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Abstract
Estimation of return levels, based on extreme value distributions, is of importance in the earth and environmental sciences. 
To incorporate non-stationarity in the modelling, the statistical framework of generalised additive models for location, scale 
and shape is an option, providing flexibility and with a wide range of distributions implemented. With a large set of selections 
possible, model choice is an issue. As a case study, we investigate annual minimum temperatures from measurements at a 
location in northern Sweden. For practical work, it turns out that care must be taken in examining the obtained distributions, 
not solely relying on information criteria. A simulation study illustrates the findings.
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Introduction

Statistical analysis of extremes in the environmental sciences 
is important for several reasons, for instance regarding engi-
neering design and regulations, as well as related issues in 
insurance and finance. As conventional risk measures, usu-
ally upper quantiles of quantities of interest are estimated, 
based on observed data (see e.g. Rychlik and Rydén 2006; 
Naghettini 2017). These are called return levels and are asso-
ciated with a certain return period. For instance, consider 
temperature at a location and a return period of 100 years. 
The related return level is the temperature exceeded on aver-
age once in 100 years. The classical assumptions involve 
two key conditions: extreme events arising from a stationary 
distribution; and extreme events being independent. Tradi-
tionally, the notions of return periods and return levels have 
been developed and used extensively for, e.g. hydrology 
with roots to the influential book by Gumbel (1958); for a 
recent review, see Naghettini (2017). Applications can also 
be found in agricultural sciences, e.g. in crop science where 
variability of precipitation and temperature affects the yield 
(Barlow et al. 2015).

Of much interest is to introduce non-stationary statisti-
cal models, due to changing environmental conditions. Dis-
cussion is present not the least in the hydrology research 
community, cf., e.g. the articles with provocative titles by 
Milly et al. (2008), Serinaldi and Kilsby (2015), see also 
Koutsoyiannis and Montanari (2015). Non-stationarity can 
be introduced by extending the standard limiting statistical 
distributions. Coles (2001) presented a model with time-
dependent parameters of the generalised extreme value 
(GEV) distribution. More recently, the flexible class of dis-
tributions GAMLSS (Rigby and Stasinopoulos 2005) has 
been considered an option for modelling of meteorological 
data, with an early application by Villarini et al. (2010). 
With several options to choose in that framework, model 
selection is crucial. This has been stressed by Caroni and 
Panagoulia (2016) and Panagoulia et al. (2014) where the 
application of various information criteria was investigated 
in simulation studies.

The use of the GAMLSS framework deserves to be exam-
ined closer, as suggested by Debele et al. (2017), where the 
authors propose to evaluate the reliability of the various 
models by simulation experiments and discuss the lack of 
such analysis in many applied papers. Moreover, the dif-
ficulties in using GAMLSS are pointed out: distributions of 
response variables, choices of explanatory variables and link 
functions. In addition, the numerical estimation algorithms 
can fail.
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This paper is a case study; as part of an intended larger 
study on trends of climate indicators for locations in Swe-
den, some results worth reflecting upon were found when 
fitting various alternatives for extreme minimum tempera-
tures. The particular results from the numerical procedures 
are presented and discussed and may serve as a caution 
for the applied researcher when working with the flexible 
class of distributions and the potential danger of using 
automatised procedures for the model selection—a human 
ought to judge all results. The paper is organised as fol-
lows. In “Climate indices for extremes” section, a descrip-
tion of the data is given. A review of the statistical model-
ling and framework is given in “Statistical modelling and 
methodology” section. The main findings are provided in 
“Results” section, where results from estimation proce-
dures are presented along with interpretation and discus-
sion, including a simulation study. Finally, in “Summary” 
section, a summary and discussion are provided.

Climate indices for extremes

Modelling of extreme quantities in the earth sciences, for 
instance, meteorology, is not straightforward, as pointed 
out by Stephenson (2008): “There is no universal unique 
definition of what is an extreme event”. Several indicators 
have been suggested for monitoring change in climatic 
extremes (see e.g. Frich et al. 2002; Zhang and Zwiers 
2013). Climate indices may relate to temperatures as 
well as precipitation, and they may be based on absolute 
thresholds or percentile based. As examples of the former 
are Daily maximum temperature (TXx) or Maximum one-
day precipitation amount (RX1day), of the latter: Warm 
days (TX90p)—percentage of time when daily maximum 
temperature > 90th percentile or Very wet days (R95p)—
annual total precipitation from days > 95th percentile. Per-
centiles refer to long-term percentiles from the reference 
interval 1961–1990 (Zhang and Zwiers 2013).

