
1Scientific RepoRtS |         (2019) 9:20319  | https://doi.org/10.1038/s41598-019-55058-1

www.nature.com/scientificreports

Generic parameters of first-order 
kinetics accurately describe soil 
organic matter decay in bare fallow 
soils over a wide edaphic and 
climatic range
Lorenzo Menichetti1*, Göran i. Ågren1, pierre Barré2, Fernando Moyano  3 & Thomas Kätterer  1

The conventional soil organic matter (SOM) decay paradigm considers the intrinsic quality of SOM as 
the dominant decay limitation with the result that it is modelled using simple first-order decay kinetics. 
This view and modelling approach is often criticized for being too simplistic and unreliable for predictive 
purposes. It is still under debate if first-order models can correctly capture the variability in temporal 
SOM decay observed between different agroecosystems and climates. To address this question, 
we calibrated a first-order model (Q) on six long-term bare fallow field experiments across Europe. 
Following conventional SOM decay theory, we assumed that parameters directly describing SOC decay 
(rate of SOM quality change and decomposer metabolism) are thermodynamically constrained and 
therefore valid for all sites. Initial litter input quality and edaphic interactions (both local by definition) 
and microbial efficiency (possibly affected by nutrient stoichiometry) were instead considered site-
specific. Initial litter input quality explained most observed kinetics variability, and the model predicted 
a convergence toward a common kinetics over time. Site-specific variables played no detectable role. 
The decay of decades-old SOM seemed mostly influenced by OM chemistry and was well described by 
first order kinetics and a single set of general kinetics parameters.

Soil organic carbon (SOC) is the largest Earth surface C reservoir and one of the biggest hopes for climate change 
mitigation through C sequestration1. However, the estimate of how much C can be globally stored in soil is still 
lacking precision2–4. An important characteristic of SOC, which also defines the amount of C that a certain soil 
can store, is its persistence, a term we here use to refer to its mean lifetime and that is dependent on what we define 
here as SOC quality. At the macro or bulk level, the mean SOC lifetime will depend on the rate of SOC loss from 
the system. This has been historically considered to be mainly a consequence of substrate chemistry5 and generic 
kinetic parameters, but in recent years it has been proposed that such persistence is more a function of local eco-
system interactions6 and in particular of more complex metabolic interactions7.

The background question for the debate is how we should define the SOC models that are used for future 
projections of soil C stocks and whose results are used for guiding global policies, therefore with potentially large 
economic and social impacts. The decay of SOC is described in most current models with first order kinetics 
(where the rate of loss is defined by SOC stocks multiplied by a kinetic term, so losses are in absolute terms pro-
portional only to SOC stocks), with additional modifiers to represent the effects of other factors. These can be 
considered time-varying, such as climate drivers, or constant, such as texture. Functions to represent temperature 
and moisture effects on SOC decay are present in basically all models8, with the general temperature response 
being well characterized9, while more uncertainty is often associated with the moisture response10. These rate 
modifiers are generally taken to be fully independent of the amount of substrate11. While time-invariant first order 
kinetics and time-variant climatic effects have been long represented in current SOC models, the importance of 
simulating metabolic interactions is still under active debate12,13. In recent years, several authors in the scientific 
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community have strongly promoted the inclusion of higher order kinetics7,14, where the rate of SOC loss is a 
function of SOC multiplied by a variable kinetic term, itself a function of SOC, of microbial biomass, or of other 
factors. This comes from the perceived need to represent the interactions between microbial biomass and nutrient 
pools to capture SOC dynamics realistically. The explicit representation of microbial metabolism in SOC models 
could pay back in terms of prediction accuracy7. Still, it also implies costs in terms of model development and the 
need to estimate additional (and difficult to measure) parameters15,16. There are as well costs in terms of mathe-
matical tractability, in particular the possibility of finding analytical solutions17. On the other hand, conventional 
first-order models can still represent a local (although constant over time) variation of metabolic parameters by 
varying the decay rates as a function of other factors (e.g. texture or nutrients) or with a discrete classification of 
model parameters related to ecosystem or soil type. This brings us to the key question of this work: how far can we 
push first-order SOC models in order to describe the variability of C dynamics in agroecosystems? Can first-order 
kinetics be enough to describe SOC persistence even over a wide geographical range?

To answer these questions we need to rely on long-term field trials, controlled outdoor experiments run for 
multiple decades. This adds several uncontrolled variables to account for compared to short-term laboratory set-
ups, one being the variable input of C over the experimental duration. Such inputs constantly modify SOC quality 
and can cause nonlinear effects on SOC kinetics, in particular under significant priming18, which if present would 
be more problematic to represent for a first-order model.

