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Abstract 

Background: Mast cells are involved in the host immune response controlling infection with the 

non-invasive intestinal protozoan parasite Giardia intestinalis. Experimental infections in rodents 

with G. intestinalis showed increased intestinal expression of mucosal and connective mast cell 

specific proteases suggesting that both mucosal and connective tissue mast cells are recruited and 

activated during infection. During infection Giardia excretory-secretory proteins (ESPs) with 

immunomodulatory capacity are released. However, studies investigating potential interactions 

between Giardia ESPs and the connective tissue mast cell specific serine proteases, i.e. human 

chymase and mouse mast cell protease (mMCP)-4 and, human and mouse tryptase (mMCP-6) 

remain scarce. 

Results: We first investigated if soluble Giardia proteins (sGPs), which over-lap extensively in 

protein content with ESP fractions, from the isolates GS, WB and H3, could induce mast cell 

activation. sGPs induced a minor activation of bone marrow derived mucosal-like mast cells, as 

indicated by increased IL-6 secretion and no degranulation. Furthermore, sGPs were highly 

resistant to degradation by human tryptase while human chymase degraded a 65kDa sGP and, wild-

type mouse ear tissue extracts degraded several protein bands in the 10 to 75kDa range. In striking 

contrast, sGPs and ESPs were found to increase the enzymatic activity of human and mouse 

tryptase and to reduce the activity of human and mouse chymase. 

Conclusion: Our finding suggests that Giardia ssp. via enhancement or reduction of mast cell 

protease activity may modulate mast cell-driven intestinal immune responses. ESP-mediated 

modulation of the mast cell specific proteases may also increase degradation of tight junctions, 

which may be beneficial for Giardia ssp. during infection.
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13 Abstract 

14 Background: Mast cells are involved in the host immune response controlling infection with 

15 the non-invasive intestinal protozoan parasite Giardia intestinalis. Experimental infections in 

16 rodents with G. intestinalis showed increased intestinal expression of mucosal and connective 

17 mast cell specific proteases suggesting that both mucosal and connective tissue mast cells are 

18 recruited and activated during infection. During infection Giardia excretory-secretory 

19 proteins (ESPs) with immunomodulatory capacity are released. However, studies 

20 investigating potential interactions between Giardia ESPs and the connective tissue mast cell 

21 specific serine proteases, i.e. human chymase and mouse mast cell protease (mMCP)-4 and, 

22 human and mouse tryptase (mMCP-6) remain scarce. 

23 Results: We first investigated if soluble Giardia proteins (sGPs), which over-lap extensively 

24 in protein content with ESP fractions, from the isolates GS, WB and H3, could induce mast 

25 cell activation. sGPs induced a minor activation of bone marrow derived mucosal-like mast 

26 cells, as indicated by increased IL-6 secretion and no degranulation. Furthermore, sGPs were 

27 highly resistant to degradation by human tryptase while human chymase degraded a 65kDa 

28 sGP and, wild-type mouse ear tissue extracts degraded several protein bands in the 10 to 

29 75kDa range. In striking contrast, sGPs and ESPs were found to increase the enzymatic 

30 activity of human and mouse tryptase and to reduce the activity of human and mouse chymase. 

31 Conclusion: Our finding suggests that Giardia ssp. via enhancement or reduction of mast cell 

32 protease activity may modulate mast cell-driven intestinal immune responses. ESP-mediated 

33 modulation of the mast cell specific proteases may also increase degradation of tight junctions, 

34 which may be beneficial for Giardia ssp. during infection.

35

36 Keywords: Mast cell, Tryptase, Chymase, Infection, Giardia ssp., Parasite, Intestine, Giardia 

37 excretory-secretory proteins (ESPs)
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38 Introduction

39 Mast cell activation and degranulation to microbial and parasitic infections may occur by 

40 several mechanisms, i.e. via PAMPs and alarmins (DAMPs) acting over pattern recognition 

41 receptors, or via complement- and antibody-dependent mechanisms [1]. When mast cells 

42 degranulate large quantities of preformed mediators are released, e.g. the mast cell specific 

43 proteases. Of the mast cell specific proteases tryptases and chymases may constitute up to as 

44 much as 35-50% of the mast cell protein content [2]. In the mouse mast cells predominantly 

45 express four different chymases: in mucosal tissue mast cells express the mouse mast cell 

46 protease (mMCP)-1 (Mcpt1) with chymotrypsin-like activity and mMCP-2 (Mcpt2) with as 

47 yet no identified enzymatic activity and; in connective tissue mast cells express the mMCP-4 

48 (Mcpt4) with chymotrypsin-like activity and mMCP-5 (Mcpt5) with elastase-like activity. In 

49 contrast, human mast cells express only one chymase gene and the closest functional ortholog 

50 in mice is the chymase mMCP-4. Mouse and human mast cells express three tryptase genes, 

51 i.e. the mouse mast cell proteases (mMCP)-6 Mcpt6 which is closely related to human 

52 TPSAB1/A1 and, mMCP-7 (Tpsab1) closely related to human TPSD1 as well as mTMT 

53 (Tpsg1) closely related to the human TPSG1 gene [3]. The C57BL/6 mouse strain carries a 

54 disrupted mMCP-7 gene due to a splicing defect and a gene knockout of mMCP-6 has been 

55 introduced on the C57BL/6 background. The lack of both mMCP-6 and mMCP-7 caused no 

56 major problems for unchallenged mice suggesting that the mast cell specific tryptases are not 

