysis of the impact of CC and climate variability on irrigation water
requirements.

-Holden and Brereton (2006) concluded that there will be little impact of changes in water and nitrogen
management for spring barley, arising from possible climate change in Ireland, but in central and western parts
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of Ireland it might be possible to reduce nitrogen application rates by half. The impact on potato production will
be stronger: without irrigation yield will only remain viable in areas where rainfall remains high, elsewhere
between 150 and 300 mm of irrigation will be required each year, but this might be offset by the possibility of
reducing nitrogen inputs by up to half. Production on less suitable (heavier) soils would be less desirable if
irrigation is required because of possible run-off losses. For the investigation, the locations with the highest
proportion of barley and potato production were identified, and 1961-1990 monthly climate data were used to
drive mechanistic crop models. Nitrogen and water response curves were created using current recommended
management guidelines. A series of step-wise manual irrigation simulations were then undertaken to estimate the
minimum future (2041-2070) irrigation demand.

Which regional changes in crop production can we expect?

-Global change will have both good and bad production effects in areas under 5 °C mean annual temperature in
Finland (Mela, 1996).

-Methods for deriving response surface diagrams to evaluate climate change impacts on crop production have
been developed. A method that accounts for spatial and seasonal variability of climate is reported by Van
Minnen (2000). The method was applied to crop production in Germany and Kongo. It was demonstrated how
the production in Germany was more sensitive to changes in temperature, whereas in Kongo it was more
sensitive to changes in precipitation.

-A study on the potential cultivation of grapevine in Europe under future climate scenarios (using a HadCM2
scenario for 2050) showed that there is a potential for expansion of the wine-growing area in Europe and an
increase in yield. However, detailed projections for the main viticultural areas have also shown an increase in
yield variability (Harrison and Butterfield, 1999).

-Another large-scale global change simulation study, but limited to maize in the USA corn and wheat belt (5
states) was made by Southworth et al. (2000). With future CO, concentrations of 555 ppm, wheat yields
increased up to 60-100% above current yields in the central and northern areas when modelled for the 2050-59
scenarios. In the southern areas small increases or decreases were simulated. CO, fertilisation effects are found
to be significant for wheat, representing a 20% yield increase under future climate scenarios.

-Predictions of global change impacts do not always agree. Weber and Hauer (2003) states that, contradictory to
many predictions, for Canada the effect of global change would be positively beneficial for agriculture. The
pessimistic predictions are regionally specific and focus on particular crops, particularly grains and oilseed.
-Impacts of climate change in Ireland were predicted by Holden and Brereton (2002) and Holden et al. (2003)
using elaborate statistic- and simulation techniques. The first work concerns grassland agriculture, where effects
on the whole forage-meat-milk production change are anticipated. Grass yields were predicted to decrease in the
east of Ireland due to water stress, causing grassland agriculture to shift to the west of the country. In the second
work barley and potatoes are considered. The change in climate is predicted to cause little change in the
geographical distribution of barley yield, but grain yield in all areas is expected to increase, possibly more in the
west. Potato yield in 2055 and 2075 is expected to fall for non-irrigated tubers. The impact is likely to be a
severe loss in potato yield over most of the country.

-Increase in crop productivity due to climatic change will be greater in northern parts of Europe than in the
southern (Ewert et al., 2005), which might increase their competitive advantage towards the rest of Europe.

-In an extensive simulation of ecosystems services supply Schroter et al. (2005) predicted no change in water
stress in Northern Europe but severe stresses in Southern Europe.

How might changed frequency of extreme climate events affect food production and water availability
in Russia?

-In a study by Alcamo et al. (2007) the impact of a changing frequency and spatial in-homogeneity of extreme
climate events, and the reliance of most of Russia on a few food-producing regions, is investigated. They
analyzed impacts of the SRES A2 and B2 scenarios with the use of the Global Assessment of Security (GLASS)
model, containing the Global Agro-Ecological Zones (GAEZ) crop production model. They find, as in previous
studies, that decreased crop production in some Russian regions can be compensated by increases in others,
resulting in relatively small average changes (when focusing mainly on average climate change). However,
taking projected changes in the frequency of extreme climate events into account gives a different perspective:
Under ‘normal’ climate conditions it is estimated that “food production shortfalls” (i.e. a year in which potential
production of the most important crops in a region is below 50 % of its average normal production) occur
roughly 1-3 years per decade. This frequency will double in many of the main crop growing areas in the 2020s,
and triple in the 2070s. The effects of these shortfalls are likely to hit all over Russia because of the high
likelihood of shortfalls occurring in many crop export regions in the same year.
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How certain are crop yield impact assessments?

-Tubiello et al. (2002) criticize previous optimistic US yield simulations. US agricultural production in 2030 and
2090 simulated at 45 sites have previously been aggregated nationally (using economic models) to show an
increase in overall US agricultural output under CC. They showed that regional distribution of the simulated
yields largely depended on the projected precipitation, which in some important rainfed production areas was
projected to decrease.

-Spatial resolution of climate change scenarios can be an important uncertainty in climate change impact
assessments, depending on crop and management conditions (Tsvetsinskaya et al. 2003).

-To study the uncertainties in predicting effects of the climatic change, Trnka et al (2004) compared seven global
simulation models applied with a stochastic weather generator to seven European experimental sites with high
quality yield data. The CERES wheat model was used to generate yield data for three time periods: 2025, 2050
and 2100. The results were: Wheat yields tended to increase 8-25% for 40 of 42 scenarios. For the CCSR
scenario, predicting the highest temperature increase, yields were reduced by 10% in 2050 and by 25% in 2100.
Temperature variability was important. Changes in temperature variability by more than 25% resulted in
statistically increased yield distribution. The effect of changes in temperature variability increased with mean
temperature.

-A rather similar approach as used by Trnka et al. (2004) in Europe is followed in a large USA-study. Twelve
GCM -scenarios were used, resulting in general statements about the predicted climate change in America
(Smith, et al., 2005a). Crop production- and water resource models, EPIC and HUMUS, were validated against
historical data, and were found to work satisfactorily (Thomson et al., 2005a). Simulated future yields of corn,
soybean, winter wheat, alfalfa and clover hay decreased in general with higher temperatures, but increased with
CO,. Regional variation was large: +.25%. Future agronomic potential will be significantly affected, mostly
dependent on the change in precipitation pattern (Thomson et al., 2005b). Water resources are predicted to vary
regionally (Thomson et al., 2005c). Areas, in which crop production is dependent on irrigation, will have
reduced water resources in the future (Thomson et al., 2005d).

-Ewert et al. (2005) estimated an increase in crop productivity by 2020 to 2080 between 25% and 163% in
Europe depending on time slice and socio-economic scenario used as input. Technology development was
identified as the most important driver for this increase, essentially more important than CC. The relative crop
yield increases were 11-32% for CO, increase, based on experimental data, whereas the corresponding factor for
tefhnology development was 20-140% assuming a country specific constant absolute change over time (kg ha™
yo).

-Rounsevell et al. (20053, b), based on the same study, estimated that increases in productivity beyond 2020
were consistent with predicted world wide increase in food demand. However, estimated increases in
productivity exceeded expected demand changes in Europe, which is consistent with the present oversupply in
Europe.

-Effects of a rapid or abrupt climate change in Europe are treated in a report from Tyndall Centre for Climate
Change Research (Arnell et al., 2005). Potential effects of future gradual climate change on agricultural
productivity etc. were compared with the effects of an accelerated climate change or thermohaline circulation
collapse in the North Atlantic. An initial assessment of the implications of three different types of abrupt climatic
change (i) a thermohaline collapse, (ii) an accelerated climatic change, due to a positive feedback by the
additional release of greenhouse gases from thawing permafrost areas and the oceans, and (iii) a rapid rise in sea
level resulting from disintegration of the West Antarctic ice sheet was made, using a combination of model
simulations, reviews of published studies of the effects of gradual climate change, and “expert judgements”. (1)
Under gradual change suitability for crop production increases in northern Europe and decreases in parts of
southern Europe. (I1) Accelerated climate change enhances this pattern, whereas (l11) a thermohaline circulation
collapse leads to reductions in suitability across large parts of Western Europe, as well as in Southern Europe.

What are the effects on global crop yields of uncertainties in emission and climate scenarios?

-The magnitude of change in global food production, and the rate of change were assessed for different socio-
economic development scenarios derived from the IPCC SRES (IPCC Special Report on Emissions Scenarios)
(Arnell, 2004). The results are discussed in Parry et al. (2004). The climate change scenarios have been taken
from SRES-driven experiments using the UK Hadley Centre’s third generation coupled atmosphere-ocean global
climate model (HadCM3). Using this model for simulation of transient climate change, some conclusions are
made: (i) in most cases the SRES scenarios exerted a slight to moderate negative (0 to —5%) impact on simulated
world crop yields, even with beneficial direct effects of COB2B and farm-level adaptations taken into account.
The only scenarios that increase global crop yields are derived from the SRES A2 ensemble; (ii) the SRES
scenarios of a more globalised world (A1FI and B1) experience greater reduction in yield than the scenarios of a
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more regionalised world (A2 and B2); (iii) the use of ensemble realizations of the SRES scenarios highlights the
regional uncertainties inherent even under similar greenhouse gas emissions pathways. Members of the A2 and
B2 ensemble scenarios produce moderate differences in the crop yield results in some regions and time slices.

4. Grasslands

How are yields and legume fraction influenced by CC?

-The model CENTURY (Hall et al., 1995) was used to predict world- wide effects of climate change. Climate
change alone increased NNP in all regions except in cold desert steppe regions and CO, increased NPP
everywhere.

-As an example of the views on the effect of CO, enrichment in grasslands held 10 years ago, Jones and Jongen
(1996) is quoted. They stated that elevated CO, affected plants in two ways: directly by increased CO,, and
indirectly by changes in temperature and rainfall. At high latitudes, where growth is largely temperature limited,
it is probable that the direct effect of enhanced CO, on production will be less than at low latitudes. However,
interactions with increasing temperature and water stress are complex. Different grassland species react
differently to elevated CO,. This will probably result in major alterations in the community structure of
temperate grasslands in the future. A long- term effect of elevated CO, will likely be a significant increase in soil
carbon storage. However, this may be counteracted by increases in temperature.

-From field experiments with ryegrass Jones et al. (1996) concluded that the climate change will significantly
increase the grassland production in northern Europe. Production will be stimulated by the direct fertilizer effect
due to elevated CO,.

-Version GEM2 of the grassland ecosystem model (Chen et al., 1996) predicted for doubled CO, in a C3 grass
(Colorado, USA) a NPP increase of 36% and 43% under normal and elevated temperature, and a corresponding
increase of 29% and 24% in a C4 grass. The responses of NPP to elevated CO, in the C4 species were positive
under all temperature and precipitation treatments (simulations). Thus, there were strong interactions among the
effects of CO, enrichment, precipitation, temperature and species on NPP.

-Pasture production in Scotland was predicted with a mathematical model by Topp and Doyle (1996). It was
projected that the global warming might increase the length of the growing season by 12 to 37 days for every
1degree temperature rise in mean annual temperature. The indications are that global warming will have little
effect of annual production of grass either from pure grass or grass-white clover mixtures. On the other hand,
white clover percentage in the mixture is likely to increase from 32% to 45% for a 2 degree temperature rise.
Increasing CO, concentration is predicted to increase the yields of grass and white clover under both current
climatic conditions and the global warming scenario.

