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Abstract

Biogas production requires a number of different microbial groups that work in 
a synchronized and closely interacting manner. For bioreactors constructed to max-
imize waste treatment and energy production, it is crucial to manage this process 
in a way that secures the growth and activity of these microorganisms, as otherwise 
there is a great risk of process failure. However, the microbiome has a remarkable 
ability to adapt to various conditions related to substrate composition and operat-
ing conditions, thus showing high functional redundancy and robustness. In order 
to optimize and steer the process, it is important to have an understanding of the 
anaerobic microbiome, how it responds to various conditions, and its upper limits. 
This chapter reviews current knowledge regarding microbial responses to different 
operational management strategies. Microbial responses under various conditions 
and how the process can be operated to maintain the activity of key species are 
addressed. Parameters discussed include for example substrate composition, pre-
treatment, ammonia level, temperature and organic load.

Keywords: anaerobic degradation, microbiology, taxonomy, start-up, temperature, 
substrate composition, feeding, additives, bioaugmentation

1. Introduction

As the world’s population continues to grow, it is necessary to find ways to 
develop resourceful waste treatment methods while concurrently reducing the 
dependency on fossil fuels. In this regard, biogas produced through anaerobic deg-
radation (AD) is highly interesting, as it can replace fossil fuels in power and heat 
production, be used as feedstock for production of biochemicals, or be converted 
to vehicle fuel [1]. The biogas technology also enables resource sustainability when 
the digestion residue (digestate) is used as organic fertilizer to replace fossil energy-
requiring mineral fertilizers [2].

Anaerobic digestion of organic material to biogas is a complex microbiologi-
cal process requiring the combined activity of several groups of microorganisms 
with different metabolic capacities and growth requirements. To obtain a stable 
and efficient biogas process, it is important to meet the growth requirements of all 
microorganisms involved. The substrate is one critical parameter in this regard, 
contributing growth factors and macro- and micronutrients. Some organic mate-
rials can be used as the sole substrate, while others have to be co-digested with 
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substrates that are complementary in composition in order to provide favorable 
conditions for microbial growth [3]. However, addition of additives such as iron, 
trace metals, or buffering chemicals may be essential in certain processes in order to 
ensure sufficient microbial activity and to prevent process collapse [4]. In addition 
to the nutrient composition, operating parameters such as pretreatment method, 
load of input material, retention time, process temperature, and stirring are of 
critical importance. All these parameters have to be set at appropriate levels in order 
to ensure high activity and gas yield with minimized risk of inhibition or washout 
of critical functions and microorganisms [5–9]. Thus, many different aspects need 
to be taken into consideration to achieve optimal microbial activity giving a high 
degree of degradation and gas production. It should be borne in mind that many 
operating and biological parameters are interlinked, sometimes with counteracting 
effects.

2. Characteristics of substrates used for biogas production

The composition of substrates can vary considerably between anaerobic digest-
ers, which bring different challenges depending on the feed characteristics com-
bined with the parameters chosen for the specific system. For example, substrates 
rich in protein and fat have a high energy content and thus a high methane poten-
tial, but can sometimes cause process disturbances due to formation of inhibitory 
compounds or foaming [10–12]. Other materials posing a lower risk of process 
disturbance, such as lignocellulosic materials, can require an unfeasibly long time 
for degradation. In order to explain the prerequisites for microbial degradation and 
the challenges that exist, this section briefly describes the main characteristics of 
common substrates for biogas production. This provides background for a detailed 
description of the microbial degradation process and the responses to changes in 
operating parameters.

Plant-based materials, such as fruit, grains, vegetables, and root crops, are 
typically rich in different polysaccharides. Polysaccharides are chains of sugars 
linked in linear chains (cellulose and starch) or branched chains (hemicellulose, 
pectin, and glycogen). In the plant cell wall, hemicellulose, cellulose, and lignin 
are associated in the form of lignocellulose [13]. Simple polysaccharides such 
as starch and glycogen are easily cleaved by microorganisms into glucose units. 
Hemicellulose and cellulose are also relatively easily degraded but, when com-
bined with lignin (i.e., lignocellulose) as in plants, the structure becomes rela-
tively persistent to microbial degradation [14, 15]. Lignocellulosic materials such 
as straw (wheat, rice, corn, barley) and sugarcane bagasse are the most abundant 
renewable biomass and have high potential to contribute to expansion of world-
wide biogas production [13, 16].

Protein-rich materials for biogas production include waste from animal rearing 
(slaughterhouse, dairy, animal manure, aquaculture sludge), ethanol fermentation 
(distiller’s waste), food industry, and households [10, 17–21]. Proteins consist of 
long chains of amino acids joined by peptide (or amide) bonds and there are 20 dif-
ferent amino acids of various lengths. A feature of all amino acids is that they have 
at least one amine group (-NH2). The efficiency of protein degradation depends on 
the structure of these compounds and their solubility [22].

Slaughterhouse waste, food waste, and grease-separation sludge are materials 
with a high fat content [23–25]. Fat molecules are of different lengths (saturated 
or unsaturated) and are hydrolyzed to long-chain fatty acids (LCFA, >12 carbon 
atoms) and glycerol [26]. Lipids are normally rapidly degraded in AD, whereas the 
conversion of LCFA can represent a rate-limiting step [27, 28].
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3. The microbial degradation steps leading to methane

The microbial process comprises the main degradation steps hydrolysis, acidogen-
esis, acetogenesis, and methanogenesis (Figure 1) and this process has to be efficient 
and balanced in order to obtain successful anaerobic digestion. The initial step is 
performed by hydrolytic bacteria, and possibly also fungi, that convert polymers 
(polysaccharides, lipids, proteins, etc.) into soluble monomers (LCFA, glycerol, 
amino acids, sugars, etc.) [29, 30]. The hydrolytic reaction is mediated by extracellular 
enzymes secreted by bacteria to the bulk solution and/or attached to their cell wall. 
Cellulose is hydrolyzed to cellobiose and glucose, while hemicelluloses are degraded to 
monomeric sugars and acetic acid by bacteria that often have several different enzymes 
combined into so-called cellulosomes situated on their cell wall [16, 31]. These cel-
lulosomes contain proteins that have the ability to bind to cellulose, which makes the 
degradation more efficient because the enzymes can work directly “on-site.” Fungal 
cellulases use a different mechanism and not only bind to the surface of the cellulose, 
but also to penetrate inside the complex biomass materials (e.g., plant cell walls) [32].

