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Abstract
& Key message The deadwood of different tree species with different decomposition rates affects soil organic carbon
sequestration in Estonian and Polish forests. In warmer conditions (Poland), the deadwood decomposition process
had a higher rate than in cooler Estonian forests. Soil organic matter fractions analysis can be used to assess the
stability and turnover of organic carbon between deadwood and soil in different experimental localities.
& Context Deadwood is an important element of properly functioning forest ecosystem and plays a very important
role in the maintenance of biodiversity, soil fertility, and carbon sequestration.
& Aims The main aim was to estimate how decomposition of deadwood of different tree species with different
decomposition rates affects soil organic carbon sequestration in Estonian and Polish forests.
& Methods The investigation was carried out in six forests in Poland (51° N) and Estonia (58° N). The study
localities differ in their mean annual air temperature (of 2 °C) and the length of the growing season (of 1 month).
The deadwood logs of Norway spruce (Picea abies (L.) Karst.), common aspen (Populus tremula L.), and silver
birch (Betula pendula Roth) were included in the research. Logs in three stages of decomposition (III–V) were
selected for the analysis.
& Results There were differences in the stock of soil organic carbon in two experimental localities. There was a
higher soil carbon content under logs and in their direct vicinity in Polish forests compared to those in the cooler
climate of Estonia. Considerable differences in the amount of soil organic matter were found. The light fraction
constituted the greatest quantitative component of organic matter of soils associated with deadwood.
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& Conclusion A higher carbon content in surface soil horizons as an effect of deadwood decomposition was determined for the
Polish (temperate) forests. More decomposed deadwood affected soil organic matter stabilization more strongly than less
decayed deadwood. This relationship was clearer in Polish forests. Higher temperatures and longer growing periods primarily
influenced the increase of soil organic matter free light fraction concentrations directly under and in close proximity to logs of the
studied species. The slower release of deadwood decomposition products was noted in Estonian (hemiboreal) forests. The soil
organic matter mineral fraction increased under aspen and spruce logs at advanced decomposition in Poland.

Keywords Carbon accumulation . Decomposition stage . Soil organic matter fractions

1 Introduction

Deadwood is a ubiquitous element of both protected and man-
aged forest ecosystems (Harmon et al. 1986; Wambsganss
et al. 2017). Standing dead trees, logs, snags, and stumps
constitute deadwood resources (Harmon and Sexton 1996).
Deadwood is an important carbon (C) reservoir in the forest
ecosystem. During the decomposition of deadwood, C is part-
ly emitted to the atmosphere and partly stored as C resources
in the soil. The main processes involved in the decomposition
of deadwood are respiration, transformation, fragmentation,
and leaching (Magnússon et al. 2016). Lasota et al. (2017)
noted that concentration of cations leached from deadwood
increases with the advancement of the decomposition rate.
The amount of ions released from deadwood depends on the
tree species. Increases in dissolved organic carbon (DOC)
derived from decaying wood have been observed (Kahl
et al. 2012; Zalamea et al. 2007). Błońska et al. (2017) dem-
onstrated that soil C accumulation and enzyme activity in the
soil were influenced by deadwood form, tree species, and
decay class. Carbon is stored in the soil mostly as soil organic
matter (SOM), and deadwood affects the quality and quantity
of SOM (Zalamea et al. 2007). Soil organic matter is
heterogeneous, and consists of different fractions that
are characterized by different degrees of stability (Von
Lützov et al. 2006). The fractionation of SOM allows
the separation of groups differing in composition and
biological function (Christensen 1992). Density fraction-
ation procedure has identified three SOM fractions. The
labile fraction, due to its low density (< 1.7 g cm−3), is
also called free light fraction (Tefs and Gleixner 2012).
The mineral soil light fraction, however, may become
stabilized by occlusion inside aggregates (resulting in the so-
called occluded light fraction) (Von Lützov et al. 2006). The
stabilized fraction of SOM, also known as the heavy fraction,
is the mineral-associated fraction (Grüneberg et al. 2013;
Saidy et al. 2012).

It is believed that, among abiotic factors, climatic con-
ditions have the greatest impact on the soil organic matter
content. Among the climatic factors, temperature and
moisture are the characteristics that most influence the
decomposition of soil organic matter (Bani et al. 2018;
Błońska and Lasota 2017). Boreal and temperate forests

cover 25% of the terrestrial land surface of the Earth.
Temperate climates are those occurring between the frigid
and tropical zones, having an intermediate long-term av-
erage temperature. Temperate regions generally also ex-
hibit strong seasonality in temperature and rainfall.
Climatically, the boreal region is the northernmost section
of the temperate zone before the arctic begins and is co-
incident with the limits of continuous forest cover in the
northern hemisphere (Thomas and MacLellan 2004).
Hemiboreal forests form a transitional zone between bo-
real and temperate forest biomes and are characterized by
mixed forest stands (Shorohova et al. 2009; Krasnova
et al. 2019). According to Allison et al. (2009, 2013),
temperature could influence decomposition of organic
material by changing the activity of the decomposer com-
munity and also by changing plant species composition
and litter chemistry. In a warm, humid environment, the
decomposition rate is higher because such conditions fa-
vor the growth of microorganisms (Yin 1999). Dry and
wet site conditions cause slower deadwood decomposi-
tion rates (Shorohova and Kapitsa 2014). Błońska and
Lasota (2017) observed the highest accumulation of car-
bon in swampy soils where the anaerobic conditions
affected the organic matter decomposition, leading to
slower decompositional processes. Temperate and boreal
forest soils have been proposed to sequester more car-
bon dioxide to reduce the pressures of climate change
(Wan et al. 2011; Wiesmeier et al. 2016). It has been
concluded that warming temperature under the climate
change predictions will accelerate C turnover in forest
ecosystems because of both carbon inputs via primary
production and carbon losses via enhanced decomposition
will increase (Stergiadi et al. 2016). Wiesmeier et al. (2016)
revealed substantial soil organic carbon decreases by 11–
16% under an expected mean temperature increase of
3.3 °C.

