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Abstract

It is a common view that an organism’s microbiota has a profound influence on host fitness;

however, supporting evidence is lacking in many organisms. We manipulated the gut micro-

biome of Daphnia magna by chronic exposure to different concentrations of the antibiotic

Ciprofloxacin (0.01–1 mg L-1), and evaluated whether this affected the animals fitness and

antioxidant capacity. In line with our expectations, antibiotic exposure altered the micro-

biome in a concentration-dependent manner. However, contrary to these expectations, the

reduced diversity of gut bacteria was not associated with any fitness detriment. Moreover,

the growth-related parameters correlated negatively with microbial diversity; and, in the

daphnids exposed to the lowest Ciprofloxacin concentrations, the antioxidant capacity,

growth, and fecundity were even higher than in control animals. These findings suggest that

Ciprofloxacin exerts direct stimulatory effects on growth and reproduction in the host, while

microbiome- mediated effects are of lesser importance. Thus, although microbiome profiling

of Daphnia may be a sensitive tool to identify early effects of antibiotic exposure, disentangl-

ing direct and microbiome-mediated effects on the host fitness is not straightforward.

Introduction

In multicellular organisms, the microbiome contributes to critical aspects of host development

and physiology [1]. In studies on microbiome-host interactions, there is growing recognition

that environmental stresses imposed upon the microbiome may drive physiological responses,

life-histories, and adaptation capacity of their hosts [2–4] at various environmental settings.

Consequently, coping with environmental stressors would involve both the host and its micro-

biome responses.

The gut microbiota participates directly in food digestion and nutrient assimilation, which

affects the host’s energy acquisition and growth [5]. In addition to this, the host immune
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system is influenced by the gut microbes via a number of different mechanisms, e.g., competi-

tion with pathogens as well as suppression and modification of virulence factors via metabolite

production [6]. Symbiotic bacteria are also capable of enhancing the host innate immune sys-

tem by, for example, up-regulation of mucosal immunity, induction of antimicrobial peptides

and antibodies [7, 8]. Considering the biological effects triggered by the host-microbiome

interactions, a disruption of mutualistic bacterial communities may result in increased suscep-

tibility to pathogens and infections, while simultaneously affecting the growth and develop-

ment of the host via compromised nutrition. In various gnotobiotic animal models, poor

survival, growth and fecundity are commonly observed, reflecting a physiological impairment

due to some dysbiotic state of microflora [3, 9].

If growth penalties are to be expected in animals with perturbed microbiota, then it should

be possible to manipulate animal fitness by targeting its resident bacteria with antibacterial

substances. In line with this, retarded development has been observed in the copepod Nitocra
spinipes upon antibiotic exposure and linked to structural changes in its microbiota [10]. It

was suggested that aberrant digestion was behind these changes as has also been observed in

Daphnia magna following a short-term antibiotics exposure [9, 11]. Moreover, long-term

exposure to the antibiotic oxytetracycline altered microbiota composition in Daphnia in a

dose-dependent manner, concurrent with changes in host body size [12]. While perturbed

microbiota can manifest itself directly as decreased nutrient uptake, another outcome can be

decreased antioxidant production by the host, with concomitant impairment of immunity,

metabolism, and growth [13]. However, short antibiotic exposure and changes in oxidative sta-

tus may not necessarily result in any significant growth penalties in the long run. The outcome

of any chronic exposure to antibiotics would largely depend on the resilience of the bacterial

communities, and their capacity to recover and re-establish functional interactions with the

host [14–17].

To study the relationships between microbiome composition and host performance, a com-

mon set of model species and methods to manipulate their microbiomes is needed. In ecology,

evolution, and ecotoxicology, Daphnia species are used routinely as model organisms because

of their well-known physiology, rapid reproduction, and sensitivity to environmental factors

[18,19]. The microbiome of the laboratory-reared Daphnia magna has been recently described

in several studies using different approaches, from cloning to shotgun sequencing [20,21].

Regardless of the sequencing platform, origin of specimens, and culture conditions, the core

microbiome appears relatively stable, particularly at higher-rank taxonomy, mainly comprised

of Betaproteobacteria, Gammaproteobacteria and facultative anaerobic Bacteroidetes species.

At the genus level, Limnohabitans has been reported as one of the most stable and dominant

gut microbiota members in Daphnia; moreover, variation in its abundance has been positively

related to the animal fecundity [22]. Although some studies have addressed the dependence of

Daphnia on its microbiota [9], including short-term effects on fitness following exposure to

antibiotics in Daphnia magna [23,24], the relationships between microflora perturbation and

host fitness are still unclear, as is the involvement and modulating role of antioxidants in the

host responses.

In this study, the relationship between antibiotic-mediated gut microbiome changes and

host fitness were addressed experimentally using a model cladoceran Daphnia magna. We

monitored changes in the gut microbiome, host longevity, growth, and reproduction, as well

as antioxidant capacity in the animals following Ciprofloxacin exposure. We hypothesized that

the diversity of the gut microflora and relative abundance of the core taxa would decrease with

increasing Ciprofloxacin concentration. Furthermore, we expected longer exposure time and

higher antibiotic concentrations to have negative effects on somatic growth, reproductive out-

put, and antioxidant capacity. These reductions would be due to reduced bacterial diversity,
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and to some extent, changes in the community composition. These hypotheses were tested by

combining (1) long-term (21 d) exposure experiments with life-table analysis, (2) microbiome

profiling using the next generation sequencing of 16S rRNA gene and taxonomic assignment,

and (3) measurements of daphnid total antioxidant capacity, growth, and fecundity.

Material and methods

Test species and culture conditions

The cladoceran Daphnia magna, originating from a single clone (Environmental pollution test

strain Clone 5, Federal Environment Agency, Berlin, Germany), was used in this experiment.

The animals were cultured in groups of 20 individuals in 3-L beakers with M7 medium as rec-

ommended by OECD guidelines 211[25], and fed a mixture of the green algae Pseudokirchner-
iella subcapitata and Scenedesmus subspicatus three times a week; the algae were grown

axenically.

