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ABSTRACT. Management frequently creates system conditions that poorly mimic the conditions of a desirable self-organizing regime.
Such management is ubiquitous across complex systems of people and nature and will likely intensify as these systems face rapid change.
However, it is highly uncertain whether the costs (unintended consequences, including negative side effects) of management but also
social dynamics can eventually outweigh benefits in the long term. We introduce the term “coerced regime” to conceptualize this
management form and tie it into resilience theory. The concept encompasses proactive and reactive management to maintain desirable
and mitigate undesirable regime conditions, respectively. A coerced regime can be quantified through a measure of the amount of
management required to artificially maintain its desirable conditions. Coerced regimes comprise “ghosts” of self-sustaining desirable
system regimes but ultimately become “dead regimes walking” when these regimes collapse as soon as management is discontinued.
We demonstrate the broad application of coerced regimes using distinct complex systems of humans and nature (human subjects,
aquatic and terrestrial environments, agriculture, and global climate). We discuss commonalities and differences between these examples
to identify trade-offs between benefits and harms of management. The concept of coerced regimes can spur thinking and inform
management about the duality of what we know and can envision versus what we do not know and therefore cannot envision: a pervasive
sustainability conundrum as planet Earth swiftly moves toward a future without historical analogue.
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INTRODUCTION
That the dynamics of systems of people and nature are highly
complex and uncertain is a well-established scientific axiom (Allen
et al. 2014). This complexity and uncertainty stems partly from
the interaction of distinct processes, including adaptation,
recalibration, and self-organization (Holland 2014). Inherent in
these dynamics is the potential for complex systems to exist in
alternative, often stable regimes, each with fundamentally
different structures, functions, processes, and feedbacks (Holling
1973, Scheffer et al. 1993, Beisner et al. 2003). Alternative regimes
are ubiquitous and occur, for instance, in cells (Ferrell 2002),
human subjects (Angeler et al. 2018), and geopolitical, ecological,
social, social-ecological, climatic, and economic systems (Miller
and Williamson 1988, Biggs et al. 2018, Steffen et al. 2018).
Examples include clear-water lakes rapidly becoming turbid, the
social-ecological system organized around Atlantic cod Gadus
morhua changing to an American lobster Homarus americanus 
fishery, healthy human subjects becoming mentally ill, and the
current rapid change exhibited in our global climatic regime.  

Regime shifts are frequently undesired because the alternative
regimes, once stabilized in a new attractor domain, are often
permanently degraded and uncertain in the sense that they
provide humanity fewer and often unreliable benefits. There is
thus a fundamental need to transform degraded systems regimes
to ideally self-perpetuating regimes that guarantee the
provisioning of ecosystem goods and services, i.e., “desirable
regimes.” There is also need to maintain the adaptive capacity of
desirable regimes and avoid exceeding critical thresholds (regime
shift) that may lead to a regime that can be deleterious for human
health and security (Angeler et al. 2019). The pressing need to

harness desirable system functioning for human welfare leads to
an increased examination of alternative system regimes and their
management through the lens of resilience theory (Angeler et al.
2016). Novel concepts are emerging that add to well-established
terms used in the ecological restoration (Table 1) and resilience
literature (Angeler and Allen 2016). Coerced resilience, for
instance, is a term that has been introduced to focus on the
resilience of production ecosystems (aquaculture, forestry,
agroecosystems; Rist et al. 2014). It refers to enabling and
maintaining high levels of production of a system as a result of
external anthropogenic inputs, which in the long term may lead
to the erosion of the resilience of the system. Coercing the
resilience of systems over long periods is costly and can cause the
system to shift into a less desired alternative regime (Gunderson
2000). Similarly, when a system has undergone a regime shift, the
new, undesired regime may require constant and considerable
management to mimic the desired previous regime (Angeler et al.
2018).  

The term “coerced resilience” has been used from two
mechanistically different perspectives: improving and mimicking
desired regimes. We consider coerced resilience in a broader
context, accounting for reactive and proactive management aimed
at the deliberate creation of artificial regime conditions to
guarantee social-ecological sustainability. We characterize the
term “coerced regimes” as a management form that fails to achieve
self-organization and therefore requires constant management for
maintaining and creating desirable system regimes. We envision
that management is likely to intensify in the near future to satisfy
the needs for ecosystem goods and services of a growing human
population in a fast changing Anthropocene. There is high
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Table 1. Definitions of coercion terms that are used across different scientific fields.
 
Term Definition

Restoration The intentional activity that initiates or accelerates the recovery of an ecosystem with respect to its health,
integrity, and sustainability (SER 2004).

Rehabilitation The repair and replacement of essential structures and functions to achieve specified objectives without the
pretense of accomplishing absolute authenticity of predisturbance conditions (Cooke 1999).