To study the decay of SOC in the field without interference from fresh C input we can use long-term bare fal-
low (LTBF) experiments. Such multi-decadal experiments comprise soils that are weeded regularly to keep them 
free from vegetation, thus attaining long term C input values very close to zero. These setups are in general quite 
rare, but six sites exist in five European countries (Denmark, France, Russia, United Kingdom and Sweden)19 
(Table 1). These experiments encompass a relatively broad range of soils, land use history and climate conditions 
and are therefore the ideal test ground for answering our questions. Some of these sites have been utilized in pre-
vious model development, but these efforts have been restricted to one single site at a time20,21. In this study we 
utilized the Q model5 (a first-order kinetics SOC model) to describe the evolution of SOC quantity and quality 
observed in all the LTBFs. The Q model defines quality of SOC by assuming that each atom of C has a quality 
value proportional to the time needed for the microbes to decompose it, and simulates the evolution of the aver-
age SOC quality q over time by a dispersion function = ′D q q( , )22. Compared with first-order compartmental 

Country

Askov 1 Askov 2 Grignon Kursk Rothamsted Ultuna Versailles

Denmark Denmark France Russia United Kingdom Sweden France

Longitude 55°28 N 55°28 N 48°51 N 51°73 N 51°82 N 59°49 N 48°48 N

Latitude 9°07E 9°07E 1°55E 36°19E 0°35E 17°38E 2°08E

Mean annual 
Temperature 
(°C)

7.8 7.8 10.7 5.4 9.5 5.5 10.7

Annual 
precipitation 
(mm)

862 862 649 574 712 533 628

Plot size 
(m.m-1) 11.7 × 9.4 11.7 × 9.4 3.2 × 3.2 10 × 10 7 × 12.5 2 × 2 2 × 2.5

Starting date 1956 1956 1959 1965 1959 1956 1928

Last sampling 
date 1985 1985 2007 2001 2008 2007 2008

Soil type 
(FAO) Orthic Luvisol Orthic Luvisol Luvisol Haplic Chernozem Chromic Luvisol Eutric Cambisol Luvisol

Sampling soil 
depth (cm) 20 20 25 25 23 20 25

N of replicates 4 4 6 1 4 4 6

Clay (%) 7 7 30 30 25 36 17

Silt (%) 11 11 54 65 62 41 57

Sand (%) 82 82 16 5 13 23 26

pH 5.5–6.5 5.5–6.5 8–8.3 6.5 6.3 NA 6.4

Start bulk 
density (kg.
dm-3)

1.50 1.50 1.20 1.13 0.94 1.44 1.30

Final bulk 
density (kg.
dm-3)

1.50 1.50 1.21 1.13 1.43 1.43 1.44

Initial C stock 
(Mg C ha-1) 52.1 ± 5.9 47.7 ± 1.5 41.6 ± 2.7 100.29 ± N.A68. 71.7 ± 2.0 42.5 ± 2.4 65.5 ± 4.3

Final stock 
(Mg C ha-1) 36.4 ± 2.5 33.0 ± 2.5 24.5 ± 1.5 79.38 ± N.A68. 28.6 ± 3.1 26.9 ± 0.6 22.7 ± 3.3

Initial C/N 
ratio 10.2737 10.2737 8.4437 13.545† N.A. 9.3537 10.1537

Table 1. The sites considered. Unless specified otherwise, data are from19. †Data from a site close to the LTBF.
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SOC models, where the proportion of C in different compartments defines SOC quality, Q assumes SOC quality 
to be continuous or comprised of an indefinite number of pools.

First-order decomposition parameters in the model were assumed general and valid at all the sites. These are 
(following the naming convention of the original paper by Bosatta and Ågren22) the term describing the shift in 
quality, η11 (that simplifies the quality dispersion function), and the term defining the decomposer growth rate, 
μ0.

Initial conditions (initial average litter input quality qo, which conceptually corresponds to the initialization of 
pools in a compartmental model) and edaphic kinetic modifiers (β, an exponential shape parameter that refers to 
how rapidly the decomposer growth rate changes with quality, which can be influenced by soil texture) were 
instead assumed to be variable between locations. Initial average litter quality qo refers in Q to the quality of the 
inputs before the start of each LTBF experiment, and assuming steady state conditions then, it is proportional to 
initial SOM quality in the field experiments. In order to assess if also metabolic processes are needed to explain 
local variability, we also calibrated the efficiency of the soil decomposers (e0) as a site-specific local parameter, 
considered here independent from SOC variation. We calibrated the model within a Monte Carlo Markov chain 
(with a Metropolis-Hastings sampler) and a set of prior distributions for the parameters taken mainly from the 
literature, and we express therefore posterior parameter values as probability distributions (derived from the prior 
distributions and the data).