Data on extreme temperatures

In this paper, we study a time series of the annual mini-
mum of daily minimum temperature (as an indicator, 
abbreviated TNn). Hence, in a mathematical sense, these 
are true minima when considering time series of annual 
observations. The observations are made at the Swedish 
town Östersund (latitude: 63.1◦ , longitude: 14.3◦ , eleva-
tion: 376 m). The time series covers the period 1918–2017, 
with year 1943 missing. Data are available at http://www.
ecad.eu, see Klein Tank et al. (2002).

Statistical modelling and methodology

Generalised extreme value distribution (GEV)

From classical extreme value theory, it is well known that 
a limiting distribution in the case of independent, identi-
cally distributed observations is the GEV distribution, see 
for instance Coles (2001), Gomes and Guillou (2015) or Dey 
et al. (2016). The GEV distribution has three parameters 
(location � , scale � and shape �):

where � ∈ ℝ , 𝜎 > 0 and � ∈ ℝ . The shape parameter � 
affects the support of the distribution: when � = 0 , the GEV 
distribution is the Gumbel distribution (with support ℝ ). 
When 𝜉 > 0 , the distribution corresponds to the Fréchet 
distribution with support y ≥ � + �∕� , and when 𝜉 < 0, it 
corresponds to the reversed Weibull distribution with sup-
port y ≤ � − �∕�.

The shape parameter � (occasionally called extreme value 
index, EVI) determines the tail of the GEV distribution. In 
the Fréchet case ( 𝜉 > 0 ), a heavy tail occurs, while for the 
reversed Weibull ( 𝜉 < 0 ), there is a finite right end point, 
i.e. an upper bound.

Turning to the situation with time-dependent parameters, 
Coles (2001) presented a form for a non-stationary GEV 
with the distribution function:

Usually, the shape parameter � is not considered time 
dependent. As pointed out by Debele et al. (2017), it is 
assumed to be constant in time due to the high uncertainty 
of its estimation, even in the stationary case.

Estimation is commonly performed by the maximum-
likelihood (ML) method. An implementation in R is found 
in the package extRemes (Gilleland and Katz 2016); for 
a review of further implementations, see Gilleland et al. 
(2013). In the framework of time-varying parameters, typi-
cally polynomials in time are considered and a log-linear 
expression for the scale parameter, e.g.

It could be remarked that the ML estimation is somewhat 
intricate. As noted above, the support of the GEV distribu-
tion depends on the parameter values. Smith (1985) showed 
for instance that when � ≤ − 1 , the ML estimate does not 
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exist. For further discussion, see Dey et  al. (2016) and 
Bücher and Segers (2017).

GAMLSS

A general class of statistical models for a univariate response 
variable, called the generalised additive model for loca-
tion, scale and shape (GAMLSS), was presented by Rigby 
and Stasinopoulos (2005). In generalised linear models, 
introduced by Nelder and Wedderburn (1972), the mean 
of the response variable is modelled through a link func-
tion, assuming an exponential family distribution for the 
response. Within the GAMLSS framework, it is possible to 
model population parameters of the distribution. In addition 
to the systematic part of the regression models, it is possible 
to include additive nonparametric functions of explanatory 
variables as well as random-effects terms.

In the application given in this paper, there are no ran-
dom effects and only one covariate (time), so the general 
GAMLSS model is simplified. Assume that we have p 
parameters, � = (�1,… , �p) of a population probability-den-
sity function f (y|�) and n observations y1,… , yn . Further, 
let �k and �k be vectors of length n. The model can then, for 
k = 1, 2,… , p, be formulated:

In our application, �k usually has two components (intercept 
and slope), and �k is the related design matrix. Moreover, 
the first two population parameters �1 and �2 are usually char-
acterised as location and scale parameters.

For practical purposes, an implementation in R is found 
in the package gamlss (Stasinopoulos and Rigby 2007). 
Fitting of the model is performed by maximisation of a 
penalised likelihood function, and two algorithms are pro-
vided. Default links are provided for the various distribu-
tion families, but it is also possible for the user to employ 
alternative links.

Model selection

An important part of modern statistical methodology is 
model selection. Widely used statistical information criteria 
are tools for this, e.g. the Akaike information criterion (AIC, 
Akaike 1974) or the Bayesian information criterion (BIC, 
Schwarz 1978). In general, BIC penalises more complex 
models more strongly than AIC (Agresti 2015).