Mitigation Intended to offset known impacts to an existing historic or natural resource.
Coerced resilience Resilience that is created as a result of anthropogenic inputs, such as labor, energy, and technology, rather

than supplied by the ecological system itself, whereby coercion of resilience enables the maintenance of
high levels of production (Rist et al. 2014). Coerced resilience can be considered to focus on improving the
performance of a single or few system variable(s), e.g., production output.

Coerced regimes Focuses on the creation of artificial, nonself-sustaining feedbacks through constant management to mimic
the conditions of a desirable regime (this paper). Coerced regimes can also arise from unintentional social
dynamics (see text). The concept is inclusive of proactive (maintaining desired) and reactive (mitigating
degraded regimes) management. Contrary to coerced resilience, coerced regimes focuses on mimicking of
systemic conditions (feedbacks), rather than the optimization of a few system variables. Coerced regimes
are “dead regimes walking” manifested in the collapse of coerced desired system regimes and the return of
a coerced degraded regime to the full manifestation of its undesired conditions when management is
ceased.

Forced resilience† In a psychological context, refers to a willful coping with trauma and adversity (Handy 2018).
Command-and-control management Pathological management that decreases the resilience and adaptive capacity of a system through

controlling a particular ecosystem regime indefinitely into the future (Holling and Meffe 1996). Coerced
resilience management often comprises a form of command and control management

Social coercion The practice of forcing another party to act in an involuntary manner by use of threats or force (Anderson
2017).

Poverty/rigidity traps With its focus on reactive management to mitigate highly degraded and resilient social-ecological system
regimes, this concept is subsumed within the concept of coerced regimes.

Coercivity (in material science
and electrical engineering)

A measure of the ability of a ferromagnetic material to withstand an external magnetic field without
becoming demagnetized (Wandelt 2018).

†Term used interchangeably with coerced resilience by Stockholm Resilience Center (2014).

uncertainty regarding costs (unintended consequences, including
negative side effects) of management that may outweigh benefits
in the long term. It is also uncertain how social dynamics lead to
unintended coerced regimes. This new concept therefore
motivates discussions about what we know and envision versus
what we do not know and therefore cannot envision, a conundrum
that pervasively plagues management toward sustainability. We
discuss these issues using social-ecological systems and other
complex systems (human brain) to demonstrate the broad
application of this term and examine them for commonalities and
differences.

DEFINITION
We distinguish coerced regimes from related concepts (Table 1)
and resilience terms (Angeler and Allen 2016) and define it as
follows: creating nonself-organizing system regimes that sustain
human needs and well-being through constant management (Fig.
1). Inherent in the definition of coerced regimes is that
management does not break the feedbacks that stabilize a system
regime, a notion well aligned with ecological restoration theory
(Suding et al. 2004, Suding and Gross 2006). Coerced regimes are
therefore untenable without management; they only comprise the
“ghosts” of desirable self-organizing regimes, and therefore
essentially become “dead regimes walking” that collapse once
management is discontinued.  

The concept of coerced regimes offers a broad management
perspective across a wide array of complex system types. The
terminology borrows from the social sciences, where coercion is
defined as the inverse of freedom (Twidwell et al. 2019). Coercion

Fig. 1. Illustration of coerced resilience. Shown are changes
over time (blue arrow) of a desired (green) and undesired (red)
regime. The shifting shapes of basins of attraction show that
the desired regime becomes increasingly untenable while the
undesired regime more stable over time. Increasing
management intervention (purple arrows) are needed to coerce
the system (symbolized with ball) into the ghost of a desired
regime past (gray area warping the no longer existent basin of
attraction and steep slopes leading into the undesired basin of
attraction).

entails reciprocity in the forceful persuasion among actors to
achieve goals. These goals may not only be influenced by intended
but also unintended human agency that might have indirect effects
resulting from social dynamics or power relations. We therefore
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think coercion is a useful analogy in the specific context of
management of complex systems of people and nature. First,
defining the goals of human management of social-ecological or
other types of complex systems requires the use of persuasion
because the definition of management endpoints and their
societal relevance is subjective and varies between actors in a
social-ecological system (e.g., Blythe et al. 2018). Humans need
to persuade other humans to generate shared management
objectives. Second, the use of coercion terminology provides a
mechanistic basis for discussions of the different forms of regime
management. For example, regime management can be aimed at
maintaining a system in a desired regime, which has very different
implications than the goal of mimicking the conditions of a
desirable regime. In the first instance, a social-ecological system
is already in a regime that is deemed beneficial and desirable to
the humans investing in it, and management efforts would focus
on supporting or even increasing the resilience of the key processes
and feedbacks maintaining the system in that regime. For
example, nutrient inputs into a shallow freshwater lake would be
kept low so as to not risk the possibility of a regime shift to
eutrophic conditions. In the second instance, a social-ecological
system is only being held in a particular regime by constant human
inputs that are critically necessary to maintain feedbacks, such as
the regular liming of lakes to maintain their pH. Using the term
coercion has value because it focuses on the long-term viability
of management in a nonstationary world, thereby embracing the
uncertainty surrounding the trade-offs between costs and benefits
that management and other forms of agency, e.g., social dynamics,
may entail.  