-A synthesis of progress made between 1994 and 1999 in the Global Change and Terrestrial Ecosystems (GCTE)
and Pasture and Rangelands Core Research Project 1 (CRP1) is presented by Campbell and Smith (2000). The
network has resulted in a considerable reduction in the uncertainties about the effect of elevated CO; on growth,
and to a lesser extent composition and forage quality, of intensive pastures in cool, wet climatic zones. The
stimulatory effect of doubled ambient CO, on grassland production averages about +17% in ecosystem-based
experiments. Species composition changes are likely to be an important mechanism altering grassland
production and its value for grazing live-stock: on average the legume content of productive grass-legume
swards is increased by +10% due to CO, enrichment. Leaf nitrogen reductions due to elevated CO, are often
observed, but are generally modest compared with other management factors. This synthesis indicates that
greater focus is required on the linkage between the biophysical, social and economic factors that will influence
future changes in pasture and rangeland ecosystems and their implications for food security.

-Grasslands occupy more than 25 % of the earths land area (Newman et al. 2001), but grassland species have
received limited attention from global change research. A 3-year field experiment with a C3 legume (Rhizoma
peanut) and a C4 grass (Paspalium) with increased temperature and CO, was conducted. Analysed over the years
there was a 25% yield increase in the legume for near doubled CO,. This response was larger for the legume than
for the C4 grass. Both species responded to increased temperature, on average 11% in 1996, 12% in 1997, 26%
in 1998.

-Local effects of CC and elevated CO, (=2 x CO,) were simulated for two Swiss grassland sites: one low,
relatively dry and one high and more humid (Riedo et al., 1999). At both sites shoot DM increased in response to
elevated CO,, the low site being more sensitive. The effect of assumed CC was negative at the low, but positive
at the high site. Shoot DM was more sensitive to the effects of elevated CO, than of CC. Both effects combined
increased DM 20%. This was attributed to the direct effects of CC and CO,, and indirect stimulation via
increased soil N availability. DM partitioning to roots increase with elevated CO, but decreased with CC, while
an intermediate response resulted from the combination of the two. Under elevated CO, evapotranspiration (ET)
decreased, but increased under CC. The seasonal water use efficiency was improved under elevated CO,, and
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reduced under CC. With the combination of both factors the change was small but still positive, especially at the
high site with more favourable soil water conditions. This reflects the stronger positive yield response in
combination with a smaller increase in ET under cooler, more humid conditions. The results highlight the
importance of site-specific analyses of ecosystems responses.

-Climate impact (CO, and temperature) on a complex alpine landscape (Switzerland) was assessed by Riedo et
al., (2001) using a simulation model (PaSim), statistical interpolation of climate parameters and stochastic
weather generation, A seasonally uniform temperature increase by 2 °C raised the mean evapotranspiration (ET)
from 200 to 300 mm yr; and the net primary production (NPP) from 0.2 to 0.3 kg C m™? yr™. Doubling CO, to
700 ppm partially offset the increase in ET but caused an additional increase in NPP. Largest absolute changes in
ET were obtained for sites with ample precipitation, and largest absolute changes in NPP for the most productive
sites.

-Dukes et al. (2005) suggested from a California grassland experiment that under CC reactive nitrogen is
entering natural systems at unprecedented rates. These global environmental changes have consequences for the
functioning of natural ecosystems, and responses of these systems may feed back to affect climate and
atmospheric composition. Expectations that CC would promote carbon storage by increasing plant growth
appear unlikely in this system. However, the response of a particular system may be unique and dependent on its
environment.

-Lloveras et al. (2006) presented results of the LEGISIL grassland model (see also Topp and Doyle, 1996;
Hopkins, 2003; Harmens et al., 2004; Hopkins, 2004; Scholefield et al., 2005) under climate change in UK,
suggesting an increased herbage growth due to elevated temperature by 30%, due to elevated CO, by 46%, and
due to both by 56%. However, greater incidence of summer drought might at its most serious offset those
increases.

-Eckersten et al. (2007) estimated, with a simulation model, fertilised swards of pure grass to have a large
potential of increased growth under climate change, mainly because of increased length in growing period and
increased atmospheric CO, concentration. To fully cover the increased growth potential would require an
increased fertilisation rate by up to 100 kg N ha™y; strongly dependent on site conditions.

How is grassland botanical composition influenced by CC?

-Variation between populations and species must be considered when predicting grassland community responses
to CO.. It is inappropriate to ignore compositional changes in communities when modelling CO, effects on
pasture production. Given the importance of temperature in determining CO, responsiveness, phenology may
prove to be a useful attribute in plant functional analyses of community responses to CO, (Campbell et al.,
1995).

-Photosynthesis by cool temperature pasture species can respond to elevated CO,, especially at low
temperatures. This will have consequences for predicting the potential effects of CC, accompanied by rising
CO,, on pasture ecosystems (Greer et al., 1995).

-Lloveras et al. (2006) presented suggested based on the LEGISIL grassland model that legumes will be
favoured under CC in UK, and especially red clover and lucerne.

4. Crop quality

Are there many studies on CC and food quality?

-Porter and Semenov (2005) stated that food quality has not been given sufficient attention when assessing the
impact of climate change for food.

What is important when predicting the influence of temperature changes on crop quality?

-Porter and Semenov (2005) pointed out that threshold temperatures for crop processes are rather similar for
different crops. The threshold temperatures are important to define for the major food crops, to assist climate
modellers in predicting the occurrence of crop critical temperatures and their temporal resolution.

How will increased CO, and heat affect wheat quality?
-Production of high quality hard wheat in some areas may be at risk if exposed to high CO, and “heat shock”.
This is the case for wheat in Queensland, Australia (Reyenga et al., 1999).

How will crop quality be affected by CC in the Nordic countries?

-Eckersten et al. (2001) simulated for winter wheat under CC an increased harvested biomass by 6 to 16%. The
corresponding increase in harvested N was less, -3 to +7%. N/C ratios ranged from 0.036-0.042 under current
climate and from 0.033-0.036 under CC.

78



-Quality of crops can deteriorate under CC in Finland, and there might also be an increased risk of heat or cold
stress to plants in Finland according to Carter and Kankaanpaa (2003)

4. Weeds

How will weed occurrence be influenced by climate change?

-Risk of weeds increases in Finland (Carter and Kankaanpéad, 2003).

-Eckersten et al. (2007) suggested increased occurrence and changed flora of weeds in Sweden under climate
change due to longer vegetation period, more winter cropping, and new crops on the expense of area cultivated
with leys.

How might warmer climate favour C4 plants?

-A warmer climate and drier conditions during the summer could favour the C4 plants because as they can
continue photosynthesis also when stomata have to be closed due to shortage of water. This could, therefore
mean an increased frequency of C4 species such as cockspur (Echinochloa crus-galli) and common amaranth
(Amaranthus retroflexus), plus a more permanent establishment of species that are very sporadic today, e.g.
Johnston grass weed (Sorghum halepense). On the other hand, many C, plants are short-day plants, which have a
disadvantage for phenological development in long-day climate (Huang et al., 2000; Swanton et al., 2000).

Which new severe weed species may occur?

-The autumn-germinating form of wild oats (Avena ludoviciana) might become more common, as well as little-
seed canarygrass (Phalaris minor), a fairly recently observed ‘super weed’ in Ireland that originates from Asia
(Anonymous, 2004).

4., Pests

Which methods are available to predict climate change impact on pests?

-Although the science to predict climate change impact on agriculture has developed significantly over last
years, there is still a lack of consideration of how CC will affect the occurrence of pests and plant pathogens
(Scherm, 2004). There are two important sources of information: one is “fingerprints” in terms of long-term
records of climate impact on pest population changes, the other is the use of predictive models. Information in
terms of long-term records is unfortunately rare. The success of model predictions is limited because of the large
likelihood of genetic changes in the pest populations in response to CC.

How can pest models be parameterised against spatial distribution?

-CLIMEX is a pest risk assessment model, that can be applied to weeds, pathogens and anthropod pests (Yonow
et al. 2004). In the present application the model is parameterised on geographical distribution data, and departs
in that respect from most previous applications in plant pathology, where physiological data have been used to
derive model parameters. In the present application of the model, it is predicted that a fungus, ‘leaf spot’, in
grasses (Pyrenophora semeniperda), could extend its range through out Europe, and the temperate regions of
Asia, Africa and South America.

How will codling moth and Colorado potato beetle be influenced by CC?

-The model CLIMEX (Yonow et al., 2004) was used in combination with agrometeorological data in Norway to
predict the future distribution of the codling moth (Cydia pomonella) and the Colorado potato beetle (Rafoss and
Saethre, 2003). CC scenarios (0.1 degree increase in daily maximum and minimum temperature per degree in
latitude) indicated an extension in the potential geographical range of the codling moth, and 23 new locations
were found suitable for long-term survival. Where the moth already exists, it was predicted to increase
dramatically in response to CC. The Colorado beetle could only temporarily find suitable locations in Norway,
but in case of CC the beetle could establish as far north as 64 degrees N. Also in USA, in the Great Lakes
Region, the codling moth will increase in response to CC, particularly in the number of generation per season
(Winkler et al., 2002).

How will pest occurrence be influenced by CC?

-Goudriaan and Zadoks (1995): CO, and UV radiation are not likely to have major effects on insects and pests.
-Wittmann et al. (2000) suggest a number of likely insects under CC: the Culicoides biting midges, the vectors
of several arboviruses, including those that cause bluetongue (BT) and African horse sickness (AHS). The major
old-world vector of BT and AHS viruses, C. imicola, occurs in southern Europe and will spread further north as
global temperatures increase. As the distribution of C. imicola moves north, it may bring BT and AHS viruses
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into the range of other Culicoides species that are known to be competent vectors and which occur much further
north. Once infected via this 'baton effect’, these species may be able to spread the viruses over much of Europe,
including the UK. They point out that changes in the distribution and abundance of insects are likely to be
amongst the most important and immediate effects of CC. CC may also increase their vector competence further
and also the likelihood of viruses surviving from one year to the next. The predicted increase in the frequency of
short periods of hot temperatures may lead to the creation of novel vector species, by removing the barriers that
in colder conditions make them refractory to viral infection.

-Warmer winters favours pest winter survival (Fuhrer, 2003)

-Risk of pests and diseases increases in Finland and there will be a northward shift in pest distribution and
increased numbers of reproductive cycles (Carter and Kankaanpaa, 2003).

How might number of insect pest species change under CC?

-Yamamura et al. (2006) used a state-space model selected by Akaike’s information criterion, derived from 50
year annual light-trap data in Japan, to predict impact of global warming on the number of rice stem borer, green
rice leafhopper and small planthopper.

-Eckersten et al. (2007) suggested that insect and virus attacks on crops can probably be expected to generally
increase in Sweden under CC due to that insects will presumably be favoured by a warmer climate during the
winter and will therefore be more numerous in the spring.

How are periods of favourable development and number of generations of onion thrips influenced by CC?
-Bergant et al. (2005) used a simple degree-day model to relate the development of onion thrips to temperature.
Potential changes of favourable development and number of generations were assessed for CC. Changes were
sensitive to magnitude of increased temperature, to asymmetry within the year and to present climate conditions.
The authors suggest that further research is needed to evaluate the plausibility of such simplified projections.

How might new species of beetles in Canada develop under CC?

-Three new species of beetles on cabbage has recently been introduced into Canada (Olfert and Weiss, 2006).
CC will likely increase the risk for these species to become intense both in terms of severity in regions where
they presently occur and in terms of their ability to become established in areas where they presently do not
occur.

How are cereal aphids predicted to respond to CC?

-Cereal aphids in southern Britain are predicted to decrease in response to elevated CO,: at low emissions by —
5%, at medium low emissions by —12%, at medium high emissions by —61%, and at high emissions by —92%
(Newman, 2005). Of the six variables used in the model, changes in temperature and rainfall were the most
important over all emissions scenarios. The results suggest that the pest status of cereal aphids may significantly
decline by the end of the century.

How is ant predicted to increase in US under CC?