With this setup, we could test if a first-order kinetics SOC model is able to represent the decadal decay of SOC 
over a wide range of initial conditions, soils and climates, and identify which parameters (representing different 
processes) are most relevant for describing local variability of SOC decay kinetics.

Results and Discussion
Model parameterization results. The meaning of and calibration approach for each parameter already 
introduced above are summarized in Table 2. The climatic scaling of μ0, introduced to consider climatic differ-
ences between the sites, was not present in the original model (described in detail in the materials and methods 
section), and this explains why posteriors for the general kinetics parameters η11 and u0 differed from previous 
model formulations. These were however both well-constrained (Fig. 1). The distribution of q0 values (Fig. 2a) 
represents SOM quality, which at equilibrium (at the start of the experiment) is correlated only to input quality 
and quantity. An initial SOM quality distribution skewed toward high qualities, due to high inputs, would there-
fore be expressed by the model calibration by variations in the q0 parameter. Former managed (Rothamsted) and 
unmanaged (Versailles) grassland sites presented the highest average initial SOM quality (qo) (Fig. 3), while 

Parameter Calibration Meaning

u0 Generic Decomposer metabolic rate

η11 Generic Rate of decrease in quality

q0 Local Initial litter quality

e0 Local Decomposer efficiency

β0 Local* Edaphic interactions

Table 2. Parameters representing autonomous processes in the model, their respective calibration approach 
and their meaning. *The term β in the model is calculated according to Eq. 6 combining the calibrated β0 with a 
term calculated for each site according to local texture.

Figure 1. The generic parameters u0 and η11 (grey dashed area represent the priors). N indicates the number 
of the subsample utilized to calculate the density (a random sample of the MCMC), while the bandwidth is 
a parameter that roughly describes the granularity of the kernel density smoothing and is optimized by the 
algorithm used for the estimate (R function “density”62) with default values.
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Grignon, also a former unmanaged grassland, and the two agricultural sites (Ultuna and Askov) presented similar 
qo. Rothamsted presented significantly higher qo compared to all other sites, probably as a result of the high 
organic matter inputs deriving from being a former managed grassland23. The lowest qo was found in the Kursk 
site, a former grassland managed with a fire suppression regime24, possibly reflecting the high content of pyro-
genic C at this site24,25 and setting this site apart as a unique or special case. Setting Kursk aside, we can group 
Ultuna, Askov and Grignon as sites with a relatively low initial SOM quality. For the two former sites, this is in line 
with them being established on former agricultural lands. These three sites presented in a previous study a similar, 

Figure 2. The local model parameters q0, e0, and β0 (grey dashed area represents the priors). N indicates 
the number of the subsample utilized to calculate the density (a random sample of the MCMC), while the 
bandwidth is a parameter that roughly describes the granularity of the kernel density smoothing and is 
optimized by the algorithm used for the estimate (R function “density”62) with default values. The boxplots 
(panels b,d,f) report the median (black line), upper and lower quartiles (end of the boxes), minimum and 
maximum (dashed lines) and outliers (circles) of the same parameter sets population represented by the 
probability distributions (panels a,c,e).
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and relatively low, hydrogen index26, proportional to hydrogen to C ratio and linked with compounds generally 
characterized by lower microbial availability27. In general qo thus seems to be mostly related to the sites’ history.

The other two local terms, microbial efficiency e0 (Fig. 2b) and the edaphic term β0 (Fig. 2c) did not really 
present any significant difference across all the sites. This result is surprising considering that the soils considered 
include even the rather peculiar Kursk site for soil type and processes (Chernozem) and environment (former 
steppe).

Mechanisms of SOC persistence: ecologically variable or generically valid?. SOC persistence ini-
tially depends strongly on local SOM quality but later converges to a generic constant. For the local calibrations, 
the model was most sensitive to q0 and β, while other parameters did not seem to have much impact on local 
model fits (Appendix 1). Not surprisingly, the model performed better (as measured by the average of the RMSE 
of each parameter set of the whole Markov chain) when applying a local rather than a general parameterization. 
This was true in all cases when using the mode of the RMSE distribution (Appendix 2a), and in all cases except 
Askov, using the mean of the RMSE distribution (Appendix 2b). The latter seems to be caused by an increase in 
parameter uncertainty, which in the case of Askov becomes crucial due to the relatively short duration of this 
experiment. With almost no inputs interfering with the SOM quality, initial conditions become crucial and local 
parameters, in particular q0, determine the first phase of decomposition dynamics.