Ciprofloxacin stock solutions

We used Ciprofloxacin hydrochloride (CAS: 86393-32-0; Sigma), a broad spectrum fluoro-

quinolone, active against both Gram-positive, G+, and Gram-negative, G-, bacteria. Its mode

of action is the inhibition of the gyrase and / or topoisomerase enzyme of microbes which

determines the supercoiling state of DNA, and critical to bacterial replication, repair, tran-

scription and recombination [26]. Selection of this drug was due to its rapid absorption and

long half-life in the test system. The exposure concentrations were chosen based on (i)
reported concentrations in effluents [27] and waste waters [28] corresponding to the lowest

test concentration, (ii) absence of acute toxicity for D. magna within the range of concentra-

tions tested [29], and (iii) minimum inhibitory concentrations for a range of bacteria [30], rep-

resenting the entire range of the test concentrations. A stock solution of Ciprofloxacin (1 mg

L-1) was prepared in M7 medium, stored at -20˚C, and used during the experiment.

Experimental design

We employed three Ciprofloxacin concentrations (0.01, 0.1 and 1 mg L-1) and a control treat-

ment (M7 medium). For each treatment, 25 neonates (< 24 h) of D. magna were placed indi-

vidually in 40 mL of M7 medium, with or without Ciprofloxacin; the medium was changed

every second day. The test design followed the guidelines for the reproduction test with Daph-
nia (OECD standard 211) [25]. The animals were fed daily with a suspension of green algae

Pseudokirchneriella subcapitata (0.2 mg C d-1; axenic culture) and incubated at 22˚C with 16L:

8D photoperiod. Under these conditions, the animals matured and started to reproduce 8–9 d

after the start of the experiment. All jars were inspected daily and mortality was recorded.

Upon release of neonates, the brood size was recorded, and the offspring were discarded. In

conjunction with brood release, four randomly selected individuals from each treatment were

sampled for microbiome analysis. Their images were acquired by scanning live animals on a

glass surface in a drop of sterile water (CanoScan 8800F 13.0), and their body length (BL, mm)

was measured using ImageJ software [31]. For each individual, the gut was dissected using a

sterile needle and a pair of forceps, washed with nuclease-free water, transferred individually

to Eppendorf tubes and stored at −80˚C until DNA extraction. The degutted body was trans-

ferred to an Eppendorf tube and stored at −80˚C; these samples were used for measurements

of total antioxidant capacity and individual protein content. In this manner, we collected and

analyzed females after their 1st, 2nd, 3rd, and 4th clutch, with the last individuals sacrificed on

day 21, when the experiment was terminated.
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DNA extraction

DNA was extracted from the gut samples using 10% Chelex [32] and purified with AMPure

XP beads (Beckman Coulter, Brea, CA, USA) following the manufacturer’s instructions. After

the purification, the DNA concentrations were measured using Quant-iT PicoGreen dsDNA

Assay kit (ThermoFisher, USA) as specified in the method description [33]. Absorbance was

measured at 530 nm, using a Tecan Ultra 384 SpectroFluorometer (PerkinElmer, USA).

16S rRNA gene amplification and sequencing library preparation

Bacterial diversity of the samples was analyzed by sequencing amplicons generated from the

V3-V4 region of the 16S rRNA gene using the MiSeq Illumina platform. Two-stage PCR

amplification was performed using forward primer 341F (CCTACGGGNGGCWGCAG) and

reverse primer 805R (GGACTACHVGGGTWTCTAAT). The first PCR was carried out in 25-μl

PCR reactions and comprised 0.02 U μl-1 Phusion polymerase (ThermoFisher, USA), 0.2 mM

dNTP, 1 mM MgCl2, 1 × Phusion reaction buffer, 0.5 μM of each primer as well as 5 ng of

DNA template. The amplification protocol consisted of an initial denaturation at 98˚C for 30

seconds followed by 35 cycles of 10 sec at 98˚C, 30 sec at 55˚C and 72˚C, and, a final extension

step (72˚C for 10 min). PCR products were purified using Agencourt AMPure XP beads

(Beckman Coulter, Brea, CA, USA). Following this, amplicon PCR was performed on 5 μl of

equimolar amounts of PCR product using Nextera XT primers (Index 1 [N7XX] and Index 2

[S5xx]), targeting the same region of the 16S rRNA genes (8 cycles of 30 sec at 95˚C, 30 sec at

55˚C and 35 sec at 72˚C). The products were purified with Amplicons AMPure XP Beads

(Beckman Coulter) according to the manufacturer protocol and concentrations were esti-

mated using Quant-iT PicoGreen dsDNA Assay kit (ThermoFisher, USA). Individually bar-

coded samples were mixed in equimolar amounts, and DNA sequencing adaptor indexes

ligated using the TruSeq DNA PCR-free LT Library Preparation Kit (Illumina). Quality con-

trol was performed on an Agilent 2100 BioAnalyser using high sensitivity DNA chip. PhiX

DNA (10%) was added to the denatured pools, and sequencing was performed on an Illumina

MiSeq using the MiSeq V3 reagent kit (600-cycles) on the Illumina MiSeq platform. De-multi-

plexing and removal of indexes and primers were done with the Illumina software v. 2.6.2.1 on

the instrument according to the standard Illumina protocol.

Sequence data processing

Following initial upstream de-multiplexing and index removal, sequences were analysed using

the DADA2 v. 1.6 module [34] as implemented in the R statistical software v. 3.4.2 [35]. The

pipeline consisted of quality-filtering, trimming of bad quality (< Q30) stretches, error estima-

tion and de-replication of reads, merging of forward and reverse reads and finally, removal of

chimeric sequences. All remaining sequences were assigned taxonomy on the genus level

using the Silva Ribosomal RNA database version v.128. Subsequent statistical analyses and

visualization were done with the Phyloseq R-module v.1.22.3 [36] unless otherwise stated. The

data has been deposited with the following accession-number PRJNA560134: DaphniaABef-

fects at NCBI.