-A dynamic ecophysiological model of the ant colony growth coupled with models simulating climatic change
was used to predict the future expansion to the north of a South American ant species (Solenopsis invicta).
Presently the ant occupies south-eastern USA. Its area is predicted to increase by 5% to the north over the next
50 years, and by 2100 this area is predicted to be more than 21% greater than the present area (Morrison et al.,
2005).

How might downy mildew influence grape in Italy under CC?

-Salinari et al. (2007) predicted an increase of the fungicide pressure on grape for 2030, 2050 and 2080 in Italy.
Severe downy mildew epidemics might occur during May and June as a consequence of rising temperature and
two more fungicide sprays are needed. Increased precipitation had an opposite effect, although small in
comparison with temperature effect. They used simulation models and GCM scenarios based on SRES-A2
emission scenario.

How might pest effects on crop be influenced by CC?

-Methods for modelling impact of changed pest pressure due to global climate change are available according to
Goudriaan and Zadoks (1995). They argue that increasing CO, reduces crop N, which may retard many pests and
diseases and change the weed flora.
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-The interactions between the climatic factors on development and growth of crops, weeds and pests are so
complex that realistic predictions are very difficult (Fuhrer, 2003). Southern, poorly developed areas are likely to
suffer from global change.

-In C; crops increased CO, in some cases improves pest and decease resistance (Fuhrer, 2003).

-In a surveying paper by Maracchi et al. (2005) on the impacts of present and future climate variability on
agriculture and forestry in Europe (the ACACIA project) it is proposed that agriculture may be negatively
affected by increased need for plant protection. Adaptation management strategies should be introduced to
reduce the negative impacts on the agricultural and forestry sectors.

-Eckersten et al. (2007) suggested that spring sown crops might become more vulnerable to infections during
spring due to possible delayed sowing in relation to the start of the vegetation period.

How might fungi infections in Sweden be influenced by CC?

-Eckersten et al. (2007) pointed out that fungal diseases are favoured by both temperature and moisture. The
moisture situation will be altered more irregularly in different parts of Sweden than the temperature. This means
that we can expect large differences between regions. In northern Sweden fungi will probably be of increased
importance due to the generally wetter and warmer climate.

How might need of pesticides change under CC?

-CC will affect the cost of pesticide use (Chen and McCarl, 2001). In USA it was found that increases in rainfall
increases the cost of pesticides for corn, cotton, potatoes, wheat and soybeans. Increased temperature increases it
for corn, cotton, potatoes, and soybeans but decreases it for wheat. Also the variability in cost was affected.

4. Animal husbandry

How might food supply to animals be influenced by CC?

-The length of fresh fodder season will increase in Finland (Carter and Kankaanpaa, 2003).

- The potential impact of CC by the year 2050 is assessed by simulation models of farming systems (Parsons et
al., 2001). The model includes grassland production, livestock feeding, thermal balance of animals (sheep, beef
calves and dairy cows) and buildings and a stochastic weather generator. It is concluded that eastern dry
lowlands, western wet lowlands and uplands in England should be able to adapt to the expected CC. There is
likely to be a small increase in grass production, possibly allowing an increase in total production in some areas.
-Lloveras et al. (2006) presented results of the LEGISIL grassland model under climate change in UK,
suggesting reduced opportunities for grazing and harvesting on wetter soils.

How might grazing animal returns to soil be influenced by elevated CO,?

-Allard et al. (2003) compared nitrogen (N) returns from sheep grazing a temperate pasture exposed to ambient
or elevated CO, (475 umol/mol). A greater proportion of dietary N was partitioned to urine at elevated CO,,
probably because of the higher proportion of legume N in the diet, with possible differences in protein quality. A
potentially significant consequence of this change in partitioning is greater N loss through volatilization at higher
CO, levels.

How might management be influenced by CC?

-Turnpenny et al. (2001) found for both pigs and chicken that the frequency of severe heat stress is substantially
increased under CC, with a consequent risk of mortality. They concluded that the effect of CC by the year 2050
on intensive livestock systems in Britain would make it necessary to reduce stocking densities considerably, or
to invest in improved ventilation or cooling equipment. This was assessed through the use of simulation models
of farming systems. The submodels comprise livestock feeding, livestock thermal balance and the thermal
balance of controlled environment buildings and a stochastic weather generator. These are integrated to form
system models for growing pigs and broiler chickens. They are applied to scenarios typical of SE England,
which is the warmest region of the country and represents the worst case.

-Parsons et al. (2001) concluded that the effect of CC by the year 2050 on British grazing livestock systems is,
that they should be able to adapt to the expected CC. This was assessed through the use of simulation models of
farming systems (see further above under: How will food supply to animals be influenced by CC?).

How might occurrence of animal diseases be influenced by CC?

-There will be an increased risk of animal diseases (vector borne, water and feed related) in Finland (Carter and
Kankaanpad, 2003).
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4. Management

How are the management and CC effects related?

-Riedo et al. (2000) found in a simulation study that elevated CO, alone, or in combination with increased
temperature, stimulated NPP at all sites. The stimulation was positively related to increasing precipitation at dry
sites, but negatively at cool sites. Climate change in combination with elevated CO, increased C stocks. The
sensitivity of C stocks to changes in temperature and precipitation was similar, and much larger than to
management. Grazing led to higher C stocks compared with cutting, depending mainly on the difference in NPP
between grazing and cutting. Grazing had a positive effect on C stocks under cool conditions, but the effect
tended to become negative with increasing temperature. They concluded that the combination of elevated CO,
and climate change affects NPP and C stocks, and that the influence of management is site-specific. The
mechanistic pasture simulation model (PaSim) was used to quantify effects on net NPP and C stocks at three
locations (Switzerland) differing in climate and soil type, under either cutting or grazing (lactating cows).

How might management and CC influence soil carbon storage from 1850-2100 in US?

-Grace, Colunga-Garcia et al. (2006) linked net primary production algorithms, where the effects of enhanced
[CO,] on plant growth were included, to the ‘Soil Organic Carbon Resources And Transformations in
EcoSystems’ (SOCRATES) model to develop a soil organic carbon (SOC) map for the North Central Region
(NCR) of US between the years 1850 and 2100 in response to agricultural activity and a climate change scenario
generated by a global climate model (CSIRO Mk2) under the IPCC 1S92a.3. emission scenario. In this study,
with an average temperature increase of 3.9 °C and a precipitation increase of ~80 mm across the region, by the
year 2100 the model projected the SOC stores of North Central Region to decline by 11.5 % (in relation to 1990
values) for conventional tillage, and by 2 % for conservation tillage scenarios.

How might land use changes and grassland management affect carbon cycling and sequestration?
-Soussana et al. (2004) fitted a two parameter model to literature data and assessed (1) soil organic carbon fluxes
resulting from shift between arable land and grassland and from various grassland managements, (2) carbon
fluxes in cropping systems, (3) using a grassland ecosystems model estimated the greenhouse gas balance in
pastures for a range of stocking rates and N applications and (4) carbon sequestration opportunities for France
resulting in restoration of grasslands and reduced live stock breeding systems. The uncertainties in the
calculations are pointed out.

4. Biodiversity

How will biodiversity be influenced by CC?

-Loss of biodiversity is enhanced under CC. The larger CC the larger area affected and the higher the number of
species influenced (Carter and Kankaanpad, 2003).

-Harrison et al. (2006) simulated (with the SPECIES neural network model) the present European distribution
satisfactorily for 45 species (from 10 habitats, including plants, insects, birds and mammals). The predicted
responses to CC demonstrate that the distribution of many species in Europe may be affected by CC, but that the
effects are likely to differ between species. The general pattern is of a southwest to northeast shift in suitable
climate space. Species most sensitive to CC were Rubus chamaemorus (Cloudberry; decreasing) and Genista
acanthoclada (Hairy greenweed; increasing). They pointed out that the disparity in species' response to CC has
important implications for EU biodiversity policy as the significance of different countries changes in terms of
their future contribution to the conservation of habitats and species.

What might the effect of CC on heathlands and shrublands be?

-Using results from field manipulation experiments, changes in goods and services in terms of bio diversity,
various forms of recreation, landscape preservation, drinking water supply and carbon sequestration of west
European shrublands was predicted by Wessel et al (2004). Some of their conclusions, drawn from these field
experiments, are: (i) Warming of dry lowland heathlands in the Netherlands and Denmark increases nutrient
availability, which may lead to increases in grasses, decreasing biodiversity and recreational value? Warming of
the upland heather vegetation in UK increases its productivity, leading to increased animal productivity. (ii)
Drought may reduce grass invasion, but degrade heather vegetation. Complex interactions with invading species
may occur. (iii) In the shrublands of Spain both warming and drought leads to a shift in species composition of
seedlings and recruitments, which may change plant communities and reduce biodiversity. In the drought

* For explanation, see under ‘Scenarios’
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treatment, decreasing soil carbon content may lead to loss of biodiversity, recreational possibilities and an
increased threat of wildfires and erosion.

Which habitats are most sensitive to CC?

-The future effect of CC on fifty-four species representing 15 habitats in Britain and Ireland was modelled
(Berry et al., 2002) using SPECIES (Spatial Estimator of Climate Impacts on the Envelope of Species). This
model (Pearson et al., 2002) integrates five bioclimatic variables for predicting the distribution of species
through the characterization of bioclimatic envelopes. The modelled species could be placed in 3 categories:
those loosing suitable climatic space, those gaining it and those showing little or no change. The most sensitive
habitat to CC was Arctic-Alpine/montane heath communities, followed by pine woodland and beach woodland
in southern England. The other habitats showed little or mixed responses. The species respond differently to CC
and thus their current habitat associations may alter. Some species have uncertain future. Conservation policy
and practice will need to be revised in the face of CC.

Which topics of biodiversity are of interest under CC?

-Watkinson and Ormerod (2001) found that in the face of CC and growing demands for agricultural productivity,
future pressure on grassland ecosystems will intensify. In this system, where productivity and conservation are
closely bound, there is a need both to raise the profile of the issues involved, and to improve our understanding
of the applied ecology required for successful management. In the cited special issue of Journal of Applied
Ecology, three topics on global issues of biodiversity in grasslands were considered: plant responses to grazing,
plant invasions and the responses to management of valued grassland biota.

How will the weed flora be influenced by CC in southern Sweden?
-Metzger et al. (2005) expected expansion of weed species with current southern distributions (e.g. Picris
echioides) for southern Sweden under CC.

4. Environment

How can the SOCRATES model predict long-term changes in soil organic carbon?

-Grace et al. (2006) describes the SOCRATES (Soil Organic Carbon Reserves And Transformations in
Ecosystems) model. This is a simple, processed based model for soil organic carbon (SOC) dynamics in
terrestrial ecosystems, which requires minimal input data, and which is specifically designed to examine the
impact of land use and land use changes on the soil carbon storage. It is claimed, that the model has been
successful in predicting SOC change at eighteen long-term crop, pasture and forestry trials from North America,
Europe and Australia, ranging from 8 to 86 years in duration, over a wide range of climates and soil types.

Is land projected to become a carbon sink or a carbon source in the future?

-Scholze et al. (2006) used outputs from 52 combinations of 16 different coupled general circulation models
(GCMs) and different emission scenarios (including runs where atmospheric composition were held constant) as
input to the Lund-Potsdam-Jena (LPJ) dynamic global vegetation model in an attempt to get a more quantitative,
spatially resolved, global assessment of climate-change-driven risks for world ecosystems. The 52 scenario
simulation outputs were divided into three groups according to the simulated increase in global mean surface
temperature between the standard period 1961-1990 and 2071-2100: < 2 °C, 2-3 °C, and >3 °C. Among their
results: A land carbon sink of =1 Pg of C (1 Pg = 1015 g) per year was simulated for ‘present-day’ conditions
(the late 20th century), but for the output group >3 °C this sink converts to a carbon source during the 21st
century (2071-2100) in 44 % of the cases, and in 13 % of the cases from the scenario group < 2 °C.

How might water conditions be influenced by CC?

