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Abstract

Plant genomes have evolved several evolutionary mechanisms to tolerate and make use of transposable elements (TEs).
Of these, transposon domestication into cis-regulatory and microRNA (miRNA) sequences is proposed to contribute to
abiotic/biotic stress adaptation in plants. The wheat genome is derived at 85% from TEs, and contains thousands of
miniature inverted-repeat transposable elements (MITEs), whose sequences are particularly prone for domestication into
miRNA precursors. In this study, we investigate the contribution of TEs to the wheat small RNA immune response to the
lineage-specific, obligate powdery mildew pathogen. We show that MITEs of the Mariner superfamily contribute the
largest diversity of miRNAs to the wheat immune response. In particular, MITE precursors of miRNAs are wide-spread
over the wheat genome, and highly conserved copies are found in the Lr34 and QPm.tut-4A mildew resistance loci. Our
work suggests that transposon domestication is an important evolutionary force driving miRNA functional innovation in
wheat immunity.
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Pathogens among other stresses, apply strong selective pres-
sure on host genomes (Cagliani and Sironi 2013; Karasov et al.
2014). Transposable elements (TEs) are highly diversified mo-
bile genetic units that contribute in a myriad of ways to ge-
netic variation, genome evolution, and stress-adaptation
(Rebollo et al. 2012; Vicient and Casacuberta 2017). In partic-
ular, TEs donate lineage-specific regulatory sequences, of
which some can be domesticated into microRNA (miRNA)
precursors (Mari~no-Ram�ırez et al. 2005; Piriyapongsa et al.
2007; Roberts et al. 2014). Miniature inverted-repeat trans-
posable elements (MITEs) of the “Stowaway” type (Mariner
superfamily) (Bureau and Wessler 1994) were described as
particularly good candidates for such domestication, as they
terminate in a highly conserved 50-CTCCCTCC motif which is
repeated in reverse orientation at the 30 end (GGAGGGAG)
(Bureau and Wessler 1994; Piriyapongsa and Jordan 2008; Yan
et al. 2011). In cereals, RNA interference (RNAi) plays an im-
portant role in the regulation of stress-related responses in-
cluding immunity (Budak et al. 2015). The 17 Gb genome of
bread wheat (Triticum aestivum L.) is derived at 85% from TEs
and contains over 100,000 Stowaway MITEs (Wicker et al.
2018). Thus, wheat is a particularly relevant system to study
the contribution of TE domestication to adaptation and co-
evolution with pathogens. In this study we address the con-
tribution of TE derived miRNAs to the wheat response to the
powdery mildew fungus Blumeria graminis f.sp tritici (B.g.
tritici), a highly specialized, lineage-specific, obligate parasite.