Analysis of oxygen radical absorbance capacity and protein content

As a proxy for antioxidant capacity, we assayed oxygen radical absorbance capacity (ORAC)

according to [37] with minor modifications; the measured values were normalized to the indi-

vidual protein content. This biomarker represents the water-soluble fraction of antioxidants

and has been applied for analysis of antioxidant production in daphnids [38]. Samples for
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ORAC and protein measurements were homogenized in 100 μL of PPB buffer (75 mM, pH

7.4). Fluorescein was applied as a fluorescent probe (106 nM) and 2, 2- azobis (2-amidinopro-

pane) dihydrochloride (AAPH) (152.66 mM) as a source of peroxyl radicals. Trolox (218 μM,

Sigma–Aldrich) was used as the standard. The assay was conducted in 96-well microplates

while 20 μL of homogenate sample was added to each well and mixed with 30 μL of AAPH and

150 μL of fluorescein. Fluorescence was measured at 485nm/520nm (excitation/emission

wavelength).

Protein content of the supernatant was determined by the bicinchoninic acid method using

a Pierce BCA Protein Assay kit 23227 (ThermoFisher, USA) according to the microplate pro-

cedure with some modifications. In each well, 25 μl of blank, standard or samples was added

to 200 μl of working solution. Absorbance was measured at 540 nm using a FluoStar Optima

plate reader (BMG Lab Technologies, Germany). Antioxidant capacity was expressed as mg

Trolox eq. mg protein−1.

Data analysis and statistics

Life-history traits

Survival probability was calculated using Kaplan-Meier analysis, which estimates the probabil-

ity of an event (i.e., death) occurring in a given period [39]. The logrank test was used to evalu-

ate differences in the survivorship among the treatments using package survival in R [40].

The empirical von Bertalanffy growth model was applied to determine growth parameters

using length-at-age data fitted to the equation:

BL ¼ BLmax � ð1 � expð� K�tÞ Eq 1

where BL is the total length at time t (days); BLmax is the length reached at an infinite time,

defined as the maximum potential length attained under the prevailing conditions; and K is

the individual growth rate. Statistical differences in BLmax and K between each treatment and

control were determined by non-overlapping 95% confidence intervals.

To analyze the effects of exposure time and Ciprofloxacin concentration on the daphnid

fecundity, we used generalized linear models (GLM) with Poisson distribution and identity

link function. Residuals were checked visually, and nonsignificant interaction terms were

dropped from the analysis. A post hoc Tukey HSD test was used to compare the brood size

among the treatments for each clutch.

The daphnid population growth rate (r) was estimated according to Euler-Lotka’s equation

using (R Core Team, 2018) (S1 File)

Pb

x¼alðxÞ mðxÞe� rx ¼ 1 Eq 2

where l(x) is the fraction of individuals surviving to age x and m(x) is the birth rate per capita

for the mothers of age x. Bootstrapping (999 permutations) was used to estimate 95% confi-

dence limits of the r values in each treatment, and statistical differences in r between each

treatment and control were determined by non-overlapping 95% confidence intervals.

Microbial communities

To assess the alpha diversity of the bacterial communities, we calculated commonly used indi-

ces (Shannon-Weiner, ACE, Chao1 and Fisher´s alpha) that consider both richness and even-

ness to describe the diversity of a community. The indices were calculated using individual

data rarefied to equal sequencing depth at treatment level. Rarefaction curves was plotted

using functions supplied by the vegan R-libraries. Zhang Huang’s index was calculated using
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OTU abundance data and entropart package. This index is used to validate the coverage-based

community richness instead of size-based rarefaction to avoid biased comparison of commu-

nities with many rare species [41].

Effects of Ciprofloxacin concentration and time on the diversity indices were evaluated

using generalized linear models (GLM) with normal error structure and log-link. Quantile

plots were used to evaluate the distribution of the residuals and deviance was used to access

goodness of the model. Interaction (time × concentration) was first included in every model

but omitted if found not significant.

The Principal coordinates analysis (PCoA) with Bray-Curtis dissimilarity index was used to

visualize differences in community composition among the treatments [42]. Differences in the

community structure at the family level were tested by permutational multivariate analysis of

variance (PERMANOVA) Bray-Curtis dissimilarity was used as variance stabilizing transfor-

mation. Multivariate homogeneity of treatment dispersion was assessed using the betadisper
function in the vegan package [43].

A heatmap of core microbiome, a set of bacteria consistently present in the host, was gener-

ated using R-package Microbiome version 1.1.2; the prevalence was set at 20% and detection

threshold at 0.01%. Moreover, to examine and visualize the core microbiome members shared

among the microbial communities and unique OTUs among the treatments, a Venn diagram

was generated using package Venndiagram and the rarefied OTUs after applying low count fil-

ter of 4 reads with prevalence of 20% in each sample. Shared taxa present in all four groups

(100% core threshold) were defined as the core microbiome.

Linking microbiome to host fitness

The R-package edgeR [44] was used to identify differentially abundant bacterial taxa (false dis-

covery rate-corrected p-values, α = 0.05, FDR = 1%) that were associated with high or low

growth rate (somatic and reproductive) of the daphnids. As a measure for somatic and repro-

ductive growth, we used body length (BL) and fecundity, respectively. For each trait, we cre-

ated two classes, high (above the group mean, coded as 1) and low (below the group mean,

coded as 0) using zeta scores for individual BL and fecundity measurements. Zeta scores (zero

mean, unit variance normalization) were calculated based on clutch-specific mean values (all

treatments included) and corresponding standard deviations to account for the changes in BL

and fecundity with the daphnid age.

Results

Survival and individual growth

The survival rate was moderate to high (84% to 92%), not differing significantly among the

treatments (log rank test, p> 0.8; all treatments included), although the antibiotic-exposed

animals had slightly higher survival compared to the controls (S1 Fig). According to the

growth curve analysis, the animals exposed to the lowest Ciprofloxacin concentration (0.01

mgL-1) had a significantly greater maximal body length (BL max) compared to the controls,

whereas the individual growth rate (K) was similar across the treatments (Fig 1, Table 1).

Reproduction

The average brood size was significantly higher in all Ciprofloxacin treatments compared to

the control (GLM, t263, 267 = 12.97,p< 0.001; S2 Fig), with the increase varying from 36% in

the 0.01 mg L-1treatment (t263, 267 = 4.347; p< 0.001) to 42% in the 0.1 mg L-1 treatment

(t263, 267 = 4.05; p< 0.001). Also, there was a significant negative effect of time (t263, 267 = -2.74;
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Fig 1. Individual growth curves analyzed by empirical von Bertalanffy model. Estimated BLmax and K values (Eq 1)

and corresponding 95%-confidence limits for Daphnia magna grown in 0.01, 0.1 and 1 mg L-1 Ciprofloxacin and the

control.

https://doi.org/10.1371/journal.pone.0214833.g001

Table 1. Body growth parameters estimated by von Bertalanffy model.