Through the action of extracellular enzymes (proteases), proteins are hydro-
lyzed into amino acids, which are subsequently degraded in the Stickland reaction 
or through uncoupled oxidation. In the Stickland reaction, one amino acid acts as 
an electron donor and the other as an electron acceptor, and the oxidation process 
produces a volatile carboxylic acid that is one carbon atom shorter than the original 
amino acid. For example, alanine with its three-carbon chain is converted to acetate 
[33]. Amino acids can also be fermented through uncoupled oxidation where elec-
trons are instead released as hydrogen. This process can only occur in cooperation 
with a hydrogen-utilizing partner, such as methanogens, that keeps the hydrogen 
partial pressure low [34]. Irrespective of the degradation pathway, the amino group 
in the amino acid is released as ammonia and the sulfur in cysteine and methionine 
results in sulfide. Lipases are excreted by hydrolytic bacteria and catalyze the hydroly-
sis of lipids at the water-lipid interface [35], forming saturated or unsaturated LCFA 
and glycerol [36]. LCFAs thereafter absorb to and are transported through microbial 

Figure 1. 
Anaerobic degradation of carbohydrates, lipids, and proteins and the phyla commonly reported to be involved 
in the different steps. Biogas digester parameters identified as main drivers for community structure is depicted. 
The figure is adapted from Kougias et al. [39].
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cell membranes of acetogenic bacteria, where the LCFAs are converted to acetate via 
beta-oxidation to acetate, carbon dioxide (CO2), and hydrogen (H2) [37, 38].

The soluble monomers produced in the hydrolytic and acidogenic steps are 
further degraded to intermediate products. These mainly comprise volatile fatty 
acids (e.g., acetate, propionate, butyrate, lactate, valerate, and caproate), alcohols, 
formate, H2, and CO2 [40]. During acetogenesis, the products formed in hydro-
lysis/acidogenesis are further converted by a group of bacteria called acetogens, 
generating acetate, H2, and CO2 as main products. During this process, various 
electron acceptors can be used, including CO2, nitrate, sulfate, and protons, 
with the latter being most important in the biogas process [41]. Acetogens can 
also directly use products from hydrolysis, such as sugars and amino acids [42], 
or oxidize pyruvate, which is a common intermediate in anaerobic degradation 
reactions, to acetate [43]. For thermodynamic reasons, many reactions performed 
by acetogens, such as oxidation of organic acids and LCFA, can only proceed if the 
partial pressure of H2 (pH2) is kept low [44]. For some acids, such as propionate, 
the removal of acetate can also be of crucial importance [45]. The removal of the 
acidogenic products acetate and H2/formate and some methylated compounds 
mainly proceeds through consumption by methanogens. The energetic situation 
for the methanogens is comparatively more favorable than acetogenesis, and thus 
combining these reactions allows both organisms to obtain energy for growth. This 
type of symbiosis, in which neither organism can operate without the other but 
together they exhibit metabolic activities that they could not accomplish on their 
own, is called syntrophy [43, 44].

In the last step, methanogenic archaea use acetate, CO2, or methylated com-
pounds to produce methane (CH4) (Figure 1). In acetate-utilizing (aceticlastic) 
methanogenesis, acetate is split into a methyl group and CO2, and the methyl 
group is later reduced to methane using an electron provided by the carboxyl 
group. CO2 is reduced to methane by hydrogenotrophic methanogens, using 
H2 or formate as primary electron donors. In methanogenesis from methylated 
compounds such as methanol, methylamines, and methylsulfides, the methyl 
group is reduced to methane. Most methylotrophic methanogens then obtain the 
electrons they require for reduction from oxidation of additional methyl groups 
to CO2 [46, 47].

4. Microorganisms engaged in the different degradation steps

Organisms that are active during the hydrolysis of polysaccharides in biogas 
processes include various bacteria and anaerobic fungi [14, 29]. Cellulose and 
starch-degrading bacteria are found within the genera Acetivibrio, Butyrivibrio, 
Caldanaerobacter, Caldicellulosiruptor, Clostridium, Eubacterium, Halocella, 
Ruminoclostridium and Ruminococcus (phylum Firmicutes), Bacteroides and 
Paludibacter (phylum Bacteroidetes), Fibrobacter (phylum Fibrobacteres), 
Spirochaetes (phylum Spirochaeta), and Fervidobacterium and Thermotoga 
(phylum Thermotogae) [14, 48–57]. Identification of the genes necessary for 
degradation of cellulose has also led to the suggestion that members of the phylum 
Proteobacteria [56], candidate phylum Cloacimonetes [58] and Actinomyces 
[59] have this ability. Among the anaerobic fungi, representatives of the phylum 
Neocallimastigomycota, commonly also found in ruminants, have been suggested 
as promising candidates to improve biogas production from lignocellulosic mate-
rial [60, 61]. Protein and amino acid degradation in anaerobic digesters has been 
shown to be performed by various genera within the phylum Firmicutes, such as 
Anaeromusa, Anaerosphaera, Aminobacterium, Aminomonas, Gelria, Peptoniphilus, 
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Thermanaerovibrio [62–67], Clostridium [68], Proteiniborus [69], and 
Sporanaerobacter [70]. However, members of the phyla Bacteroidetes (e.g., genera 
Fermentimonas and Proteiniphilum), Fusobacteria, and Cloacimonetes have also 
been suggested to have an active amino acid-based metabolism in anaerobic digest-
ers [71, 72]. Less is known about bacteria involved in hydrolysis of fat. Lipolytic 
bacteria in anaerobic digesters has so far been proposed to belong to families 
Caldilineaceae (phylum Firmicutes), Bacteroidaceae (phylum Bacteroidetes) and 
to genera Trichococcus (phylum Firmicutes), Devosia, and Psycrobacter (phylum 
Proteobacteria) [73, 74].