To identify the wheat miRNA response to powdery mil-
dew, we generated four small RNA libraries from the suscep-
tible wheat cultivar “Chinese Spring” corresponding to three
“infected” treatments with three virulent B.g. tritici isolates
Bgt_96224, Bgt_94202, and Bgt_JIW2, and one “uninfected”
control. Samples were harvested 2 days post inoculation (dpi),
a stage corresponding to the formation of highly specialized
feeding structures called “haustoria” (fig. 1A), which is a hall-
mark for successful host invasion (supplementary note S1,
Supplementary Material online). The obtained deep small
RNA sequencing data were applied to careful and stringent
miRNA prediction using both homology-based and de novo
annotation approaches (supplementary fig. S1,
Supplementary Material online, supplementary note S1,
Supplementary Material online), resulting in the identification
of 696 unique miRNA sequences (i.e., sequence variants). Of
these, 255 corresponded to potentially novel miRNAs,
whereas 441 could be categorized into 48 previously known
families, of which 16 are derived from TEs (fig. 1B, supplemen-
tary file S1, Supplementary Material online, supplementary
table S1, Supplementary Material online). In total, 37 of the
48 families were commonly found between uninfected wheat
and at least one of the infected samples. Interestingly, no
miRNA family was found only present in uninfected plants,
whereas 11 families were found only in the infected samples
(fig. 1C, supplementary table S2, Supplementary Material on-
line). This indicates that entire groups of miRNAs are
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FIG. 1. Wheat miRNA identification from mildew infected and uninfected wheat samples. (A) Micrographs of a wheat powdery mildew
“haustorium” feeding structure, formed on a single epidermal cell of a susceptible host at an early stage of infection. Light blue cell staining
corresponds to transient expression of a GUS reporter serving as a contrastant that reveals the haustorium invagination. Epiphytic hyphae are
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specifically expressed upon mildew infection. The findings are
similar at the level of individual sequence variants. We found
that circa 43% of the 696 identified miRNA sequence variants
are encoded in the B subgenome (supplementary table S3,
Supplementary Material online). In total, 205 were found in all
four samples, 100 were specific to the uninfected control,
whereas 391 were found in at least one sample of mildew-
infected wheat but absent in the uninfected control (fig. 1D).
We have also assessed if the wheat miRNA response to mil-
dew is based on specific induction of different family mem-
bers in infected and uninfected samples. We therefore
selected six miRNA families for which at least 10 isoforms
were predicted (miR156, miR166, miR169, miR1127,
miR1137, miR1436) and compared the presence of individual
family members in infected versus uninfected wheat (fig. 1E, F,
supplementary table S4, Supplementary Material online). We
found that the miR156, miR166, and miR169 variants induced
upon infection were very similar and strongly overlapping
with those already present in the uninfected wheat (fig. 1E).
In contrast, we found that distinctly different variants of the
miR1127, miR1137, and miR1436 families are induced upon
infection and only a few were also found in the uninfected
treatment (fig. 1F, supplementary table S4, Supplementary
Material online). A closer look to the origin of the six families
revealed that miR1127, miR1137, and miR1436 are all
encoded within TEs, but not miR156, miR166, and miR169.
Moreover, all these TE encoded families are derived from the
“Mariner” superfamily MITEs of the Stowaway type (supple-
mentary table S1, Supplementary Material online).
Interestingly, these three TE-derived miRNA families were
previously suggested to be involved in abiotic and biotic stress
responses (Djami-Tchatchou et al. 2017; Ravichandran et al.
2019). The three families that showed only little variation
between infected and uninfected samples (miR156, miR166,
and miR169) are well-known regulators of development in
plants (Jung and Park 2007; Wu et al. 2009; Sorin et al. 2014;
Xu et al. 2014). They are found in all samples as highly abun-
dant sequences (supplementary table S5, Supplementary
Material online), indicating that they are expressed in the
entire leaf irrespective of mildew presence. In contrast, the
three transposon-derived miRNA families (miR1127,
miR1137, and miR1436), are represented only by a small num-
ber of reads in the raw sequence data (supplementary table
S5, Supplementary Material online), probably reflecting the
fact that they are only accumulating in the small number of
epidermal cells infected by mildew at 2 dpi (supplementary

note S1, Supplementary Material online). Notably, some
miRNA sequence variants were found in all three infected
samples but were absent in uninfected samples (examples in
supplementary table S6, Supplementary Material online).

Since TEs are the most rapidly evolving of all genomic
sequences, it was suggested that transposon domestication
may provide a mechanism for the emergence of lineage-
specific miRNA genes. We therefore assessed the phyloge-
netic conservation of the precursor sequences of the same
six miRNA families in other plant species. We found that
miR156, miR166, and miR169 are encoded by phylogeneti-
cally conserved precursor sequences that can be found in
barley, Brachypodium, rice, and maize (supplementary fig.
S2, Supplementary Material online). However, miR1127,
miR1137, and miR1436 were specifically encoded by sequen-
ces only found in the “tritici” tribe that were absent in other
species (supplementary fig. S2B, Supplementary Material on-
line, supplementary files S2–S4, Supplementary Material on-
line). These are unevenly distributed over the wheat
subgenomes, and those encoding miR1137 are quasi exclu-
sively encoded outside of genes (fig. 1G, H, supplementary
note S2, Supplementary Material online, supplementary fig.
S3, Supplementary Material online, supplementary files S5–
S7, Supplementary Material online). We therefore conclude
that the wheat miRNA response to mildew is based on the
induction of specific members from genetically diverse
miRNA families, encoded within lineage specific transposons
with contrasting genome-wide distribution patterns.