Best-fit values 1 mg/L 0.1 mg/L 0.01 mg/L Control

BLmax 3.339 3.314 3.376 3.252

K 0.286 0.299 0.287 0.311

SE estimates

BLmax 0.039 0.033 0.037 0.028

K 0.014 0.012 0.013 0.011

95% Confidence Intervals

BLmax 3.259 to 3.419 3.247 to 3.381 3.302 to 3.451 3.195 to 3.309

K 0.2575 to 0.3146 0.2743 to 0.3244 0.2604 to 0.3130 0.2880 to 0.3333

Goodness of Fit

R2 0.989 0.992 0.991 0.993

df 30 30 30 30

Sum of Squares 0.509 0.369 0.440 0.292

Sy.x 0.130 0.111 0.121 0.099

The model parameters (BLmax and K) were estimated according to Eq 1 using BL measurements of the animals

exposed to Ciprofloxacin (0.01, 0.1 and 1 mg L-1) and those in the control.

https://doi.org/10.1371/journal.pone.0214833.t001
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p< 0.05), which was mainly related to the low values in the last brood (Tukey HSD, z (4–1):

-3.084, p (4–1) < 0.01; z (4–2): -5.97, p (4–2) < 0.01; z (4–3): -3.34, p (4–3) <0.005; numbers in brack-

ets refer to the clutch number).

Population growth rate

The population growth rate varied from 0.26 to 0.30 among the treatments and was higher in

the exposed daphnids relative to the control by 17%, 19% and 15% in the animals exposed to

0.01, 0.1 and 1 mgL-1, respectively. The differences from the control were significant for all

treatments (S1 Table).

Characterization of the gut microbiota in Daphnia
A total of 1314 OTUs were obtained after filtering out reads with low-quality and removal of

chimera and contaminant sequences. Rarefaction curves plateaued with the current sampling

effort and Zhang Huang’s index was high (99.8 ± 0.001%, mean ± SD) across the treatments

indicating that the bacterial communities were adequately sampled (S3 Fig). The gut micro-

biome of our test animals was dominated by Proteobacteria, which contributed on average

74% (ranging from 25% to 95% in individual specimens). When all treatments were consid-

ered, Actinobacteria (15%), Bacteroidetes (7%), Firmicutes (1%) and Verrucomicrobia (1%)

were also common. In the non-exposed animals, the contributions were different, with Proteo-

bacteria, Bacteroidetes and Verrucomicrobia being the most common (S4 Fig). Together,

these five phyla formed the core microbiome of the gut (S5A Fig) and comprised on average

99% of the OTUs assigned to phylum level (S2A Table).

The major classes of bacteria found in all treatments, in order of prevalence, were Betapro-

teobacteria (35% of total OTUs), Gammaproteobacteria (29%), Actinobacteria (14%), Alpha-

proteobacteria (9%), Cytophagia (5%), and Verrucomicrobia (1%). In the non-exposed

animals, Cytophagia was the third most abundant group, contributing 8 to 36% throughout

the experiment, whereas Actinobacteria contributed less than 2% on average (S4 Fig). Bacilli,

Sphingobacteria and Bacteroidia were found together in about 3% of total reads assigned at

class level (S2B Table, S5B Fig).

We found members of 62 orders in all treatments (S2C Table). Predominant orders

included Burkholderiales (34%), Oceanospirillales (15%), Alteromonadales (10%), Rhizobiales

(7%), Micrococcales (5%), and Cytophagales (5%), which was the second most represented

order (16%) in the non-exposed animals (S4 Fig). The core gut microbiome were formed by

these orders along with Propionibacteriales, Corynebacteriales, Pseudomonadales and Methy-

lophilales (S5C Fig) representing almost 89% of the OTUs assigned at the order level.

Members of 101 families comprising 252 genera were identified as unique reads and

assigned at the family and genus level. Across the treatments, Comamonadaceae (33%), Halo-
monadaceae (15%), Shewanellaceae (10%), and Cytophagaceae (5%) were the most common

(S2E Table). In the non-exposed animals, Comamonadaceae (65%) and Cytophagaceae (17%)

were the most common (S4 Fig).

When all treatments were considered, the most abundant genera were Limnohabitans, She-
wanella, Halomonas, Bosea, and Leadbetterella. These genera contributed on average 71%

(ranging from 57% to 81%) to the gut microbiota (S5E Fig). In the non-exposed animals, how-

ever, Bosea was not contributing to the core microbiome (S4 Fig).

Effects of Ciprofloxacin on the core microbiome

Using the selected filtering settings and pooling all samples collected over the course of the

experiment, we identified 144, 156, 140, and 103 OTUs (207 unique OTUs in total) in the
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controls and the groups exposed to 0.01, 0.1 and 1 mgL-1 Ciprofloxacin, respectively. Among

the four groups, 56 OTUs were shared (Fig 2), corresponding to 27% of all OTUs. Further-

more, 6 shared classes, 8 shared orders, 8 shared families, and 10 shared genera were identified

(Fig 2; S5 Fig). These taxa can be regarded as the core microbiome of Daphnia magna gut.

Effects of time and Ciprofloxacin on the microbiome diversity

Diversity indices were calculated using rarefied OTU data for the samples analyzed during the

experiment across the concentrations of Ciprofloxacin (mg L-1) tested (S3 Table). The diversity

indices showed varying trends over time, with high initial diversity (up to the first clutch), a

decrease observed at the time of the second clutch, following in some cases by an increasing

trend toward the end of the experiment (Fig 3). The positive effect of time was significant for

Fisher’s alpha, but not for Chao1, ACE and Shannon-Weiner indices (Table 2). For all indices

except Shannon-Wiener, the negative effect of concentration was significant; it was also more

profound than the time effect for Fisher’s alpha (Table 2).