57 essential for survival. However, challenged mMCP-6-deficient mice displayed significant 

58 inability to recruit eosinophils in chronically Trichinella spiralis infected skeletal muscle 

59 tissue [4]. In another recent study, it was suggested that the termination of the helminth 

60 Strongyloides ratti infection required the presence of mucosal mast cells, because infection 

61 lasted longer in CPA3Cre mice which lack mucosal and connective tissue mast cells than in 

62 Mcpt5Cre R-DTA mice which only lack connective tissue mast cells [5].
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63

64 Giardia intestinalis is a relatively prevalent non-invasive intestinal protozoan parasite with 

65 zoonotic potential found worldwide that can cause diarrhea and growth stunting in humans 

66 and animals [6]. G. intestinalis parasite antigens, either on the surface or excreted-secreted 

67 products, have been shown to be immunogenic [7]. Giardia-infection and Giardia excretory-

68 secretory proteins (ESPs) induced IL-4, IL-5 and IL-10 cytokine responses as well as IgG and 

69 IgE antibody responses in BALB/c mice [8]. ESPs induced IL-8 production in a human 

70 gastrointestinal cell line (HT-29) via activation of p38, ERK1/2, nuclear factor kappaB and 

71 activator protein 1 [9]. Several other chemokines (e.g. CXCL 1-3, CCL2 and 20) are up-

72 regulated by ESPs in differentiated Caco-2 cells [10].  In addition, antibody responses to 

73 several Giardia glycoproteins have been identified in the serum of immunized BALB/c mice 

74 [11]. Furthermore, glycoproteins with immunomodulatory capacity and proteolytic activity 

75 have been identified in the excretory-secretory proteins from Giardia trophozoites [10, 12-18]. 

76 During infections with Giardia ssp. mast cells are recruited to the intestine [19] and compared 

77 to wild-type mice c-kit-dependent mast cell-deficient mice (c-kitw/wv) and anti-c-kit mast cell 

78 depleted mice showed increased parasite burden and failure to produce parasite-specific IgA 

79 antibodies [20, 21]. In addition, mast cell specific proteases were among the most obviously 

80 induced transcripts in the small intestinal tissue at 13 days post infection [22]. Mast cells are 

81 also recruited to the small intestinal mucosa during Giardia infections in humans [23], gerbils 

82 [24, 25] and rats [26]. Stimulation of the rat mast cell line HRMC with soluble Giardia 

83 protein extracts (sGPs) which overlap extensively in protein content with Giardia ESPs [10, 

84 18], triggered mast cell activation and up-regulation of tryptase [21, 27]. Collectively, these 

85 results suggest that mast cells and the mast cell specific proteases may play a significant role 

86 in the host immune responses against G. intestinalis. However, if Giardia via secretion of 

87 ESPs and other soluble proteins directly interacts with the mast cell specific proteases remain 
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88 unknown. Therefore, in this study we investigated the activities of human and mouse mast 

89 cell tryptase and chymase towards soluble Giardia protein extracts (sGPs) from the isolates 

90 GS and H3 (both assemblage B) and WB (assemblage A) and, ESPs from the GS and WB 

91 isolates. 
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92 Material and methods

93 Ethics and Mice

94 Animals were kept in agreement with the Swedish Animal Welfare Act under the permission 

95 C140/15 granted by Uppsala District Court. Heterozygote mice of the mouse mast cell 

96 protease 6-deficient (mMCP-6-/-) mouse strain on the C57BL/6J Taconic background were 

97 crossed to produce littermate mMCP-6+/+ and mMCP-6-/- mice from which ear tissue materials 

98 to be used in the enzymatic protease activity assays were collected. Bone marrow for 

99 generation of bone marrow-derived mucosal-like mast cells (BM-MMC) was obtained from 

100 five of the in house bred mMCP-6+/+ C57BL/6J Taconic mice. All mice were housed at the 

101 Faculty of Veterinary Medicine and Animal Science, SLU, Uppsala, Sweden under specific 

102 pathogen free conditions in an enriched environment and provided food and water ad libitum. 

103

104 Bone marrow derived mast cells: preparation, culture and in vitro stimulation

105 To obtain bone marrow derived mucosal-like mast cells (BM-MMCs), bone marrow cells was 

106 collected from femur and tibia. The cells were washed two times in PBS and cultured in 

107 complete Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% FCS, 1% 

108 PEST, 2 mM L-glutamine, 5ng/ml mouse interleukin (IL) -9 (ImmunoTools), 1ng/ml 

109 recombinant human transforming growth factor beta (TGF-beta, ImmunoTools), 1ng/ml 

110 mouse IL-3 (ImmunoTools) and 50ng/ml mouse stem cell factor (SCF, ImmunoTools). After 

111 two weeks >99% of the cells showed BM-MMCs characteristics as verified by May-

112 Grünwald/Giemsa staining. The BM-MMCs were washed three times in PBS and seeded in 

113 duplicates (first experiment) or triplicates (second experiment) at 2x106 BM-MMCs/ml in 

114 HBSS and challenged with different concentrations (25 ng/ml, 100 ng/ml and 1μg/ml) of 

115 soluble protein extracts from three different Giardia isolates (GS, WB and H3). After 6h or 

116 24h incubation (at 370C, 5% CO2), supernatants were collected and frozen at -200C until used.
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117