How might water losses be influenced by CC?

-Eckersten et al. (2001) estimated for winter wheat drainage to increase by 1-17% for sandy and clayey sites in
Uppsala and Halmstad under CC. The change in surface runoff ranged from —37 to +23% showing a complicated
relation to soil temperature conditions. The unchanged drainage of sandy soil was due to increased surface
runoff. Evapotranspiration increased by 5-8%. For definition of simulated CC conditions, see below.

How do CO,-effects on plant influence soil water storage and transfer to the atmosphere?

-A scenario with doubled CO, over the Canadian prairies may result in a doubled canopy resistance according to
experimental observations (Raddatz, 2003). This will result in: increased soil moisture levels, and weakening of
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the regional contribution of water vapour from the prairies to the atmosphere. Therefore, this physiological effect
should be included in climate change models for Canada.

How might N leaching be influenced by CC?

-Eckersten et al. (2001) estimated for winter wheat N leaching to increase by 17-18% for a sandy and clayey site
in Uppsala but remained unchanged for Halmstad climate. They used the SOIL/SOILN models with a dynamic
plant growth and N model and CC was defined with the GCM delta method (AT = +1.7 to +2.1 °C, AP = +4 to
+22% and CO, = 515 ppm). The estimated N leaching increase was +64% when the simulated precipitation
increased from +7% to +22% related to spatial variation in GCM predictions of precipitation. Fertilization rates
were not changed.

-Arheimer et al. (2005) used SOIL/SOILN database version (database of parameter inputs) without a plant
growth model but with a simplified plant N uptake model to simulate N leaching of 15 different crops, several of
which were in crop rotation, from the R6nna catchment basin in Skane under a climate change of +2.5 to +4.5 °C
(six RCM models; delta method). N fertilisation rates were not changed but N leaching increased by 32-70%
depending on crop and RCM. N leaching was well related to simulated annual mean soil mineral N
concentration. N leaching varied between 10 for pasture and 25 for leys up to 85 for oats and 95 kg N ha™ yr*
for potato.

-Eckersten et al. (2007) summarised evaluations of changed N leaching in Sweden due to climate change, and
found scenarios ranging between 10 and 70% depending on site and climate scenario. They found several
expected reasons for increased N leaching, like increased mineralization, increased winter rainfall in place of
snowfall, increased spring rainfall, increased fertilisation and altered land use towards for instance more maize in
place of leys.

How are N,O emission influenced by CC?

-Flynn et al. (2005) used a method to calculate N,O emissions that takes into account crop type or climatic
conditions and the trampling effects from grazing animals. Applying the method to climate change by ~2080,
Scottish N,O emission may increase by 14%, if fertilizer regimes and management remain unchanged.
Reduction in agricultural land use have the potential to mitigate this increase, and dependent on the replacement
land use, may even reduce emissions to below current levels.

-For fertilized humid grassland in Ireland (Heleh et al. 2005) climatic shifts will increase annual modelled N,O
emission from 15.4 kg N /ha to 22.4 kg N /ha if current levels of N fertilization are maintained. The projected
increase in N,O emission due to climate change is far larger than the decrease expected from reduced N
application (-37 kg N fertilized resulted in 1.2 kg N reduction in N,O emission.

4. Land use

What are the consequences of CC for agriculture?

-Hulse (1993) mentioned that the United Nations Conference on Environment and Development stressed two
urgent research priorities; global climate change and genetic diversity. He suggested that the consequences of
CC to agriculture are highly unpredictable, and that more is known on agronomic characters than food
processing.

How will the northern limit of crops develop under CC?
-A northward expansion in suitability for cereal production in Finland. Cropping zones will shift at a rate of 130-
150 km/°C according to Carter and Kankaanpaa (2003).

Will new crops be cultivated because of CC?
-Farmers attitude towards global warming has been little investigated. Studies by Holloway and Ilbery (1996)
indicate a willingness to adopt new crops such as vining peas and navy beans in UK.

How will the extent of good agricultural land develop in the future?

-Fisher et al. (2002) suggested that in 2080 the total extent of potentially good agricultural land has
systematically decreased in Northern Europe by 1.5 — 9.6%, in particular in the UK and Ireland; in Southern
Europe by 0.7 — 7.7%, particularly in Spain, and in Eastern Europe by 0.2 — 5.9%, particularly in Ukraine. The
results were based on a study on climate change and agricultural vulnerability.
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How will the cereal cropping area develop globally in the future?

-Fisher et al. (2002) also estimated that the total cropping area will increase in northern Europe (16% increase
over reference climate estimate of 45 million ha), and in North America (40% increase over reference climate
estimate of 358 million ha), and in the Russian Federation (64% increase over reference climate estimate of 244
million ha). This will result in increased production of cereals of great concern for the developed nations.
Developing countries consistently face a substantial decrease of wheat production potential, according to all
scenarios for the 2080s (in the order of 15 — 45%). The underlying bases for the conclusions in this report were
the use of FAO/IIASA Agro-ecological Zones (AEZ) model, I1ASA’s global linked model of the world food
system (BLS — Basic Linked System) and the climate scenario-outputs of four different Global Circulation
Models (the HadCM3, CSIRO, CGCM2 and NCAR).

In what way may CC influence regional land use patterns?

-A model was validated and used to assess the spatial distribution of grassland in England and Wales,
considering soil, climate and topography (Rounsevell et al. 1996). The simulations indicate that grassland
production is sensitive to changes in temperature and precipitation. The effect of increasing temperature by 1
degree C is almost completely offset by precipitation increases of 10 % resulting in small changes in distribution
of grassland suitability. However, greater temperature changes (+4 °C) have a major influence on the ability of
land to support intensively managed grassland, because of increased drought stress. Results indicate that a
change in the climate, comparable with current best estimates for the future world, would be beneficial for
grassland on good quality land at higher altitudes.

-Climate change will increase the current trend to move agriculture production to Western and Northern Europe
(Olesen and Bindi, 2002).

-Levy et al. (2004) predicted that land use change results in a loss of carbon to the atmosphere in a scenario
where the increase in cropland areas continues. In other scenarios there is a decrease in cropland and grassland
with a corresponding increase in natural vegetation, resulting in a net sink to the biosphere. The credibility of
these scenarios depends on the accuracy in the predictions of the land use change. These are highly uncertain. As
CO, is the dominating influence on the vegetation, the scenarios with highest CO, concentrations generate the
largest net terrestrial sink for carbon. This conclusion would change if scenarios assumed continued
deforestation and cropland expansion. Without the beneficial effects of elevated CO,, the effects of climate
change are much more severe. This is a concern, as the long-term and large-scale effects of elevated CO, are still
open to question.

-In an extensive simulation of ecosystems services supply, Schréter et al (2005) predicted reduction in cropland
area for most of Europe with the smallest reduction (0-20%) in Northern areas and largest (20-100%) in the
Mediterranean regions.

-Land use for food production was expected to decrease by 7-11 % for Europe as a whole, depending on socio-
economic scenario, but quite insensitive to climate scenarios (Schréter et al., 2005).

-Land use for grassland (livestock) was expected to decrease by 1-10 % for Europe as a whole, depending on
socio-economic scenario, but quite insensitive to climate scenarios (Schroter et al., 2005).

-Schroter et al. (2005) considered 26 potential bioenergy crops from spring crops to trees like eucalyptus. On
average for Europe the area increase will be 1-7% by 2080 depending on socio/climate scenario. For latitudes
55-65°N the variation was less and most sensitive to climate scenario, but the increase in area was much larger,
11-15%.

-Crop yield changes on a regional basis for Sweden under changing temperature conditions were estimated by
comparing regional differences at present conditions (Sigvald et al., 2001 and Eckersten et al., 2007). The
relative increase in crop yields per hectare, for a 2-3 °C temperature increase, ranged approximately between
15% in the south and more than 70% in the north, however, strongly dependent on crop type. Changes of land
use were found to be potentially equally significant for predicting total regional production as changes in hectare
yields.

What changes in the extension of northern boreal forests do climate models simulate?

-Scholze et al. (2006) used outputs from 52 combinations of 16 different coupled general circulation models
(GCMs) and different emission scenarios (including runs where atmospheric composition were held constant) as
input to the Lund-Potsdam-Jena (LPJ) dynamic global vegetation model in an attempt to get a more quantitative,
spatially resolved, global assessment of climate-change-driven risks for world ecosystems. The 52 scenario
simulation outputs were divided into three groups according to the simulated increase in global mean surface
temperature between the standard period 1961-1990 and 2071-2100: < 2 °C, 2-3 °C, and >3 °C. Among the
results: A high risk of forest loss was shown for Eurasia, eastern China and Canada, but with forest extensions
into the Arctic (and semiarid savannas). The fraction of scenario runs showing a shift from forest to non-forest
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vegetation (or vice versa) - affecting an area of minimum 10 % - was 44 % in the T < 2 °C scenario group, and
88 % in the group with T >3 °C. The corresponding percentages of runs showing a shift affecting an area of at
least 20 % was 0 and 31 %, respectively.

What do land use assessments tell us?

How can land use assessments be done?

-Verburg et al. (2004) concluded that substantial progress have been made, but that there is a need for
development as concerns: address of multi-scale characteristics, new technique to quantify neighbourhood
effects, temporal dynamics, and integration between disciplinary approaches, and between urban and rural land
models. They reviewed a number of land use models concerning six basic concepts: level of analysis, cross-scale
dynamics, driving forces, spatial interaction and neighbourhood effects, temporal dynamic, and level of
integration.

-Ewert et al. (2005) applied the ATEAM model for the future. Land use (L) was estimated from estimates of
changes in the productivity per ha (P) and the demand (D) and assumptions on overproduction (O) that depended
on IPCC scenario. D was estimated with the IMAGE 2.2 model (IMAGE-team, 2001; Strengers, 2001). P was
calculated by multiplying current yield levels with the sum of relative changes in P due to increased CO,,
climate, and technology, respectively. The CO, effect was taken from literature on physical and modelling
experiments to range +11 to +32% by 2080 depending on IPCC scenario, which gave a value on CO,
concentration. The climate effect was taken from a PCA analysis of current relations between yields and climate
in Europe (Metzger et al., 2005), and technical effects were taken from historical yield statistics of major
European crops giving annual yield increases ranging between 0.84%/year for oats, 1.74% for wheat, 1.89% for
maize to 2.05 to 2.56%/year for rye and triticale (“ragvete” in Swedish), respectively.

-Total agricultural area of Europe is assessed using the Integrated Assessment Model (IMAGE 2.2) that
simulated commodity demand on the European scale as function of the global conditions (Schréter et al., 2005).
A second method was used to allocate this demand to regions within Europe (Rounsvell et al., 2005; 2006).
Stakeholders were consulted to identify land use change drivers. Thirdly, an assumption of maintaining a
constant land use was introduced (Schroter et al., 2005).

Is CC an important factor in assessments for future land use?

-Rounsevell et al. (2005b) estimated, by simulation method, that crop land and grassland area might decrease by
up to 50%, depending on socio-economic scenario, due to an oversupply of agricultural land, which have to be
met with reduction of area of agricultural land. The use of this surplus land will involve severe planning
problems.

-The surplus land has by far the greatest potential for energy crops, and geographically Former USSR, East Asia
and South America has the greatest advantage (Hoogwijk et al. 2005).

How is flooding of agricultural land influenced by CC?

-Holman et al. (2005) evaluated interactions between four major sectors driving landscape change (agriculture,
biodiversity, coasts and floodplains, and water resources) using the Drivers-Pressure-State-Impact-Response
(DPSIR) approach. For UK it was found that severe flood impacts might be expected in East Anglia if no policy
adaptive measures are undertaken.

How will uncertainties in GCM scenarios influence crop production in southern Sweden?