The main aim was to estimate how decomposition of dead-
wood of different tree species (Norway spruce, common aspen
and silver birch) with different decomposition rates affects soil
organic carbon sequestration in temperate and hemiboreal
forests. For the analysis, forests with similar vegetation
cover in Poland and Estonia were sampled. We tested
the following hypotheses: (1) the deadwood decomposition
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process of the same tree species differs between
hemiboreal and temperate forests; (2) decomposition stage
of logs has inherent effect on the amount of soil organic
matter; (3) heavily decomposed deadwood of all investi-
gated species impacts soil organic matter stabilization
more strongly than less decayed deadwood; (4) the light
fraction of soil organic matter is more sensitive to dead-
wood effects than the heavy fraction.

2 Materials and methods

2.1 Study sites

The investigation was carried out in Poland and Estonia
(Fig. 1). In Poland, research plots were located in Czarna
Rózga Reserve (50° 59′ N, 20° 01′ E). The reserve area was

185.6 ha. The stands within the boundaries of the reserve were
of natural origin. The study area was characterized by the
following climatic conditions: the average annual rainfall
was 649 mm; the average annual temperature was to 7.4 °C,
and the growing season lasted 200–210 days (Błońska et al.
2018). In Estonia, the research plots were located in the
Järvselja Training and Experimental Forest District (58° 16′
N, 27° 18′ E). That region was characterized by the following
climatic conditions: the average annual rainfall was 647 mm;
the average annual temperature was 5.4 °C; and the growing
season lasted 179 days (The Estonian Environment Agency:
http://www.ilmateenistus.ee/). The forest stands had similar
ages (the mean tree age was 95 years). The sample plots were
located in an area with a predominance of fluvioglacial sand
and loam with Gleysols and Cambisols (WRB 2014). The
basic properties of soils investigated (at the depth 0–10 cm)
in Poland and Estonia are presented in Table 4.

Fig. 1 Localization of research
plots and sampling scheme
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2.2 Field design

Research plots were selected in six forests in Poland and
Estonia (three research plots in each country) (Fig. 1). On each
study plot, deadwood logs of different species in different
stages of decomposition (three species × three decay classes
× three distance from logs (0, 10, and 50 cm)) were chosen.
Downed deadwood logs of Norway spruce (Picea abies (L.)
Karst.), common aspen (Populus tremula L.), and silver birch
(Betula pendula Roth) were studied. Logs in three stages of
decomposition (III, IV, and V) were selected for the analysis.
The decay classes (DC) of logs were evaluated with the clas-
sification of dead trees as in Maser et al. (1979) (Table 5). On
each research plot, sample points were spaced apart by an
average of 30–50 m. The same sampling scheme was used
in both countries. The area of each plot was approximately
10 ha. Logs with similar dimensions were selected for the
study, the diameter in the center of the log was between 25–
30 cm. Soil samples under and around the logs were collected
from the A horizon (0–10 cm) after removing the organic
horizon (O). The soil samples were collected under the logs
(0 cm) and at two different distances from decaying logs (10
and 50 cm) in October 2017. Eighty-one soil samples from
Poland and eighty-one soil samples from Estonia were taken
for laboratory analysis.

2.3 Laboratory analysis

The particle-size distribution of the soils was determined
using laser diffraction (Analysette 22, Fritsch, Idar-
Oberstein, Germany); pH was analyzed in distilled water
and 1 M KCl using the potentiometric method; the content
of total nitrogen (N) and organic carbon (C) were measured
using a LECOCNSTrueMac Analyzer (Leco, St. Joseph,MI,
USA).

Physical separations of soil organic matter fractions were
also performed (81 soil samples from Poland and 81 soil sam-
ples from Estonia). We employed a method described by Sohi
et al. (2001). A 15-g sample of soil was placed in a 200-ml
centrifuge tube and 90ml of NaI (1.7 g cm−3) was added. Each
tube was gently shaken for 1 min and centrifuged for 30 min.
The free light fraction (fLF) was removed using a pipette and
collected on a glass fiber filter. The soil remaining at
the bottom of the centrifuge tubes was mixed with an-
other portion of 90 mL of NaI and subjected to sonica-
tion (60 W for 200 s) to destroy aggregates. After cen-
trifugation, the matter released from the aggregate-
occluded light fraction (oLF) was collected on the glass
fiber filter. The remaining fraction was assumed to con-
sist of the mineral associated fraction (MAF) of SOM.
After drying (40 °C), these subsamples were weighted
and analyzed for carbon and nitrogen content (CfLF,

CoLF, CMAF and NfLF, NoLF, NMAF) using a LECO

CNS True Mac Analyzer (Leco, St. Joseph, MI, USA).
The database can be accessed at the following link:
DOI:10.5281/zenodo.3386522.

2.4 Statistics

Linear mixedmodel (LMM)was used for the evaluation of the
effect of the experimental localities, species, decay classes,
and distances from log on soil carbon contents and carbon of
different SOM fractions. Experimental plot and deadwood log
were included as random factors to account for the spatial
dependencies in data (because multiple measurements were
made in each plot and next to each log). The LMM analysis
was performed with the function lmer (package lme4) in R
Statistics software (R Core Team 2018). Tukey’s HSD multi-
ple comparisons of means were used in post hoc analysis to
assess the effect of the different experimental localities
(Poland and Estonia) and distance on the studied soil proper-
ties (carbon content, nitrogen content, C/N, soil organic matter
fractions). The principal component analysis (PCA) was used
to identify interrelationships that exist among variables and to
identify how suites of variables are related. PCA method was
used to evaluate the effect of the experimental localities on
carbon content and soil organic matter fractions. The statistical
significance of the results was verified at the significance level
of alpha = 0.05. PCA analysis was performed with Statistica
12 Software (2012).