118 Preparations of soluble Giardia proteins and Giardia excretory-secretory proteins

119 To get soluble Giardia proteins (sGPs), Giardia assemblage A (WB-C6, ATTC 50803) and B 

120 (GS/M, ATTC 50581 and H3) trophozoites were grown separately at 37 °C in Diamond- and 

121 Keister media (TYDK media) supplemented with 10% sterile bile, 10% heat inactivated 

122 bovine serum (FBS, Gibco, Thermo FisherScientific, MA, USA) and 1% Ferric ammonium 

123 citrate solution with the final pH adjusted to 6.8 [28]. Trophozoites were collected after three 

124 washing steps with cold, sterile phosphate-buffered saline (PBS) by pelleting with 

125 centrifugation at 931xg at 40C for 10 minutes. The pellet was re-suspended in PBS, followed 

126 by sonication (3 times for 30 seconds at 50 Watts) and centrifuged at 14462xg at 4 0C for 15 

127 minutes to remove cell debris. The supernatants containing approximately 5μg/μl of sGPs 

128 were kept at -800C until used.

129

130 Giardia excretory-secretory proteins (ESPs) were obtained from G. intestinalis as described 

131 [10]. In brief, WB and GS trophozoites cultured for 48 h at 370C in TYDK medium were 

132 rinsed three times with warm and serum-free RPMI-1640 medium (Sigma, St. Louis, MO, 

133 USA) to eliminate non-attached or dead trophozoites. Thereafter, adherent trophozoites were 

134 incubated with RPMI-1640 medium supplemented with 11.4 mM L-cysteine hydrochloride 

135 monohydrate, 55.5 mM glucose, 11.4 mM ascorbic acid, 1 mM sodium pyruvate (Gibco), 

136 22.8 mM L-arginine, 2mM Glutamax (Gibco) and 1x MEM essential amino acids. The final 

137 pH of the supplemented media was set at 6.8 and the trophozoites were incubated for 6h at 

138 370C. Trophozoite viability was assessed at 90% and culture supernatants were harvested by 

139 centrifugation at 930xg for 10 min at 40C, filtered through Amicon® Ultra 15 mL centrifugal 

140 filters with 3kDa cut-off (Merck-Millipore, Darmstadt, Germany), concentrated down to 200-
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141 300µl with a final concentration of approximately 1μg/μl of ESPs, and stored at -800C until 

142 used.

143

144 ELISA assay for IL-6 detection

145 The concentration of IL-6 was determined in supernatants from Giardia-challenged and un-

146 challenged BM-MMCs using a mouse IL-6 ELISA developmental kit (#900-T50, PeproTech), 

147 according to supplier´s protocol. 

148

149 β-hexosaminidase measurement

150 For the β-hexosaminidase assay, 20µl of cell culture supernatants were incubated with 80μl of 

151 1mM substrate (p-nitrophenyl N-acetyl-beta-D-glucosamine, #487052, Merck KGaA, 

152 Germany) dissolved in citrate buffer (0.05M citric acid and trisodium citrate, pH 4.5) for 1 

153 hour at 370C, followed by addition of 200µl 0.05M sodium carbonate reaction buffer (Na2CO3 

154 and NaHCO3, pH 10.0). Absorbance was measured at 405nm. 

155

156 Cell viability

157 BM-MMCs were stained for five minutes with 0.02% tryptan blue, dead blue cells were 

158 counted and cell viability for BM-MMCs was calculated. 

159

160 Purification of mouse proteolytic ear tissue protein extracts

161 The purification method was as described before [29]. Briefly, ear tissues from mMCP-6+/+ 

162 (n=10 per preparation) and mMCP-6-/- mice (n=10 per preparation) were frozen in liquid 

163 nitrogen and crushed into a tissue powder with a mortar and pestle and then transferred to a 

164 15 ml tube. To enrich for mast cell protease activities, the ear tissue powder was first 

165 extracted with a low salt lysis buffer (PBS/1% Triton X-100) to remove the fraction of ear 
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166 tissue proteins not binding to negatively charged glycosaminoglycan chains found on 

167 proteoglycans. After 30 min on a rocking table at ambient temperature, lysed tissues were 

168 centrifuged at 3000rpm for 10 minutes. The fragmented pelleted ear tissues were then 

169 extracted with a high salt lysis buffer (PBS/2M NaCl/1% Triton X-100). After shaking for 30 

170 min at room temperature and centrifugation at 3000 rpm for 10 minutes, high salt 

171 supernatants containing enriched mast cell protease activities were collected and kept at -200C 

172 until used.

173

174 Degradation assay of GS, WB, and H3 soluble Giardia Proteins

175 Enzymatic degradation of sGPs was analyzed by mixing 20μg of sGPs with 0.2μg of 

176 recombinant human tryptase (rHT, Promega) or with 0.05μg or 0.4μg recombinant human 

177 chymase (rCh, a kind gift from Lars Hellman, ICM, Uppsala University), or with 5μg of 

178 crude wild-type ear tissue extracts and incubated at 370C for 3 hours or overnight. As a 

179 control of intrinsic degradation activity in sGPs 20 μg of sGPs were incubated at 370C for 3 

180 hours or overnight. Enzymatic and intrinsic degradation of the sGPs was visualized on 

181 colloidal Coomassie blue stained SDS-PAGE gels. 