Views on SOC persistence have been recurrently challenged in the past28, and criticism of the idea of chemical 
recalcitrance being the main decomposition driving factor is not new29. In more recent years, the presence of 
inherently “recalcitrant“, humified substances has been heavily questioned in favor of more complex protection 
mechanism involving microbial ecology6,30, among other factors. However, our results suggest that one of the 
main drivers of SOC kinetics over decadal time scales is still, at the epiphenomenon scale, organic matter chem-
istry31. Even if secondary stabilization processes are not necessarily dependent on substrate chemistry itself32, 
still the decomposition of C that forms the more labile SOC pools can be described based on its chemical com-
position33. In our case, this is determined by the land use history of each site (in particular the most recent years 
before the start of the experiment). The younger SOC, decomposing during the first decade after the start of the 
experiments (corresponding to the fast pool in discrete compartmental models), is affected the most by local site 
management, plant community and climate.

The differences reported by the model calibration in the posteriors for qo (Fig. 3) clearly relate to the history of 
the sites. However, these differences tend to dissipate over time. After 1–2 decades the initial differences in SOM 
quality tend to converge to a common value at all sites (Appendix 3). Our model simulates these dynamics using 
the same value for η11 and u0 parameters in all sites (Fig. 4). So while the quality of initial litter inputs has an 
important role in explaining the initial observed variation between the sites, over the long term, the processes 
governing SOC decay and its temporal variation in quality were well simulated with general parameter values.

Wickings et al.34 identified three possible hypotheses to describe the processes behind SOM decomposition: 
(i) the chemical convergence hypothesis states that organic matter chemistry converges because of molecules cycled 
inside the microbial biomass, (ii) the substrate chemistry hypothesis states that organic matter chemistry evolves 
because of the selective degradation of different compounds, and (iii) the decomposer control hypothesis is in fact 
a modification of hypothesis i, and states that differences in microbial communities could eventually cause diver-
gence in SOM chemistry. Barré et al.31 found that plant-derived lignin compounds decreased over time at LTBF 
sites (lignin compounds having been fully decomposed after five decades at Versailles, Ultuna and Rothamsted) 
with a relative enrichment in microbial derived compounds, as well as enrichment in plant-derived alkanes. Their 
study experimentally demonstrated the shift in SOM quality over time, which was found to be partially due to an 
enrichment in microbial compounds (driving chemical convergence) but also to selective preservation of some 

Figure 3. The initial (assuming equilibrium) SOC quality (q0) at each site according to Eq. 3
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original plant-derived compound even after several decades, demonstrating that degradation is a combination of 
hypotheses i and ii. Results confirming hypothesis i have been recently reported also by Kallenbach et al.35. The 
convergence in chemical composition of SOC has been ascribed to litter material being processed through micro-
bial recycling36 Both hypotheses i and ii and relative experimental results seems to be well represented in the Q 
model, which simulated the quality convergence (Appendix 3). On the other hand, the model could also represent 
the persistence of a fraction of the original material (Fig. 5) with the exception of Rothamsted (where the model 
predicted a higher loss in plant originated compounds than what has been measured). Some discrepancies are to 
be expected since, compared to what was measured by Barré et al.31, our definition of quality is based on observed 
kinetics rather than observed chemistry. The increase in plant-derived alkanes and decrease in plant-derived 
lignin compounds is represented in the model as a decrease in the quality of the original plant material, but some 
cases differ from a kinetic determination of quality. Older SOC is considered also to be less energy dense than 
younger SOC26 and to present higher activation energy37. The SOM quality convergence predicted by the model 
(Table 3) is in agreement with this theory since it implies also a convergence of SOC towards higher activation 
energy38, and therefore a convergence of the SOC temperature sensitivity. Our study suggests that, over long time 
scales, dynamics of SOM decay (considering only the decay of a given starting material) converge toward the 
same rate of decomposition, which can be described by first-order kinetics and that could represent a consistent 
unifying principle in soil ecology as envisaged by Fierer et al.39. The mode of the RMSE (over the whole MC) of 
the calibrated model was approximately 0.5 t ha−1 for all sites, in all cases well below 2.5% of the final C stock 
values. The persistence of older, more stable, SOC was represented well by general first-order kinetics.

The dependence of SOC persistence on microbial efficiency is much less important than its dependence on SOM qual-
ity. The soil microbial community is ultimately the main driver of SOC decomposition40, and, although usu-
ally considered functionally redundant and proportional to SOC20, its efficiency can vary over a wide range41,42. 
Microbial efficiency expresses the amount of C routed to assimilatory pathways and to microbial cells41 and 
can therefore affect the speed of convergence of SOC chemistry and stabilization. Efficiency also influences the 
amount of C retained in the soil at steady state.