3 Results

In both experimental localities, the highest organic carbon (C)
content was observed directly under the logs, and C content
decreased gradually in subsequent samples moving away
from the log outlines (Table 1). These differences intensified
with the state of decay and had different levels depending on
the species of deadwood. The C content in soil under logs in
Polish plots was approximately 3–3.5-fold higher than C con-
tents recorded for comparable conditions in Estonia. Figure 2
shows the differences in the soil organic carbon contents un-
der the logs of different species, at the two experimental lo-
calities. Similar relationships were determined with regard to
the total nitrogen contents of the experimental sites. Soil under
logs analyzed at Polish plots was characterized by a higher
total nitrogen content compared to soils in Estonia (Table 1).
The value of the C/N ratio in soil samples under comparable
logs and at varying distances from the logs had a wide range
(means from 13.2–22.0) and was similar for comparable plots
in Estonia and Poland. The increase of mean C/N ratio with
the wood decay progress was clearly visible in the soil sam-
ples collected under logs (Table 1).

Considerable differences in the fraction composition of soil
organic matter were found between experimental localities.
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The light fraction C constituted the greatest quantitative com-
ponent of organic matter in soils under or near deadwood. In
the Polish plots, the soil under aspen logs at III DC contained
19.2 g kg−1 CfLF and 57.1 g kg−1 CfLF under spruce logs
(Table 2). In the cooler Estonian climate, in soil under aspen
and spruce at III DC, a lower amount of free light fraction
carbonwas accumulated, 4.2 and 8.0 g kg−1 CfLF, respectively.
In the case of birch logs, significant differences of SOM frac-
tions between the experimental localities in Poland and
Estonia were not found. The CfLF content in soil under logs
at IV DC of aspen and spruce was significantly different,
being higher in Poland compared to the Estonian plots. In
the case of the wood at the highest decay class (V DC), dif-
ferences between CfLF contents were greater for aspen and

spruce wood, while in the soil under birch logs a tendency
for CfLF increase was found (85.6 relative to 61.0 g kg−1),
which was statistically significant (Table 2). The contents of
occluded light fraction carbon (CoLF) in Polish and Estonian
soils were influenced by the deadwood of the studied species.
The mean CoLF content was 8.4–15.2 g kg−1 at III DC, 7.4–
12.9 g kg−1 at IV DC, and 13.7–18.2 g kg−1 at V DC in
Estonia, and 8.6–24.0 g kg−1,15.0–− 22.9 g kg−1, and 7.5–
29.1 g kg−1 in Poland, respectively. In the case of the mineral
associated fraction (CMAF) in soil collected directly under
decaying logs, a significant difference was determined for this
trait at III DC only in the case of spruce logs (30.2 g kg−1 in
Polish plots, 21.2 g kg−1 in Estonian plots). In soil collected
under logs at IV DC, significant differences were determined

Table 1 Carbon and nitrogen
content and C/N ratio of soils un-
der deadwood influence in differ-
ent experimental localities

Properties Species DC Experimental localities

Estonia Poland

Distance

0 cm 10 cm 50 cm 0 cm 10 cm 50 cm

C Aspen III 33.3bx 35.4ax 45.3ax 58.2ax 41.3ax 38.9ax

IV 38.1bx 42.3bx 38.4ax 84.7ax 66.5axy 51.9ay

V 51.7bx 33.8bx 36.6bx 218.2ax 94.3ay 63.3az

Birch III 52.0ax 47.5ax 37.7ax 72.4ax 47.4ay 38.9ay

IV 66.3bx 55.3ax 50.3ax 105.3ax 72.7ay 55.7ay

V 102.6bx 85.8axy 68.1ay 140.3ax 77.7ay 59.0ay

Spruce III 37.5bx 40.9bx 33.7ax 95.9ax 68.9ay 56.1ay

IV 36.4bx 33.9bx 35.7ax 105.3ax 60.3ay 32.9az

V 56.2bx 42.0bxy 35.5by 202.5ax 127.2ay 85.3az

N Aspen III 2.6bx 2.8ax 3.3ax 3.8ax 2.7ay 2.8ay

IV 2.4bx 2.8ax 2.6ax 4.5ax 3.5ay 2.9ay

V 2.8bx 2.3by 2.3ay 11.4ax 5.1ay 3.4az

Birch III 2.8bx 2.6ax 2.1ax 4.3ax 3.3ay 3.0ay

IV 3.2bx 3.0bx 2.8ax 5.7ax 4.6ay 3.6az

V 4.8bx 4.4ax 3.6ay 7.9ax 5.1ay 4.0az

Spruce III 2.3bx 2.6ax 2.2ax 5.0ax 3.6ay 3.0ay

IV 1.7bx 1.9bx 2.0ax 6.1ax 3.5ay 2.2az

V 3.2bx 2.9bx 2.4bx 9.6ax 6.2ay 4.5az

C/N Aspen III 13.1ax 13.0ax 14.2ax 15.5ax 15.0ax 14.1ax

IV 15.6ax 15.0bx 14.4bx 18.9ax 19.2ax 18.4ax

V 18.4ax 14.5by 15.6ay 19.2ax 18.3ax 19.1ax

Birch III 18.7ax 18.1ax 18.4ax 16.9ax 14.5bxy 13.1by

IV 20.7ax 18.2ax 18.0ax 18.6ax 15.8ay 15.7ay

V 22.0ax 19.5ay 18.7ay 17.9bx 15.4bxy 14.8by

Spruce III 16.2ax 16.0ax 15.0bx 19.2ax 19.5ax 18.9ax

IV 21.4ax 18.1ay 17.7ay 17.7bx 18.3ax 17.3ax

V 17.7ax 14.7by 14.7by 21.0ax 20.8ax 19.3ax

DC, decay classes (III–V); 0, 10, and 50 cm, distance from logs; C, carbon content (g kg−1 ); N, nitrogen content
(g kg−1 ); different lowercase alphabets in the upper index mean significant differences of parameters between
soils from Estonia and Poland (a, b) and between distance variants (x, y, z)
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in the cases of birch (21.2 g kg−1 CMAF in Poland; 11.7 g kg
−1

in Estonia). Furthermore, significant differences in CMAF con-
tents were found for soil collected under spruce and aspen logs
at V DC, in the experimental localities (Table 2).