182

183 SDS-PAGE electrophoresis and colloidal Coomassie blue staining 

184 The 3h and overnight samples containing the 20 μg sGPs incubated with or without 

185 proteolytic activity was loaded on SDS-PAGE gels and the gels were run according to 

186 standard procedures. The gels were stained in Coomassie solution (0.1% Coomassie brilliant 

187 blue R-250/50% methanol/ 10% Acetic acid) for at least 4 hours, and de-stained in 10% acetic 

188 acid/40% EtOH/50% dH2O for 30 min with several changes of the de-staining solution. 

189 Photos of the de-stained gels were taken with the Odyssey CLx imaging system (Germany).

190
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191 Soluble Giardia proteins and mast cell protease activity

192 Early work showed that the activity of the chymase and tryptase could be affected by salt 

193 concentrations (NaCl) as well as pH [30-32]. Therefore, in all our experiments the NaCl 

194 concentrations were kept in the physiological range of 0.15 to 0.20 M NaCl and the pH was 

195 kept at ≈7,4. 

196

197 To address if Giardia via sGPs or ESPs could block or modulate the tryptase activity, 5μg 

198 ESPs from the GS and WB isolates or approximately 20, 10, 5 and 1μg of WB, GS and H3 

199 sGPs (5μg/μl) were mixed with 0.1μg of recombinant human tryptase (rHT) or approximately 

200 15μg of crude high salt ear tissue extracts from mMCP-6+/+ and mMCP-6-/- mice (tryptase-

201 deficient mice) and 20μl of the tryptase substrate S-2288 (H-D-Ile-Pro-Arg-pNA, 

202 Chromogenic, Sweden) at a final concentration of 1mM, and PBS to give the total 120μl 

203 reaction volume. Enzymatic activity of tryptase was measured as hydrolysis of S-2288 and 

204 monitored spectrophotometrically at 405 nm in a microplate reader. The change in optical 

205 density over time (delta OD) and the substrate conversion rate (delta OD per minute) was 

206 calculated.

207

208 To determine if Giardia via sGPs or ESPs affected the chymase activity, 5μg ESPs of GS and 

209 WB or approximately 10 μg of WB, GS and H3 sGPs were mixed with 0.05μg of 

210 recombinant human chymase (rCh) or approximately 5μg of crude high salt ear tissue extracts 

211 from mMCP-6+/+ mice and 20μl of the chymase substrate L-1595 (Suc-Ala-His-Pro-Phe-pNA, 

212 Bachem, Switzerland) at a final concentration of 1mM, and ddH2O to give the total 120μl 

213 reaction volume. Enzymatic activity of chymase was measured as hydrolysis of L-1595 and 

214 monitored spectrophotometrically at 405 nm in a microplate reader. The change in optical 

215 density (OD) over time (deltaOD) was calculated. 
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216

217 Statistical analysis

218 Statistical analysis of data was performed with GraphPad Prism Software using the non-

219 parametric Mann-Whitney U test. P values ≤ 0.05 were considered significant.
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220 Results

221 Soluble Giardia proteins (sGPs) only cause minor mast cell activation

222 Mast cells and mast cell proteases are important for control of infection with Giardia spp. [19, 

223 20], and mast cells may degranulate in response to soluble proteins from protozoan parasites 

224 [33]. To address a direct interaction between mouse mast cells and G. intestinalis, bone 

225 marrow derived mucosal-like mast cells (BM-MMCs) were challenged with increasing 

226 concentrations of soluble proteins (sGPs) from G. intestinalis GS-, WB-, and H3- isolates. As 

227 a read out of mast cell activation and mast cell degranulation the levels of IL-6, and tryptase 

228 and beta-hexosaminidase activity were determined in the BM-MMC supernatants. Challenge 

229 with the three Giardia-isolates induced a significant increase in IL-6 release at 6h and at 24h 

230 (Fig 1a, b), and a small but significantly increased tryptase activity with 1 microgram of sGPs 

231 (Fig. 1c, d). The challenge with sGPs did not induce degranulation of the BM-MMC (Fig 1e, f 

232 and data not shown) and the cell viability remained equally high in control cells and sGP-

233 challenged cells (Fig 1g, h). Together our data suggests that sGPs can induce mast cell 

234 activation and that the challenge does not induce mast cell degranulation but may induce 

235 piecemeal secretion of tryptase. 

236

237 Soluble Giardia proteins (sGPs) are not extensively degraded by human or mouse mast cell 

238 proteases.

239 To investigate the potential interactions between the mast cell specific proteases and Giardia 

240 proteins we next studied if any of the sGPs were degraded by recombinant human tryptase 

241 (rHT) or wild-type proteolytic mouse ear tissue extracts. rHT did not induce any major 

242 degradation of the GS-, WB-, H3- sGPs after 3 hours (Fig. 2a, lanes 4, 7, 10) or after 

243 extended overnight incubation (Fig. 2b, lanes 4, 7, 10). Furthermore, except for a 65 kDa 

244 sized protein a high concentration of recombinant human mast cell chymase (rCh) also failed 



13

245 to degrade most of the sGPs after 24h (Fig. 2c, lanes 2, 4, 6), suggesting that sGPs are poor 

246 target substrates for the mast cell specific tryptase and chymase. In contrast, the high salt ear 

247 tissue proteolytic extracts showed a diffuse degradation activity of the sGPs in the 10 to 

248 75kDa range, e.g. a ≈45kDa protein was significantly reduced (Fig. 2 a, b, lanes 5, 8, 11), 

249 suggesting that the mixture of proteolytic enzymes in the ear tissue extracts can degrade sGPs. 