In order to further investigate the activity of these miRNA
families, we compared expression levels of their precursors in
RNA-Seq data from the wheat cultivar “Chinese Spring”
infected with isolate Bgt_96224 (i.e., the same genetic mate-
rial used for miRNA annotation) at 2 dpi (Praz et al. 2018) and
at 7 dpi (see Materials and Methods, supplementary note S2,
Supplementary Material online). We found that the total
number of active miRNA loci (i.e., showing expression, sup-
plementary note S2, Supplementary Material online) de-
creased at later (7 dpi) as compared with early (2 dpi)
infection stages (fig. 1I). However, the loci active at 7 dpi
showed a higher average expression than those active at
2 dpi (fig. 1J). This suggests that disease progression is prob-
ably imposing a tradeoff between the total number of miRNA
loci that are activated and the maximum level of expression
that is reached per locus.

We have also found that TE-derived miRNAs had most
often homology to high-copy Stowaway MITE elements of

FIG. 1. Continued
stained with coomassie blue. (B, C) Comparison of miRNA families predicted from mildew infected and noninfected wheat samples. (B) Number of
miRNA families predicted from each sample. (C) Venn diagram comparing the miRNA families found in infected versus uninfected samples. (D)
Venn diagram comparing miRNA sequences induced in all treatments. A subset of 18 miRNAs found in all infected samples but never in the
control is highlighted in orange. (E) Stacked bar plot illustrating strong overlap between the miR156, miR166, and miR169 sequence variants
induced upon mildew infection versus the control. (F) Stacked bar plot showing only partial to little overlap between the miR1127, miR1137,
miR1436 sequence variants present in infected versus uninfected wheat. (G) Genome wide distribution of the miR1127, miR1137, miR1436
precursors. (H) Genome wide distribution of the miR1127, miR1137, miR1436 precursors encoded within genes. (I) Comparison of the number of
active miR1127, miR1137, miR1436 precursor loci at early (2 dpi) versus advanced (7 dpi) infection stages. (J) Average expression levels of the
subset of active miRNA loci described in (I). Error bars correspond to the standard error of the mean. See supplementary note S2, Supplementary
Material online.
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the “Mariner” superfamily of DNA transposons (supplemen-
tary table S2, Supplementary Material online), and they are
frequently found inside their terminal inverted repeats (TIRs,
fig. 2A, supplementary fig. S4, Supplementary Material online,
supplementary note S3, Supplementary Material online).
Furthermore, 103 of 131 (79%) are specifically induced
upon infection (supplementary fig. S4, Supplementary
Material online). For these sequences, highly stable RNA sec-
ondary structures can be predicted where miRNA variants
form the ends of a stem loop spanning the miRNA and the
complementary miRNA star sequence (fig. 2B). Because of
sequence diversity within the MITE family as well as differ-
ences between the 50 and 30 TIRs, stem loops with mis-
matches between the predicted miRNA and star sequences
can occur (fig. 2B). In the case of miR1436, �70% of the
DTT_Pancho copies examined can form perfect hairpins
without any mismatches in the region corresponding to
the miR1436 sequence, whereas �30% have at least 1 mis-
match between the 50 and the reverse complement of the 30

TIR (fig. 2B). The finding that the largest diversity of miRNA
sequences is contributed by TEs, and that many of these are
encoded by MITEs, suggest these might play important roles
in host–pathogen co-evolution through the regulation of the
wheat immune response. We therefore focused on deeper
characterization of MITE encoded miRNAs from the subset of
18 miRNA sequences commonly found in all three infected
samples but not in the uninfected wheat control (fig. 1D). Of
these, four are derived from MITEs and have the highest
number of predicted miRNA precursor loci in the genome
(supplementary table S7, Supplementary Material online).
Two sequence variants were derived from DTT_Pancho
MITEs family miR1436. Although sequence variant
Tae_miR1436-1 had the highest number of precursors with
1,050 perfect matches across all chromosomes,
Tae_miR1436-2 has only 8, due to a single nucleotide differ-
ence that makes this sequence much less abundant in the
genome (fig. 2A, last sequence in the alignment). In fact,
Tae_miR1436-1 alone accounts for �20% (1,050 out of
5,490) of all precursors predicted for the 61 members of the
miR1436 family (supplementary file S4, Supplementary
Material online). Here, due to high redundancy of highly con-
served MITE precursors, it is not possible to distinguish how
many of these potential loci or which ones exactly are giving
raise to Tae_miR1436-1, thus illustrating one of the challenges
inherent to the characterization of TE-born miRNAs (Li et al.
2011; Roberts et al. 2014; Qin et al. 2015). However, despite
the very-high number of MITE loci encoding Tae_miR1436-1,
this sequence is never found in the uninfected sample, while it
is always induced upon mildew infection. We therefore sug-
gest that the miR1436 family, and particularly Tae_miR1436-
1, are highly relevant candidate miRNAs demonstrating the
role of transposon domestication in regulating the wheat
disease response.