Acetogenesis and syntrophic acid degradation are often performed by bacteria 
belonging to the genera Clostridium and Acetobacterium (phylum Firmicutes), 
but have also been assigned to the phylum Proteobacteria [14, 43, 75]. Bacteria 
identified so far that are capable of β-oxidizing LCFA in syntrophy with metha-
nogens all belong to the families Syntrophomonadaceae and Syntrophaceae [23, 
76]. Syntrophs that degrade short-chain fatty acids, such as butyrate, propionate, 
and acetate, in association with methanogens are phylogenetically distributed. 
Syntrophic propionate and butyrate degradation is performed by genera such 
as Syntrophomonas, Syntrophospora, Syntrophothermus, Thermosyntropha, and 
Pelotomaculum (phylum Firmicutes), or the genera Syntrophus, Smithella, and 
Syntrophobacter (phylum Proteobacteria) [77]. In addition, the phyla Cloacimonetes, 
Synergistetes, and Chloriflexi have been suggested to contain bacteria capable of 
performing syntrophic metabolism in association with hydrogenotrophic metha-
nogens [78–80]. Bacteria capable of syntrophic acetate oxidation identified to 
date belong to the genera Clostridium, Thermoacetogenium, Syntrophaceticus, and 
Tepidanaerobacter (phylum Firmicutes) [81]. Novel syntrophic acetate-oxidizing 
bacteria (SAOB) candidates have been suggested within the order Clostridiales 
and/or Thermoanaerobacterales [82–86], Synergistes group 4 [87], the genus 
Coprothermobacter [88] and the phyla Spirochaetes [89], Thermotogae [83], 
Chloroflexi, and Bacteroidetes [90].

In terms of relative abundance, the methanogenic community generally 
represents a minor part (2–5%) of the total community, but methanogens 
have been observed to have high activity relative to their abundance [83, 
91, 92]. Methanogens commonly detected in biogas digesters belong to the 
orders Methanobacteriales, Methanomicrobiales, and Methanosarcinales 
(phylum Euryarchaeota). However, the orders Methanococcales and 
Methanomassiliicoccales (phylum Euryarchaeota) have also been found in AD sys-
tems [30, 93]. Hydrogenotrophs are found within all methanogenic orders except 
for the Methanomassiliicoccales [93]. Acetate is only used by members of the 
families Methanosarcinaceae and Methanosaetaceae (order Methanosarcinales). 
Members of the Methanosarcinaceae are comparatively more versatile, having 
the ability to grow on several different substrates, such as acetate, hydrogen, 
and methanol, while members of the Methanosaetaceae use only acetate [94]. 
Methane formation from methylated compounds is performed by members of 
the Methanomassiliicoccales, Methanobacteriales, and Methanosarcinales [93]. A 
candidate methanogenic class, WSA2, has also been proposed and suggested to be 
restricted to methanogenesis through methylated thiol reduction [95].

With ongoing advances in molecular techniques and cultivation studies, the list 
of anaerobic microorganisms responsible for different degradation pathways is con-
tinually being updated. The complexity of the cooperation involved in degradation 
is further illustrated by the fact that members within one and the same genus are 
often able degrade chemically different compounds. In future, the introduction of 
omics approaches, combined with isolates of novel species, will most likely increase 
insights into the taxa involved [30, 96–99].
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5.  The impact of different operating conditions on AD microbial 
communities

To optimize the anaerobic digestion process and steer it in a desired direction, 
it is important to have knowledge and understanding of the metabolic capacities of 
key microorganisms. Knowledge of the level of functional redundancy within the 
community (how easily the microbial community adapts to operating changes) and 
microbial requirements for activity can also help identify operating management 
practices for improved process performance. In this section, the impact on the 
microbial community of different operating strategies is described.

5.1 Start-up strategies

The inoculum used for starting up a biogas process has been shown to be of 
importance for the degradation rate, specific methane yield, and stress tolerance, 
possibly depending on differences in the composition of the microbial community 
[52, 100–104]. In addition, chemical parameters, such as presence of trace elements 
needed for microbial activity, have been suggested to be important [105]. Inocula, 
most commonly applied in practice, can be categorized as originating from one 
of the following three sources: wastewater treatment plants, agricultural biogas 
plants, and plants treating various biowastes, such as municipal and industrial food 
waste [101]. Microbial analyses of biogas plants belonging to these different groups 
have clearly shown separation based on microbial community structure [102, 103, 
106, 107]. This separation is believed to be caused by the substrate characteristics 
and operating conditions, with temperature and ammonia being strong regulating 
parameters [106]. It has been suggested that wastewater sludge is most optimal as the 
inoculum for biomethane potential (BMP) tests, due to its diverse and highly active 
community [101]. However, Koch et al. [108] found that inoculum originating from 
a plant degrading similar substrate to that evaluated in the BMP test gave the best 
results, suggesting that a substrate-adjusted microbial community is more suit-
able. Choosing inoculum from a well-functioning biogas process degrading similar 
substrate and operating under the parameters planned for the new process has also 
been shown to reduce the period for start-up and avoid initial instability during 
continuous operation [52, 100]. It has been suggested that methanogenic activity and 
abundance are appropriate parameters for assessing the suitability of an inoculum 
and for achieving high rates and yields in BMP tests, as well as for operation of a 
continuous biogas process [100, 109]. Another factor that can be favorable for the 
process is to use an inoculum with high microbial diversity, which is considered to 
correlate with high functional redundancy. One hypothesis to explain this is that 
having a large number of species provides potential for failing species to be easily 
replaced by other species performing similar functions, with little impact on the 
overall process [110].