An issue in the context of non-stationary models is the 
ability to detect non-stationarity. In extensive simulation 
studies, Panagoulia et al. (2014) investigated simulated sam-
ples from GEV distributions with different complexities in 
the location and scale parts. As a conclusion, use of BIC 
was suggested: non-stationarity was detected and the correct 
model selected more often compared to AIC (except in very 

gk(�k) = �k = �k�k.

small samples). Hence, in this study, we utilise BIC as the 
information criterion when comparing models.

Return periods and return levels

A commonly used risk measure, not the least for design 
criteria in reliability engineering, is return period and the 
related return level. Interest is then in estimation of the 
T-year return level, where typically T is a large number, 
e.g. 100, 1000, 10,000. This notion will be used extensively 
in the sequel, and hence a short review will now be given, 
see also Fernandez and Salas (1999) or Rychlik and Rydén 
(2006).

Actually, for the classical definition of return level, inde-
pendence and stationarity are key assumptions, and since 
waiting time for an extreme event is involved, the geometric 
distribution plays a key role. It can be suggested that a suit-
able definition of the T-year return level yT as being the high 
quantile for which the probability that the annual maximum 
exceeds this quantile is 1 / T, and hence

where F is the cumulative distribution function, e.g. for a 
fitted GEV distribution.

Extensions of the concepts of return period under non-
stationary conditions have been discussed and suggestions 
been proposed (Salas and Obeysekera 2014; Rootzén and 
Katz 2013). A review is given by Cooley (2013). Under the 
assumption of stationarity, there is a one-to-one relationship 
between a return level (the quantile) and a return period (the 
associated time interval). However, when the assumption of 
stationarity is removed, different interpretations are possible 
(Cooley 2013). One is based on the expected waiting time 
until an exceedance occurs, another is that for a T-year return 
period, the expected number of events in T is equal to one.

However, in this paper, we use the conventional approach 
as the main aim is to study the quality of the fitting of vari-
ous distribution families.

Uncertainties of the estimated return levels are of interest 
to assess; for the non-stationary case, see Obeysekera and 
Salas (2014). In the sequel, we report confidence intervals 
as reported by the package extRemes, computed by the 
so-called delta method. For details in the context of return 
levels, see appendix A.2 in Cooley (2013).

Results

Initial estimation of return levels

At present, the R package gamlss.dist contains more than 
100 distributions (Stasinopoulos and Rigby 2018). It is a com-
prehensive task to judge all these alternatives, and possibly 

(1)F(yT ) = 1 − 1∕T
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many of them would not make a reasonable fit to the extremes 
under study, in form of minimum temperatures. As our aim is 
to study the behaviour of extremes over time, the models in 
this study have one covariate, time.

Among the GAMLSS alternatives, we decided after initial 
investigations to fit inverse Gaussian, gamma, lognormal and 
reverse Gumbel. In addition, using routines from the R pack-
age extRemes, the conventional Gumbel distribution was fit-
ted as well as GEV. For the latter distribution, the ML estimate 
of the shape parameter was found as 𝜉 = − 0.22 . Moreover, 
for the GEV, permutations of time-varying location and scale 
parameters were considered; in the case with location param-
eter, also square dependence on time was an option.

For the location of Östersund, all options considered, and 
the alternatives presented in the following table were consid-
ered the top-four best fits with respect to the BIC values (also 
listed). For the fitting of the GAMLSS options, the default 
links were chosen. The GEV model had a location parameter 
�(t) = �0 + �1t + �2t

2 (although the difference in BIC com-
pared to a regular GEV is slight).

It could be emphasised that the differences in BIC between 
the alternatives are quite small. Hilbe (2011) gives a guideline 
for model comparisons with regard to sample size, and in this 
case, the models are not significantly different.

We now consider application of the fitted distributions 
GEV, lognormal and gamma to estimation of 100-year return 
temperatures (in ◦C ). Starting with the GEV distribution, a 
point estimate is − 38.2 . To get an idea of the uncertainty of 
this estimate, the delta method gives a 95% confidence interval 
as [− 40.7, − 35.9].

Turning to the results from GAMLSS, for both considered 
families the algorithms returned negative scale parameters 
for the default links chosen (the scale parameter is positive 
by definition in the model), and moreover the quantiles could 
not be computed. Refitting was performed, considering other 
links and numerical algorithms. We here discuss lognormal 
and gamma in some detail:

 Lognormal distribution. Refitting with identity link and 
inverse link, respectively, resulted in positive scale 
parameters and the estimates of 100-year temperatures 
− 37.2 and − 37.3 , respectively. These are reasonable 
in light of the previously presented GEV estimate.