MITEs are nonautonomous elements that are often found
in UTRs, and are therefore frequently co-expressed with the
nearby gene (Casacuberta et al. 1998; Santiago et al. 2002; Oki
et al. 2008; Lu et al. 2012). Consistent with this observation, we
found that miR1436 MITE copies, in particular those

encoding Tae_miR1436-1, are enriched in gene transcripts
(fig. 2C, supplementary note S2, Supplementary Material on-
line, supplementary file S7, Supplementary Material online).
Further analysis revealed that one potential miR1436 MITE
copy is found in intron 18 of the Lr34 mildew resistance gene
(Krattinger et al. 2009) (fig. 2D, GenBank: FJ436983.1), and
encodes a highly conserved hairpin flanked by typical TIRs
encoding the Tae_miR1436-1 sequence (position 19.103,
fig. 2E). We found another conserved copy in the 50 UTR
and same transcriptional orientation of a nucleotide-
binding domain leucine-rich repeats (NLR) gene (GenBank:
AYG86980.1), encoded in the NLR cluster of the powdery
mildew resistance locus QPm.tut-4A (Jakobson et al. 2012;
Jan�akov�a et al. 2019) (fig. 2F, G, GenBank: MG672525.1).
This locus was introgressed from Triticum militinae, and to-
gether with Lr34, these results indicate that potential
Tae_miR1436-1 MITE precursors can be encoded in impor-
tant resistance loci in several tritici lineages. Moreover, the
Tae_miR1436-1 MITE precursor is the only conserved “island”
in an otherwise sequence-unrelated resistance locus (fig. 2H).
We found no targets of Tae_miR1436-1 within the Lr34 or the
QPm.tut-4A loci, which further suggests this miRNA is con-
tributing to the general response of wheat to mildew infec-
tion. We conclude that genome-wide distribution of
thousands of MITEs encoding a conserved Tae_miR1436-1
miRNA stem-loop, combined with co-occurrence within ma-
jor mildew resistance loci in wheat and other close relatives,
suggest that domestication of the Tae_miR1436-1 MITE is an
important contribution to the biotic stress-response in the
tritici tribe.