According to the PCoA, the microbiomes of the daphnids exposed to 0.1 and 1 mgL-1 clus-

tered closely together, which separated them from the control and the 0.01 mgL-1 treatment

Fig 2. Venn diagram of shared and unique OTUs in the treatments exposed to Ciprofloxacin and in the control. Venn diagram was

generated using the rarefied OTUs after applying low count filter of 4 reads with prevalence of 20% in each sample. Shared taxa present

in all four groups (100% core threshold) were operationally defined as the core microbiome.

https://doi.org/10.1371/journal.pone.0214833.g002
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along the first PC axis (Fig 4). Once the multivariate homogeneity was confirmed (Betadisper:

p>0.05; Table 3), a permutation test was performed which detected significant differences

between the Ciprofloxacin treatments (PERMANOVA, p< 0.05).

Further pairwise comparison demonstrated that all microbial communities were signifi-

cantly different from each other (PERMANOVA: all pairwise comparisons p< 0.05; Table 4).

Differential abundance analysis suggested that the most Ciprofloxacin sensitive bacteria were

Leadbetterella (Bacteroidetes), Hydrogenophaga and Methylotenera both Betaproteobacteria.

On the opposite end of the scale (most refractory) were Pseudorhodoferax, Shewanella, and

Halomonas (Beta- and Gammaproteobacteria) as their abundance in the exposed animals had

increased significantly following the antibiotic exposure (Fig 5A, S4 Table).

Communities grouped by Ciprofloxacin concentration and clutch number during the 21-d

exposure. Data points indicate specific values for individual daphnids; the estimates were

based on the rarefied OTUs libraries.

Color coding indicates treatments, i.e., concentration of Ciprofloxacin (0.01, 0.1, and 1 mg

L-1) and control (0 mg L-1). The ellipsoids represent a 95% confidence interval (normal distri-

bution) surrounding each group, and point labels indicate day of sampling. Plot shows the

clear clustering of bacterial communities in the treatments exposed to the two highest concen-

trations of Ciprofloxacin (0.1 and 1 mg L-1) as well as between the communities in the controls

and the lowest exposure concentration (0.01 mg L-1).

Effects of Ciprofloxacin on antioxidant capacity in daphnids

The total antioxidant capacity (ORAC, g Trolox eq. g protein-1) was significantly higher in the

animals exposed to lower concentrations (0.01 and 0.1 mgL-1) of Ciprofloxacin (Fig 6,

Table 5). Moreover, there was a significant positive relationship between the individual ORAC

values and body length (GLM; Wald stat. = 5.83, p< 0.02; Table 5) across the treatments and

time points.

Al
ph

a 
Di
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Fig 3. Alpha diversity indices (Chao1, ACE, Shannon-Weiner and Fisher’s alpha) for gut microbiota in Daphnia magna.

https://doi.org/10.1371/journal.pone.0214833.g003
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Linkages between gut microbiome, antioxidant capacity and life-history

traits

All diversity indices correlated negatively with fecundity, while only Fisher’s alpha had a posi-

tive correlation with body size (S6 Table). Moreover, across the treatments, the correlations

between the diversity indices and ORAC values were weakly negative and marginally signifi-

cant for Chao1, Fisher’s alpha, and ACE (S7 Table).

The differential abundance analysis indicated that genera Bosea and Hydrogenophaga were

more abundant in the daphnids with high and low somatic growth, respectively (S8 Table, Fig

5B). Moreover, Bosea and Galbitalea were significantly more abundant in the more fecund

daphnids, whereas abundances of Leadbetterella and Hydrogenophaga in these individuals

were significantly lower (S8 Table, Fig 5B). Thus, Bosea and Hydrogenophaga were consistently

associated with high and low growth phenotypes, respectively.

Discussion

The intestinal microbiome plays an essential role in regulating many aspects of host physiol-

ogy, and its disruption through antibiotic exposure has been implicated in microbiota-medi-

ated consequences on host fitness. We examined effects of chronic exposure to antibiotics on

Daphnia magna gut microbiota in concert with fitness-related responses of the host. As

hypothesized, the exposure to Ciprofloxacin resulted in profound changes in the microbiome

and a reduced microbial diversity at all concentrations tested (0.01 to 1 mg L-1). Surprisingly,

no negative effects on daphnid antioxidant levels, fitness and mortality were observed. More-

over, decrease in microbial diversity coincided with increased antioxidant capacity, individual

growth and host reproduction and, as a result, significantly higher population growth in the

animals exposed to Ciprofloxacin. Thus, the hypothesized positive correlation between micro-

biome diversity and host performance was not observed. These findings imply that reliance on

shifts in taxonomic composition of bacterial community generates an incomplete picture of

the functional effect of antibiotic intervention in a non-target eukaryote. A full mechanistic

understanding will require further study of the specific functional relationships between the

host and its core microbiome, and the integration of metabolomic and phenotypic data. More-

over, in case of antibiotic-mediated intervention, we need to disentangle direct effects of the

exposure on host physiology.

Table 2. Effects of time and concentration on the diversity indices.

Diversity index Factor Estimate Std. Error p value

Fisher´s alpha Concentration -0.412471 0.120011 0.0005

Time 0.032795 0.00987 0.0008

Chao1 Concentration -0.20608 0.102056 0.043

Time 0.005290 0.009492 0.577

ACE Concentration 0.205 0.101 0.043

Time 0.006 0.009 0.533

Shannon-Wiener Concentration -0.046 0.032 0.15

Time 0.002 0.003 0.4

Diversity indices calculated using individual data rarefied to equal sequencing depth at treatment level. Effects of concentration and time on the diversity indices (Fisher

´s alpha, Chao1, ACE and Shannon-Wiener) were evaluated using GLM with normal error structure and log-link. Interaction time × concentration were included in

each model but omitted when found not significant. Significant p values are in bold face.

https://doi.org/10.1371/journal.pone.0214833.t002
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Core microbiome of Daphnia magna
Proteobacteria, Actinobacteria and Bacteroidetes comprise a core microbiome of the Daphnia
magna intestine. Most taxa (or their close relatives) identified in this study as a part of core

microbiome have previously been reported in Daphnia [20,21,45]. The Comamonadaceae

family of Burkholderiales have been shown to be the most abundant family in Daphnia gut

Fig 4. Principle Coordinate Analysis (PCoA) based on Bray Curtis dissimilarity metrics, showing the distance in the bacterial

communities between the treatments.

https://doi.org/10.1371/journal.pone.0214833.g004

Table 3. Analysis of multivariate homogeneity of group dispersions.