 Gamma distribution. This in fact had the best fit (cf. 
Table 1). However, trying other link functions did 
result in estimated 100-year temperatures − 4.5 and 

− 90 , with identity and inverse link, respectively. 
These values seem out of question.

Computations using the different options for optimisation 
algorithms provided in the package did not affect the out-
comes for the gamma distribution.

Simulation study

We consider the two distributions discussed above and 
perform a simple simulation study as follows: (i) generate 
5000 samples, each of 100 observations, from the distribu-
tion with the fitted parameters; (ii) compute for each sample 
the 0.99 quantile (that is, the 100-year return level). The 
so obtained samples of return levels are illustrated in his-
tograms in Fig. 1. In the lognormal case (left panel), we 
notice that the bulk of data is in the interval (− 40,− 30) , in 
agreement with our estimate from data, − 37 . Turning to the 
gamma case (right panel), the distribution is quite skewed. 
The median from the simulation is − 55 , but recall that with 
the links described above, we obtained − 4.5 and − 90 for the 
Östersund data. Possibly even more extreme (in the sense 
of unrealistic) results could be obtained from this skewed 
distribution.

Illustration of fitted models

We now turn to the aspects of time-varying coefficients. In 
Fig. 2, the dots represent original observations. The smooth, 
solid curve is the result of fitting a loess model (locally 
weighted scatter plot smoothing, Cleveland and Devlin 
1988). The curve indicates a non-monotone behaviour over 
time. The dashed line shows the 100-year return value based 

Table 1  BIC values for various fitted models

Distribution Gamma Lognormal Inverse Gaussian GEV

BIC 577.9 578.3 578.4 580.9
Fig. 1  Histogram of 100-year return value from simulations, based 
on fitted distributions from GAMLSS. Left: lognormal distribution. 
Right: gamma distribution
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on the lognormal distribution with a time dependence in the 
location parameter: �(t) = 0.37−0.001t , � = 0.15 . The loca-
tion parameter �(t) is slowly decreasing over time, resulting 
in a slight increase in 100-year return temperature. The dot-
ted line is the result after fitting a GEV model with a time-
dependent location parameter (time squared). In summary, 
this figure illustrates that the lognormal distribution and a 
GEV with time-varying parameters are reasonable results. 
Note that the outcomes of the gamma distribution are not 
displayed.

Summary

Estimation of return levels is crucial in the earth and envi-
ronmental sciences. In this case study, we examined regres-
sion models from the GAMLSS framework and performed 
model selection with BIC, comparing with conventional 
extreme value distributions, GEV and Gumbel (possibly 
time dependent). Exemplifying with data of extreme mini-
mum temperatures, we found that BIC values from a practi-
cal point of view are quite similar for the models examined. 
Though care must be taken of the choice of links, for this 
data set, with the lognormal distribution, links other than the 
default in the software worked out reasonably, while for the 
gamma distribution, the results were not realistic.

In fact, the researchers involved with GAMLSS have 
issued a warning, and a passage from a user’s manual is 
worth quoting in this discussion (Stasinopoulos et al. 2008):

Warning: The models described here are very flex-
ible and therefore should be used with care. As simple 
advice,

• Start with a simple model and built (sic) it up.
• Do not attempt to fit overcomplex models that are 

not supported by your data.
• Compare results from several models.

Debele et al. (2017) encouraged further explorations of use 
of the GAMLSS framework for estimation of return levels 
and state that differences in values of information criteria 
might be small, but translate into “considerable differences 
in time-dependent moments and in the magnitude of upper 
quantiles”. Indeed, this is confirmed by the findings for 
the data set in this article; cf. the simulation studies of the 
gamma case, as presented in Fig. 1.

To conclude, model selection and closer examination 
of the so obtained distributions are highly important with 
these flexible distribution types. There might be a danger 
to solely rely on computed values of information criteria; 
human judgement is necessary. We finish by a colourful 
remark by N.T. Longford, in the discussion of Rigby and 
Stasinopoulos (2005):

The new models are top of the range mathematical 
Ferraris, but the model selection that is used with 
them is like a sequence of tollbooths at which par-
tially sighted operators inspect driver’s (sic) licences 
and road worthiness certificates.
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