To uncover the regulatory network of Tae_miR1436-1, we
performed a curated search for miRNA targets in the wheat
genome including all 18 miRNA sequences commonly found
in all infected samples (supplementary note S4,
Supplementary Material online, supplementary tables S8–
S10, Supplementary Material online, supplementary file S8,
Supplementary Material online). We found that several genes
were targeted by two or more miRNAs, that did not neces-
sarily have similar sequences, and these could be classified in
three groups (fig. 3A–C), with distinctly different functional
profiles (fig. 3D–F, supplementary tables S8–S10,
Supplementary Material online). Although Group_2 targets
consisted mainly of pentatricopeptide repeat (PPR) proteins,
commonly involved in gene regulation (Manna 2015; supple-
mentary table S9, Supplementary Material online), Group_3
targets were functionally more diverse, but interestingly con-
sisted mainly of genes encoding possible miR1127 precursors
(supplementary table S10, Supplementary Material online).
Group_1 stands out as the largest network of miRNAs with
shared targets, mainly overlapping with the Tae_miR1436-1
predicted regulatory network (supplementary tables S8, S11,
Supplementary Material online). These data suggest that mil-
dew responsive miRNAs, with sometime distinctly different
sequences, can form a coordinated miRNA response. Here,
transposon-derived miRNAs seem to have the most function-
ally diverse regulatory networks, which can be exemplified by
the 54 targets of Tae_miR1436-1 (supplementary table S11,
Supplementary Material online). Of these, one target
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FIG. 2. Structural and genomic features of domesticated MITE precursors of wheat miRNAs. (A) Multiple sequence alignment of MITE elements
showing conservation of the terminal inverted repeat sequences. (B) Stem-loop structures resulting in the formation of a perfect (upper sequence),
or imperfect (lower sequence) duplex encoded by two members of the DTT_Pancho MITE family. (C) Number of Tae_miR1436-1 precursors
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(TraesCS3D01G141100) is encoding a putative small cysteine-
rich Metallothionein 3-like (TaeMt3) protein (fig 3G, supple-
mentary fig. S5, Supplementary Material online), a group of
proteins participating in an array of protective stress
responses, with some corresponding to scavengers of reactive
oxygen species (ROS) (Ruttkay-Nedecky et al. 2013).
Prominent examples from agricultural crops are the
GhMT3 from cotton (Xue et al. 2008), and OsMT1a and
OsMT2b Metallothioneins from rice (Wong et al. 2004;
Yamauchi et al. 2017). We then hypothesized that possible
downregulation of TaeMt3, could result in derepression of the
wheat oxidative burst response associated with cell-death
signaling (Torres et al. 2006). We assessed the physiological
effect of Tae_miR1436-1 on the expression of the TaeMt3
target by comparing the expression of the miRNA precur-
sor/target pair at 2 dpi and 7 dpi. Interestingly, we found
fewer but transcriptionally much more active loci encoding
miR1436-1 at 7 dpi (fig. 3H, I). Furthermore, 8 of the 17
miR1436 family loci upregulated at 7 dpi encode for the
miR1436-1 variant (supplementary fig. 6, Supplementary
Material online). Most importantly, we found significant
downregulation of the TaeMt3 target at 7 days compared
with 2 days (fig. 3J). These data substantiate our hypothesis
that selective transcriptional activation of miR1436-1 is phys-
iologically meaningful, and that Tae_miR1436-1 and TaeMt3
are a functional regulatory pair contributing to the wheat
response to increasing mildew pressure. In order to further
study the relevance of this regulatory pair to wheat immunity,
we developed a series of functional assays to assess the sug-
gested role of the Tae_miR1436-1/TaeMt3 pair in regulating
cell-death (supplementary note S5, Supplementary Material
online, supplementary figs. S7–S9, Supplementary Material
online). Of these experiments, we established an assay where
either TaeMt3 or the empty vector control (pIPKb004) is
expressed on two areas of the same Nicotiana benthamiana
leaf. Then, cell death is induced in that same tissue using high
density apoplastic infiltration with DC3000, a virulent strain
from the Pseudomonas syringae pv. tomato pathogen (see
Materials and Methods, supplementary note S5,
Supplementary Material online). Results from three indepen-
dent assays showed quantitative, partial suppression of the
cell-death response on several leaves of the heterologous
N. benthamiana host when TaeMt3 was present in the mix
(fig. 3K–M, supplementary fig. S9, Supplementary Material
online). We therefore suggest that Tae_miR1436-1-targeting
of TaeMt3 could possibly contribute to the derepression of
cell death that is a particularly efficient immune response to
the biotrophic mildews, which rely on living host tissues to
survive.

In summary, we propose that 1) genome-wide distribution
of thousands of MITE copies (Wicker et al. 2018), 2) frequent
association of these with genes (Casacuberta et al. 1998;
Santiago et al. 2002; Oki et al. 2008; Lu et al. 2012), combined
with a functionally diversified network of MITE-born miRNA
targets, might provide a selective advantage for frequent do-
mestication of MITEs into miRNA genes relevant to biotic
stress adaptation. We conclude that MITE domestication into
miRNA precursors is probably an important evolutionary
force driving miRNA innovation in the wheat small RNA re-
sponse to invading pathogens, thus further substantiating the
model proposed by Roberts and colleagues, arguing that
miRNAs are initially formed from TEs (Roberts et al. 2014).