-Metzger (2005) made projections for Europe climatic zone classes and its consequences on agricultural land
use, using ATEAM model. They made a more detailed analysis of southern Sweden. In 2050, four different
GCM models (for Al emission scenario) gave quite different climate patterns and therefore different land use. (i)
CGCM2 gave from Skane in south to Véstergétland in north a growing season (>10°C) decreasing from 213 to
190 days. Grain yields decreased from 6.1 to 5.3 t/ha. Percentage of cropland used for winter wheat was 22% in
Vastergotland (2005 SCB-value is about 29%, and for oat 32% (2005-value is about 35%). For the east coast of
Sweden, the same conditions are projected to prevail from Skane up to about the level of Véastervik.

What constrains land use in southern Sweden?

-Metzger et al. (2005) expected from their detailed analysis of southern Sweden that the total arable land (at
present 40% of total land; source Eurostat NewCronos) will not increase because the forest soils are too acid for
cropping. Land use is strongly constrained by soil properties. As there is expected an increased overproduction
in Europe, they concluded that the area will not increase further. It is unclear what are speculations and what
results are. Production levels will increase.
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Which strategic factors are important to think of in land use?

-Christersson, L. (1994) argue that European agriculture must progress towards a more multi-faceted utilization
of different types of land in order to conserve arable land and thereby food production. The simultaneous
production of food, energy and fibres appears economically viable. This also provides a solution to
environmental problems of the community. The utilization of waste products as fertilizer when cultivating
biomass is argued to be done in such a way that it is possible to return rapidly to full-scale food production if
unexpected developments occur. Thus chosen crops should be able to be replaced rapidly by grain or pasture on
land, which has not experienced a loss of fertility or pollution by heavy metals.
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5. Adaptation and mitigation of agriculture to climate change

Having knowledge, or thoughts, about possible changes in climate and their effects on agricultural production,
the farmer and the society are expected to do something, either to adapt to the changes or to mitigate the effects
of the changes. The measures can range from changing the fertilisation regime on the field level to changing
crops or whole cropping systems or changing land use to improve agricultural production including
environmental concerns and available resources. In this section we aim at describing both scenarios and methods
used for assessing adaptation/mitigation strategies for agricultural production. We have tried to structure the text
in terms of the response variables on which the measures will act.

Which types of adaptation measures exist?

-In a general survey Smith and Almaraz (2004) states that agricultural adaptations to climatic change are (1)
management and genetic alterations of crops, (2) legislative changes, (3) policy and economic changes and (4)
adoption of mitigation practices. Mitigation of greenhouse effects can be: new cropping systems and crops that
reduce greenhouse gas production by emitting less nitrous oxide, increasing soil organic matter, and allowing
production of bio-products such as bio-fuels.

-Carter and Kankaanpaa (2003) listed a number of adaptation measures that might be expected under CC in
Finland: Changes in crop species and varieties, timing of cultivation practices, changes in cultivation practices
and use of fertilisers, maintenance and improvements of soil properties, plant breeding and modified pest and
animal disease control.

5. Soil

What are the potentials to increase soil C sequestration in agriculture?

-In a report from GCSI (Global Change Strategies International Inc., 1999; Soil Carbon Sinks Potential in Key
Countries) the focus is on the function of soils as a carbon sink by increasing soil organic matter (SOM) or
carbon (SOC) through the use of different management practises in agriculture. The report estimates for
potentials to increase soil sinks. On a global basis, the estimates show that a major world-wide initiative could
result in sequestering 0.45-0.61 Pg (= Giga tonne = 1000 Mt) Clyear (1640-2240 Mt CO,) in the next 20-30
years (this is equivalent to about 1/10 of annual CO, emissions from fossil fuel combustion and industrial
sources, or 1/3 of global emissions due to deforestation and land use changes). For industrialized countries with
small areas, soil C sinks were only 1-2 % of industrial emissions. However, for EU as a whole, including
potential for set-aside of "surplus™ agricultural lands, it was much higher (19-25 % of industrial emissions).
-Smith (2004) found in a review that European croplands are estimated to be the largest biospheric source of
carbon lost to the atmosphere in Europe each year, but the cropland estimate is the most uncertain among all
land-use types. The mean loss for EU is estimated to be 78 (1 st. dev. is 37) MtC per year. The biological
potential for carbon storage in European (EU15) cropland is of the order of 90-120 MtC per year with a range of
options available including reduced and zero tillage, set-aside, perennial crops and deep rooting crops, more
efficient use of organic amendments, improved rotations, organic farming, and conversion of arable land to
grassland or woodland, etc. The sequestration potential, considering only constraints on land-use, amounts of
raw materials and available land, is up to 45 MtC per year. It is concluded that there is significant potential
within Europe to decrease the flux of carbon to the atmosphere from cropland, and for cropland management to
sequester soil carbon, relative to the amount of carbon stored in cropland soils at present. The realistic potential
and the conservative achievable potentials may be considerably lower than the biological potential due to
socioeconomic and other constraints (15-20% vs. 80-85%).

What is the role of soil carbon sequestration in the long and short term?

-Smith (2004) argued that carbon sequestration in soil has a finite potential and is non-permanent and can
probably play only a minor role in closing carbon emission gaps by 2100. However, carbon sequestration forms
a central role amongst the measures to reduce atmospheric CO, concentrations in the short/medium-term
perspective over the next 20-30 years.

How does management influence C sequestration?

-In a report from GCSI (1999) it is concluded that “conservation tillage”, maintaining crop residues on the soil
surface, the use of crop rotations with three or more years of perennial forages (leys) within the rotation and
combination of practices are considered to have positive effects.
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-The rate of residual C addition to the soil was the primary factor that controlled simulated soil organic matter
for Ohio cropland under continuous corn, wheat and oats for the period 1866-1996 (Evrendilek and Wali, 2001).
-Average carbon fluxes into agricultural soils under business as usual scenario in the 2008-2012 commitment
period were estimated at 0.52 t C ha™ year in grassland and -0.84 t C ha™! year™ in arable land (Vleeshouwers
and Verhagen 2002). Conversion of arable land to grassland yielded a flux of 1.44 t C ha’ year®. Farm
management related activities aiming at carbon sequestration ranged from 0.15 t C ha’ year® for the
incorporation of straw, to 1.5 t C ha™* year™ for the application of farm manure. Reduced tillage resulted in a
positive flux of 0.25 ha™' year. The calculations were made using a model developed for carbon fluxes from
agricultural soils.

-Using US national averages values for agricultural inputs, calculation indicate that the net carbon flux from
atmosphere to soil, averaged over all crops, under no tillage, is 189 kg C ha™ year™. For conventional tillage the
net flux is from soil to atmosphere by 182 kg C ha year™. The difference (371 kg C ha™ year™) represents the
total atmospheric CO, reduction caused by changing tillage practices, (West and Marland, 2002 a, b).
-Agricultural ecosystems have the potential to sequester carbon in soils by altering agricultural management
practices (West and Wali, 2002). In order to account for changes in net CO, emission a method for full carbon
cycle analysis of agricultural systems was developed. -Soil and crop management is important in determining C
sequestration by soils. A comparison between 11 field studies showed that soil respiration varies between 4-26 t
C ha™ year dependent on management such as tillage, drainage, grazing and manure application. Net exchange
of C has been shown to be an order of magnitude lower than respiratory losses (Ress et al., 2005).
-Approximately 50 % of C assimilated by young plants can be transferred into the soil (Ress et al. 2005).

-Ogle and Paustian (2004) found for US conditions that over a 20 year period changing management could
sequester from 5 to 142 Tg C per year or 0.1 to 0.9 Mg C ha™* year™ . They applied the IPCC simple carbon
accounting approach.

-Lal (2005) estimated the effect on soil C sequestration of adaptation to Recommended Management Practice
(RMP). Gross rates of soil C sequestration could range from 400 to 800 kg/ha/yr for cool and humid areas, and
100-200 kg/halyr in dry and warm climates. In total for Brazil this gives about 50 Tg Clyr. Effective erosion
control measures could add 60 Tg C/yr to this value.

-Smith (2004) argued that carbon sequestration in soil has a finite potential and is non-permanent and can
probably play only a minor role in closing carbon emission gaps by 2100. However, carbon sequestration forms
a central role amongst the measures to reduce atmospheric CO, concentrations in the short/medium-term
perspective over the next 20-30 years.

What is the effect of no tillage on soil C sequestration?

-In a report from GCSI (1999) is presented studies (cited in Paustian et al., 1997, based on 39 studies) founding
that the average soil C level was 285 g/m2 more (8% higher) under no-till compared to conventional tillage. For
temperate agro-ecosystems, experiments in Europe with three or more years of leys within annual crop rotations
had up to 25% more soil C compared to rotations with only annual crops.

How does the use of land for agriculture influence global storage of carbon?

-In order to assess the role of agriculture within the global climate-vegetation system, Bondeau et al. (2007)
present model results for the managed planetary land surface, using the ‘Lund-Potsdam-Jena managed Land
(LPJmL)’ model. The model simulates the transient changes in water and carbon cycles due to land use, the
specific phenology and seasonal CO, fluxes of agricultural-dominated areas, and the production of crops and
grazing land. Based on the concept of crop functional types (CFTs), it uses 13 CFTs (11 arable crops and two
managed grass types). Carbon is allocated daily towards four different carbon pools, one being the yield-bearing
storage organs. For transient simulations for the 20" century, a global historical land-use data set was developed,
providing the annual cover fraction of the 13 CFTs within 0.5 °© grid cells for the period 1901-2000, using
published data on land use, crop distributions and irrigated areas. Monthly carbon fluxes measured at three
agricultural sites compared well with simulations. Globally, the simulations indicated a ~24 % reduction in
global vegetation carbon, and a ~10 % reduction in soil carbon, due to agriculture. In contrast to simulations of
the potential natural vegetation, showing the land biosphere to be an increasing carbon sink during the 20"
century, the LPJ-managed-land model simulated a net carbon source until the 1970s (due to land use), and a
small sink (mostly due to changing climate) after 1970.

How do changes of cropping system influence soil C?

-Foereid and Hogh-Jensen (2004) predicted an increase in soil organic matter for the first 50 years of 10-40 g C
m? year'and a stable level after about 100 years, after conversion to organic farming on sandy and loamy soils
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in Denmark. The use of grass covers in the rotation was important for the increase in organic matter. The model
CENTURY was used for the predictions.

Are windbreaks efficient for mitigation of drought effects on soil?

Seck et al. (2005) found less soil erosion and benefits in carbon sequestration due to plantations of dense
perennial hedges as windbreaks during a period of increased frequency of drought. The results came from
evaluation of changes since 1970 in Senegal. Methodology is not indicated in abstract.

Which measures are used to reduce wind erosion?
-In Denmark 1300 km wind shelters have been planted to reduce wind erosion (Danish EPA, 2005).

How may land use be used to sequester more soil C?

-Degraded or sub-standard soils and marginal lands occupy a significant proportion of boreal, temperate and
tropical biomes (Dixon et al. 1994). These represent a significant global opportunity to reduce the accumulation
of greenhouse gases in the atmosphere. It could sequester 0.82-2.2 Pg C per year globally over a 50-year time
frame. Slowing soil degradation by alternative grassland management could conserve up to 0.5-1.5 Pg C per
year. Promising land use systems and practices identified to conserve and temporarily store C include
agroforestry  systems, fuelwood and fibre plantations, bioreserves, intercropping systems, and
shelterbelts/windbreakes. For example, successful establishment of low-intensity agroforestry systems can store
up to 70 Mg C/ha in boreal, temperate and tropical ecoregions.

What makes stakeholder interested in soil organic matter?
-“Stakeholders were interested in soil organic matter content as a key factor in the carbon cycle and as an
indicator of soil fertility (Schréter et al., 2005).”

5. Crop production

How should cultivars be changed to adapt to climate change?