250 Note also that the sGPs did not carry any major intrinsic degradation activity.

251

252 The lack of degradation by chymase and tryptase could indicate that Giardia proteins are 

253 devoid of the defined extended target sites required for these mast cell proteases to cut. 

254 However, the top 10 secreted peptides from WB and GS trophozoites [10] all contained 

255 several of the potential chymase and tryptase target sites (not shown), but it is possible that 

256 these sites are hidden in the three dimensional protein structure. Alternatively, sGPs may 

257 block the proteolytic activities of the mast cell specific tryptase and chymase. 

258   

259 Soluble Giardia proteins (sGPs) and excretory-secretory proteins (ESPs) enhance 

260 recombinant human tryptase activity

261 Next we investigated if sGPs and Giardia excretory-secretory proteins (ESPs) could have a 

262 modulatory effect on the mast cell protease activities. Surprisingly, we observed an enhancing 

263 effect on the tryptase activity (Fig. 3) and the enhancing effect on rHT activity was dose 

264 dependent and required the addition of > 5μg of sGPs (Fig. 3a). Addition of 20μg GS, WB 

265 and H3 sGPs resulted in a significant increase of rHT activity over 60 minutes, where the 

266 sGPs-effect on the S-2288 substrate conversion was evident after 15 minutes, and the 

267 substrate conversion rate significantly was increased up to at least 50 minutes after addition of 

268 sGPs (Fig. 3b, c). Note that the GS, WB and H3 sGPs showed no intrinsic activity for the S-

269 2288 substrate. To evaluate if the observed increased activity of rHT is due to proteins found 
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270 in the Giardia excretory-secretory proteins (ESPs) we next used purified ESPs [10] from the 

271 Giardia isolates GS and WB. Addition of ESPs also gave a significantly increased S-2288 

272 substrate conversion rate for rHT (Fig. 3d), suggesting that the protein(s) responsible for the 

273 enhancement activity is to be found in the ESPs. Note that the GS and WB ESPs showed no 

274 intrinsic activity for the S-2288 substrate. Compared with the control (PBS/rHT/S), addition 

275 of both GS and WB ESPs significantly increased enzymatic activity of rHT already after 15 

276 minutes and the activity rate were still significantly higher after 60 minutes (Fig. 3e). 

277

278 Soluble Giardia proteins (sGPs) enhance mouse mast cell tryptase activity

279 Seeing the enhancement effect on the human tryptase activity, we next assessed if secreted 

280 Giardia proteins could also enhance the mouse mast cell tryptase activity. High salt ear tissue 

281 protein extracts from wild-type mice were incubated with sGPs derived from the GS (Fig. 4a), 

282 WB (Fig. 4b) or H3 (Fig. 4c) isolates. High salt ear tissue protein extracts from the mMCP-6-/- 

283 mice as well as rHT were included as negative and positive controls, respectively. Addition of 

284 the three sGP-isolates induced a significantly increased mouse tryptase activity (Fig. 5a-c, left 

285 panels). As expected ear tissue protein extracts from mMCP-6-/- mice showed little tryptase 

286 activity (S-2288 substrate conversion rate) and no significantly increased substrate conversion 

287 after addition of sGPs, suggesting that the substrate S-2288 is relevant for measurement of 

288 tryptase activity even in complex protein mixtures (Fig. 4a-c, left panels). The enhancement 

289 of mouse mast cell tryptase activity over time after addition of sGPs was also studied. We 

290 found that the OD values for (sGPs/WT/S-2288) were significantly increased compared to 

291 control (WT/S-2288) suggesting that all three sGP-isolates over time can enhance tryptase 

292 activity or, alternatively, increase the stability of the tryptase tetramer (Fig. 4a-c, right panels).

293

294 Soluble Giardia proteins (sGPs) reduce human and mouse mast cell chymase activity
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295 Finally we investigated if sGPs and ESPs could modulate the mast cell chymase activity. 

296 Interestingly, and in contrast to the enhancing effect on tryptase, addition of 10μg of GS, WB 

297 and H3 sGPs significantly inhibited the rCh activity (Fig. 5a) and resulted in inhibition of 

298 chymase activity also in the WT mouse ear tissue extracts (Fig. 5b). Note that sGPs have no 

299 intrinsic activity for the L-1595 chymase substrate (not shown). To evaluate if the observed 

300 reduced activity of rCh is due to Giardia proteins found in the ESP fraction we finally used 

301 ESPs from the Giardia isolates GS and WB. However, the addition of ESPs did not 

302 significantly affect the rCh activity (Fig. 5c). 

303  
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304 Discussion

305 Previous studies have suggested that mast cells play an important role during infection with 

306 Giardia. Mast cell-deficient and mast cell-depleted mice showed clearance failure of the GS 

307 isolate (assemblage B) and recruited mast cell numbers increased in the intestinal villi and 

308 crypt of mice infected with the GS isolate [19, 20, 34]. Furthermore, the mast cell specific 

309 proteases CPA3 as well as Mcpt1, Mcpt2 and CMA2 were reported to be up-regulated during 

310 infection with Giardia, suggesting that both connective and mucosal tissue type mast cells 

311 have increased activity in the intestinal tissue in response to Giardia [22]. 