Materials and Methods

Biological Material, RNA Extraction and Sequencing
The T. aestivum cultivar “Chinese Spring” and the B.g. tritici
isolates Bgt_96224, Bgt_94202, and Bgt_JIW2 were used in
this study. Plant growth and infection conditions were previ-
ously described by Praz et al. (2018). Briefly, ten days old
detached leaf segments were infected with fresh spores
from pure cultures of the virulent powdery mildew isolates
Bgt_96224, Bgt_94202, and Bgt_JIW2. The infected leaf seg-
ments were kept on benzimidazole agar plates at 20 �C and
70% humidity with a 16 h light/8 h dark cycle. For the micros-
copy image, wheat leaves were transiently transformed with a
b-glucuronidase (GUS) reporter gene as previously described,
whereas epiphytic mildew fungal structures were stained with
coomassie blue as previously described in Nowara et al.
(2010).

Small RNA samples were extracted after 2 days from leaf
material infected with three different powdery mildew iso-
lates and from uninfected leaves, whereas mRNA samples
were extracted after 7 days only from leaves infected with
the isolate Bgt_96224. All RNA extractions were done using
the miRNeasy Mini Kit (Qiagen) according to the manufac-
turer’s instructions. The quality of the extracted RNA was
checked by gel electrophoresis and the purity was further
assessed with the NanoDrop Spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA) based on the 260:280
ratios. For the small RNA samples, single-end-50 bp read li-
braries were generated with the TruSeq Small RNA Library
Preparation Kit (Illumina) and sequenced with the Illumina
HiSeq 2500 Sequencing System. For the mRNA samples,
paired-end-150 bp read libraries were generated with the
TruSeq Stranded mRNA library Preparation Kit (Illumina)
and sequenced with the NovaSeq 6000 Sequencing System.
The sequencing was carried out at the Functional Genomics

FIG. 2. Continued
gene. (E) Multiple sequence alignment of the Lr34 encoded MITE and other Tae_miR1436-1 MITE precursor sequences. Strong conservation of the
stem-loop region delineated by the miRNA and miRNA start sequences (position 19 to 103) is illustrated. (F) Relative position of the conserved
MITE Tae_miR1436-1 copy encoded in the NLR cluster of the QPm.tut-4A powdery mildew resistance locus from Triticum militinae. Relative
position to the CC-NBS-LRR encoding gene is indicated. (G) Strong conservation of the stem-loop region between the QPm.tut-4A, the Lr34 MITE,
and one additional Tae_miR1436-1 precursor is here illustrated. (H) Dotplot depiction showing that the putative MITE precursor of Tae_miR1436-
1 is the only conserved sequence over large segments of the QPm.tut-4A and the Lr34 loci.
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FIG. 3. Characterization of the endogenous wheat targets of mildew responsive miRNAs. (A–C) Venn diagrams illustrating the overlap between the
targets of several miRNAs, possibly representing distinctly different coordinated responses. The miRNA forming group 1 (A), group 2 (B), and
group 3 (C) are indicated (upper panel), and alignments of those same miRNAs are depicted (lower panels). (D–F) In silico prediction of functional
protein domains using BLAST search against the NCBI conserved domain database (CDD). The identified protein superfamilies for group 1 (D),
group 2 (E), and group 3 (F) are indicated by their PSSM-ID. (G) Description of the binding site of Tae_miR1436-1 in the 30UTR of the TaeMt3 target
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Center Zürich (http://www.fgcz.ch/). Sequencing reads are
available under the NCBI BioProject PRJNA553193 and
PRJNA577532.