The viability and trade-offs of different management choices also
relate to operational aspects of management that are relevant
from a quantification point of view, which further underscores
the usefulness of the analogous use of coercion terminology. That
is, a coerced regime can be quantified through a measure of the
amount of management required to maintain its desired
conditions. This directly relates to the ecological resilience of a
system because the more human inputs required to maintain
ecological feedbacks and the key processes and functions
associated with a particular regime, the less resilient a system will
be (Gunderson 2000). Furthermore, managers often choose
management goals that are focused on maintaining specific
resilience, such as a certain harvest rate of a product such as a
fishery, agricultural crop, or timber, or to increase the resilience
of an ecological service such as flood control. These management
goals are designed to reduce variability (Holling and Meffe 1996)
but in practice reduce overall system resilience, by simplifying
abiotic and biotic structures.  

Management often aims to transform regimes from degraded to
less degraded, or even to desirable regimes that are self-
maintaining and self-perpetuating. When management fails to
restore, and therefore only mimics, the conditions and
functionality of a past or novel, self-organizing, desired regime it
only manages for the “ghost of a (past) desired regime.”
Management also often aims at conserving desirable system
regimes that are no longer viable and that would switch to an
alternative, frequently undesired regime if  management were
discontinued. Such conservation may not be indefinitely possible
in a rapidly changing world. A related form of management relates
to human-made artificial systems, e.g., production ecosystems

such as agriculture, that need constant management and subsidies
to maintain desirable system conditions with enhanced
production. As soon as the management of such systems is
discontinued they tend to drift toward previously existing natural
ecosystems, e.g., succession towards forest (Gill and Marks 1991).
The coerced regime features of production systems and
potentially other complex systems without a natural analogue are
also inherent in the definition of coerced resilience (Rist et al.
2014); that is, management creates an artificial regime and targets
enhanced production within it. This indicates that the concept of
coerced regimes is also inclusive of coerced resilience (Table 1).  

Coerced regimes are ubiquitous across complex systems and
range, for instance, from the use of performance-enhancing drugs
in athletes, to the mitigation of poverty traps, to sustainable cities
and political systems. We discuss in detail several transdisciplinary
examples of coerced regimes that align with our definition and
demonstrate general applicability across distinct scientific
disciplines and systems of people and nature. We present examples
that demonstrate the unrecognized prevalence of coerced regimes,
and organize them by the scale (from human individuals to the
global climate). Our examples focus on the maintenance and
mimicking of desirable conditions, but we acknowledge that
regime coercion can be undesirable, for example, in alcoholism or
drug abuse where humans self-coerce their emotional and physical
state.

EXAMPLES OF COERCED REGIMES

Diseased regimes of human subjects
Bipolar or manic-depressive disorder is an affective disorder with
pronounced mood swings that manifest once a human subject has
shifted from a healthy to the diseased regime (Angeler et al. 2018).
These mood swings comprise recurrent cycles of (hypo)mania
symptoms (increased energy levels, decreased need for sleep,
racing thoughts, pressure of speech, frequent agitation, confusion
and distraction, heightened libido, and in extreme forms
hallucinations and delusions) and severe depression episodes
(chaos, emotional emptiness, despair, self-stigma, doom,
anhedonia, guilt, monochromatic world view, and suicidal
ideology; Goodwin and Jamison 2007). The disorder comprises
a spectrum wherein (hypo)manic and depression symptoms
manifest with high variability and magnitude among patients, and
these symptoms often co-occur (mixed states; Phelps 2006). The
illness affects between 3 to 8% of the human population (Goodwin
and Jamison 2007), although this percentage may be higher
because current diagnostic problems complicate differentiating
between unipolar and bipolar depression (Bauer and Pfennig
2005).  

As is the case with other mental illnesses, bipolar disorder is
managed to mitigate symptoms and improve the patient’s
personal and interpersonal functioning. From a coerced-regimes
perspective, this management treats the diseased regime through
psychopharmacological treatment, therapy, mindfulness, and
exercise to approximate conditions of a healthy regime (Phelps
2006). That the diseased condition of the disorder is a coerced
regime is manifested in a return of full-blown symptoms of (hypo)
mania and depression once clinical treatment is discontinued
(Milkowitz and Gitlin 2015). This is because the disorder is
chronic and has no cure, which highlights that the diseased regime
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comprises a stable alternative regime from which a return to the
healthy regime is impossible. Thus, the goal of treatment of the
disorder is to manage for the “ghost of a healthy-regime past.”
Treatment of bipolar disorder also exemplifies negative side
effects that may counteract the management efficiency, for
instance, medication toxicity, medication to control side-effects
of other medicaments, weight changes, sedation, cardiovascular
problems, and other physical diseases (Correll et al. 2015,
Milkowitz and Gitlin 2015).