Figure 4. The evolution of SOC in the sites (black empty rombs) and the predictions of the model (colored lines 
and areas). The continuous red line represents the projection from the best parameter set in terms of RMSE, 
while the colored areas represent the parameter sets within the 95% quantiles of the RMSE distribution.

https://doi.org/10.1038/s41598-019-55058-1


7Scientific RepoRtS |         (2019) 9:20319  | https://doi.org/10.1038/s41598-019-55058-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Our model calibration suggests that eventual minor differences in microbial efficiency between the LTBFs, 
related to different community structure or metabolic states of the microbial biomass, were not detectable 
(Fig. 2c,d).The calibrated values were not different between different sites and were well within the range of var-
iation reported for SOC42,43.

Chernozem soils tend to be rich in SOC, which is reflected in Kursk having by far the highest SOC stocks 
among the LTBF sites. While the C:N ratios of Grignon, Rothamsted, Ultuna, Askov and Versailles are 8.4437, 
8.7544, 9.35, 10.27 and 10.1537, respectively, the value for Kursk of 13.545 was clearly higher. The current estab-
lished theory about soil microbial efficiency relates a decreased efficiency with higher C:N ratio for stoichiometric 
reasons41 and would therefore suggest some difference in efficiency particularly in this site, but this was not the 
case in our model calibration. As revealed also by the very low sensitivity of our model to microbial efficiency 
compared to q0 and β, the efficiency term did not seem to be needed to explain the observed variation in the LTBF 
sites.

In general, non-constant metabolic parameters may be required to explain some of the local variability, attrib-
utable to hypothesis iii34. Still from this study results that the variability that remains unexplained by general 
first-order kinetics is small. Thus, conventional SOC decay models seem in general to be fully capable to describe 
the dynamics of old and stable SOC. We believe that this conclusion would apply also to any first-order compart-
mental SOC model, which would express the variability described by q0 with the initialization of the proportion 
between the pools and the variability described by β with their edaphic functions. The actual efforts to introduce 
second-order kinetics15 in SOC models might be unnecessary when the requirement is to capture longer-term 
SOC kinetics.

Recalcitrance, persistence and “inert” SOM. As expected from its structure, even over very long peri-
ods of time (>1000 years), the model does not predict a “stable” or “recalcitrant” pool as sometimes concep-
tualized in the literature19,46,47, but rather a continuous decrease of the entire SOC pool. Still, such a decrease 
slows down with time (Table 3). The further in time we push the assumption of a “stable” SOM the bigger the 
error we commit, and already after 1000 years the predicted C stocks would already be much smaller (except for 
Kursk) than the assumed “inert” pool. SOC stocks would even approach 3–5% of initial value in a few millennia 

Figure 5. The amount plant material remaining measured (blacks solid rombs) and simulated by the model 
and described by Eq. 5 (colored lines and areas). The continuous red line represents the projection from the best 
parameter set in terms of RMSE, while the colored areas represent the parameter sets within the 95% quantiles 
of the RMSE distribution. No data were measured for Kursk and Grignon.

Askov 1 Askov 2 Grignon Kursk Rothamsted Ultuna Versailles

300 years 17.1 (12.1–21.6) 15.7 (11.1–19.8) 16.6 (10.3–20.6) 58.5 (28.7–71.1) 16.6 (14–19.8) 14.9 (12–18.2) 14.1 (12–16.7)

1000 years 12 (6.9–17.2) 11 (6.4–15.7) 11.8 (9.7–14.1) 66.2 (57.8–72.4) 12.2 (10.9–13.5) 11.2 (8.4–13.7) 9.3 (8.3–10.1)

3000 years 7.7 (4.7–12.6) 7 (4.3–11.5) 9.4 (6.3–13.1) 45.8 (34.8–60.8) 13.5 (11.6–15.2) 8.4 (6.1–11.6) 10.8 (9.6–12.4)

Table 3. model predictions of SOC stocks (in t ha−1), parenthesis contains minimum and maximum of the 95% 
C.I.
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(Table 3). Values after three centuries would be already lower, in most cases, than what was formerly predicted as 
stable pool based on a single exponential function19. Considering a model like RothC, that assumes approximately 
5% of the total SOC as inert, we can see how already after 1–3 millennia this assumption leads to a different esti-
mation of C stocks.