The free light fraction nitrogen content (NfLF) in soils under
or near deadwood of the species studied followed the similar
pattern to the carbon. In the case of spruce logs in the Polish
climate, the soil located directly under logs contained signifi-
cantly higher amount of NfLF at all decomposition classes of
the tested logs when compared to the amount of NfLF mea-
sured in soils from Estonian plots. A higher NfLF concentra-
tion under birch and aspen logs was found for IV and V DC
logs (Table 2). The nitrogen of the occluded light fraction
(NoLF) had similar values in both geographical locations in
comparable soils under aspen and spruce logs. Differences
in the NoLF contents were observed in soils under birch logs.
Nitrogen of the mineral associated fraction (NMAF) had similar
values in soils of the plots studied in III and IV DC (Table 2).
Differences in the NMAF contents were observed in soils under
aspen and spruce logs in V DC. The fLF constitued the
greatest share of the total carbon for all samples followed by
the heavy fraction, regardless of experimental localities, spe-
cies of deadwood and decomposition rate (Fig. 3). With the
advancement of the decomposition rate, the share of the light
fraction of SOM increased irrespective of the deadwood spe-
cies and experimental locality. This relationship was most
pronounced in the soil directly below the deadwood log
(Fig. 3). The free light fraction (fLF) was characterized by a
higher C/N ratio compared to the occluded light (oLF) and
mineral associated fractions (MAF) (Table 2). Comparison of

the experimental localities analyzed indicated a tendency for
higher values of the C/N ratio in all fractions in soils formed in
the cooler climate of Estonia (Table 2).

The effect of the studied experimental locations on the
fractional composition of the humus was also confirmed by
the PCA analysis (Fig. 4). Factor 1 explained 30% of the
variance of the examined properties, whereas Factor 2
accounted for 13% of the variance. The biplot of the cases
on the plane of Axis 1 and 2 (Fig. 4) shows the trend to
separation of groups of experimental plots from Estonia and
Poland. The soils studied at Polish and Estonian plots differed
in the C and N contents of individual fractions of soil organic
matter. Factor 1 was related to the nitrogen content, carbon
content, the carbon of light fraction of soil organic matter, and
pH. Factors 2 was associated with carbon and nitrogen of
occluded fraction of soil organic matter. The biplot confirmed
the higher values of CfLF and NfLF on experimental locations
in Poland. LMM analysis confirmed the simultaneous and
strong impact of the experimental localities on carbon storage
in soil under or near deadwood (Table 3). According to the
LMM analysis, the experimental locality had a significant
influence on the carbon of the free light fraction of SOM
(p < 0.001) and the carbon of the heavy fraction of SOM
(p = 0.0012). Experimental localities in connection with spe-
cies and distance had a significant influence on all SOM frac-
tions. Additionally, species of wood, decay classes, and dis-
tances from deadwood had influences on the carbon of light
and heavy fractions of SOM (Table 3).

Fig. 2 Difference in of carbon
content (delta C (g kg−1)) in soil
directly below the deadwood
between experimental localities in
Poland and Estonia; III–V, decay
class. The statistically significant
(t test) difference in C content in
soil between Poland and Estonia
is marked by an asterisk
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Table 2 Carbon, nitrogen, and C/N ratio of soil organic matter fractions of soils under deadwood influence in different experimental localities

DC C and N of
SOM fractions

Species Experimental localities

Estonia Poland

Distance

0 cm 10 cm 50 cm 0 cm 10 cm 50 cm

III CfLF Aspen 4.2 ± 2.4a 4.5 ± 1.6a 10.3 ± 3.3a 19.2 ± 7.1a 14.7 ± 7.6a 12.3 ± 4.3a

Birch 27.7 ± 8.4a 14.9 ± 3.2a 8.7 ± 0.4a 32.0 ± 3.4a 19.3 ± 3.0a 12.1 ± 2.9a

Spruce 8.0 ± 0.6b 8.0 ± 0.8b 6.7 ± 1.6b 57.1 ± 0.5a 41.9 ± 8.4a 32.2 ± 3.6a

CoLF Aspen 15.2 ± 9.9b 14.8 ± 9.0a 20.2 ± 12.1a 24.0 ± 3.8a 19.9 ± 2.2a 17.7 ± 1.9a