Dispersion measures

Control 0.01 mg/L 0.1 mg/L 1 mg/L

Average distance to centroid 0.345 0.34 0.307 0.35

Betadisper

Df Sum Sq Mean Sq Pseudo-F P value

Treatment 3 0.017 0.006 1.194 0.317

Residuals 58 0.268 0.005

Betadisper pairwise comparisons

Control 0.01 mg/L 0.1 mg/L 1 mg/L

Control 0.823 0.135 0.877

0.01 mg/L 0.822 0.204 0.673

0.1 mg/L 0.111 0.202 0.062

1 mg/L 0.864 0.696 0.068

Multivariate homogeneity of variances was tested with Betadisper using samples originated from different treatments (Ciprofloxacin concentrations from 0.01 to 1 mg

L-1) and control (0 mg L-1).

https://doi.org/10.1371/journal.pone.0214833.t003
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microbiota [20,46] and were most prevalent in our test animals. Other highly abundant taxa

were Gammaproteobacteria, orders Oceanospirillales and Alteromonadales, and the families

Nocardioidaceae, Microbacteriaceae, and Moraxellaceae [12,21].

On the genus level, greater differences between the earlier reports on microbiota com-

position in Daphnia and our dataset were evident. In addition to Limnohabitans, other

identified taxa were Pseudorhodoferax and Hydrogenophaga (Burkholderiales) but not the

previously reported Bordetella, Cupriavidus [21] Ideonella and Leptothrix [20]. Also,

Enhydrobacter was the dominant genus of Moraxellaceae in our study (S2E Table), while

Acinetobacter was reported in other studies [12,20]. Methylibium was only found in the

animals that were exposed to 0.01 mg L-1 of Ciprofloxacin and not in the controls, suggest-

ing that this genus is relatively rare if ordinarily present. Together, our findings suggest a

relatively stable bacterial composition in the Daphnia gut at the higher taxonomic level,

suggestive of functional redundancy in the interactions between the daphnids and their

microbiota.

Effects of Ciprofloxacin on the Daphnia gut microbiome

Ciprofloxacin exposure significantly altered the microbiome, with a decrease or even the dis-

appearance of many taxa by the end of the experiment at the lowest exposure concentration

and within the first week at higher concentrations (S2 Table). Although Fisher’s alpha diversity

decreased with both Ciprofloxacin concentration and exposure time (Fig 3), only the concen-

tration effect was significant for Chao 1 and ACE; none of the effects were significant for Shan-

non-Weiner index (S3 Table). The G+ bacteria, mostly Actinobacteria and Firmicutes, were

better equipped to withstand Ciprofloxacin exposure as their relative abundance increased

with drug concentration, while the G- bacteria had divergent responses (S7 Fig). For example,

Hydrogenophaga and Pseudorhodoferax, both belonging to the G- genus Burkholderiales, had

clearly opposite responses, decreasing and increasing, respectively, with increasing concentra-

tion. This is in line with earlier studies that demonstrated higher susceptibility to Ciprofloxacin

among the G- bacteria as compared with co-occurring G+ species [26]. This is supported by

the typically low minimum inhibitory concentrations, MICs, estimated for Alphaproteobac-

teria, such as Escherichia/Shigella, (commonly in the low μM range) as compared with that for

many Firmicutes, which are usually in the mM range.

At higher concentrations of Ciprofloxacin, several genera of the core microbiome declined

to non-detectable levels. In particular, the Limnohabitans genus was replaced by Halomonas
and Shewanella, whose relative abundances increased with drug concentration (S2E Table).

Shewanella is a known acid producer [47] and at higher densities it may alter the pH balance

Table 4. Pairwise comparison of treatments using Bray-Curtis dissimilarity.

Df SS Pseudo-F R2 P value

Treatment 3 2.584 6.884 0.263 0.001

Residuals 58 7.257 0.737

Total 61 9.841 1

PERMANOVA pairwise comparisons (FDR corrected p)

Control 0.01 mg/L 0.1 mg/L

0.01 mg/L 0.01 - -

0.1 mg/L 0.001 0.001

1 mg/L 0.001 0.001 0.001

PERMANOVA output with Bray-Curtis dissimilarity testing differences between treatments at family level.

https://doi.org/10.1371/journal.pone.0214833.t004
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in the gut microenvironment. This would suppress growth of Limnohabitans that prefers neu-

tral and alkaline conditions [48]. Such community-level effects mediated by competition

between the microbial consortia probably play a significant role in the dynamics of specific

bacterial taxa as a result of the exposure to antibiotics.

Fig 5. Differential abundance analysis of gut bacteria in Daphnia magna exposed to Ciprofloxacin. Bacterial

genera significantly associated with (a) exposure to Ciprofloxacin; (b) high somatic growth and fecundity of the host

observed during the experiment. The fold change (log2FC) and the associated statistics were determined using the

edgeR package.

https://doi.org/10.1371/journal.pone.0214833.g005

Fig 6. Daphnia magna: response of the total antioxidant capacity assayed as ORAC to the Ciprofloxacin

concentration in the exposure. The individuals sampled after their fourth clutch were excluded for the ORAC (g

Trolox eq. g protein-1) measurements, because some of them contained eggs in the brood chamber, which may affect

the ORAC values. The non-matching letters indicate significant differences between the groups (Tukey’s multiple

comparisons test; p< 0.05). See Table 5 for the details on the statistical comparisons.

https://doi.org/10.1371/journal.pone.0214833.g006
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Effects of Ciprofloxacin on life history traits and antioxidant levels in

Daphnia
Studies on aposymbiotic daphnids showed that disruption in gut microbiota, either by drugs

or a diet, had adverse effects on nutrition [11], immunity, growth [9], fecundity [22], and lon-

gevity [49]. The effects that we observed, however, were most prominent at low antibiotic con-

centrations, which are below the typical MICs for bacteria [30]. Despite the Ciprofloxacin-

induced shifts in the microbiome diversity and composition, ORAC levels, growth and repro-

duction in the daphnids were similar or even significantly higher than in the controls. The dis-

crepancy between the microbiome and the organism-level responses may result from

differential susceptibility of various microbes to the broad-spectrum Ciprofloxacin and addi-

tional variability related to induction of the SOS response pathways in different taxa.