conclusions
Not assuming an inert pool, as done in some models, is crucial for predictions on scales above centuries when the 
system is losing C. We found that most of the observed differences between the sites are concentrated in the initial 
decomposition phase, and can be explained with differences in the initial quality of SOM. Over long time scales, 
the model predicts that the dynamic of SOC will converge at all sites toward the same rate of change, indicating 
that SOC persistence could follow mechanisms that are common for all sites. Together with recent advances in 
understanding the chemical composition of SOM and its modifications during the LTBFs experiments, from our 
results we can deduce that:

 a) The chemical composition of SOC in the beginning of the experiment appears to be what locally distin-
guishes initial SOC kinetics. We cannot exclude that together with soil edaphic parameters, soil microbial 
efficiency (influenced by nutrient stoichiometry) might still play a role in defining SOC kinetics, but this 
role is marginal in comparison to initial SOC quality and was not detectable in our study.

 b) Over long time scales and without the influence of new organic matter input, initial quality effects dissipate 
and the variables describing SOC persistence and kinetics converge. Old SOM has properties that are simi-
lar across different environments and soils and that can be described with unified principles.

 c) The kinetics of SOM decay under conditions of no C inputs seems, on a scale of decades, not influenced by 
factors other than SOM quality

In general, at least for older C decaying in absence of external inputs, resorting to second order kinetics does 
not seem necessary at these scales for predicting SOM with high accuracy.

Methods
Data used for calibration. The LTBF network is presently composed of six experiments at five sites 
(Table 1), namely Askov (Denmark, two experiments), Grignon (France), Kursk (Russia), Rothamsted (United 
Kingdom), Ultuna (Sweden) and Versailles (France), all characterized by long experimental duration ( > 30 years) 
(Table 1). All sites have been kept free from vegetation and other C inputs (P. Barré et al.19 and reference therein). 
Before the start of each experiment the sites had different land uses. The Kursk site, initiated in 1965, is the most 
unique since it was a steppe (although it was then cultivated for approximately two centuries before the start of 
the experiment), and it developed as particularly rich in SOM as all Chernozems. These are soils from prairie 
continental regions, with a mollic horizon on top, where organic matter accumulates because of climatic factors 
(reduced temperature and waterlogging during winter and dry periods in the summer when temperature would 
otherwise allow for decomposition) and in general the particular vegetation. Organic matter gets then stabilized 
by chemico-physical interactions mediated by soil fauna and high Ca content48, resulting in a high SOC con-
tent with some resistance to decomposition (at least compared to organic soils such as peat). Sampling depth is 
25 cm. The Askov site, a sandy Luvisol, was a mixed landscape, with heathland and shrublands with patches of 
grassland. Sampling depth is 20 cm. Ultuna, initiated in 1956 on a Cambisol, was in agricultural use for centuries 
before the start of the experiment. Sampling depth is 20 cm. The sites of Grignon, initiated in 1959, and Versailles, 
initiated in 1928, were both unmanaged grassland. Sampling depth is 25 cm for both, and both sites are on a 
Luvisol. The site at Rothamsted, initiated in 1959 also on a Luvisol, was a managed grassland. Sampling depth is 
23 cm. For more details about the sites, refer to Barré et al.19. C stocks were calculated on an equivalent soil mass 
basis according to Barré et al.19, so the variation in the bulk density (and consequent variation of the initial top-
soil depth) observed during the duration of the experiments is considered in the C stocks33. Weather data were 
derived from https://www.ncdc.noaa.gov/cdo-web/.

The Q model and the concept of SOM quality. The Q model5 is a first-order organic matter model 
based on the continuous quality theory38,49,50. In this study the term quality is assumed inversely proportional to 
persistence, and it is represented by the model with a continuous distribution rather than with a set of discrete 
pools as in most other SOC models20,21,51. This continuous distribution is modified to represent the evolution of 
the substrate over time towards a less decomposable average composition. All systems were assumed to be at 
steady state before the start of the experiment, and since they have no inputs we could use a simplified version of 
the core model equation (as presented by Hyvönen, Ågren and Bosatta52). This function describes the decay of 
SOC depending on how the average SOC quality (q) changes relative to the quality of the input (q0), when input 
is stopped:

=











η β






− 



−

C C
q
q (1)

t ss
t

e
e

0

(1 )0

11 0

where Ct refers to amount of SOC at time t, while Css refers to amount of SOC at steady state (in our case assumed 
at the beginning of the experiments). For the meaning of the parameters please refer to Table 2. The term ( )q

q
t

0
 

expresses the average quality of the SOM at time t (qt) relatively to the initial litter quality according to:
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βη
=

+ β β

q
q

u r q t(1 ) (2)
t

e

0

11 0 0

1

For the meaning of the parameters please refer to Table 2. Compared to previous formulations52 the term fc 
(carbon concentration in the decomposers biomass) has been embedded in u0, while the term re was added for 
climate normalization (explained in detail below).