Restoring and mitigating degraded ecosystems
Anthropogenic acidification of surface waters has been a major
environmental problem in northern Europe and eastern North
America during the epoch of flourishing industrial activity. Acid
rain impacted aquatic ecosystems by lowering pH and increasing
aluminum concentrations beyond lethal thresholds for organisms,
leading to a loss of biodiversity and profound alteration of
community structure and ecosystem processes (Schindler 1988).
This led in many cases to a shift from a circumneutral regime to
an acidified regime (Baho et al. 2014). To counteract acidification
effects and mimic conditions of a circumneutral regime, countries
in Europe and North America implemented large-scale mitigation
programs based on application of crushed limestone (liming) to
surface waters and catchments (Henriksson and Brodin 1995,
Sandøy and Romunstad 1995).  

It is increasingly recognized that liming, rather than restoring
circumneutral regimes, only mitigates acidification effects,
thereby managing the acidified regime to approximate lake
conditions that are conducive to ecosystem service provisioning,
e.g., recreational and commercial fishing and aquaculture. As is
the case with the bipolar example, liming manages for the “ghost
of a past circumneutral lake regime.” Limed conditions ultimately
return to acidic conditions once management is discontinued
(Clair and Hindar 2005). In conservation ecology, liming has been
regarded as pathological because of its profound alteration of
biogeochemical and biological variables (Angeler et al. 2017),
which provides another example of negative side-effects of
management in coerced regimes.

Maintaining desired regimes in a sea of change
A universal threat despite the inherent geographic and
evolutionary isolation of grasslands is woody encroachment
(Briggs et al. 2005). In the Great Plains of North America, many
grassland ecosystems are threatened by encroachment of Eastern
red cedar Juniperus virginiana (Roberts et al. 2019). This species
was formerly rare because of its extreme sensitivity to fire.
However, since the influx of agrarian colonists into the U.S. Great
Plains in the 1850s, fire was largely suppressed, disrupting the
natural disturbance regime in which fire played an essential role
(DellaSala and Hanson 2015). This has facilitated the incursion
of Eastern red cedar and other woody species into the Great Plains
and is driving a biome level regime shift (Roberts et al. 2019). The
leading edge of the woody regime has been moving steadily north
over the past 50 years, and has moved from southern Kansas in
1966 to southern Nebraska in 2016 (Roberts et al. 2019). This
slow-moving (relative to human life-spans) but spatially extensive
shift from grassland to woody shrubland has serious implications
for humans and nature.  

Grasslands and grassland biota are highly endangered in North
America (Samson and Knopf 1994, Grant et. al. 2004), and in

the United States several grassland species are threatened to an
extent that they are listed under the Endangered Species Act
(ESA). Birds such as the Greater Prairie-Chicken (Tympanuchus
cupido) and Henslow’s Sparrow (Centronyx henslowii) require
management under the ESA, and the best management practice
for these species is to maintain grassland habitat. This is difficult
in a sea of cedar, where propagule pressure from the surrounding
undesired (woody) regime is constant, which makes the
establishment of trees in the grasslands highly successful (Cassey
et al. 2018). Complicating matters, many North American
grasslands are now highly fragmented such that spatially
contagious processes, including fire, are excluded, unless
purposely introduced (Fuhlendorf et al. 2018). The answer for
remaining grassland patches isolated by the spread of the woody
cedar regime is intensive management of patches through
prescribed fire and a number of actions captured under the phrase
“brush management” (e.g., Archer and Predick 2014). These
approaches have been successful in maintaining patches of
grassland, but these are increasingly isolated and vulnerable to
fragmentation effects. Cessation of intensive management would
lead to a rapid change of these remnant grassland patches to
shrublands because of the extreme propagule pressure of the
surrounding landscape. This highlights that much current
grasslands management creates a ghost regime that is no longer
viable.

Artificial, beneficial regimes: agricultural production
Many forms of agriculture, e.g., intensive-irrigated agriculture,
are novel, human-managed regimes entirely geared toward the
creation of benefits for humanity, i.e., the production of food
(Rist et al. 2014). Irrigated agriculture as a strongly coerced system
is manifested in crop production in dryland areas of the world.
For example, across Arizona, an area with low precipitation and
natural surface water availability, 485,000 ha are under irrigated
production, including an estimated 64,000 ha of cotton
Gossypium spp., an extremely water-intensive crop relative to
other crops grown in arid climates (Lustgarten and Sadasivam
2015). In the early to mid-20th century, groundwater was used
exclusively to grow larger fields of cotton in this region, servicing
a high-domestic demand during both World Wars, but as aquifers
declined and pumping costs increased, the state of Arizona
prevailed in its almost century-long battle to channel water from
the Colorado River hundreds of kilometers to irrigate agricultural
fields (including cotton) in central Arizona. Today, most cotton
farmers irrigate with a mix of groundwater, Colorado River water,
and surface water from other federal and state reclamation
projects in Arizona.  