Birch 9.3 ± 3.2b 10.6 ± 3.4a 7.9 ± 1.2b 23.3 ± 2.9a 17.8 ± 2.9a 17.3 ± 2.0a

Spruce 8.4 ± 2.5a 11.5 ± 4.3a 7.8 ± 3.0a 8.6 ± 2.0a 7.5 ± 1.1a 3.5 ± 1.0a

CMAF Aspen 14.0 ± 1.6a 16.1 ± 2.3a 14.8 ± 4.4a 15.0 ± 2.8a 6.7 ± 4.3b 9.0 ± 0.7a

Birch 15.0 ± 4.0a 21.9 ± 9.8a 21.0 ± 11.0a 17.1 ± 1.9a 10.4 ± 2.2b 9.4 ± 0.7b

Spruce 21.2 ± 4.2b 21.4 ± 3.0a 19.2 ± 2.3a 30.2 ± 2.7a 19.5 ± 2.9a 20.3 ± 6.8a

NfLF Aspen 0.2 ± 0.1a 0.2 ± 0.1a 0.4 ± 0.1a 1.0 ± 0.5a 0.8 ± 0.4a 0.6 ± 0.2a

Birch 1.1 ± 0.3a 0.5 ± 0.1a 0.3 ± 0.0a 1.4 ± 0.3a 1.0 ± 0.3a 0.8 ± 0.2a

Spruce 0.2 ± 0.1b 0.3 ± 0.0b 0.2 ± 0.1b 2.9 ± 0.3a 2.1 ± 0.6a 1.6 ± 0.3a

NoLF Aspen 1.1 ± 0.8a 1.1 ± 0.8a 1.5 ± 1.0a 1.7 ± 0.5a 1.3 ± 0.2a 1.4 ± 0.2a

Birch 0.7 ± 0.3b 0.6 ± 0.2b 0.5 ± 0.1b 1.8 ± 0.3a 1.4 ± 0.1a 1.5 ± 0.1a

Spruce 0.5 ± 0.2a 0.7 ± 0.3a 0.5 ± 0.2a 0.5 ± 0.1a 0.4 ± 0.0a 0.2 ± 0.0b

NMAF Aspen 1.2 ± 0.2a 1.5 ± 0.1a 1.3 ± 0.4a 1.1 ± 0.3a 0.6 ± 0.4b 0.8 ± 0.1b

Birch 1.0 ± 0.1a 1.5 ± 0.5a 1.3 ± 0.6a 1.1 ± 0.3a 0.8 ± 0.2b 0.8 ± 0.1a

Spruce 1.6 ± 0.3a 1.6 ± 0.1a 1.5 ± 0.2a 1.7 ± 0.1a 1.1 ± 0.2a 1.2 ± 0.4a

C/NfLF Aspen 24.2 ± 1.3a 26.9 ± 0.6a 22.7 ± 2.2a 20.8 ± 3.8a 17.6 ± 0.3b 19.8 ± 2.3a

Birch 24.4 ± 0.8a 27.3 ± 2.5a 28.0 ± 2.6a 23.4 ± 2.1a 19.2 ± 2.8b 15.9 ± 1.5b

Spruce 37.2 ± 14.3a 29.5 ± 3.8a 30.6 ± 3.0a 19.9 ± 1.8b 20.1 ± 2.3b 19.7 ± 1.0b

C/NoLF Aspen 13.8 ± 1.0a 13.6 ± 1.1a 13.7 ± 1.0a 14.6 ± 2.3a 15.6 ± 3.8a 12.9 ± 0.8a

Birch 14.7 ± 1.6a 17.6 ± 0.6a 15.7 ± 1.6a 12.8 ± 0.8a 12.7 ± 1.8b 11.9 ± 1.5a

Spruce 15.6 ± 1.3a 16.0 ± 1.2a 15.6 ± 1.2b 18.8 ± 1.9a 19.3 ± 2.1a 21.1 ± 0.7a

C/NMAF Aspen 11.4 ± 0.8a 11.0 ± 0.6a 11.4 ± 0.7a 13.8 ± 0.7a 11.4 ± 0.6a 11.9 ± 0.7a

Birch 15.0 ± 2.1a 14.3 ± 2.1a 16.5 ± 1.8a 15.9 ± 2.6a 12.4 ± 0.5a 12.6 ± 0.9b

Spruce 13.6 ± 2.0b 13.6 ± 1.2b 12.6 ± 0.8b 18.0 ± 0.1a 18.6 ± 0.4a 17.1 ± 0.6a

IV CfLF Aspen 9.3 ± 1.0b 10.4 ± 6.9b 8.2 ± 5.7a 48.7 ± 1.0a 36.1 ± 5.7a 28.6 ± 2.6a

Birch 42.5 ± 7.3a 21.6 ± 8.0a 15.4 ± 5.1a 61.1 ± 5.3a 36.4 ± 4.8a 25.6 ± 4.9a

Spruce 13.7 ± 2.4b 9.2 ± 0.5b 9.3 ± 3.3a 68.0 ± 9.2a 35.5 ± 6.0a 15.3 ± 2.5a

CoLF Aspen 12.9 ± 4.2a 14.2 ± 5.6a 17.7 ± 9.4a 15.0 ± 7.9a 16.3 ± 5.5a 8.4 ± 3.7b

Birch 12.0 ± 5.0b 13.9 ± 2.7a 11.4 ± 1.0a 22.9 ± 7.0a 21.1 ± 5.0a 15.3 ± 1.8a

Spruce 7.4 ± 1.4b 10.4 ± 5.0a 13.1 ± 5.3a 18.9 ± 1.2a 12.6 ± 3.7a 12.7 ± 5.4a

CMAF Aspen 16.0 ± 2.0a 17.7 ± 4.1a 12.5 ± 4.2a 21.0 ± 8.8a 14.1 ± 4.3a 15.0 ± 3.5a

Birch 11.7 ± 4.4b 19.8 ± 5.7a 23.4 ± 2.9a 21.2 ± 3.5a 15.2 ± 1.2a 14.7 ± 1.9b

Spruce 15.2 ± 1.4a 14.3 ± 2.9a 13.3 ± 1.9a 18.4 ± 1.2a 12.2 ± 3.8a 5.0 ± 3.4b

NfLF Aspen 0.3 ± 0.0b 0.4 ± 0.3b 0.3 ± 0.2b 2.5 ± 0.2a 1.9 ± 0.4a 1.5 ± 0.3a

Birch 1.7 ± 0.4b 0.9 ± 0.3b 0.6 ± 0.2a 2.7 ± 0.2a 2.0 ± 0.3a 1.5 ± 0.0a

Spruce 0.4 ± 0.1b 0.3 ± 0.0b 0.3 ± 0.1a 3.6 ± 0.3a 1.7 ± 0.2a 0.9 ± 0.3a

NoLF Aspen 0.9 ± 0.3a 1.0 ± 0.4a 1.2 ± 0.6a 0.8 ± 0.4a 0.8 ± 0.3a 0.5 ± 0.2b

Birch 0.7 ± 0.3b 0.9 ± 0.1a 0.7 ± 0.1b 1.6 ± 0.5a 1.4 ± 0.2a 1.1 ± 0.1a

Spruce 0.4 ± 0.1b 0.6 ± 0.3a 0.8 ± 0.4a 1.2 ± 0.3a 0.8 ± 0.4a 0.8 ± 0.6a

NMAF Aspen 1.2 ± 0.1a 1.4 ± 0.2a 1.1 ± 0.3a 1.2 ± 0.6a 0.8 ± 0.4b 0.9 ± 0.4a

Birch 0.8 ± 0.4a 1.3 ± 0.4a 1.5 ± 0.3a 1.3 ± 0.3a 1.2 ± 0.3a 1.0 ± 0.1a

Spruce 0.9 ± 0.1a 1.0 ± 0.2a 0.9 ± 0.1a 1.3 ± 0.2a 0.9 ± 0.4a 0.4 ± 0.3a

C/NfLF Aspen 27.7 ± 3.7a 24.1 ± 0.5a 24.9 ± 2.3a 19.5 ± 1.5b 18.9 ± 0.8a 19.3 ± 1.6b