The mismatch between microbiome change and host response suggests that other drivers,

such as a direct effect of Ciprofloxacin on the host, might have been were involved, leading to

the observed effects on growth and reproduction. In line with this, a biphasic dose-response to

Ciprofloxacin observed in human fibroblast cells, manifesting as increased cell proliferation and

viability when compared to non-exposed controls [50]. In Daphnia magna, the reproduction

response to Ciprofloxacin was also biphasic, with stimulatory effects at concentrations below 5

mg L-1 [51]. This is in line with the positive response induced by the test concentrations utilized

in our study (0.01–1 mg L-1). In mice, Ciprofloxacin has also been shown to improve survival

by enhancing immune efficiency via stimulating cytokine production [52]. In addition, several

in vitro and in vivo studies using animal and tissue models have revealed that fluoroquinolones,

such as Ciprofloxacin, induce oxidative stress via reactive oxygen species (ROS) production, in

a dose- and time-dependent manner [52,53]. Measurable ROS production was observed follow-

ing exposure to Ciprofloxacin at concentrations as low as 0.025 mM [53], which is within the

concentration range used in our study. At low levels of such pro-oxidative exposure, the addi-

tional production and/or activity of the endogenous antioxidant enzymes and low-molecular

weight antioxidants to remove the continuously generated free radicals would increase [54]. In

the daphnids exposed to the lowest Ciprofloxacin concentration, a significant increase in

ORAC levels (S6 Fig) suggests that exposure had direct stimulatory effects on the antioxidant

production. Moreover, we observed a positive correlation between the ORAC levels and animal

body size across the treatments indicating a possible primary mechanism behind the observed

Table 5. Effects of exposure (Ciprofloxacin, mg mL-1) on the antioxidant capacity in Daphnia magna.

ANOVA results SS DF MS F (DFn, DFd) p value

Treatment (concentration) 0.06387 3 0.02129 F (3, 32) = 5.969 0.0024

Residual 0.1141 32 0.003567

Total 0.178 35

Tukey’s multiple comparisons test

Treatments, pair-wise Mean Difference 95% CI of difference Summary

Control vs. 0.01 -0.1116 -0.1879 to -0.03537 ��

Control vs. 0.1 -0.04873 -0.1250 to 0.02755 ns

Control vs. 1 -0.02017 -0.09645 to 0.05610 ns

0.01 vs. 0.1 0.06291 -0.01336 to 0.1392 ns

0.01 vs. 1 0.09147 0.01520 to 0.1677 �

0.1 vs. 1 0.02856 -0.04772 to 0.1048 ns

ANOVA and Tukey’s multiple comparisons for the overall effect on the antioxidant capacity (ORAC values); p < 0.01: ��, p < 0.05: �; and p > 0.05: ns. The individuals

sampled at the termination of the experiment were excluded, because some daphnids contained eggs in the brood chamber. As the reference group, we used the

daphnids exposed to the highest concentration. See also Fig 6.

https://doi.org/10.1371/journal.pone.0214833.t005
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effects being a hormetic shifting of redox environment by the pro-oxidative Ciprofloxacin, anti-

oxidant response and the resulting beneficial effects on growth. Such effects are in agreement

with a concept of physiological conditional hormesis [55] and suggest a possible mechanism for

the direct response of Daphnia magna to Ciprofloxacin exposure at environmentally relevant

concentrations. An important caveat is that hormesis, also shown to occur in several microbes’

response to quinolones and fluoroquinolones (the so-called paradoxical effect) [56] might be

universal and thus Ciprofloxacin may be a suboptimal choice for the uncomplicated study on

microbiome involvement in dose-response relationships with the host. As a model system to

experimentally disentangle drug effects on the eukaryotic host from those on its microbiome,

gnotobiotic daphnids can be used [3,9].

Microbiome-fitness relationships

Although elevated growth and reproduction were associated with some bacterial taxa, there

was no clear signal for the involvement of the gut microbiome in the high-growth phenotype.

This is suggestive of a redundancy in host-microbiome function, i.e., microbes can be

exchanged with little or no penalty for fitness-related endpoints. Moreover, as mechanisms

governing most observed associations are not well understood, definitive conclusion of direct

effects by specific microbes is intuitively discouraged. In particular, several taxa (Bosea and

Shewanella) significantly associated with fitness-related variables have been shown to be highly

resistant to Ciprofloxacin [57,58]. The selection, even acting directly on the polymicrobial

community, does so differentially. Although the effect may be due to absolute numbers of

microbes, the cumulative physiological and metabolic state may matter more. In line with this,

the relative abundance of those genera that were associated with higher fecundity and growth

barely comprise 5% of the organism’s microbiome (S2 Table), suggesting that sheer abundance

was unlikely to be the primary factor driving the host fitness.

It is a common view that strains capable of supplying essential elements for reproduction

and growth would benefit the host. For example, the key components of Daphnia gut micro-

biota, Limnohabitans, Aeromonas and methanotrophic bacteria [59], have been linked to acqui-

sition of essential amino acids [60,61], polyunsaturated fatty acids (PUFA) and sterols [62] that

positively affect Daphnia growth and reproduction [9,61]. Surprisingly, none of these taxa were

associated with elevated growth and fecundity in our study. This also speaks for functional

redundancy although additional studies would be required to show this. At the genus level, only

Bosea and Galbitalea had significantly positive association with Daphnia growth and fecundity,

whereas the association for Leadbetterella and Hydrogenophaga, which are commonly found in

Daphnia [63], was negative. The Bradyrhizobiaceae (Bosea) and Microbacteriaceae (Galbitalea)

are bio-degraders capable of producing hydrolytic enzymes such as chitinase, cellulase, gluca-

nase, protease, etc. [57,64]. Therefore, an increased network density and number of degradation

pathways may provide essential nutrients from more available substrates [65], which may con-

tribute to the observed positive association between the relative abundance of these taxa with

fecundity and host fitness. Regardless of the mechanisms underlying their increased relative

abundance, resistance, or at the very least, refractoriness to Ciprofloxacin cannot be ignored.