Evaluations of different inocula during semi-continuous operation using the 
same substrate have been made for mesophilic processes operating with maize silage 
[103], a mix of manure and grass [52], cellulose [102], and a mix of waste-activated 
sludge and glycerol [100]. These studies have produced some contradictory results 
with regard to the composition of the microbial community over time. Han et al. 
[102] found that the inoculum source was determining for methane yield, pH, and 
volatile fatty acid (VFA) production using cellulose as a substrate, both during 
start-up and after reaching stable operation. Different steady state community 
patterns were also obtained in the different reactors started with different inocula. 
Moreover, reactors characterized by high VFA levels and low pH had comparatively 
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low levels of Methanosarcinales, highlighting the importance of this methanogen 
for efficient biogas production. In line with this, high levels of Methanosarcinales 
have also been shown to be important for efficient start-up and revival of a thermo-
philic process suffering from high acetate levels [111]. In contradiction to the results 
reported by Han et al. [102], a study employing three different inocula for start-up 
of parallel processes using a manure-grass mix as substrate found that the overall 
microbial community and process performance became similar in the parallel 
processes after three hydraulic retention times (HRT) of operation [52]. However, 
a clear difference in performance was seen during the initial phase after start-up in 
that study, with poor performance when using an inoculum from a high-ammonia 
process. Less efficient start-up using a high-ammonia inoculum was also seen in a 
study by de Vrieze et al. [100] on AD with sludge and glycerol. High-ammonia levels 
usually impact microbial richness and cause significant shifts in both the bacterial 
and methanogenic community [82, 106]. This possibly explains the less efficient 
start-up performance when using substrate with a comparatively low nitrogen level 
[100]. A negative correlation between ammonia level and cellulose degradation effi-
ciency was also found in the abovementioned study by Liu et al. [52]. Interestingly, 
when processes started with different inocula and unified in performance and 
microbial community were supplemented with an additional substrate in that 
study, the processes again diverged in both performance and microbiology. These 
results illustrate that choice of inoculum can influence long-term performance of 
biogas processes [112]. Moreover, even when the same inoculum and operating 
parameters are used during start-up, different process performances and microbial 
communities can evolve [102, 113]. This illustrates that stochastic factors play an 
important role in the microbial community assembly in biogas reactors. It also high-
lights the need for further research on the impact of inoculum source and operating 
conditions on long-term effects and optimized performance.

5.2 Temperature

Temperature strongly affects the microbial community structure and thus also 
process performance and stability [5, 92, 106, 107, 114–118]. When choosing the 
operating temperature, other operating parameters such as substrate, feeding strategy, 
and presence or possible formation of inhibitory compounds should be taken into 
account. The temperatures normally used for digestion in industrial biogas processes 
are not only mesophilic (37–40°C) or thermophilic (50–55°C), but also psychrophilic 
(<25°C) and temperatures between mesophilic and thermophilic (41–45°C) have been 
shown to be achievable [57, 118–122]. Some studies investigating AD at 41–45°C have 
even reported higher methane production compared with the more commonly used 
mesophilic or thermophilic range, with associated microbial shifts [57, 119, 121]. In 
general, metabolic rates and biochemical processes increase with increasing tempera-
ture [115, 123, 124]. However, thermophilic conditions can also make the process more 
sensitive to disturbances and inhibitory compounds [115, 125] and cause less efficient 
degradation of some inhibitory compounds [126]. Shifts in microbial community in 
response to temperature change can take time and involve periods of instability. It is 
therefore recommended to allow the community to adapt to the temperature change 
by a slow increase/decrease (±1°C per day) [5, 127–130]. In order to avoid process 
collapse, temperature changes should be carefully monitored, both when increasing 
and decreasing the operating temperature. A temporary reduction in feed rate and 
prolonged retention time can be required in the event of disturbance during step-wise 
temperature changes [5]. Another important aspect to consider during AD operation is 
that the microbial community, specifically the methanogens, is sensitive to long-term 
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temperature variations. Experience from large-scale operations shows that constant 
temperature fluctuations should not exceed ±2–3°C in order to avoid instability [131].

One quite consistent effect of operation at thermophilic instead of meso-
philic temperature is a higher level of Firmicutes compared with Bacteroidetes/
Proteobacteria [5, 57, 116, 118, 121, 132–136]. A high Firmicutes to Bacteroidetes 
ratio in mesophilic AD has been shown to correlate positively with high methane 
yield [137, 138]. However, an increase in this ratio has also been suggested to 
decrease the richness of predicted lignocellulolytic enzymes in biogas digesters, 
an effect attributed to lower hydrolysis in comparison with natural anaerobic 
systems [139]. Whether similar correlations arise in comparisons between meso-
philic and thermophilic biogas communities has yet to be determined. Another 
characteristic feature of thermophilic communities is a higher dominance of the 
phylum Thermotogae [91, 114, 117, 123, 133, 135, 136, 140–143]. Members of the 
Thermotogae degrade polysaccharides to ethanol, acetate, CO2, and H2 [72, 144], 
but can also be involved in degradation of alcohols to CO2 and H2 in syntrophic 
association with a hydrogen-consuming partner [72, 145].

Another aspect to consider during operation at thermophilic temperature is that 
ammonia inhibition occurs more quickly at higher temperature, as the equilibrium 
between ammonium and ammonia shifts towards the latter when the temperature 
rises [146]. Irrespective of temperature, methanogens performing the last step in AD 
are among the least tolerant to ammonia and reduced methane yield, and accumula-
tion of fatty acids is a common consequence of microbial inhibition of this group 
[81]. Methanogenic community changes related to temperature, often combined 
with increasing ammonia levels, have been reported to include positive correlations 
between high temperature and enhanced relative abundance of Methanobacteriales 
(often Methanothermobacter) and/or Methanomicrobiales (often Methanoculleus) [5, 
106, 116–118, 133, 136, 140–142, 147–150]. The shift in methanogenic community often 
also involves a shift in acetate degradation pathway from aceticlastic methanogenesis to 
syntrophic acetate oxidation (SAO) [81]. However, in AD processes that seldom reach 
high-ammonia levels, such as AD of wastewater sludge, instant temperature changes 
without associated instability have been shown to be possible [143, 151, 152].