312

313 However, it still remains unknown if the Giardia WB (assemblage A) or H3 (assemblage B) 

314 isolates cause mast cell activation in vivo and, the potential direct interactions of Giardia with 

315 the mast cell specific proteases have previously not been explored. First, to study potential 

316 interactions between Giardia and mast cells we cultured mouse bone marrow derived 

317 mucosal-like mast cells (BM-MMCs) expressing both connective and mucosal mast cell 

318 specific proteases [35] to investigate the potential activation of mast cells after challenge with 

319 G. intestinalis sGPs. Challenge with Giardia sGPs caused IL-6 secretion after 6h suggesting 

320 that our cultured BM-MMCs do respond to Giardia sGPs. In addition, the low levels of 

321 tryptase activity in BM-MMCs supernatants suggested that Giardia does not cause strong 

322 mast cell degranulation, but instead may cause increased piecemeal secretion of tryptase as 

323 augmented tryptase activity was only evident after challenge with sGPs. The observation that 

324 Giardia sGPs did not cause degranulation of the mast cells, i.e. as indicated with very low 

325 tryptase activity, was further supported by a similarly low beta-hexosaminidase activity in the 

326 supernatants of un-challenged and challenged BM-MMCs. Previous studies using a rat 

327 hybridoma mast cell line (HRMC) with a mucosal phenotype showed that IL-6 was secreted 

328 24h after challenge [21, 27]. In contrast to our results, these studies suggested that the level of 
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329 tryptase only increased beneath the mast cell cell-membrane in response to Giardia challenge 

330 [21, 27]. 

331

332 Several studies have demonstrated that Giardia soluble proteins (sGPs) contain cytosolic, 

333 cytoskeletal, surface and excretory-secretory proteins (ESPs), and that the secretion of ESPs 

334 will be induced upon contact with epithelial cells in the small intestine [10, 18, 36, 37], and 

335 that some of the ESPs may penetrate into the host tissue [10, 17]. Previous studies suggested 

336 an extensive over-lap in protein content between the two in vitro prepared fractions. One 

337 difference, ESPs contained several surface proteins that were not found in the sGPs fraction 

338 [10, 18, 38]. In line with this extensive over-lap we see similar effects of ESP and sGPs on 

339 tryptase activity (Figure 3 and 4). For chymase the inhibitory effect of sGPs was not evident 

340 with the ESPs (Figure 5). The observed difference could depend on several things, for 

341 example that ESPs may lack the chymase interfering protein(s). Alternatively, Giardia 

342 expresses several cysteine proteases/cathepsin-like proteases (CPs) in the ESPs that 

343 potentially could degrade chymase. However, these CPs are subjected to rapid auto-

344 degradation [17]. So, lack of chymase-inhibition with ESPs could depend on the rapid auto-

345 inactivation of the CPs.

346

347 Giardia has been found to secrete several different proteins (ESPs) at low levels in axenic 

348 culture and, in the interaction with human intestinal epithelial cells (IECs) the ESPs have the 

349 capacity to modulate the host innate immune response, e.g. it was found that ESPs could 

350 stimulate a preferential Th2 response [39], degrade chemokines and induce the anti-

351 inflammatory protein tristetraprolin (TTP) [10]. The ESP fraction from the WB isolate 

352 contains around 200 different proteins [10] and most of these proteins are also found in the 

353 soluble Giardia protein fractions [18]. It is difficult to generate high levels of ESPs from 
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354 Giardia due to the low level of secretion [10], this has led to the use of soluble proteins as a 

355 substitute for ESPs in most experiments looking at Giardia-immune cell interactions.  

356

357 We therefore investigated a potential interaction of the mast cell specific proteases tryptase 

358 and chymase with Giardia proteins. Collectively our findings suggest that Giardia via release 

359 of ESPs may directly affect the mast cell tryptase activity. Therefore, it is possible that due to 

360 the disturbed intestinal epithelial barrier caused by the Giardia infection [17], Giardia ESPs 

361 can reach into the intestinal tissue and thereby increase the level and activity of the mast cell 

362 tryptase. An increase in tryptase activity can in turn even more increase the epithelial leakage 

363 [40], thereby resulting in a leaky gut that can induce diarrhea and post-infectious symptoms 

364 [41-43]. Several post-infectious symptoms can be induced after Giardia infections; irritable 

365 bowel syndrome (IBS), chronic fatigue syndrome, skin and food allergies and reactive 

366 arthritis [44-49]. Mast cells could be very important in the allergies induced after a Giardia 

367 infection and humans and mice infected by Giardia induce Giardia-specific IgE responses 

368 and ESPs have been suggested to be involved in IgE induction [8, 36, 50]. It will be 

369 interesting to follow up the role of mast cells in the induction of post-infectious symptoms in 

370 larger studies.

371

372 It is well known that activation of mast cells during infection release extensive amounts of 

373 preformed mediators. The mast cell proteases can play regulatory roles through degradation 

374 of parasite antigens, e.g. the T. spiralis heat shock protein 70, as well as through activation or 

375 inactivation of endogenous cytokines and alarmins, i.e. biglycan, HMGB1 and IL-33 all seem 

376 to be rapidly degraded by the mast cell specific chymase [29]. However, while chymase 

377 rapidly degraded most T. spiralis proteins as well as the alarmins and the HSP70, tryptase was 

378 not very effective in the degradation of these proteins [29]. In line with this, Giardia sGPs 
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379 were highly resistant to degradation with tryptase, however the resistance of most of the 

380 soluble Giardia proteins to degradation by mast cell chymase was an unexpected finding. 