Birch 26.0 ± 2.8a 25.5 ± 1.2a 25.9 ± 1.2a 22.5 ± 0.6a 17.9 ± 0.9b 17.6 ± 3.1b

Spruce 34.6 ± 1.1a 33.9 ± 3.0a 29.7 ± 1.3a 19.3 ± 4.0b 20.8 ± 5.1b 18.7 ± 4.6b

C/NoLF Aspen 14.6 ± 0.6a 14.3 ± 0.9b 14.1 ± 0.6a 17.9 ± 1.3a 19.8 ± 5.2a 16.8 ± 1.7a

Birch 16.9 ± 0.8a 15.4 ± 0.8a 16.1 ± 1.3a 14.5 ± 2.0a 14.7 ± 3.5a 14.0 ± 0.8a

Spruce 18.3 ± 0.9a 17.1 ± 2.1a 16.7 ± 1.3a 16.0 ± 3.2a 16.8 ± 4.9a 17.5 ± 5.5a

C/NMAF Aspen 13.3 ± 1.6b 13.0 ± 2.3b 11.7 ± 0.9b 18.5 ± 1.6a 19.8 ± 3.5a 18.1 ± 3.1a

Birch 14.7 ± 1.9a 15.7 ± 0.9a 15.8 ± 1.4a 16.1 ± 2.5a 13.7 ± 3.8a 14.8 ± 1.7a

Spruce 17.0 ± 1.3a 14.5 ± 0.1a 14.5 ± 0.9a 14.9 ± 3.5a 14.9 ± 4.1a 13.0 ± 3.1a

V CfLF Aspen 14.3 ± 5.3b 6.0 ± 3.5b 11.0 ± 6.7a 172.8 ± 44.6a 63.8 ± 24.2a 31.4 ± 11.5a

Birch 61.0 ± 26.5b 52.2 ± 25.5a 42.1 ± 26.6a 85.6 ± 14.6a 40.9 ± 1.9a 25.0 ± 6.9a

Spruce 22.4 ± 2.7b 10.0 ± 3.2b 9.3 ± 3.3b 134.3 ± 56.8a 83.2 ± 25.8a 53.8 ± 22.2a

CoLF Aspen 15.9 ± 3.0a 14.3 ± 4.0a 17.5 ± 5.7a 5.0 ± 6.8b 15.9 ± 6.0a 14.0 ± 10.9a

Birch 18.2 ± 11.8b 14.5 ± 6.5a 10.0 ± 4.6a 29.1 ± 8.7a 17.1 ± 3.0a 15.8 ± 7.8a
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4 Discussion

Our study showed differences in the content of soil organic
matter at two experimental locations. Higher C contents in the
upper mineral soil horizon (0–10 cm) under logs and in their
vicinities were recorded in Polish sites compared to the sites in
Estonia. The experimental locations differ in thermal condi-
tions, which were exemplified by the differences in the mean
annual air temperatures (of 2 °C) and the length of the growing
periods (longer by approx. 31 days in the Polish locality). Our
study showed that, in warmer conditions (Poland), the dead-
wood decomposition process had a higher rate than in cooler
climate conditions (Estonia). The importance of thermal con-
ditions for the course of the processes of transformations and
accumulations of soil organic matter has been confirmed in a
series of studies, and it is known to have various foundations
(Kirschbaum 1995; Knorr et al. 2005; Scharlemann et al.
2014; Wiesmeier et al. 2016; Von Lützow and Kögel-
Knabner 2009). Thermal conditions influence the activity of
soil microorganisms and the mesobiota participating in the
processes of decomposition as well as the humification of

detritus and deadwood accumulated on the soil surface.
Bardelli et al. (2017), and Egli et al. (2016), Fravolini et al.
(2016, 2018), and Gómez-Brandón et al. (2017a, b) demon-
strated that temperature (depending on the location-specific
conditions, in mountain areas) influence the composition of
microorganisms found in the soil and deadwood and their
enzymatic activity, which determines the directions of the
transformations and decomposition rates of soil organic
matter. A tendency for higher C/N ratio values in all soil or-
ganic matter fractions was noted in Estonia. Such outcome has
been confirmed in other studies; for example, Ostonen et al.
(2017) demonstrated an increase in C/N ratio of soil organic
matter and fine roots in spruce and birch forests along a cli-
matic gradient from the temperate to the boreal zone. The soil
C/N ratio was the main factor describing the variability of
absorptive fine root biomass over stand basal area, which
reflected the nutrient uptake efficiency by roots, and also in-
dicated litter quality along the climatic gradient. Higher C/N
meant a higher resistance of organic remains to decomposition
and a slower decomposition rate: thus, the Estonian sites had
slower rates for soil organic matter transformations and

Table 2 (continued)

DC C and N of
SOM fractions

Species Experimental localities

Estonia Poland

Distance

0 cm 10 cm 50 cm 0 cm 10 cm 50 cm

Spruce 13.7 ± 3.1a 12.7 ± 2.6a 9.9 ± 4.0a 13.7 ± 4.7a 7.2 ± 2.3a 6.6 ± 3.0a

CMAF Aspen 21.5 ± 6.7b 13.5 ± 3.9a 8.1 ± 2.7b 40.5 ± 9.8a 14.5 ± 3.3a 17.9 ± 3.1a