The initial litter quality q0 determines the quality of SOM at equilibrium (q )0 , condition assumed before the 
start of each experiment, according to:

η β

η β
=

− −

− − −
⋅q

e e
e e

q
1

1 ( 1) (3)0
0 11 0

0 11 0
0

From which is clear how the average SOM quality and the quality of the organic input (litter) are linearly pro-
portional. In field conditions and even with the same input quality, a site with higher inputs would end up having 
slightly higher average SOM quality, because it takes some time for the added material to be processed. Initial 
litter input quality q0 is proportional to the average initial SOM quality qo (Eq. 3), although such proportionality 
is scaled also by other local parameters (β and e0).

A recent study by Barré et al.31 offered more specific information on the chemistry of SOM in the time series of 
the LTBF sites, in particular about the fraction of plant-derived materials remaining over time. We assumed that 
this plant material (Cp) corresponds to the material of quality q0 in the model, and this can be calculated during 
the SOM accumulation phase before the start of the experiment and so in the presence of input I:

= −
βdC

dt
I

u q
e

C
(4)

p

o
p

0 0

Which for steady state can be written as:

= βC e
u q

I
(5)

p
0

0 0
ss

In case of a bare fallow, which has no inputs, the plant fraction remaining as a function of time is calculated 
in the model as:

=
−

βC C e (6)p pss

e

u q
t

t

0

0 0

Equation 5 was used in the calibration to relate the measured plant fraction remaining with Eq. 1 on the meas-
ured SOC stocks. The two equations were calibrated simultaneously.

Known independent variables: moisture, temperature, clay effects. All weather effects on SOC 
decay were calculated based on annual averages of daily measurements. The temperature effects on SOC kinet-
ics are based on Lloyd & Taylor (1994, eq. 8) until a temperature of 35.14 °C. Activation energy for driving the 
temperature function was taken from the average values measured for the bare fallow sites (Lefevre et al.37) and 
was set to 59.46 kJ mol−1, so not far from the original value of 53 kJ mol−19. Although we know that the activation 
energy had some minor variation over the years of the experiment37 we assumed it constant in order to test the 
capability of a first order kinetics model to represent the observed data. Using a variable activation energy would 
have influenced the test by providing a variation of the kinetics not considered by the model. After rescaling, the 
temperature function generates a temperature reduction function (retemp, Appendix 4 and 5) between 0 and 1. 
We calculated the soil water balance based on Andrén et al. (Eq. 1)53 with updated pedotransfer functions54. The 
potential evapotranspiration (PET) was calculated based on the Penman-Monteith function55 with aerodynamic 
resistance from Liu et al.56, plus a scaling term (0.9) from data from the Rothamsted bare fallow57. Actual ET was 
calculated according to Andrén et al.53. The soil water saturation fraction was used to drive the moisture function 
developed by Moyano et al.58. This function gives a moisture reduction value between 0 and 1 (rmoist, Appendix 4 
nd 5). The interaction between temperature and moisture was considered multiplicative (re = rmoist × rtemp). To 
make possible a comparison between sites situated in different climatic zones, we considered the relative climate 
driven change in each site and filtered climate effect out, the term re was normalized using as reference the average 
re over all the sites (Appendix 2). We assumed that climate would affect SOC decomposition by modifying the 
metabolism of the decomposer community, so we used re to rescale the decomposer metabolic parameter u0 on 
an average climate for all the sites. For future predictions we used the average normalized reclim for each site21.

We represented clay effect according to Bosatta & Ågren59, as a modifier of β:

β β χ= + . ⋅0 01 (7)0

where β0 is a calibrated term and χ is the measured relative concentration of clay (%) in the soil.

Model calibration. The model was calibrated within a Bayesian probability framework by running 4 inde-
pendent Monte Carlo Markov chains (MCMC) of 300.000 elements within the space of model priors. This means 
that for each of the elements of the chain a value for each parameter was chosen according to their prior proba-
bility distribution by a probabilistic sampler, and the model run with such parameter values. The sampler works, 
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according to the law of large numbers, by comparing the likelihood of each parameter combinations (roughly 
proportional to the RMSE) with a randomly generated likelihood. The principle is that whenever the likelihood 
of the parameter set is better than random then that set is kept and the chain (where, we remind, one element is 
one full parameter set) is updated, otherwise it is refused and the chain keeps the previous value. This allows us to 
calculate statistics on the whole MCMC, deriving probability distributions and uncertainties according to prior 
knowledge and data. Convergence and autocorrelation of the chains were checked visually for the most relevant 
parameters (Appendix 6–8). We also run a Gelman-Rubin diagnostic test (Appendix 9) measuring the conver-
gence of the four independent chains. Values < 1.1 means conventionally good mixing although the metric is just 
a rough estimate60 and varies a lot depending on the correlation between parameters (more correlated param-
eters, or in other words an overparameterized model, mean a more difficult space to explore and a consequent 
lower Gelman-Rubin diagnostic value). Data on the proportion of plant C in total SOC31 are unpublished data 
shared by one co-author. C stocks were calculated on an equivalent soil mass basis according to Barré et al.19. The 
SOC data, originally irregular time series derived from Barré et al.19, were homogenized to regular time series by 
linearly interpolating the data to annual resolution. The SOC model was calibrated with a Metropolis-Hastings 
sampler, written in JAGS61. Errors were expressed as Gaussian functions with an error parameter corresponding 
to the average standard deviation of each time series for each site. We calibrated by running four separate chains, 
each of 100 000 iterations and with 10 000 iterations excluded as burn-in time. All analyses have been performed 
with R62.