-Engvild (2003) suggested that that it would be necessary with seed supplies of appropriate frost/cold-resistant
crops, in case of a sudden climate cooling. There will be a need for stress tolerant crops, and the ordinary
definitions may have to be extended. For example, it is not enough that a wheat cultivar is cold tolerant during
winter, it must also be cold tolerant during growth and grain filling.

-Porter and Semenov (2005) argued that characters that enable better exploration of the soil and slower leaf
canopy expansion could lead to higher crop transpiration efficiency and adaptation possibilities for crops in
response to drought.

How can cultivars be used in adaptation?

-Another large-scale global change simulation study, but limited to maize in the USA corn and wheat belt (5
states) was made by Southworth et al. (2000). With existing varieties warming would in general decrease yield,
especially in the south. The introduction of late varieties in northern areas would increase yields. The work
illustrates the principal relationship between temperature, maturity type and yield. Future corn production in US
would require heat resistant and/or late varieties.

How can cropping systems be used in adaptation?

-The production of two different cropping systems at two locations in Italy was simulated. Simulated climatic
change reduced yields, but this could be counteracted by irrigation and new varieties. The cost of irrigation must
be considered (Tubiello et al. 2000)

How can we predict farmer’s adaptive measures?

-Farmers are risk adverse and profit maximisers — this is one of the outcomes of a model for land use in England
(Rounsevell et al., 2003). The approach is based on the simulation of farm-scale decision making processes and
the response of crops to their physical environment. Climate change impacts on land use can thus be predicted
by the model.

-Policy will have to support the flexibility of land use, crop production, farming systems etc. considering also the
multifunctional role of agriculture (Olesen and Bindi, 2002).
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Are windbreaks efficient for mitigating effects of drought on crop production?

-Seck et al. (2005) evaluated changes since 1970 in Senegal due to plantations of dense perennial hedges as
windbreaks during a period of increased frequency of drought. They found an increased production of fruit and
vegetables. (Methodology is not indicated in the abstract.)

How can N supply be taxed to be cost efficient?

-Tax on mineral fertilizers favours pig production, whereas tax on N surplus favours arable farms, was a
conclusion of a whole farm model study (FASSET 1.0) by Berntsen et al. (2003). The social abatement cost of
reducing N leaching was 1 — 9 Euro per kg N. Taxation schemes to reduce N leaching should differentiate
between farm types.

5. Animal husbandry

How might food supply to animals be adopted under CC?

-The grazing period could become longer in Finland under CC (Carter and Kankaanpad, 2003).

-Lloveras et al. (2006) presented results of the LEGISIL grassland model under climate change in UK,
suggesting that farm-scale adaptive responses might include increased need of conserved food for housed
livestock, and increased use of maize and legumes in place of N-fertilised grass. The results also suggested
increased need for manure storage and improved applications, and that dry seasons would require alternative
forage species or mixtures adapted to drought.

How can buildings be adopted under CC?
-Lighter animal shelters would be needed in Finland (Carter and Kankaanpéaa, 2003).

5. Biodiversity

Which measures may be used to increase biodiversity?

-In Denmark wind shelters are planted to ensure biodiversity (Danish EPA, 2005).

-Lal (2005) mention that soil biodiversity is usually higher under pastures an planted fallow systems than under
crops, and is likely to increase with adoption of conservation tillage, and mulch farming, integrated nutrient
management and manuring, mixed farming systems and integrated pest management techniques.

How does plant biodiversity depend on land use?

-O’Connor (2005) found for an experiment in South Africa that the number of species depended on plant cover
types: kikuyu (1.4 species /m2), ryegrass (2.9), pasture (3.1), commercial maize (3.2), and communal maize
(7.8). Abandoned communal cropland reverted to indigenous grassland almost free from exotic species in 20
years. It was predicted that frequently cultivated sites would support less diversity than long-lived pastures. This
prediction was contradicted by the high diversity of communal maize, which was attributed to the lack of
herbicides. The number of species of indigenous grassland was not influenced by grazing, only the composition.
Protecting grassland from grazing in 50 year corresponded to a double amount of species (100 instead of 50 per

plot).

A balance between agricultural production and biodiversity — what might it depend on?

-Firbank (2005) suggests that there can be no “theoretical” optimum balance between agricultural production and
biodiversity, as environmental goals depend greatly on scales and the viewpoint of stakeholders. He concludes
that the social challenge is larger than the scientific challenge, as concerns delivering sustainable agricultural
landscapes. No methodology is mentioned.

How is biodiversity related to land use and spatial scales?

-Gall and Orians (1992) consider two spatial scales, micro (field and farm) and regional. At the micro scale, they
state that agricultural options influencing biological conservation are tillage methods, water availability,
fertilizers, and harvest methods. On a regional scale the options are: level of efforts to increase habitat diversity
and patchiness, interests of urban peoples in recreation and nature, and pest management control.

How is species distribution related to land use and spatial scales?

-Kerr and Cihlar (2004) found for Canada that endangered species density is strongly related to land use, being a
measure of habitat loss to agriculture and intensity of land use. They found that protected areas were unrelated to
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endangered species. They used remote sensing and species distribution data sets on regional and national scales,
respectively, and a spatial resolution of 1 km.

5. Environment

How does land use influence greenhouse gas emissions?

-The dynamics of greenhouse gases is very much related to soil processes, where soil science will have to play a
leading roll in the mitigation of negative effects (Smith, 1999). The global increase in atmospheric CO, comes
mainly from fossil fuels (6.5Gt C/yr) together with 1.6 Gt C/yr from deforestation. However, the atmospheric
increase is only 3.4 Gt C/yr due to a net sink in terrestrial ecosystems of about 2.0 Gt C/yr and another in the
oceans. Reforestation and changed forestry and agricultural land management practices can contribute to C
sequestration. However, growth of biomass crops may increase N,O, and drainage of wetlands may increase
CH4.

-Integrated combination of land-management strategies show considerable potential for carbon mitigation. The
most important resource for carbon mitigation in Europe is the surplus arable land. To use this potential
resource, policies must allow long-term land use (Smith et al., 2000b). In UK the greatest potential in using
surplus land for carbon mitigation purpose is bioenergy crops (Smith. et al., 2000c)

-In an overview paper, Sauerbeck (2001) discusses the CO, sources in agriculture and the possibilities to
minimise their respective emissions. Agriculture is expected to help slow down the CO, increase in the
atmosphere by sequestering part of it in soil organic matter, and by producing suitable biomass as a substitute for
fossil fuels. Agricultural biofuels, shelterbelts, agroforestry and 25% crop residues can replace fossil fuels by up
to 0.5-1.5 Gt Clyr, corresponding to a potential saving of fossil fuels by 10-25%. The combined losses from the
earth’s biomass and from soils due to cultivation between the year 1700 and today amount to 170 Gt carbon,
which is now largely in the atmosphere. A further CO, release of 1.2 Gt C per year is still going on due to land
clearing for agriculture in the tropics. The only way out is escape from this forest clearing, more sustainable land
use and improved productivity on existing farmland. Soil organic matter of farmland is increased only if
additions can be enhanced or decomposition reduced. There are opportunities by which such improvements can
be achieved.

-Agricultural intensification (conservation tillage and residue mulching, integrated nutrient management, crop
rotations with cover crops, water-use-efficiency measures, plant nutrient and energy use) is a means for soil
organic carbon sequestration, the potential for Europe being 0.1-0.3 Pg C per year (Lal, 2003).

-Dendoncker et al. (2004) estimated that for Belgium less than 1% reduction of total national C losses might be
achieved by adjusting agricultural practice by means of increasing soil C sequestration. It is about 5-9% of total
emission from the agricultural sector. This is only one tenth of the Belgium commitment by 2010, according to
the “Kyoto-protocol”. Highest increase in oil C sequestration was achieved by the introduction of short rotation
energy crops (about 100 Gg C per year for Belgium), spreading farmyard manure on grassland (~85), new forest
plantations (~30), no-till farming (~15), improved farming practice on peat soils (~15), and organic farming
(~2).

-The expansion of crops and pastures to the detriment of forests results in an increase in atmospheric CO; (Gitz
and Ciais, 2004) due to loss of forest biomass and soil carbon during and after conversion. An additional cause is
the reduction of the residence time of carbon in the biosphere, when forest or grasslands are converted into
cultivated land. This may add 61 ppm extra CO, in the atmosphere by 2100. Analyses of the carbon dynamics
show that there is an additional atmospheric benefit of preserving pristine ecosystems with high turnover time.
-In Denmark, the plantation of 1300 km of wind shelters are estimated to have resulted in a CO, sequestration
into woody biomass by 130 000 tonnes CO, per year (Danish EPA, 2005; Gyldenkarne et al, 2005).

-Lloveras et al. (2006) presented results of the SIMSpary Model (Prado et al, 2006) giving that a short term
sward (2-3 years) emitted 7% less N,O per unit of milk produced than long term swards (> 11 years).

Are management practices important for regulating gas emissions?

-Gas fluxes may change the mitigation potential of agricultural management options significantly and should
always be considered alongside CO,-C mitigation potentials. Also, agricultural management options show
considerable potential for carbon mitigation even after accounting for trace gas fluxes (Smith et al. 2000a, 2001).

How do GHG emissions due to fertilization depend on crop rotation?

-Increased fertilization rate was modelled (DAISY-model) to increase greenhouse gas (GHG) emissions for
winter wheat cereals, but remained unchanged for crop rotations with spring cereals and catch crops (Olesen et
al., 2004).
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How efficient are different management measures in reducing GHG emissions?

-Weiske et al. (2006) modelled that an optimised lifetime of dairy cows might reduce GHG emission (CH,4 and
N,O) by 13%, compared to baseline model farm. Frequent removal of manure reduced emissions by 7%,
scraping of fouled surfaces gave almost no effect, and manure application by trail hose and injection, instead of
broadcasting, reduced emissions by 1-3%. The largest reduction of GHG emissions depended on how much of
the thermal energy produced that is exploited (96%), and combining all methods, the reduction range between —
25% (i.e. higher emissions) and 1a full reduction compared to the model farm.

How much do GHG emissions increase in relation to farm net input of N?

-Olesen et al. (2006) showed that GHG emissions (CH, and N,O) of a farm could be related either to farm N
surplus by using a whole-farm model (FarmGHG) for five European agro-ecological zones for both organic and
conventional systems. An increase of N surplus from 56 to 319 kg N ha™ y™ resulted in a GHG emission from 3
to 16 Mg CO,-eq haty™*. They also examined effects of farm-N efficiency and fount it to be important.

How can management be adopted to reduce emissions from animal husbandry?

-Gas abatement strategies for animal husbandry are reviewed by Monteny et al. (2006), (55 references). The
most effective mitigation strategies for methane are changing the animals diet towards greater energy-use
efficiency. Methane emission can be reduced by optimal use of the gas for energy purpose. Some further
mitigation practices are discussed in the paper.

-Dairy systems in Europe contribute to the greenhouse emissions with N,O, CH, and CO, gases. These
emissions were calculated for Holland using a panel of climate change (IPCC) methodology, an updated and
refined IPCC methodology and a full IPCC accounting approach. Schills et al. (2006) using detailed farm data
showed that changes in N management have reduced GHG emissions. A reduction of the N-surplus per kg milk
with 1 g N reduced the GHG emissions with approximately 29 g CO, equivalents. This was achieved by reduced
fertilizer use and reduced grazing time. Conclusion: the N surplus at the farm level is a useful indicator of GHG
emissions. A full accounting system, as used here, may effectively enable farmers to address the issue of GHG
emissions in their operational management decisions.

-Gibbons et al. (2006): Following a Monte-Carlo simulation and modelling approach it was concluded that the
most cost effective adaptations were: (i) eliminate intensive beef production, (ii) reduce stored manure and
increase frequency of manure spreading, substitute concentrate feed for grass and conserved grass in milk
production (= use more concentrate), and (iv) apply less mineral N to grassland. The cost effective adaptations
were the most certain in the simulations.