Such effects would be evident in perturbed outcome of inter- and intra-species competition and

illustrates one of the difficulties facing studies of the host-microbiome interactions.

Supporting information

S1 File. R script for calculation of population growth rate according to Euler-Lotka equa-

tion (Eq 2).

(TXT)
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S1 Table. Population growth rate analysis. Population growth rate (r) of Daphnia magna in

the control and Ciprofloxacin exposure (0.01–1 mg L-1) and the corresponding 95-% confi-

dence interval estimated by bootstrapping. Asterisk indicates significant difference from the

control; when the confidence intervals were not overlapping, the difference was considered

significant.

(XLSX)

S2 Table. Overview of relative abundances of the dominant bacteria across the treatments.

Relative contributions of the ten most common bacterial taxa in the gut microbiota of Daphnia
magna exposed to Ciprofloxacin (0.01. 0.1. and 1 mg L-1) and in control (0 mg L-1) as well as

the average relative abundance for all treatments.

(XLSX)

S3 Table. Diversity indices used in the alpha diversity analysis for each sample. Diversity

indices were calculated using rarefied OTU data. Information is provided for the samples ana-

lyzed during the experiment across the concentrations of Ciprofloxacin (mg L-1) tested (Con-

centration 0 is the control group) and variables representing the time of exposure as a clutch

number, 1 to 4, and day of experiment corresponding to the sampling event.

(XLSX)

S4 Table. Differential abundance of individual genera representing taxa-specific responses

to Ciprofloxacin exposure. The positive log2FC values indicate increased relative abundance

in the exposed daphnids compared to the controls. Significance presented at false discovery

rate of 5% (FDR<0.05) estimated by edgeR package.

(XLSX)

S5 Table. Relationship between the total antioxidant capacity assayed as ORAC and daph-

nid body length. Generalized linear model output linking antioxidant capacity assayed by

ORAC to daphnid body length across the treatments and time points. Normal error structure

and log-link function were applied. The animals collected at the termination of the experiment

were excluded, because they had eggs in the brood chambers, which may affect the ORAC val-

ues.

(XLSX)

S6 Table. Spearman correlations between the diversity indices and fitness-related parame-

ters. The diversity indices used in the alpha diversity analysis were correlated to variables rep-

resenting growth and reproduction: Body length of the daphniids at the time of sampling for

16S rRNA gene sequencing, Fecundity rank used in the differential abundance analysis (scored

0 to 3), and Size-specific fecundity calculated using Brood size and Body length. Significant

correlations (p< 0.05) are in red.

(XLSX)

S7 Table. Spearman correlation coefficients between ORAC levels and diversity indices for

gut microbiome in Daphnia magna. The ORAC values and diversity indices were assayed in

individual daphnids (n = 62). All treatments and time points were included in this analysis.

Marginally significant p values are in italics.

(XLSX)

S8 Table. Differential abundance analysis of individual genera estimated by edgeR-func-

tion and testing associations between the microbiome and host fitness parameters, fecun-

dity and growth. The genera positively associated with high growth assayed as increase in
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body length or fecundity assayed as brood size of D. magna have positive log2FC values. All

values reported are significant at false discovery rate of 1%. (FDR<0.01). See also Fig 5.

(XLSX)

S1 Fig. Kaplan-Meier curves and estimates of survival data. Survival of Daphnia magna
exposed to Ciprofloxacin (0.01, 0.1 and 1 mg L-1) and in the control during the 21-d exposure.

(PDF)

S2 Fig. Neonate production in the exposed and non-exposed animals. Reproduction of

Daphnia magna (brood size and time of reproduction) during a 21-d exposure to Ciprofloxa-

cin (0.01, 0.1, and 1 mg L-1) and the control. Note that the last clutch was estimated using both

the offspring released and the embryos in the brood chamber at the termination of the experi-

ment.

(PDF)

S3 Fig. Rarefaction curves of gut microbiota OTUs in Daphnia magna. Rarefaction curves

show the cumulative number of unique OTUs as a function of sample size (number of reads

for the 16s rRNA gene) for all individuals sampled in different treatments (Ciprofloxacin con-

centration, mgL-1) and control during the experiment. Colors denote the clutch number.

(PDF)

S4 Fig. Relative abundance of bacterial taxa in the microbiome of Daphnia magna from

the controls. The abundances are shown for the different taxonomy ranks: (a) Phylum, (b)

Class, (c) Order, (d) Family, and (e) Genus. Along the vertical axis, the data are grouped by the

clutch, 1 to 4, produced during the experiment.

(PDF)

S5 Fig. The heatmap of the core microbiome in Daphnia magna. The heatmap of the core

microbiome in Daphnia magna collected during the experiment across different taxonomic

categories: (a) Phylum (b) class, (c) order, (d) family, and (e) genera.

(PDF)

S6 Fig. Variation in ORAC levels measured in Daphnia magna from different treatments.

The total antioxidant capacity (ORAC, g Trolox eq./ g protein) was assayed in individual daph-

nids during the course of the experiment. The data are shown for the control (Concentration 0

mg L-1) and each treatment (Ciprofloxacin concentration: 0.01, 0.1 and 1 mg L-1). The regres-

sion line and the 95%-confidence interval are shown to indicate the overall direction of change

over time in different treatments.

(PDF)

S7 Fig. Changes in relative abundance of Gram-positive (G+) and Gram-negative (G-) bac-

teria in response to Ciprofloxacin exposure. Fold-change of G- and G+ bacteria in gut

microbiota of D. magna exposed to Ciprofloxacin (0 to 1 mg/L). For G+ bacteria at the order

level, mostly increase in response to Ciprofloxacin was observed as shown for, for example,

Actinobacteria (a) and Firmicutes (b). For G- bacteria, the responses were more divergent. For

example, responses of Pseudorhodoferax (c) and Hydrogenophaga (d) families belonging to

the same order Burkholderiales were the opposite.

(PDF)
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