5.3 Pretreatment

Wastes rich in lignocellulose (e.g., forestry by-products, straw) or keratinase 
(e.g., waste from poultry, meat, and fish industries) and wastewater sludge have 
significant biogas potential [15, 16, 153, 154]. However, the complex floc structures 
of microbial cells in sewage sludge and the recalcitrant structure of lignocellulose 
make hydrolysis the rate-limiting step in AD systems [16, 155, 156]. Pretreatment is 
a well-proven approach to improve degradation of such waste. Common pretreat-
ment strategies comprise physical (e.g., heat/pressure, irradiation, ultrasonic), 
chemical (e.g., acids/bases, ozonation, oxidation), and biological (addition of 
fungi/bacteria/enzymes under aerobic or anaerobic conditions) methods [16, 157]. 
The general concept of pretreatment is that it should improve the accessibility 
of the material to microbial degradation by disrupting the structure, changing 
the biomass porosity, and reducing the particle size to enhance the surface area 
that can be attacked. Many studies have investigated the effect on methane yield 
of pretreatment of various materials and many methods have shown improved 
process efficiency following pretreatment [16, 157, 158]. However, fewer stud-
ies have examined the influence of pretreatment on microbial communities and 
relationships to the increase in methane yield, and most of the studies performed 
to date have been on AD of waste-activated sludge, with differing results. For 
example, during mesophilic AD of sewage sludge, some studies have found no 
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responses in the microbial community following thermophilic aerobic digestion or 
ultrasonic or alkaline pretreatment [159–161]. However, in other studies investigat-
ing mesophilic AD processes, ultrasonic, microwave, and electrokinetic pretreat-
ments have all been shown to increase the relative abundance of Clostridiales 
(phylum Firmicutes) and Cloacimonetes and decrease the relative abundance of 
Proteobacteria [162, 163]. Moreover, in mesophilic AD of microalgae biomass, 
thermal pretreatment has been found to increase the relative abundance of the 
families Rikenellaceae (phylum Bacteriodetes) and Anaerolineaceae (phylum 
Chloroflexi) and decrease the relative abundance of the phylum Proteobacteria 
[164]. Using metatranscriptomic analysis, Xia et al. [165] found that low-frequency 
ultrasonic treatment of sludge during thermophilic digestion increased the hydro-
lytic activity of representatives of the phyla Bacteroidetes and Cloacimonetes 
and increased motility and chemotaxis in members of the phylum Thermotoga. 
Another noteworthy finding in that study was that, among the bacteria involved in 
cellulose degradation, members of the order Bacteroidales were more active than 
members of the Clostridiales. Both these groups contain well-known cellulose-
degrading bacteria, but members of the Bacteroidales typically do not possess 
the cellulosomes often seen in Clostridiales. Xia et al. [165] concluded that low-
frequency ultrasonic pretreatment allows enrichment of a community with high 
hydrolytic activity without attachment to its substrate.

For substrates other than sludge, Wang et al. [166] reported a weak effect on the 
microbial community structure during digestion of thermal pretreated distilled 
grain waste in thermophilic solid AD. Thermal and thermochemical pretreatment 
approaches are the most commonly used methods for lignocellulosic materials 
used for bioenergy production purposes [167]. Such methods are often efficient in 
breaking the carbohydrate polymers to soluble sugars and improving the acces-
sibility of the substrate to microbial degradation, thus increasing the biogas yield. 
However, these pretreatments can also release inhibitors such as furfural, 5-HMF, 
vanillin, and other phenolic compounds [167]. Depending on concentration, these 
lignin-derived compounds have been found to be inhibitory to methanogen and to 
result in decreased hydrolytic activity, and major shifts have been shown to occur 
in both archaeal and bacterial populations (see reviews [167, 168]). However, adap-
tation and degradation of these compounds is possible and is suggested to involve 
members within the families Syntrophorhabdaceae and Synergistaceae, combined 
with hydrogenotrophic methanogens [167–169]. For optimized degradation of 
phenolic compounds, thermophilic pretreatment has been suggested [126].

The combined results from studies performed to date suggest that pretreatment 
mostly causes minor structural adjustments in the prevailing AD microbial commu-
nity, but still impacts the activity. It is likely that the effect of pretreatment depends 
strongly on the prevailing operating conditions (e.g., substrate and temperature) 
and the activity of the microbial community. It can be anticipated that the response 
in microbial community structure is also linked to the physical effects of the pre-
treatment on the substrate. Thus, if the pretreatment enhances the solubilization of 
all components in the substrate, the impact on community structure will be lower 
than if the pretreatment increases the solubilization of one particular compound 
(i.e., proteins, carbohydrates, or lipids).

5.4 Loading rate and retention time

The hydraulic retention time (HRT) or solid retention time (SRT), i.e., the 
average time that the biomass is maintained in the digester, and the organic loading 
rate (OLR) are of great importance for the microbial community. A short HRT and 
a high OLR are often desirable in commercial biogas production plants, since they 
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allow for high-quantity waste treatment and high biogas production (if the AD can 
maintain efficiency). However, SRT should exceed the microbial doubling time of 
prevailing microorganisms, in order to avoid washout of the consortium and thus 
process collapse. Immobilization of microorganisms through inclusion of support 
material or by allowing the formation of granular sludge, flocks, or biofilms is a 
strategy used in high HRT systems to support and maintain organisms with lower 
growth rate than the solid retention time [170, 171].

The response by the microbial community to change in OLR and HRT has been 
shown to vary depending on operating conditions such as temperature and compo-
sition of substrate [5, 6]. The prevailing microbial community at the time of OLR/
HRT change is also important for the overall response [172]. Moreover, the feeding 
approach, i.e., continuous or discontinuous feeding, can be determining for com-
munity changes [173]. Changes in OLR/HRT have been shown to cause a response 
in most phyla dominating in AD, such as Actinobacteria, Bacteroidetes, Firmicutes, 
Chloroflexi, Thermotogae, Cloacimonetes, and Euryarchaeota [172–176].