Potentially unknown independent variables: choice of local parameters. We first cali-
brated the model with the same parameter values for all sites, using the 100 000 iterations to perform a 
Hornberger-Spear-Young (HSY) sensitivity analysis63. We defined two bins of behavioral and non-behavioral 
parameter sets with a threshold (specific to each site) corresponding to the 5% quantile of the RMSE of all 
the parameter sets in the Markov chain. All parameters sets with an RMSE below this threshold were con-
sidered behavioral. We then summarized the probability distribution distance between them with the 
Kolmogorov-Smirnov (KS) distance for each site, which gives a rough estimation of the sensitivity of the model 
to each parameter in each site (Appendix 1). On average among all sites, the highest sensitivity by far was found 
for q0, (average KS distance of 0.180). The second ranking parameter was β (average KS distance of 0.165), while 
the model was much less sensitive to any of the other parameters (with an average KS distance of 0.051 for e0, 
0.064 for u0 and η11,), We therefore decided to calibrate q0 locally (based also on measured data26,31), and to add 
to β (calculated according to Eq. 6) a local term β0. Since recent studies are pointing out that microbial efficiency 
might be another important variable to consider41, we decided to include e0 in the local calibration. The microbial 
metabolic parameter u0 was considered to be generic based on the idea that, while efficiency of microbes is influ-
enced by stoichiometric nutrient constraints13, the dynamics of microbial communities in soil is a direct conse-
quence of metabolism which follows thermodynamic laws64,65. Kinetic parameters in compartmental models are 
usually assumed as generic52 as in most SOC models20,21. SOC decay is also dependent on microbial metabolism 
and we expect it to follow universally valid thermodynamic laws9,66. Some small local variations in the SOC decay 
kinetics could eventually be caused by priming, but the priming effect in a bare fallow is supposed to be negligible 
because of the lack of inputs. We therefore assumed η11 to be a generic parameter. We then run a second calibra-
tion with the parameter calibration strategy summarized in Table 2.

Model priors. We took priors for the model parameters whenever possible from previous studies. We selected 
relatively undefined and wide prior probability distributions for the generic parameters, u0 and η11, since these 
two parameters are the most difficult to derive from measurements and are therefore uncertain. Both u0 and η11 
relate to kinetic terms of SOC decay, are latent variables, and to some extent interact. They have usually been set as 
fixed in previous studies (e.g. Hyvönen et al., 199852). Because of such uncertainty, for η11 and u0 we used uniform 
priors within a range of ±100% of the literature value (0.36 for η11

52 and 0.5 × 0.98 for u0, which are the literature 
values for fc and u0, respectively52.

For the local parameter β0, which has been treated more specifically in the literature59, we used a normal dis-
tribution with mean 0.7 and coefficient of variation of 10% (but truncated within a range of ±33% of the literature 
value). For the other two local parameters, q0 (litter input quality distribution) and e0 (efficiency of decomposers), 
we also used Gaussian priors with the same coefficient of variations of 10%. For q0, the distribution was centered 
at 1.08, truncated prudentially between 0.5 and 1.5, which is a bit wider than previously reported in the litera-
ture49,67. For e0 the distribution was centered at 0.3 and was truncated between 0 and 0.6 according to Sinsabaugh 
et al.41. The average microbial efficiency, e0 in the Q model but commonly referred to as carbon use efficiency 
(CUE), is a crucial parameter defining how much of the C is respired and how much is instead recycled and incor-
porated into SOM. It can therefore be roughly considered proportional to the humification ratio”33, although on 
a different scale, and it strongly influences SOC kinetics. The model we used, working in annual steps, neglects 
variations of efficiency (such as seasonal fluctuations, Tucker et al. 2013), so that our analysis applies a single effi-
ciency value to each site representing the average over the whole experimental period.

Data availability
All data from the LTBF network can be requested to the data holders (mentioned in Barré et al.; 2010, and in the 
acknowledgement of this manuscript).
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