The coerced nature of a cotton-farming regime in the deserts of
Arizona is evident in that the market price of cotton no longer
consistently supports the inputs (water pumping costs, fuel,
fertilizer, pesticides, and labor) necessary to maintain its
production. As well, the opportunity cost or willingness of others
to pay for Colorado River water currently used to support cotton
agriculture is rapidly rising because of the needs of more high-
value crops in downstream reaches of the basin and increasing
municipal demands for water from cities such as Phoenix. The U.
S. and state governments have and continue to facilitate and
incentivize cotton farming in Arizona through direct subsidies to
farmers, low- or no-interest farm loans, and subsidized water
delivery both directly and indirectly through massive
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Table 2. Comparison of coerced-resilience examples.
 
System Management Goal Spatial connectivity Disturbance regime Subsidy

Bipolar Restoration Cognitive and (inter)personal
functioning

No Artificial Chemical

Lakes Restoration Emblematic species
conservation; fisheries

Low Artificial Chemical

Agriculture Novelty Food provisioning High Artificial Physical, chemical,
technological

Grasslands Maintenance Emblematic species and
rangeland conservation

High Natural Physical

Climate Maintenance Conserving planetary Glacial-
Interglacial climate regime

High Natural, artificial Physical, technological,
social, political

infrastructure projects (Lustgarten and Sadasivam 2015).
Without massive irrigation infrastructure, subsidized costs of
moving water over hundreds of kilometers, and consistent yearly
incentives to farmers, industrial cotton farming, and the
subsequent greening of the surrounding ecosystem would likely
cease in arid central Arizona. This indicates the lack of a self-
sustaining regime in this type of coerced system, which is further
supported by the initiation of successional dynamics toward
natural ecosystem regimes, e.g., old field succession (Gill and
Marks 1991), once elements of agriculture have been eliminated.
Intensive agriculture also highlights substantial negative effects
that arise from management, e.g., the use of nutrients and
pesticides that impact the natural environment (Goudie 2018).
This example is typical of other water-intensive cropping systems
that are expanding globally and may pose significant
sustainability challenges.

Global climate regimes
Substantial modeling evidence suggests profound future
alterations in the world’s climate with dramatic consequences for
climatic system features such as temperature, polar ice-sheet
coverage, marine jet streams, and sea-level rise as a result of
human burning of fossil fuels (IPCC 2014). Changes to these
features are expected to occur abruptly and nonlinearly, key
characteristics of regime shifts. That such abrupt, substantial, and
persistent changes in climatic systems, driven by temperature
increase, are already taking place is supported by empirical
observations. Evidence includes, for example, regime shifts in
arctic marine environments (Kortsch et al. 2012) and other ocean
regions in the Northern Hemisphere (Beaugrand et al. 2015),
ground-water systems (Figura et al. 2011), and forest-fire regimes
(Westerling et al. 2006).  

Steffen et al. (2018) describe our current climate regime as a
glacial-interglacial limit cycle, with an ~100,000-year cycle, self-
organized and maintained during the past 1.2 million years. An
alternative regime, which we have perhaps already entered, is
called “Hothouse Earth,” and uncertainty regarding Earth’s
trajectory within this regime suggests varying degrees of risk for
sustaining human life should the Earth system move fully onto
this attractor. Steffen et al. (2018) argue that we need to consider
deliberately coercing the Earth system close to the threshold
between the Glacial-Interglacial regime and Hothouse Earth.
Maintaining the Earth system artificially in this Glacial-
Interglacial regime would require massive external subsidization
by humans, as such a state would not be self-organizing. A series

of measures, including decarbonization of the global economy,
enhancement of biosphere carbon sinks, behavioral changes,
technological innovations, new governance arrangements, and
transformed social values have been identified as the minimal, but
perhaps not sufficient, changes necessary to manage the Earth
system away from the Hothouse Earth attractor. The objective
would be to prevent the Earth system from moving fully into a
potentially catastrophic Hothouse Earth regime by holding it in
a coerced regime. Managing for the “ghost of the Glacial-
Interglacial climate” might buy humans time to eventually move
the Earth system back onto the Glacial-Interglacial attractor.
This example highlights the context dependence of the concept.
The desirability of human management to prevent the Earth
system from moving onto the Hothouse attractor is clearly more
desirable than the alternative.