In the case of increasing load, bacteria associated with hydrolytic and acidogenetic 
activity, such as members of the Firmicutes or Bacteroidetes, have been shown to be 
enriched, in parallel with accumulation of accumulation of fatty acids [172, 176–178]. 
Typically, acetate accumulates first and propionate accumulates if the process distur-
bance continues, which is assumed to be caused by limited methanogenesis and excess 
levels of hydrogen [5, 172, 179]. In high-solid mesophilic AD, an increase in OLR has been 
found to decrease the relative abundance of Firmicutes and increase that of Bacteroidetes 
and Candidate division WS6 [174]. During increasing OLR of protein-rich waste (blood, 
casein) in mesophilic AD, the order Thermoanaerobacteriales, harboring several known 
SAOBs (e.g., Caldanaerobacter and Alkaliphilius), has been shown to increase, while 
the relative abundance of Bacillus (Bacteroidetes) decreases [10]. In thermophilic AD 
of lignocellulose, decreasing the retention time from 20 to 3 days has also been shown 
to increase the levels of Firmicutes, while Thermotogae and Chloroflexi decrease in 
abundance [175]. During mesophilic AD of food waste at increasing OLR (3–7 g volatile 
solids L−1 d−1) and HRT (15–20 days), a dynamic succession has been seen in different 
bacterial phyla (Firmicutes and Actinobacteria), while the abundance of Euryarchaeota, 
specifically families Methanosarcinaceae and Methanosaetaceae, increases [172].

The frequently reported increase in the genus Methanosarcina in response to 
increasing OLR has been attributed to its efficient acetate degradation capac-
ity and robustness to stress [94]. Several studies also suggest that members of the 
Methanosarcina are important for maintained and efficient methane production 
under increasing OLR [172, 180]. However, members of the Methanobacteria, 
Methanomicrobiales, and/or Methanomassiliicoccaceae have also been observed in cer-
tain processes with a high load, depending on prevailing conditions [5, 120, 176, 179–
181]. During loading by pulsed feeding, the hydrogenotrophic Methanomicrobiales 
have been shown to increase, favoring the consumption of propionate, most likely 
through hydrogen utilization. These methanogens have also been detected in high-
ammonia processes operating at high OLR [179]. Ferm et al. [182] and Xu et al. [172] 
suggest that acetate-utilizing methanogens are critical for efficient methane produc-
tion during stable performance at increasing OLR. However, with “overload” and 
acidification, hydrogenotrophic methanogens, such as representatives of the orders 
Methanomicrobiales and Methanobacteriales, become more important and dominant.

5.5 Changes in substrate composition and feeding strategies

Substrate composition is another parameter that strongly impacts the microbial 
community. It is well-known that co-digestion of different materials often achieves a 
more balanced nutrient level and improves the process performance and biogas yield 
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[3, 183, 184]. However, the substrate availability for a commercial biogas plant may 
not always be optimal and the availability can also change over time. When changing 
substrate composition or choosing a substrate for a new AD process, the estimated 
energy yield and the nutrient value of the digestate generated have to be balanced 
against possible problems associated with different substrates, such as ammonia 
inhibition, acidification, and foaming. This section reviews the microbial communities 
commonly observed in processes fed with protein-, carbohydrate- or fat-rich material 
and the microbial responses to operating challenges that often occur in these processes.

5.5.1 Protein-rich substrate

Proteins are energy-rich and contribute nutrients to the digestate, but a possible 
effect of ammonia inhibition has to be considered in the processing. Ammonia (NH3) 
and ammonium (NH4

+) are formed by the microbial degradation of proteins and in 
particularly the unionized NH3 is toxic to microorganisms [185]. NH3 and NH4

+ exist 
in equilibrium and higher temperature and pH shift the ratio toward a higher level of 
ammonia. Thus, in addition to the nitrogen content, temperature and pH should be 
taken into account in prediction of inhibition following a change in substrate composi-
tion [186]. The aceticlastic methanogens (Methanosaeta sp. and certain Methanosarcina 
sp.) are considered to be most sensitive to ammonia, but if an ammonia-tolerant 
community is allowed to persist in the digester, the process can cope with substan-
tially higher ammonia levels than an unadapted process [19]. An ammonia-tolerant 
community often includes methane formation from acetate via SAO [120, 187–193]. 
In SAO, acetate-oxidizing bacteria and hydrogenotrophic methanogens work in a syn-
trophic manner to generate methane. Bacteria species currently known to be capable 
of SAO belong to the genera Thermacetogenium [194], Pseudothermotoga [145, 195], 
Tepidanaerobacter acetatoxydans [196], Clostridium [197], and Syntrophaceticus [198]. 
Methanogenic partners in SAO are suggested to be members of the hydrogenotrophic 
Methanobacteriales and Methanomicrobiales (often the genus Methanoculleus) [81]. 
Methanosarcina is moderately ammonia-tolerant and can use both the hydrogenotro-
phic and aceticlastic pathways for methane formation, and can thus possibly act as a 
hydrogen scavenger in SAO [81, 94] or mediate the entire process, i.e., both acetate 
oxidation and subsequent methanogenesis [199, 200]. An increased level of protein 
can also affect degradation steps other than the syntrophic and methanogenic steps. 
For example, an increased level of protein in AD of food waste has been demonstrated 
to increase the abundance of the families Porphyromonadaceae, Actinomytaceae, 
Lactobacillaceae, and Caldicoprobacteraceae, suggesting their direct or indirect 
involvement in protein hydrolysis [82]. In AD of animal manure, higher protein 
content has been shown to increase the genera Desulfotomaculum and Eubacterium [82, 
201]. High levels of ammonia have also been shown to be negatively correlated with 
degradation of cellulose and with some potential cellulose degraders [112].