How can management be adopted to reduce N leaching?

-Larsson et al. (2005) simulated N leaching from arable land in Skéne. Single cultivation measures, i.e. cover
crop and spring ploughing, late termination of leys and fallow, and spring application of manure, reduced N
leaching with 5 — 8%. Combining all three measures and replacing winter crops by spring crops resulted in a
simulated reduction of 21%.

How can N leaching remain at present levels?

-Simulation of nitrogen leakage in a French catchment area showed increased leakage for a number of global
change scenarios (Durand, 2004). A reduction of 40% in fertilisation and introduction of catch crops was
required to keep pollution at the present level.

-Lloveras et al. (2006) presented results of the SIMSpairy model (Prado et al, 2006) giving that a short term
sward (2-3 years) leached 24% less N per unit of milk produced than long term swards (> 11 years).

-Eckersten et al. (2007) summarised evaluations of changed N leaching in Sweden due to climate change and
found scenarios ranging between 10 and 70% depending on site and climate scenario. Considering the national
environmental objective of a 30 % reduction of N leaching by 2015, and that the potential to decrease the N
leaching with current cropping methods under current climate has been estimated to maximum 20-25 %, the
problem of achieving environmental targets will be accentuated under climate change.

How are CH,4 emissions expected to change in future?

-In Denmark only a minor reduction of methane emissions are expected: 0.1 M tonnes CO,- equivalents per year
(about 1% of total agricultural emissions) from 2003 to 2012, due to improved efficiency in cattle farming
(Danish EPA, 2005).
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How are N gas emissions expected to change in future?

-In Denmark, N gas emissions are expected to decrease to 3 M tonnes CO,-equivalents (CO,-eq.) per year by
2008-2012, from 6.2 M tonnes CO,-eq. per year in 2003, due to special action planes (Danish EPA, 2005;
Olesen et al., 2004; Olesen, JE, 2005). In the same report (Danish EPA, 2005) a 12 % decrease in annual
emission rates (including methane) by 2030, is reported, i.e. from 9.9 to 8.69 M tonnes CO,-eq. per year, mainly
as a consequence of reduced N leaching, commercial fertiliser application, and spread manure. A sensitivity
analyses suggest that the inclusion of CAP plus stop in increased pig production, would lead to a further
decrease by about 5%. A 25 % reduction in run off would result in another 5%, as well as extra initiatives for
aforestation. Values are not consistent within the report.

-In Denmark, ammonium emissions are expected to decrease by 0.034 M tonnes CO,-eq. per year by 2010 due to
optimisation of manure handling, covering storage, ban on surface spreading, and ban on ammonia treatment of
straw. The shortening of the exposure time of spread manure is expected to contribute most, about 30 % (Danish
EPA, 2005).

How are CO, emissions expected to change in future?

-In Denmark ban on burning straw is expected to increase the use a straw as fuel. No quantitative measures of
the expected reduction in CO, emission are available (Danish EPA, 2005).

-In Denmark the replacement of fossil fuels with biogas (to an amount corresponding to approx. 2 PJ up to 2010)
from manure and organic waste is expected to reduce CO, plus N and CH,4 emissions by 0.25 M tonnes CO,-€eq.
per year by 2010 (Danish EPA, 2005). Half of this reduction is due to reduced CO..

Which methods exist to define and assess land use impacts?

-Brentrup et al. (2002) discuss the assessment of the environmental impacts of land use within LCA (Life Cycle
Assessment) studies. They put forward, that the impact category ‘land use’ in the LCA methodology describes
the environmental impacts of occupying, reshaping and managing land for human purposes. The impact category
‘land use’ comprises those environmental consequences, which impact the environment due to the land use
itself, e.g. through the reduction of landscape elements, the planting of monocultures or artificial vegetation, etc.
Land use leads to a degradation of the naturalness of the area. To determine the remaining naturalness of land
under use, the study suggests applying the ‘Hemeroby’ concept. The Hemeroby level of an area describes the
intensity of land use and can therefore be used to characterise different types of land use. Characterization
factors, allowing estimation of the degradation of naturalness due to a specific type of land use, are proposed.

What is the effect of deforestation on climate?

-Six Earth system models of intermediate complexity (EMICs) that are able to simulate the interaction between
atmosphere, ocean, and the land surface, were forced with a scenario of land cover changes during the last
millennium (Brovkin et al., 2006). In this experiment it was found, that in response to a historical deforestation
of about 18 million km?, the models simulated a decrease in global mean temperature in the range 0.13-0.25 °C.
The rate of this cooling accelerated during the 19" century, and reached a maximum in the first half of the 20"
century. This trend was explained by temporal and spatial dynamics of land cover changes, as the effect of
deforestation on temperature was less pronounced in tropical than in temperate regions, and reforestation in
northern temperate areas during the second part of the 20™ century partly offset this cooling trend. As
reforestation might be used as an option in the future for enhancement of terrestrial carbon sequestration, the
authors argue, that this study indicates that biogeophysical mechanisms need to be accounted for in assessments
of land management options.

5. Policy

What is the current status of adaptation policy in Sweden?

-In a report from Swedish EPA and STEM (Naturvardsverket/Energimyndigheten, 2004a, b) it is stated that
vulnerability and risks in Sweden (relating to effects of climate change) have been focused in a few analyses (see
e.g. Miljodepartementet, 2001), but so far no co-ordinated society program has evaluated the needs, the
possibilities and costs for adaptive measures.

-In a survey through inquires to different Swedish stakeholders about ongoing or planned adaptation measures,
relating to climate change (SMHI 2005, RMK No.106), the agricultural sector reported that no such adaptive
measures, neither already taken nor planned, were taken. They concluded (i) there is a number of analyses
concerning the effects of climate change, though rather few analyses of vulnerability, or needs for adaptation
measures, are actually performed; (ii) with a few exceptions, no actual adaptive measures to a changed climate
have been identified in the survey.
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Which policy measures could be taken to adapt agriculture to CC?

-Carter and Kankaanpad (2003) listed a number of policy measures that might be appropriate for Finland:
Encouraging flexible land use and changes in land allocation; relocation of zones having comparative
advantages; compensation of loss of agricultural advantages; farm diversification grants; adjusting the guidelines
for water protection and especially N leaching; aid for the adaptation of new technology; plant breeding
programmes and research on adaptation; developing new farming systems; developing new foods.

Will Scottish agriculture be influenced by CC?

-Kerr et al. (1999) concluded from preliminary results, that the CC has to be essentially larger than proposed for
the coming century, to become a major driver in modifying Scottish agriculture. The temperature rise by 2085
for the Scotland grid box ranged 0.9 — 2.6 °C, and rain fall rise ranged between 5% in summer to 30% in winter.
For the period until 2050 there was a decrease in spring rainfall.

Will Scottish agriculture adapt to CC?
-Kerr et al. (1999) concluded that the agricultural sector will adapt to the Common Agricultural Policy, rather
than to CC.

How prepared is society to alternative CC scenarios?

-The vulnerability of different sectors in society, including agriculture and forestry, to a rapid or abrupt climate
change in Europe is treated in a report from Tyndall Centre for Climate Change Research (Arnell et al., 2005).
An initial assessment of the implications of three different types of abrupt climatic change (i) a thermohaline
collapse, (ii) an accelerated climatic change, due to a positive feedback by the additional release of greenhouse
gases from thawing permafrost areas and the oceans, and (iii) a rapid rise in sea level resulting from
disintegration of the West Antarctic ice sheet) was made. It is concluded, that due to the uncertainties (cooling or
rapid warming, and maybe also low probability for such changes), it is difficult to see how organizations can
plan to adapt to abrupt climate change.

What might be the role of social processes in adaptation?

-Adger (2003) argues that adaptation to CC is a dynamic social process: the ability of societies to adapt is
determined, in part, by the ability to act collectively. Specifically, social capital is increasingly understood within
economics to have public and private elements, both of which are based on trust, reputation, and reciprocal
action. The public-good aspects of particular forms of social capital are pertinent elements of adaptive capacity
in interacting with natural capital and in relation to the performance of institutions that cope with the risks of
changes in climate. They review emerging perspectives on collective action and social capital and it is pointed
out that insights from these areas inform the nature of adaptive capacity and normative prescriptions of policies
of adaptation.

What are the needs to develop adaptation strategies in Indo-Gangetic plain?

-Aggarwal et al. (2004) argue that further information is needed to develop a range of adaptation strategies of
food systems in IGP to GEC (Global Environmental Change). (IGP is Indo-Gangetic plain; including regions of
Pakistan, India, Nepal, and Bangladesh). The strategies include augmenting production and its sustainability,
increasing income from agricultural enterprises, diversification from rice-wheat systems, improving land use and
natural resource management, and instigating more flexible policies and institutions. Strategies to reduce the
vulnerability of the region's food systems to GEC need to be based on a combination of technical and policy
options, and developed in recognition of the concurrent changes in socioeconomic stresses. Adaptation options
need to be assessed with regard to their socioeconomic and environmental efficacy, but a greater understanding
of the interactions of food systems with GEC is needed to be able to do this with confidence.

Which methods are needed to estimate effects of adaptation measures?

-In a report from GCSI (1999, see “5. Soil” in this report) is stated that a general acceptance internationally in
the Kyoto protocol of agricultural soil sinks requires reliable and verifiable methods for determining changes in
soil carbon stock. While such methods have been proposed, further assessment and evaluation is required.

How can projects on C sequestration influence greenhouse gas emissions in the future?
-CAN Europe (Climate Action Network Europe; 2006) conclude in a “Briefing Paper” that proposals to allow
sink projects in the EU ETS, do not address the serious issues such as scientific uncertainty and lack of long-
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term contribution to avoiding climate change. It continues to be difficult and expensive to estimate the uptake
and storage of carbon by biological sinks with any degree of accuracy. They argue that including sinks projects
will delay action required to reduce the threat of climate change. It may also increase the cost of compliance as it
may be more expensive in the future to mitigate climate change and mitigate the re-emissions from the
temporarily sequestered C.

How will, in summary, climate change influence agriculture in Denmark?

-Danish EPA (2005): “For Danish agriculture, the overall effects are estimated to be advantageous. Changes in
cultivation practice can be implemented at short notice, and production is expected to grow with rising
temperature and CO, concentrations. EU regulation is currently causing a development leading to less dairy
production and increasing production of pig meat. The projected climate changes could reinforce this trend
because market constraints in the dairy sector would limit production. In this context, the forthcoming EU CAP
will play a greater role than climate change. Despite the extreme summer heat in Germany, France and Spain in
2003, where the harvest in several places fell by up to 30%, there was no overall drop in farmers' incomes
because higher prices meant better profits in the countries that were not affected. In the longer term — in a
climate under change — Denmark is favourably placed in the EU internal market. However, higher temperatures
and humidity could increase the risk of pests and plant diseases, resulting in an increased demand for pesticides.
At the same time, increased production would require more nutrients for plants, which, together with more
precipitation and higher soil temperatures in winter, as well as irrigation in summer, would increase the risk of
nutrient leaching and run-off. Implementation of the EU Water Framework Directive will help ensure both cost-
effective agriculture and long-term protection of water resources in a future changed climate.”

How will, in summary, climate change influence agriculture in Scotland?

-Kerr et al. (1999) made an investigation of possible influences of climate change on Scotland. They conclude
that for the agricultural sector the land use will play a key role under climate change as it influences the
greenhouse gas emissions. Set-aside land and aforestation is especially mentioned.

Which are the research needs?

-Research priorities are: the effect of secondary factors on production, quality of crop and animal production,
changes in frequency of isolated and extreme weather events and interactions with the surrounding natural
ecosystems (Olesen and Bindi, 2002).

Concerning crop production?