COERCED REGIMES: COMMONALITIES AND
DIFFERENCES
Our examples, which cover a range of hierarchical organization
and complex-system types (from human subjects to the Earth’s
climate), represent applications of the concept of coerced regimes
across a wide spectrum of systems of people and nature and
scientific disciplines. All examples share the commonality of
being untenable without constant management. Inspired by
Helen Prejean’s 1993 novel Dead Man Walking, we refer to a
coerced regime as a “dead regime walking.” Despite this common
characteristic, our examples differ in several aspects (Table 2).
These aspects relate to management forms, focus and goals, the
imitation of disturbance regimes and systems dynamics, and the
systems’ connectivity with other systems.  

Our examples represent two categories of management goals and
focus: managing for maintenance, and managing for restoration.
The first category, managing for maintenance, is exemplified by
grasslands and targets the conservation of emblematic wildlife
and rangelands for grazing. Without management these
commodities would be threatened by cedar encroachment, a
process that has become the main driver of an alternative, rapidly
expanding woodland regime (Briggs et al. 2005). That is,
management for maintenance of a grassland regime is designed
to keep these systems from crossing a threshold leading to the
cedar regime. In this case, management maintains a grassland
ghost regime, which is no longer viable without human
intervention. This type of management also occurs in novel,
highly artificial systems such as irrigated agriculture that have no
natural system regime analogue. Managing for maintenance is
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also evident in the implementation of Earth stewardship measures
to maintain a safe operating space for humanity that is bound to
the current Glacial-Interglacial climate regime (Rockström et al.
2009, Carpenter et al. 2017, Steffen et al. 2018). Despite being
appealing, the effectiveness of Earth stewardship measures for
preventing the Earth system from moving from the Glacial-
Interglacial attractor onto the Hothouse Earth attractor is
uncertain given the connectedness and cross-scale complexity of
combined ecological, economic, and social systems on our planet
(Holling 2001). Given this uncertainty it is unclear how effective
management of a current but no longer viable and self-sustaining
climate regime can be. The climate example also makes clear that
management for maintaining the climate regime involves radically
different forms of human interventions (Earth stewardship
measures) compared to those that have contributed to its
deterioration (unsustainable use of fossil fuels). The climate
example highlights that hysteresis can impose limitations on the
efficacy of regime management, a fact well known in restoration
ecology (Suding and Hobbs 2009), requiring different, more
complex and likely costlier approaches to keep the dead regime
walking. The second category, managing for restoration, is
evident in the bipolar and acidification examples. Contrary to the
grassland and climate cases, these examples show that
management is designed to mitigate the impact of undesired
regimes and approximate conditions of a previous desired regime.
That is, management focuses on the ghost of a desired regime
past. Also in these cases, coerced regimes arise from our inability
to overcome hysteresis, which would be prerequisite for
reincarnating the ghost as a self-organizing regime. In other
words, we are incapable of moving the system back to its original
configuration because the original conditions permitting the
previous regime are no longer an option, either from lack of
knowledge regarding feedbacks and mechanisms regulating the
original regime, or because the basic prerequisites for a specific
system configuration, i.e., local and regional environmental
conditions, no longer exist, or both.  

It follows from our examples that coerced regimes vary in the
types, quantities, frequencies, and consequences of management
they require. Our example systems therefore are coerced in terms
of their degree and form of management. Coercion, like resilience,
is not inherently good or bad; it depends entirely on context and
human perception. In a time of increasing nonstationarity across
many kinds of human and ecological complex adaptive systems,
climate change alone demands that we make fully informed
choices about when and where we intervene in systems and what
degree of management will be likely to achieve our desired goals.
Ecological and social-ecological systems will be at increasing risk
of being dead regimes walking as the underlying environmental
conditions allowing them to operate in their current regime
change. Humankinds’ wish to manage for a desired system regime
does not mean we have the ability to do so. In particular, managing
for desired regimes that are resilient and self-reinforcing may be
beyond our means because of lack of data, lack of resources, and
a lack of control over all the variables that impact ecosystems.
When systems lack self-organization, the next best option may be
to coerce desirable conditions in a system that would otherwise
move into a different basin of attraction governed by a different
regime, though even this management goal will necessarily be
constrained by the availability of labor, time, and money. It may

be highly useful to evaluate potential system interventions from
the perspective of evaluating the type and quantity of
management required, i.e., are they ecologically and economically
sustainable; the frequency required; and the consequences
generated, such as wastes, vulnerabilities induced, and potential
knock-on effects of management, in order to explicitly
understand the trade-offs at stake. For example, intensive
agriculture versus agroecological farming systems differ in their
impacts on soil, biodiversity, the delivery of ecosystem goods and
services, pollution of aquatic systems, and their resilience to
system disruption (Gordon et al. 2008, Koohafkan et al. 2012,
Altieri et al. 2015, Garibaldi et al. 2017). It also seems likely that
more intensive management over larger spatial and temporal
scales runs the risk of generating more unintended consequences,
e.g., homogenization and variance reduction (e.g., Holling and
Meffe 1996), not initially considered when intervention began.
This highlights the need to account for trade-offs between benefits
and harm of regime management (Fig. 2), a pervasive dilemma
(e.g., Rodríguez et al. 2006). These trade-offs and systems
dynamics may be additionally influenced by the openness and
connectivity of the system (Allen et al. 2016). From our examples,
coerced grassland regimes have the fewest unintended or
externalized negative side-effects, because management is based
on fire, which comprises part of a natural disturbance regime