Filtering of Raw Reads
Raw reads from the four small RNA libraries were cleaned and
filtered based on sequencing quality, read length, and homol-
ogy with non-coding RNAs (ncRNAs). The 3-prime adapter
sequence was found using the “find_3p_adapter.pl” script
(http://sites.psu.edu/axtell/software/misc-tools/; last accessed
January 2017) with the sequence of a conserved and abun-
dant plant miRNA sequence (ath-mir156a) with “-m
TGACAGAAGAGAGTGAGCAC” option. Afterward, the
raw small RNA sequencing reads were trimmed with
FASTX Toolkit 0.0.13 (http://hannonlab.cshl.edu/fastx_tool-
kit/index.html; last accessed January 2017) using the com-
mand “fastx_clipper -l 18 -v -c -a TGGAATTC -Q33.” The
trimmed reads were filtered via “Seq_filter.pl” (https://
github.com/dmb107/UTR.scripts/blob/master/Seq_filter.pl;
last accessed January 2017) and only those with a length
between 18 and 24 bp were kept for further downstream
analysis. The reads were mapped with bowtie 1.0.0 with the
option “-v 1” (Langmead et al. 2009) to the wheat ncRNA
database (ftp://ftp.ensemblgenomes.org/pub/plants/release-
39/fasta/triticum_aestivum/ncrna/; last accessed January
2017) and the ones that aligned to snRNA, snoRNA, tRNA,
and rRNA with zero or one mismatches were removed.

Prediction of miRNAs
De novo annotation of miRNA loci was performed using
ShortStack 3.6 with the recommended parameters for plants
(Axtell 2013). The mapping software bowtie cannot handle
large genomes, therefore the wheat genome (�17 Gb) was
divided in 22 segments (each one corresponding to a chro-
mosome) and indexed using “bowtie-build.” For the mapping
of the clean small RNA-Seq reads on the chromosomes, bow-
tie 1.0.0 was used with the settings “-v 1 –m 50 –a –best –
strata.” This procedure was followed for the libraries of the
three infected samples and of the uninfected control.
Homology-based identification of conserved miRNAs was
performed as described by Alptekin et al. (2017). First, the
sequences of experimentally validated miRNAs (miRBase,
Release 21) were aligned to each of the cleaned small-RNA
libraries with the perl script “SUmirFind_smRNA.pl,” allowing
up to two mismatches. In a second step, the small RNA reads

with homology to known miRNAs, were aligned back to the
wheat genome with “SUmirFind.pl” without allowing any
mismatches. “SUmirFold” was then used to test the presence
of a potential hairpin shaped secondary structure. Finally, the
genuineness of the putative miRNA loci was evaluated with
“SUmirPredictor.” To determine which miRNAs are more
likely to be expressed in response to pathogen infection, we
selected the miRNAs that were only predicted upon infection
(not present in the uninfected control) and that were com-
monly induced by three fungal isolates (94202, 96224, and
JIW2).

miRNA Precursor Loci Identification and Expression
Studies
“SUmirLocator” was used to identify the genomic location of
the premiRNAs that were previously predicted with
“SUmirPredictor,” whereas information about the distribu-
tion of the “ShortStack” miRNA loci were already available
from the results output of the pipeline. TE associated miRNAs
were then identified by aligning the intergenic precursor
sequences against the TEs (nrTREP17) database (botin-
st.uzh.ch/en/research/genetics/thomasWicker/trep-db.html;
last accessed June 2018) using BLASTN with the following
parameters: -evalue 1e-10 -qcov_hsp_perc 30. Additional in-
formation on the analysis of miRNA precursors are described
in supplementary note S2, Supplementary Material online. In
order to estimate the number of loci possibly located in genes
transcripts, we generated a database consisting of the geno-
mic sequences of all high-confidence wheat genes, defined as
the sequence from gene start to gene stop, including exons,
introns, and UTRs when available. The miR1127, miR1137,
and miR1436 precursor sequences were aligned onto this
database via BLASTN with the parameters: -min evalue E-
60, -max number of hits 1, -max number of alignments
100000, -gapped_search disabled. The resulting blast results
were filtered for hits with min of 98% identity, and manually
curated for query coverage.