-Ewert et al. (2005):” The importance of advances in technology for future productivity as evident from our
results draws particular attention to relationships that determine technology development. Our assumptions about
technology effects on potential yield and yield gap were based on qualitative judgments and there is a clear
scope for model improvement. Consideration of dynamic feedback mechanisms between crop productivity and
demand for food, agricultural land use and socio-economic conditions are likely to provide further insights into
the complex relationships determining productivity change.”

What are the options for future climate change research of interest for Scotland?

-Kerr et al. (1999), as a first priority, identified the needs of: (i) higher resolution of climate data (especially
precipitation and snowfall); (ii) more impact studies for Scotland, where regional differences are identified; (iii)
CC indicators developed for UK should be evaluated for Scotland specifically; (iv) creation of a ‘meta-data’
depository including key indicators of climate that are of interest and useful by users; (v) maps of exposure areas
within Scotland; (iv) comparison with similar CC strategic studies in Nordic countries (Norway, Sweden,
Ireland). As a second priority they suggest the exploration of the linkages between the main driving forces of
single sectors in the society, and the impacts of climate. Also the linkages to the impacts of emission targets
should be explored. They mention specifically: Public perception, land use strategies, requirements to reduce
greenhouse gas emissions, and business opportunities.

Do we know about the effects of climate extremes on agriculture?

-Kerr et al. (1999) stated that the effects of climate extremes on agricultural production have yet to be fully
understood.

96



6. Climate change impacts in relation to natural resources and
globalisation

Climate is one among a number of other factors influencing agricultural production and that expected to change
in future. Also the availability of resources used for input to the production might change, as well as the market
for the products, as the globalisation gets Swedish agricultural production more close to the global agricultural
market. In addition the use of agricultural land will be related to alternative use e.g. production of ecosystem
services, or non-agricultural activities. In this section we aim at describing results of studies trying to assess how
effects of changing availability of natural resources and globalisation on agricultural production might be related
to changing climate. This section is structured with respect to central factors “drivers”, except for CC, that are
expected to influence agricultural production, i.e. natural resources and globalisation, but also factors that the
changes effects act upon, i.e. ecosystem services etc, and factors that both are drivers and response factors like
land use.

What might be the relation between agricultural drivers and global change?

-Vitousek (1994) listed three well documented factors changed in association with global change, that are
important for agriculture: increasing concentrations of CO, in the atmosphere, alterations in the biochemistry of
the global nitrogen cycle, and an ongoing land use/land cover change. (1) CO, has increased from 280 to 355
ppm since 1800, the increase is unique at least for the past 160 000 years. This has climatic consequences and
direct effects on biota in all Earth’s terrestrial ecosystems. (2) More N is fixed annually by human activities (N
fertilizer fabrication, growing of legumes crops and as a by-product in fossil fuel combustion) than by all natural
pathways combined. This added N alters the chemistry of the atmosphere and of aquatic ecosystems, contributes
to eutrophication of the biosphere, and has effects on biodiversity in the most affected areas. (3) Human land
use/land cover change has transformed one third to one half of the Earth’s ice-free surface. This is probably the
most important component of global change now and for some decades to come; it has profound effect on
biological diversity. The difference between pristine ecosystems and human-altered areas may have existed in
the past, but has now vanished. These three and other equally certain components of global change are the
primary causes to the anticipated climate changes and of ongoing losses in biological diversity. They are caused
by the extraordinary growth in human population.

6. Natural resources
Which methods exist to predict energy use?
-A model for fossil energy use was developed in Denmark (Dalgaard et al., 2001).

How does energy use efficiency depend on cropping system?

-Fossil energy use was compared in organic and conventional farms in a simulation study in Denmark (Dalgaard
et al., 2001). Conventional farms had the highest energy consumption. Energy use and also yields were lower on
the organic farms, but organic crops had the highest energy efficiency. Energy use in animal production was also
studied.

Can energy supply of agriculture in Ireland be reduced without influencing yields?

-Rice (2003) concluded for Irish conditions that engine fuel is agriculture’s main direct energy input. It was
estimated that a reduction of 15-20% in this input over the next five years would appear to be reasonable. The
reasons might be, for instance, a diversion of land out of agriculture, and an improvement in energy efficiency. It
was concluded that nitrogenous fertilizer is the biggest indirect energy input, and suggested that a reduction of
20% over five years, without reducing output, should be achievable by a greater precision in N use and an
increased substitution of slurry for mineral-N.

How much land area is needed for bioenergy production in Ireland?

-Rice (2003) concluded that for Ireland biofuel production from the existing set-aside area could supply about
10% of the agricultural fuel demand. It was also concluded, that about 0.5 Mha would be required to meet 10%
of the total national primary energy demand, when energy crop is utilized in a heating or CHP (Combined Heat
and Power) plant. This could be set as a medium-term target that could be achieved without major disruptions in
the existing food production.
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How much energy might be achieved from biomass in future, and which are the reasons of
uncertainties?

-Berndes et al. (2003) discuss the possible contribution of biomass to the future global energy supply, based on a
review of 17 other studies on this subject. Some of their findings are: The reviewed studies have arrived at
widely different results about the possible contribution of biomass to the global energy in the future, varying
from below 100 EJ yr™ to above 400 EJ yr*in 2050 (1 EJ (exajoule) = 1018 Joule). (For comparison: The global
consumption of fossil fuels, nuclear energy and hydro electricity in 1999-2000, was ~365 EJ yr*.) The major
reason for this large differences is said to be that the two most crucial parameters for these estimates — land
availability and yield levels in energy crop production — are very uncertain, and subject to very different
opinions.

-Reilly and Paltsev (2007) describes a method for incorporating biomass energy production and competition for
land into the MIT Emissions Predictions and Policy Analysis (EPPA) model, that is a computable general
equilibrium model of the world economy. Multiple scenarios where greenhouse gas emissions are abated or not
were examined. They estimated that the global increase in biomass energy use in a reference scenario, without
“climate change policy”, would be about 30 EJ yr* by 2050 and ~180 EJ yr™ by the year 2100. This deployment
is driven primarily on an oil price that is about 4.5 times higher than the price in the year 2000. In the scenarios
of stabilization GHG concentrations, the global biomass energy production increases to 50-150 EJ yr* by 2050,
and to about 220-250 EJ yr by 2100. The estimated area of land required to produce 180-250 EJ yr? is
estimated to be about 2 Gha, which is in the magnitude of the current global crop area. Their general conclusion
is, that the scale of energy use in the USA and the rest of the world, relative to biomass potential, is so large that
a biofuel industry that were able to supply a substantial part of liquid fuel demand, would have very significant
effects on land use and conventional agricultural markets.

Can land area be a limiting factor to the production of bioenergy fuels?

-Boverket/Naturvardsverket (2000a) states that the availability of land can present a limiting factor for the
production of energy fuels, since the conversion of solar energy to viable energy is very low for bioenergy
(<1%) which implies the requirement of large areas of land.

-Helmfrid and Haden (2006) [the report is part of a co-operative work between KSLA and CUL (Centrum for
uthalligt lantbruk, SLU) addressing questions coupled to the expected scarcity of oil in the future] conclude the
following: (i) To cover the need of fuels (petrol and diesel) within the agricultural (food producing) system itself
with biofuels (ethanol and RME), would require ~1 Mha (i.e. about 40 %) of the total arable area in Sweden; (ii)
to substitute all the present Swedish fuel consumption with biofuels (produced in Sweden) would require an area
of more than 6 Mha — an alternative “beyond all realism” as stated by the authors; (iii) the corresponding
calculus for covering all of the Swedish fuel consumption with liquid fuels produced from wood as primary
product, indicates a need for more than 15 Mha of forest area, corresponding to about 80 % of the present yearly
cuttings.

Which are the most promising technologies for bioenergy production?

-Rice (2003) listed the most promising technologies for the conversion of farm biomass to energy: vegetable oils
and animal fats as engine fuels in vehicles or CHP plants; ethanol as a replacement for MTBE (methyl tertiary
butyl ether) in petrol, either converted to ETBE or used directly; methane production from animal slurries, used
in heating or CHP plants; direct combustion or gasification of wood or other energy crops.

6. Globalisation

How will the food demand change in the future?

-In a simulation study of ecosystems services, Alcamo et al. (2003) predicted, on a global scale, an increased
demand in 2050 of wheat consumption by a factor of 1.5 to 1.7, of fish consumption by a factor of 1.3 to 1.4, of
water withdrawals by a factor of 1.3 to 2.0 and by biofuel production by a factor of 5.1 to 11.3.

6. Ecosystem services

Is cropping sensitive to CC, in comparison to other factors that are expected to change in the future?
-Holman et al. (2005) evaluated interactions between four major sectors driving landscape change (agriculture,
biodiversity, coasts and floodplains, and water resources) using the Drivers-Pressure-State-Impact-Response
(DPSIR) approach. For UK it was found that despite yield changes, cropping was generally insensitive to climate
change but very sensitive to changes in socio-economic changes.

-Ewert et al. (2005) estimated an increase in crop productivity by 2020 to 2080. Technology development was
identified as the most important driver for this increase, essentially more important than CC. The relative crop
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yield increases were 11-32% for CO, increase, based on crop modelling, whereas the corresponding factor for
technology development was 20-140% assuming a constant relative change over time.

-Technology development will have a greater impact on increase in future crop productivity than climate change
(Ewert et al. 2005). Countries with high technological potential will have an advantage in terms of increasing
crop acreage.

How will ecosystem services be changed in future?

-In a simulation study of ecosystems services Alcamo et al. (2003) predicted in general a positive balance of
increasing services, especially in the developing countries. They also predicted a negative balance of increasing
risks and tradeoffs of services. The challenge then is to avoid a future curtailment of ecosystem services.

Is biodiversity sensitive to CC in comparison to expected changes of other drivers?

-Holman et al. (2005) evaluated interactions between four major sectors driving landscape change (agriculture,
biodiversity, coasts and floodplains, and water resources) using the Drivers-Pressure-State-Impact-Response
(DPSIR) approach. For UK it was found that the sensitivity of biodiversity to CC was regional, habitat and
species specific. However, biodiversity within regions depend to a large extent on planned adaptation in the
other sectors.

Which forest species distribution and productivity under CC are projected for Sweden?

-In a study by Koca et al. (2006) the potential of a processed-based regional ecosystem model (LPJ-GUESS) are
discussed. The model is driven by climate scenarios generated by a RCM to give projections of climatic and CO,
change on the key ecosystem services of carbon uptake and storage. Scenarios compatible with SRES A2 and B2
emission scenarios were used in the simulations to explore changes in tree species distribution, vegetation
structure, productivity and ecosystem carbon stocks for the late 21% century. The results suggest that shifts in
climatic zones may lead to changes in species distribution and community composition among seven major tree
species of Swedish forests. The model also predicted substantial increases in vegetation net primary productivity
(NPP), especially in central Sweden. Expansion of forest cover and increased local biomass enhanced the net
carbon sink over central and northern Sweden. In southern Sweden, reduced soil moisture levels during the
growing season counterbalanced the positive effects of a longer growing season, with the result that many areas
were converted from a sink to a source of carbon towards the end of the century.

6. Environment

What is the feedback of vegetation on the climate system?

-A coupled global vegetation-climate model was used to investigate the effect of vegetation feedbacks on
climatic change due to doubling the atmospheric CO, (Bergengren et al., 2001). Large effects of vegetation
feedbacks in the interactive simulations are found in the northern and southern ecotones of the boreal forest.
Poleward migration of boreal forests into tundra is enhanced by strong snow-masking albedo feedback. Changes
in the southern tropics are also described.

How can energy crops be used for environmental purposes?

-Boverket/Naturvardsverket (2000a) states that an environmentally soundly adapted cultivation of perennial
energy crops (e.g. energy forests and energy grass) based on optimal design, 