Fig. 2. Schematic showing scenarios of benefit-harm trade-offs
associated with coerced regime management. Managing for
coerced grassland regimes has the highest benefit and least
impact. Bipolar disorder, acidification, and intensively
subsidized agriculture show that negative effects of system
coercion can outweigh benefits. Such effects may be influenced
by system openness, which my cause spatial contagion effects of
coercive management (agriculture affecting adjacent ecosystems
versus bipolar disorder and lake acidification in which
treatment is contained within the system). Note: The examples
are largely simplified and meant for comparison and
demonstration of trade-offs in the context of coerced regimes.
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(DellaSala and Hanson 2015). In contrast, managing for the
ghosts of desired regimes past in bipolar disorder and acidified
lakes incurs more notable side-effects because the management
subsidies are alien to the system. With psychopharmacological
treatment in bipolar disorder, there is a substantial input of
chemical drugs that do not occur naturally in the organism and
that can cause, for instance, cardiovascular problems and other
physical diseases (Correll et al. 2015). In acidified lakes, the input
of lime not only causes a profound alteration in the
biogeochemical structure of a lake but also leads to changes in
algal body morphology (Drakare et al. 2012). Lakes and human
subjects are complex-system types in which treatment, i.e.,
management, and associated side-effects are contained within the
individual system. This differs from agricultural systems that are
spatially open. As a result, negative effects of agriculture can be
locally and regionally substantial and alter hydrological and
ecological environments on account of intensive irrigation and
the use of inputs, such as fertilizers and pesticides (Goudie 2018).
In the case of climate regime management, which can be based
on technological, cultural, economic, and social measures, the
trade-offs between potential harms and benefits of Earth
stewardship measures are again difficult to envision partly
because of the scales and multidimensionality at which these
measures interact with biophysical processes of the planet.

OUTLOOK
The degree of the amount of management needed to obtain
desirable regimes exemplified by our example systems, which is
inherent in the concept of coerced regimes, has fundamental
implications for the sustainable management of complex systems
of people and nature in a rapidly changing world. These
implications become evident in two distinctly different
management premises. The first premise relates to what we know
about systems and the visions we have about managing these for
the benefit of human societies, including nature and biodiversity
conservation and ecosystem service provisioning. In the grassland
example, management is geared toward conserving threatened
and endangered wildlife species by maintaining habitat in a slowly,
but fundamentally, shifting landscape. However, grassland
conservation provides a striking example that envisioning
successful species conservation based on knowledge about their
habitat use becomes fallacious. This fallacy arises because
management builds on assumptions that the dynamics of social-
ecological systems are stationary. That is, assuming that restoring
habitats at small scales will bring the species back while habitat
destruction and degradation proceed at broader scales—the myth
of the field of dreams (Hilderbrand et al. 2005)—is bound to fail
because a plethora of factors, including Allee effects,
metapopulation and metacommunity dynamics, landscape
change, habitat destruction and fragmentation, and spatial
connectivity, cause an extinction debt that leads to the loss of
species in the long run (Tilman et al. 1994). In other words,
landscapes in which small-scale habitats are embedded are not
static but shifting in response to environmental change and other
disturbances, so management policies that focus on habitat
restoration and assume all else is held constant are fundamentally
flawed. Furthermore, the rate and magnitude of climate change
amplifies both the inherent dynamism of landscapes and
nonstationarity as a result of the human-driven disturbances
listed above, which contributes to the creation of the ghosts of

alternative regimes and eventually dead regimes walking (Craig
2010, Vitousek et al. 1997, Pecl et al. 2017). From this perspective,
attempts to manage grassland regimes only “buy time” (Biggs et
al. 2009) to conserve emblematic wildlife. We will eventually falter
in our endeavor to save many species from extinctions.
Nonstationarity shatters the field of dreams and will likely curtail
management of desirable system conditions in the long term.  