381

382 The mast cell specific chymase is monomeric and the extended target site for chymase is eight 

383 amino acids long (P4, P3, P2, P1, P1’, P2’, P3’, P4’). Chymase prefers to cut after aromatic 

384 amino acids phenylalanine (F), tryptophan (W) or tyrosine (Y) located in the P1 position and 

385 usually require aspartic acid (D) or glutamic acid (E) in the P2’ position [51-53]. However, 

386 physiologic targets for degradation by chymase remain elusive but some virulence factors and 

387 alarmins seems to be major targets [29, 54]. In addition, activation of matrix metalloprotease 

388 (MMP)-9 and angiotensin seems to require chymase [55]. Chymase binds strongly to heparin 

389 (or chondrotin sulphate E) and it has been suggested that chymase and heparin forms a 

390 functional complex that can leave the mast cell after degranulation and move into 

391 inflammatory or other body sites. For example, in bladder infection with uropathogenic 

392 bacteria chymase is released by mast cell degranulation, and then the chymase migrates and 

393 enter into the infected umbrella epithelial cells lining the bladder wall to induce apoptosis, 

394 causing the epitehlial cells to shed as a protective measure [56]. Furthermore, a detrimental 

395 action of the chymase is in the course of glomerulonephritis where mast cells are distantly 

396 found in the kidney capsule [57]. In bronchial asthma, mast cell chymase impairs bronchial 

397 epithelium integrity through degradation of cell junction molecules, i.e. occluding, claudin-4, 

398 ZO-1 and E-cadherin in epithelial cells [58]. In the intestine the expression and secretion of 

399 chymase will have effect on the epithelial barrier function via protease-activated receptor 

400 (PAR)-2 activation and matrix metalloproteinase (MMP)-2 expression and activation [59]. 

401

402 Tryptase is the predominant serine proteinase of mast cells and heparin stabilizes the activity 

403 of the functional monomeric tetramer [60], where the four substrate pockets facing inwards to 
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404 form a narrow proteasome-like structure. Tryptase preferentially targets ”linear” proteins 

405 displaying a stretch of positively charged amino acids and will cut after arginine (R) or lysine 

406 (K) in its three amino acid target site (K/R + X + K/R). Physiologic targets for tryptase 

407 include, e.g. PAR-2 [61]. The narrow pore in tetrameric tryptase would not allow entry of 

408 bulky proteins and thus this could explain that no or very low degradation of soluble Giardia 

409 proteins was observed.

410

411 A screen for potential chymase and tryptase target sites of the 15 most abundantly secreted 

412 proteins from Giardia WB and GS trophozoites [10] identified several potential target sites in 

413 each of the 15 secreted Giardia proteins. This suggests that most soluble Giardia proteins 

414 lack accessible surface exposed extended target sites for the mast cell specific chymase [54]. 

415 Alternatively, resistance to degradation can partly be explained by that sGPs directly reduce 

416 the activity of chymase. 

417

418 In summary, we here showed that sGPs do not cause significant mast cell degranulation and 

419 that sGPs were not significantly degraded by tryptase or chymase. The lack of degradation 

420 suggested that ESPs and sGPs could inhibit the activity of the mast cell proteases. In line with 

421 this observation sGPs induced a significant inhibition of chymase activity. In contrast, we 

422 found that ESPs and sGPs specifically increased the mast cell tryptase activity, suggesting 

423 that as yet unidentified protein(s) in ESPs and sGPs may stabilize tryptase tetramers, thereby 

424 increasing the tryptase activity. We now aim to identify and characterize the Giardia-proteins 

425 providing the increased effects of the tryptase activity. In addition, future studies using heat 

426 inactivation of identified candidate proteins and EPSs as well as cathepsin inhibitors, e.g. E64, 

427 would be interesting and could address if intact and properly folded ESPs or enzymatic 
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428 activities in the ESPs are required for the observed enhancement of tryptase and inhibition of 

429 chymase. 

430

431 Speculative, our result suggests that Giardia may affect the intestinal tissue via increased 

432 stability of tetrameric tryptase or direct enhancement of tetrameric tryptase activity as well as 

433 via inhibition of chymase, and this potential immunomodulation could be beneficial for 

434 Giardia since mast cell tryptase has been shown to control intestinal paracellular permeability 

435 and the enhancement of tryptase activity may lead to a leaky intestinal tissue. Finally, the 

436 inhibition of chymase may serve to retain intestinal barrier functions and reduce chymase 

437 driven inflammatory symptoms. However, the exact roles of the different mast cell specific 

438 proteases during giardiasis remains an open question and will require extensive in vivo 

439 experimentation to be resolved.
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450 Figure legends

451 Figure 1. Soluble Giardia proteins induce secretion of IL-6 and tryptase in bone marrow 

452 derived mucosal type mast cells (BM-MMCs). To determine if Giardia activates mast cells 

453 1x106 BM-MMCs seeded in 0.5 ml HBSS were challenged with three concentrations, 25ng/ml, 

454 100ng/ml and 1000ng/ml, of soluble Giardia proteins (sGPs) from the GS-, WB- and H3- 

455 isolates. The levels of IL-6 (a, b with N=5), tryptase activity (c, d with N=5), and beta-

456 hexosaminidase activity (e, f with N=3) were determined in supernatants collected at 6h (a, c, 

457 e) and 24h (b, d, f). Tryptase activity was evaluated by the conversion of the substrate S-2288 

458 and recorded as changes in optical density (OD) at 405 nm. BM-MMCs viability was scored 

459 by trypan blue exclusion at 6h (g) and 24h (h). Data is pooled from two independent 

460 experiments with BM-MMCs derived from a total of five individual mice (N=5), in duplicate 

461 cultures (from two mice in first experiment, n=4) or triplicate cultures (from three mice in 

462 second experiment, n=9). Data are shown as mean ±SEM and statistical analysis conducted 

463 by the non-parametric Mann-Whitney U test with significant difference indicated as * P<0.05, 

464 ** P<0.01, *** P< 0.005, **** P< 0.001versus un-challenged control.