5.5.2 Carbohydrate-rich substrate

Carbohydrate-rich materials are difficult to use in mono-digestion for biogas, since 
the C/N ratio becomes too high for microbial activity. Carbohydrates are thus typically 
co-digested with more nitrogen-rich materials. However, complex carbohydrates can 
pose additional challenges, such as low degradability of lignocellulosic materials, while 
easily accessible carbohydrates undergo fast acidogenesis that can cause acidification 
[202, 203]. Animal manure and sludge are commonly used in co-digestion with straw 
(corn, rice, tobacco, wheat) and in these processes the two orders Clostridiales (phy-
lum Firmicutes) and Bacteroidales (phylum Bacteroidetes) often dominate. However, 
the phyla Proteobacter, Chloroflexi, and Fibrobacteres also often increase in response 
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to addition of lignocellulosic materials, with some variation depending on co-
digestion material and prevailing environmental conditions [118, 202, 204–208]. The 
microbial community structure in AD of rice straw has been shown to be influenced 
by temperature, with a higher ratio of Firmicutes to Bacteroidetes being reported at 
higher temperature [208]. In mesophilic AD of rice straw, Bacteroidetes is reported to 
be the most prevalent group and the abundance is not influenced by increased OLR, 
whereas the second most abundant Firmicutes decreases slightly [209]. Metagenomic 
studies have confirmed the involvement of the phyla Proteobacteria, Firmicutes, 
Chloroflexi, and Bacteroidetes, but also Actinomycetes, in the degradation of lignocel-
lulose by demonstrating the existence of CAZymes (Carbohydrate-Active Enzymes) 
in consortia adapted to lignocellulosic materials [59, 202].

Interestingly, similar community profiles as described above are often seen in AD 
of material containing comparatively high levels of easily accessible carbohydrates. 
For example, in co-digestion of fruit and vegetable waste with pig manure, the phyla 
Firmicutes, Bacteroidetes, Chloroflexi, Proteobacteria, and Actinobacteria have been 
found to dominate, but the numbers of Firmicutes decrease when the fraction of 
fruit and vegetable waste (with the highest levels of carbohydrates) decreases [210]. 
In mesophilic AD of potato and cabbage waste (alone or in combination), mem-
bers of the phyla Spirochaete, Bacteroidetes, Firmicutes, and Proteobacteria vary 
in numbers depending on the substrate combination [203]. In a study examining 
addition of cellulose and xylan to wastewater sludge, it was found that this increased 
the relative abundance of the bacterial genus Clostridium (phylum Firmicutes), 
whereas the levels of the bacterial phyla Thermotogae and Bacteroidetes decreased 
[211]. In thermophilic AD of cattle manure involving addition of easily degraded 
carbohydrates in the form of glucose, the genus Lactobacillus (class Bacilli) has 
been shown to increase [201]. The methanogenic communities identified in various 
studies on carbohydrate-rich material show diverging structures and appear to be 
primarily shaped by the co-substrate and prevailing environmental conditions. For 
example, during straw co-digestion with cow manure or digestion of straw alone, 
Methanosarcina or Methanosaeta often dominate [204–207, 208, 209]. However, with 
increasing nitrogen level, temperature, OLR, and/or carbohydrate accessibility, the 
contribution of hydogenotropic methanogenesis increases, involving Methanoculleus, 
Methanothermobacter, and Methanobacterium [201–203, 208, 209].

5.5.3 Lipid-rich substrate

Lipids are energy-rich and different fat-rich substrates are often used to boost bio-
gas production from sewage and manure [212–215]. Degradation of fat results in glyc-
erol and LCFA, with the latter being a known microbial inhibitor [23]. The bacteria 
Syntrophomonas (family Syntrophomonadaceae) is commonly enriched in mesophilic 
co-digestion of lipid-rich materials [216–224] and even represents as much as 30–40% 
of the total bacterial community during degradation of LCFA [218, 225]. Moreover, it 
has been reported [218] that pulse feeding of oleate, instead of continuous feeding of 
oleate, increases the conversion rates of oleate and acetate and induces greater meta-
bolic flexibility within the LCFA-degrading community dominated by Syntrophomonas 
population [76]. In thermophilic degradation of animal manure, addition of oleate has 
been shown to increase the relative abundance of the glycerol- and inositol-fermenting 
Megamonas (phylum Firmicutes) [201], whereas in mesophilic AD increased levels 
of glycerol/glycerin enrich the phyla Cloacamonas [226] and Thermotogae in AD of 
wastewater sludge [227] and the genus Trichococcus and family Syntrophomonadaceae 
in AD of brewery wastewater [228]. Methanoculleus, Methanobacterium, and 
Methanospirillum have been proposed as important hydrogen-utilizing partners for 
LCFA-degrading bacteria, whereas Methanosarcina has been suggested to act both 
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as a hydrogen and acetate consumer [216, 229, 230]. However, in pulse feeding of 
oleate, Methanosaeta increases in importance relative to Methanosarcina, along with 
higher abundance of Methanoculleus compared with Methanobacterium. This was 
suggested by the authors to be a consequence of higher acetate affinity and tolerance 
for LCFA by Methanosaeta and higher affinity for hydrogen by Methanoculleus [218]. 
In another study, an increased level of the hydrogenotrophic Methanoculleus and 
Methanobrevibacter was linked to increased methane production from oleate, driven 
by enhanced concentration of sulfide [224]. In addition to aceticlastic methanogensis, 
acetate degradation has also been shown to proceed via syntrophic acetate oxidation 
during LCFA conversion, which is likely linked to high-ammonia level [216].

5.6 Addition of trace elements

Trace element deficiency can severely limit microbial activity and cause accu-
mulation of fatty acids, process instability and decreased methane yield from food 
waste [21, 120, 231, 232], slaughterhouse waste [233, 234], crop material [235], 
stillage [236], and animal manure, when used as a single substrate or as co-substrate 
[237, 238]. In this regard, it is important to consider the level of sulfide, which 
is primarily formed through protein degradation. Sulfide forms complexes with 
metals, which decreases the bioavailability of trace elements essential for microbial 
activity [239–241]. In addition, temperature has been suggested to impact nutrient 
bioavailability and nutrient requirements [242, 243]. However, the actual impact of 
different temperatures on the availability of trace metals has yet to be established.