The inability of humans to manage complex-system regimes ad
infinitum raises questions about the long-term costs and
consequences associated with the buying of time, specifically, the
trade-offs between benefit and harm that arise from management
and the challenge to optimize the former and minimize the latter.
This brings us to the second management premise, which is based
on nonstationary assumptions: what we do not know and
therefore cannot envision. That is, instead of managing regimes
for specific sets of commodities, transformations to alternative
self-organizing regimes with novel sets of goods and services may
become management alternatives or even priorities for future
sustainability (Hobbs et al. 2009, Allen and Holling 2010).
However, the implementation of this management premise is
difficult. First, in addition to often being very costly,
transformation is challenged by the difficulty or even
impossibility of breaking the feedbacks of system regimes
(Suding et al. 2004), to which, with exceptions (e.g., Herrmann et
al. 2016), a significant number of failed restoration projects attest
(e.g., Gulati et al. 2008, Palmer et al. 2010). This suggests that
despite exhaustive adaptive experimentation and knowledge
acquisition (Baho et al. 2017) we are unlikely to be sufficiently
knowledgeable to intentionally create particular self-sustaining
and desired novel system regimes. Given the reality of constant
and increasingly faster nonstationary change, this management
goal becomes even more unrealistic. As a result it is possible that
the best we can do is manage for desirable regimes that require
consistent management in the form of human-provided inputs to
maintain feedbacks, even though these systems will have low
resilience and unintended side-effects of management or social
dynamics. Furthermore, transformations can only be carried out
within specific bounds defined by the laws of nature. That is,
deliberate conversion of one ecosystem type (e.g., a grassland) to
another radically different one (coral reef) is practically
impossible. As a result management will be needed to obtain
coerced desirable regimes of complex systems that are otherwise
untenable, but which may be brittle because of the influence of
unintended side-effects of management or social dynamics.
Second, for many systems we have neither the knowledge nor the
vision of how a novel, future, viable, and self-organizing regime
should look, although scenario planning, based on societal and
technological factors, envisioned for instance in the current
artificial intelligence debate (Tegmark 2017), may help for this
purpose. A case in point is a future cure of human illness through
nanotechnology presently envisioned in science fiction. Despite
the appeal of this currently unrealistic scenario, and its delicate
ethical implications, we currently lack knowledge and models for
bioengineering humans into novel self-organizing regimes. For
instance, we currently lack the science that would allow
transforming mentally ill human subjects to a novel healthy
regime. Third, as a global discourse on transformation grows
steadily, the degree to which academic conceptions of the term
(including inherent limitations) translate into the action arena of
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environmental and sustainable development will vary,
highlighting complicated questions of who or what benefits from
management and who or what is marginalized (Blythe et al. 2018).
These are critically important questions to address as the need to
manage systems for desired human outcomes increases.  

In the face of these limitations, a sustainable future will, rather
than depending on purposeful successful transformations into
self-organizing, desirable regimes, likely require even further
expanding degrees of management to satisfy the increasing needs
of service provisioning for a growing human population. Several
of our examples demonstrate that management can have
substantial negative side-effects, and it is likely that increasing
degrees of management of complex systems in the future will have
detrimental long-term effects. System resilience that occurs
largely as a result of human management is more fragile because
of the lack of ecologically based, self-reinforcing feedbacks. For
example, the condition of a medicated patient or limed lake is
brittle, i.e. low resilience, which manifests in a fast return to
diseased or acidified conditions once management is ceased.
Exceeding the resilience of coerced regimes may lead to
unforeseen surprises that manifest in a form of novel system
structures that require even more intensive coercive management
for mitigating negative impacts and providing commodities.
Because managing for resilience is contingent on legal settings
(Twidwell et al. 2019), substantial policy implications and
challenges arise from such uncertainty. Events from the past, such
as agriculture that led to regime shifts in lakes and required
extensive management to mitigate cultural eutrophication
(Carpenter 2005), may provide lessons for the future. Such lessons
could form the cornerstone for envisioning and spurring thinking
about the complexity associated with management for future
sustainability, highlighting the broad utility of the concept of
coerced regimes for theory and practice.  

We conclude by highlighting that we have discussed the concept
of coerced regimes from a point of view where management is
mostly intentional. This is in line with a large body of research,
which has shown that once humans are integrated into the system
boundaries, the management becomes part of the regime
feedbacks (Tavoni et al. 2012, Lade et al. 2015, Schlüter et al.
2014, 2019). We acknowledge that unintentional social dynamics
may similarly result in coerced regimes. For example, the role of
social flows such as migration and remittances can determine
whether or not forest transitions occur (Ospina et al. 2019).
Specifically, people migrate or send money to their families not
with the intention of changing the forest, but forest changes are
unintended consequences of such social dynamics. These
examples make clear that the outcomes of intentional and
unintentional human activity can have similar outcomes on
ecosystem dynamics. Because both comprise some forms of
human agency, the concept of coerced regimes is inclusive of such
different forms. The concept therefore has the potential to spur
the development of a research agenda to address ghost regimes
in the Anthropocene: How does one identify them? How does one
classify them? Are there archetypical configurations of ghost
regimes? These questions need to revolve around our
understanding of social dynamics as part of the feedbacks of the
system. Actors actions, influences, and results (i.e., power
dynamics), unintentional social dynamics (e.g., migration,
remittances), and unintended side-effects of intentional

management on ecosystems will play an important role in
answering these questions.

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/11286
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