465

466 Figure 2. Soluble Giardia proteins are not extensively degraded by human tryptase or 

467 chymase, or by wild type mouse ear tissue proteolytic extracts. To determine if mast cell 

468 proteases can degrade Giardia proteins, 20μg of soluble Giardia proteins (sGPs) were 

469 incubated with 0.2μg recombinant human tryptase (rHT, arrow) or with 5μg of proteolytic 

470 mouse ear tissue extracts (WT, pooled ear tissue extracts, n=10) for (a) 3 hours and (b) 

471 overnight (O.N.). Left panels in (a) and (b) are longer exposures of the gels to visualize the 

472 loading of rHT (arrows) and WT ear tissue extracts. In panels a and b lanes are numbered and 

473 loaded as follows (1- rHT; 2- WT; 3- GS; 4- GS+rHT; 5- GS+WT; 6- WB; 7- WB+rHT; 8- 

474 WB+WT; 9- H3; 10- H3+rHT; 11- H3+WT). In (c) 20μg of soluble Giardia proteins of the 
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475 GS, WB and H3 isolates were incubated without or with 0.4μg recombinant human chymase 

476 (rCh) overnight. In panel c lanes are numbered and loaded as follows (1- GS; 2- GS+rCh; 3- 

477 WB; 4- WB+rCh; 5- H3; 6- H3+rCh; 7- rCh).

478

479 Figure 3. Soluble Giardia proteins and excretory-secretory proteins mediate 

480 enhancement of human tryptase activity. Different concentrations of soluble Giardia 

481 proteins (sGPs) from the GS, WB and H3 isolates (a, b) or 5μg of GS and WB excretory-

482 secretory protein (ESP) (c, d) were incubated with or without 0.02μg of rHT. The change in 

483 optical density (OD) was measured at 405nm after adding the substrate (S-2288, S) and the 

484 difference over time (deltaOD) calculated. Note that sGPs and ESPs have no intrinsic activity 

485 for the S-2288 substrate. In (a) a representative experiment out of >5 independent 

486 experiments is shown and in (b and c) a representative experiment out of 3 independent 

487 experiments is shown. In (d) the enzyme activity rate in figure c was determined as milli-delta 

488 OD per minute. Note that addition of ESPs significantly increased the tryptase activity rate 

489 already after 15 minutes and maintained a significantly increased rate also at 60 minutes. 

490 Representative data from two independent experiments with triplicates for each condition are 

491 shown as mean ±SEM, and statistical analysis was conducted by the non-parametric Mann-

492 Whitney U test. Statistical significances compared to PBS/rHT/S: *, P<0.05, **, P<0.01, ***, 

493 P<0.005.

494

495 Figure 4. Soluble Giardia proteins enhance mouse mast cell tryptase activity. sGPs were 

496 incubated with or without 0,02μg of rHT or with 15μg of ear tissue extracts from WT mice 

497 (bulk ear tissue extracts, n=10) and mMCP6-/- mice (bulk ear tissue extracts, n=10) at room 

498 temperature, respectively. (a) GS (upper panels), (b) WB (middle panels) and (c) H3 (lower 

499 panels). The left panels in a, b, c show the tryptase activity of the high salt mouse ear tissue 
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500 extracts mixed with or without 10μg sGPs from the GS, WB and H3 isolates. rHT was 

501 included as a positive control. Change in optical density (OD) at 405nm was measured at time 

502 point 0h and 4h after the S-2288 substrate was added. Data are shown as mean ±SEM and 

503 statistically significant enhancement compared to WT ear tissue extracts indicated with *, 

504 P<0.05. The right panels in a, b, c show the activity of WT ear tissue extracts (WT) mixed 

505 with or without 5μg of sGPs from the GS, WB and H3 isolates. Change in optical density 

506 (OD) at 405nm was measured every hour up to 11h and after 24h. Note that GS, WB and H3 

507 sGPs have no intrinsic activity for the S-2288 substrate. Pooled data from two independent 

508 experiments with triplicates for each condition are shown as mean ±SEM and, statistically 

509 significant enhancement compared to WT ear tissue extracts without sGPs indicated with *, 

510 P<0.05, **, P<0.01, ***, P<0.001.

511

512 Figure 5. Soluble Giardia proteins inhibit human and mouse chymase activity. (a) The 

513 activity of 0.05µg of recombinant human chymase (rCh) incubated with or without 10µg of 

514 GS, WB and H3 sGPs. (b) The chymase activity in 5g wild-type mouse ear tissue (WT, 

515 pooled ear tissue extracts, n=10) with or without 10µg of GS, WB and H3 sGPs. (c) The 

516 activity of 0.05µg rCh incubated with or without 5g of GS and WB ESPs. The change in 

517 optical density (OD) at 405nm was measured after adding the chymase substrate (L-1595, L) 

518 and the difference over time (delta OD) calculated. Pooled data from two independent 

519 experiments with triplicates for each condition are shown as mean ±SEM.
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