The trace elements such as cobalt, nickel, iron, molybdenum, and tungsten are 
essential trace elements, especially for acetogenic and methanogenic microorgan-
isms [244–246]. So far, mainly methanogenic abundance has been shown to be 
influenced by trace element addition in AD, while less is known about the response 
in the bacterial community. Thus, it is not clear whether the improved degradation 
of LCFA and VFA with trace element addition is caused solely by improved activity 
of methanogens or also improved activity of the syntrophic community. Trace ele-
ments have demonstrated to have a pronounced effect on the methanogenic commu-
nity, including increased abundance or predicted stimulatory effects on the genus 
Methanoculleus [120, 247] and increased abundance of the order Methanosarcinales 
[200] and the genus Methanobrevibacter (order Methanobacteriales), all in meso-
philic AD [247]. Methanoculleus has also been proposed to have a more efficient 
strategy than Methanosarcina for stabilizing its energy balance, and thus can cope 
more successfully with trace element limitation [248, 249]. Interestingly, despite 
improved VFA conversion following trace element addition, SAO-dominated AD 
processes are reported to show no or decreased abundance of the known syntrophic 
acetate oxidizers S. schinkii, T. acetatoxydanse, and C. ultunense [120, 200].

5.7 Bioaugmentation

The approach of adding microorganisms to the anaerobic process is based on 
the belief that slow degradation is due to the absence or low abundance of efficient 
populations responsible for the particular degradation step. Bioaugmentation could 
thus shorten the time of microbial adaptation to certain environmental conditions/
inhibitors and/or improve methane yield from specific substrates. Since the hydro-
lytic and methanogenic steps generally appear to be bottlenecks in AD systems, 
bioaugmentation efforts to date have most commonly been directed at enhancing 
these two steps. However, bioaugmentation has also been evaluated for improving 
the transition to psychrophilic temperature, to overcome inhibition of ammonia 
and reduce the time following overload [250].
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For the degradation of lignocellulosic material in the biogas process, 
bioaugmentation with cellulose-degrading bacteria, hydrolytic enzymes, 
and anaerobic fungi has been suggested as a promising method to increase 
methane production from lignocellulosic materials [251–254]. Microorganisms 
that have so far shown positive results on methane yield include the cellulo-
lytic bacteria Clostridium cellulolyticulm, Acetobacteroides hydrogenigenes, and 
Caldicellulosiruptor lactoaceticus (Caldicellulosiruptor) and the fungus Piromyces 
rhizinflata. A mix of cultures of different Clostridium sp. and different hemicel-
lulose and cellulolytic bacteria has also been shown to produce positive results 
[250], while a mixed consortium with high endoglucanase activity has been 
found to result in increased biogas production from maize silage [255]. For 
addition of enzymes, investigations have shown mixed effects, ranging from 
no effect at all on rate or yield, to increased biogas yield only, or increased rate 
only (summarized in [252]). A likely explanation for the nonconclusive results 
from addition of enzyme/organisms is differences in the environmental condi-
tions prevailing in the digester, such pH and ammonia level, which vary greatly 
depending on substrate. For example, a clear correlation between inefficient 
cellulose degradation and high-ammonia levels has been demonstrated [53]. 
The amount of added microorganisms has also been suggested to be of criti-
cal importance [250]. For enzyme addition, another possible reason behind 
the variation in results is that the hydrolytic enzymes investigated so far have 
mainly originated from nonbiogas environments and have a very short activity 
lifetime (<24 h) in the biogas process, which restricts the hydrolytic activity 
within these systems [256]. However, a study investigating the effects of addi-
tion of enzymes or microbes retrieved from a specific biogas environment has 
found promising results [252]. In that study, these enzymes were found to be 
active and stable in the environment and had a profound effect on both the 
biogas production rate and yield from forage ley [252]. Moreover, Azman et al. 
[257] have demonstrated that addition of hydrolytic enzymes to a cellulose and 
xylan-fed digester operating at 30°C can counteract the inhibitory effects of 
humic acid on hydrolysis efficiency.

The degradation of fats has been shown to be stimulated by the addition 
of hydrolyzing enzymes (lipases) or fat-degrading bacteria (Syntrophomonas 
zehnderi and Clostridium lundense) [250, 258], whereas addition of a co-culture 
of Syntrophomonas zehnderi and Methanobacterium formicicum is reported to 
have no effect in AD of fat-rich wastewater [259]. For protein, bioaugmentation 
with Coprothermobacter proteolyticus has been shown to improve hydrolysis and 
fermentation in waste-activated sludge [260]. Another factor to consider when 
attempting to improve the degradation of fat and protein is increased release 
of LCFA and ammonia. For example, high concentrations of lipases have been 
shown to inhibit the process, probably due to the release of LCFA. Moreover, 
LCFA and ammonia have been shown to have additive effects, so that the 
process becomes more severely inhibited if both are present at relatively high 
concentrations [205].

Previous attempts to increase the stability and activity of the methanogenic 
community have included addition of Methanosarcina sp. during start-up [111]. 
Moreover, bioaugmentation with syntrophic-acetate degrading co-cultures and 
with ammonia-tolerant Methanoculleus bourgensis has been tested with the aim of 
preventing ammonia inhibition of the process [189, 261, 262]. Test results in that 
case revealed that addition of syntrophic co-cultures did not facilitate a dynamic 
transition from aceticlastic methanogenesis to SAO, whereas addition of ammonia-
tolerant M. bourgensis improved adaptation to gradually increased ammonia con-
centrations under mesophilic conditions.
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6. Conclusions

Biogas production through anaerobic digestion enables recovery of renewable 
energy and of nutrients from various organic waste materials and is thus highly 
important for the transition to a more sustainable society. The performance and 
stability of the biodigestion process is highly dependent on an array of different 
microbial groups, and their networks and functions are in turn influenced by sub-
strate characteristic and operating parameters. With recent advances in molecular 
techniques, knowledge about anaerobic microorganisms and their response to vari-
ous operating conditions has increased tremendously. This knowledge has enabled 
the development of more controlled management and monitoring approaches, to 
ensure high process efficiency and stability. However, with increasing knowledge 
about the microbiology of biogas processes, it has also become evident that the 
microbiota involved is even more complicated and difficult to visualize than initially 
thought, particularly as many members within a particular genus are often able to 
degrade chemically very different compounds. Moreover, many organisms belong to 
candidate phyla or are even unknown, and remain to be isolated and characterized 
for full understanding of their role in the biogas system. Thus, in order to establish 
effective operating policies to achieve maximum biogas process performance, it is 
important to improve understanding about microorganisms and their functions and 
to further develop a predictive understanding of the interplay between microbial 
community structure and operating parameters and performance.
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