Birch 23.4 ± 7.3a 19.1 ± 4.3a 15.9 ± 2.3a 25.7 ± 3.6a 19.7 ± 1.3a 18.1 ± 1.2a

Spruce 20.1 ± 3.4b 19.4 ± 1.5b 16.4 ± 1.5b 54.5 ± 7.6a 36.8 ± 6.3a 24.9 ± 2.7a

NfLF Aspen 0.5 ± 0.3b 0.2 ± 0.1b 0.6 ± 0.4b 9.0 ± 1.7a 3.3 ± 1.1a 1.5 ± 0.7a

Birch 2.7 ± 1.2b 2.3 ± 1.0a 1.8 ± 1.1a 4.5 ± 0.1a 2.5 ± 0.1a 1.5 ± 0.5a

Spruce 0.8 ± 0.1b 0.4 ± 0.1b 0.4 ± 0.2b 6.2 ± 1.8a 3.9 ± 1.2a 2.6 ± 1.0a

NoLF Aspen 0.9 ± 0.2a 1.0 ± 0.4a 1.0 ± 0.4a 0.5 ± 0.4a 1.0 ± 0.4a 0.8 ± 0.7a

Birch 0.7 ± 0.1b 1.0 ± 0.8a 0.7 ± 0.5a 1.6 ± 0.1a 1.1 ± 0.2a 1.0 ± 0.5a

Spruce 0.9 ± 0.2a 0.9 ± 0.3a 0.7 ± 0.3a 0.7 ± 0.3a 0.4 ± 0.2a 0.4 ± 0.3a

NMAF Aspen 1.4 ± 0.3b 1.1 ± 0.2a 0.8 ± 0.4a 2.0 ± 0.6a 0.8 ± 0.0a 1.1 ± 0.2a

Birch 1.4 ± 0.2a 1.1 ± 0.2a 1.0 ± 0.1a 1.7 ± 0.6a 1.5 ± 0.4a 1.5 ± 0.3a

Spruce 1.5 ± 0.1b 1.5 ± 0.1a 1.4 ± 0.0a 2.7 ± 0.8a 1.9 ± 0.7a 1.5 ± 0.5a

C/NfLF Aspen 29.9 ± 5.3a 24.9 ± 1.8a 20.9 ± 6.9a 19.0 ± 1.7b 19.0 ± 2.0b 21.7 ± 5.0a

Birch 22.8 ± 1.6a 22.8 ± 2.7a 23.4 ± 1.6a 18.9 ± 2.8a 16.3 ± 1.5b 17.2 ± 3.2b

Spruce 28.8 ± 1.6a 25.5 ± 3.1a 26.1 ± 4.2a 21.3 ± 3.3b 21.4 ± 3.3a 20.8 ± 3.3a

C/NoLF Aspen 18.6 ± 6.0a 14.4 ± 1.1a 18.4 ± 5.9a 17.3 ± 2.5a 16.7 ± 1.6a 17.8 ± 2.4a

Birch 28.5 ± 22.2a 15.7 ± 3.9a 15.6 ± 3.9a 17.7 ± 4.0a 15.7 ± 0.9a 15.5 ± 1.1a

Spruce 15.0 ± 0.8b 14.0 ± 2.0a 15.2 ± 1.7b 20.7 ± 3.0a 16.6 ± 1.9a 20.0 ± 6.6a

C/NMAF Aspen 15.0 ± 1.3b 12.3 ± 1.6b 10.8 ± 1.6b 20.1 ± 1.8a 17.5 ± 3.9a 16.4 ± 1.0a

Birch 16.3 ± 2.1a 17.7 ± 2.1a 15.3 ± 2.3a 16.4 ± 7.0a 13.7 ± 2.8b 12.6 ± 1.6a

Spruce 13.6 ± 2.3b 12.6 ± 0.5b 11.8 ± 1.1b 20.8 ± 4.6a 20.7 ± 4.9a 16.9 ± 3.6a

(Mean ± Std. deviation); DC, decay classes; 0, 10, and 50, distance from logs; CfLF, carbon of free light fraction (g kg−1 ); CoLF, carbon
of occluded light fraction (g kg−1 ); CMAF, carbon of mineral associated fraction (g kg−1 ); NfLF, nitrogen of free light fraction (g kg−1 );
NoLF, nitrogen of occluded light fraction (g kg−1 ); NMAF, nitrogen of mineral associated fraction (g kg−1 ); C/NfLF, C/N ratio of free light
fraction; C/NoLF, C/N ratio of occluded light fraction; C/NMAF, C/N ratio of mineral associated fraction; different lowercase alphabets in
the upper index mean significant differences of parameters between soils from Estonia and Poland

Annals of Forest Science (2019) 76: 102102 Page 8 of 14



deadwood decomposition. This could explain the slower re-
lease of deadwood decomposition products in the Estonian
sites and higher accumulation of free light fractions under logs
and in their direct vicinity in the Polish forests. According to
Woodall and Liknes (2008), increases in temperature and/or
moisture are required for increases in forest production and

subsequent forest detritus accumulations. Cool moist environ-
ments provide conditions capable of generating anaerobic
conditions in downed deadwood, slowing decomposition, in-
creasing the longevity of downed deadwood, and increas-
ing the probability of burial (Moroni et al. 2015).
Climate constitutes a major controlling factor for SOC
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Fig. 3 The ratio of SOM fractions
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storage at regional to global scales; mean annual air
temperature has proven to be a suitable indicator that
could serve as indicator for SOC storage (Wiesmeier
et al. 2019).

The effect of tree species that are subject to transformations
during decomposition processes may have significant influ-
ences on the decomposition rates and decomposition

processes. The main cause for this is the differences in the
chemical composition of wood from different species (Laiho
and Prescott 2004; Prescott and Laiho 2002). In general, the
wood of coniferous species is less abundant in such macronu-
trients as N, P, K, Ca, and Mg than deciduous wood, and the
higher content of resinous substances and the different chem-
ical composition of the lignins may hinder the microbial

Fig. 4 The projection of variables
on a plane of the first and second
PCA factor (C, carbon content;
CfLF, carbon of free light fraction;
CoLF, carbon of occluded light
fraction; CMAF, carbon of mineral
associated fraction; NfLF, nitrogen
of free light fraction; NoLF,
nitrogen of occluded light
fraction, NMAF, nitrogen of
mineral associated fraction; III–V,
decay classes; 0, 10, 50, distance
from log; blue circles, soils in
Poland; blue polygons, soils in
Estonia)
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processes of wood decomposition in coniferous species
(Błońska et al. 2018; Kögel-Knabner 2002). In agreement
with this, the positive effect of the share of deciduous trees
volume on soil organic carbon stock has been observed in
mixed forests at comparable sites in Estonia (Lutter et al.
2019). Under temperate climatic conditions, SOC stocks un-
der coniferous species may be relatively high, as effect of
acidic litter accumulation (Jandl et al. 2007). Our study has
demonstrated the influence of the warmer sites in Poland on
intensified decomposition and formation of primarily free
light fraction SOM. It appears that, among the studied species,
spruce wood in the harsher climate of Estonia had the slowest
decomposition rate, which was indicated by the relatively low
accumulation of soil humus. In these terms, aspen wood ap-
pears to possess better properties and a higher susceptibility to
decomposition, which was significantly dependent on thermal
conditions. The degree of SOM accumulation as well as the
characters of humus under birch logs in our study was slightly
different between spruce and aspen logs at the experimental
sites. By comparing the amounts of carbon and nitrogen in the
SOM free light fraction, only minor differences between the
experimental locations were determined when comparing
spruce to aspen. In the case of soil under birch logs, a signif-
icantly higher accumulation of nitrogen associated with oc-
cluded light fraction (oLF) was found for the warmer Polish
climate. We believe that this stems from the release of better-
mineralized deadwood decomposition products, which are
bound with the soil mineral substance. The study of Lasota
et al. (2017) demonstrated that birch wood releases large
amounts of ammonium ions and nitrate anions at earlier

decay classes. The intense leaching of these compounds
to soil located under the log may be linked to the
higher nitrogen concentrations in the fractions of SOM
creating bonds with soil minerals.

The effect of deadwood on the content of soil organ-
ic matter is intensified for subsequent decay classes. At
III DC, the increase of the SOM content in the warmer
Polish climate was observed solely under the analyzed
logs. In more advanced DC (IV and V), the influence of
decaying wood on the SOM content was exhibited also
nearer to logs (at up to 10 cm). This is in line with the
earlier study of Błońska et al. (2017). Wambsganss
et al. (2017), who studied the accumulation of various
SOM fractions under beech logs on two types of geo-
logical substrates, studied the increase of the content of
SOM free light fraction and occluded light fraction on
siliceous substrate. In our study, in the case of logs at
advanced decay class (V DC) in Poland, we were able
to record an increase of SOM mineral associated frac-
tion under aspen and spruce logs (apart from the in-
crease of free light fraction). Similar mineral content
of associated fractions were determined in the case of
birch logs at both locations studied. At the same time,
in Poland, a higher content of C and N from the SOM
occluded light fraction was determined for III DC di-
rectly under birch logs, which can be associated with
the intense release of decomposition products from wood of
this species at higher decomposition stages, which has been
confirmed in earlier studies of the authors (Lasota et al. 2017).
Soil organic matter fractions clearly exhibit the influence of

Table 3 Summary of LMM analysis of the effect of experimental locality, species, decomposition rate (DC), and distance from deadwood on the
carbon content and carbon of different SOM fractions in soil, significant effects (p < 0.05) are shown in italics

C CfLF CoLF CMAF

F p value F p value F p value F p value

Experimental locality 127.1 0.000 90.1 0.000 3.2 0.081 7.0 0.012

Species 2.9 0.065 1.8 0.186 8.0 0.001 12.8 0.000

DC 57.3 0.000 36.2 0.000 0.1 0.927 27.1 0.000

Distance 208.4 0.000 156.4 0.000 8.6 0.000 46.1 0.000

DC:distance 39.5 0.000 29.3 0.000 0.6 0.652 13.4 0.000

Experimental locality:species 15.9 0.000 15.4 0.000 5.0 0.012 9.3 0.001

Experimental locality:DC 18.9 0.000 10.9 0.000 1.0 0.378 24.4 0.000

Experimental locality:distance 113.5 0.000 72.2 0.000 10.7 0.000 36.6 0.000

Experimental locality:DC:distance 14.2 0.000 21.6 0.000 2.8 0.030 0.4 0.832

Experimental locality:species:DC 6.8 0.000 5.4 0.002 0.8 0.525 4.1 0.007

Experimental locality:species:distance 4.6 0.002 6.5 0.000 3.7 0.009 2.5 0.049

Species:DC 1.8 0.141 1.0 0.435 2.0 0.108 10.2 0.000

Species:distance 1.1 0.348 0.4 0.832 6.0 0.000 6.8 0.000

Species:DC:distance 3.8 0.001 5.9 0.000 3.5 0.002 1.3 0.255

Experimental locality:species:DC:distance 3.2 0.004 4.7 0.000 1.6 0.145 2.9 0.008
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decomposing wood regardless of location. As decay pro-
gresses, the share of individual SOM fractions changes. The
light fraction of soil organic matter is more sensitive to dead-
wood effects than the heavy fraction. Free light fraction, since
it is easily degradable and requires only a short circulation
time, is used to indicate changes or disturbances in the amount
of litter input (Crow et al. 2007; Krueger et al. 2016). SOM
fractions analysis can be used to assess the stability and circu-
lation of SOC between deadwood and soil in different exper-
imental localities.

5 Conclusions

Our study has confirmed that deadwood of different tree spe-
cies with different decomposition rates affects soil organic
carbon sequestration in Estonia and Poland forests. A higher
sequestration of carbon in surface soil horizons as an effect of
the deadwood decomposition process has been determined in
the Polish forests. The processes of soil organic matter trans-
formations and deadwood decomposition in the Estonia for-
ests had slower rates. The positive influence of the species
studied on the SOM stabilization was also notable, but the
effect differed among the species. More-decomposed dead-
wood impacts soil organic matter stabilization more strongly
than less-decayed deadwood. This relationship was clearer in
Poland. Higher temperature and longer growth period primar-
ily influenced the increase of the concentration of free light
fraction of SOM directly under and near logs of the species
studied. The slower release of deadwood decomposition prod-
ucts was perceptible for the forests in Estonia. In the case of
logs at advanced decomposition rates in Poland, the increase
of the SOM mineral associated fraction under aspen and
spruce logs was evident.
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