Wheat leaf segments from the reference wheat cultivar
“Chinese Spring” were infected with the wheat powdery mil-
dew reference isolate Bgt_96224 as previously described (Praz
et al. 2018). Samples were harvested 7 dpi, and applied to
Illumina NovaSeq 150 pb paired end sequencing. Expression
levels of miRNA precursors encoding for the MITE born fam-
ilies miR1127, miR1137, and miR1436, as well as specific pre-
cursors encoding Tae_miR1436-1 were determined with

FIG. 3. Continued
(two last exons are depicted). RNA sequencing reads demonstrating the existence of the predicted 30UTR are depicted in the lower panel. (H)
Number of expressed Tae_miR1436-1 precursors at 2 and 7 dpi. (I) Average expression of active miR1436-1 loci at 2 and 7 dpi (see Materials and
Methods, supplementary note S2, Supplementary Material online). Error bars indicate the standard error of the mean from three independent
replicates (RPKM: reads per kilobase per million). (J) Downregulation of TaeMt3 at 7 dpi coinciding with higher induction of miR1436-1 precursors.
Error bars indicate the standard error of the mean from three independent replicates. Statistical significance was assessed using the Student’s t-test
for paired data. P value< 0.05 is indicated by a star. (K) Restriction of the necrotic cell death in presence of TaeMt3 at 48 h post DC3000 treatment
of Nicotiana benthamiana leaves (see supplementary note S5, Supplementary Material online for assay description). (L) Quantification of cell-
death intensity from the Pst DC3000 infiltrated leaf areas and expressing either the pIPKb004 empty expression vector, or TaeMt3. Cell death was
scored in one assay from 15 independent leaf replicates (see Materials and Methods). (M) Stacked bar blot summary of the TaeMt3 cell death
suppression phenotype observed from three independent assays, each consisting of 12–25 leaf replicates.
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SalmonTE using standard parameters, which is specifically
designed for the quantification of TEs in RNA-Seq data
(github.com/LiuzLab/SalmonTE; last accessed September
2019). We determined expression levels in 1) RNA-Seq data
which were generated at 2 dpi from the wheat cultivar
“Chinese Spring” infected with the mildew isolate
Bgt_96224 (Praz et al. 2018), corresponding to the exact
same genetic material used in our small RNA-Seq study,
and 2) RNA-Seq libraries from three independent biological
replicates from “Chinese Spring” infected with Bgt_96224, but
harvested at 7 dpi. Precursor expression studies are described
in supplementary note S2, Supplementary Material online.

Target Prediction and Cloning
Complementary information on target prediction is provided
in supplementary note S4, Supplementary Material online.
Briefly, we performed two independent analyses using
psRNATarget (Dai et al. 2018), a plant specific small RNA
target prediction software, with standard parameters, and
the more generalist eukaryotic small RNA aligner GSTAR
(v1.0; https://github.com/MikeAxtell/GSTAr; last accessed
May 2018) with standard parameters against the wheat
cDNA annotation (IWGSC RefSeq v1.0). The most relevant
targets were selected based on three main parameters (MFE
ratio: 0.73–1, Allen score: 0–4, and Expectation value: 0–3)
and on the overlap between the two software. Targets of the
subset of 18 mildew responsive miRNA are provided in sup-
plementary file S8, Supplementary Material online.
TraesCS3D01G141100 was cloned from the genomic DNA
for the wheat cultivar “Chinese Spring” using TOPO direc-
tional cloning according to the manufacturer (pENTR/D-
TOPO, Thermofisher). The construct was verified using in-
house Sanger sequencing.

Suppression of P. syringae DC3000 Induced Cell Death
The TaeMt3 TOPO cloning cassette was recombined into the
Agrobacterium tumefaciens expression vector pIPKb004
(Himmelbach et al. 2007) using Gateway LR clonase II
(Invitrogen) according to the manufacturer and subsequently
transformed into A. tumefaciens strain GV3101 using electro-
poration (1.44 kV, 25 lF, 200 X) (Bourras et al. 2015). A. tume-
faciens mediated transient expression of TaeMt3, or the
empty pIPKb004 vector in N. benthamiana leaves was
achieved as previously described by Bourras et al. (2019).
TaeMt3 was transiently expressed on one side of the leaf
together with the tombusvirus P19 RNA silencing suppressor
protein at a 4:1 ratio (Saxena et al. 2011). As a control, the
empty pIPKb004 expression vector and P19 were expressed at
the same ratio on the other side of the leaf. After 24 h, Pst-
DC3000 cultures were infiltrated at OD600¼ 1.0 inside the
area where TaeMt3 or the empty vector have been transiently
expressed. Leaves were cut off the plants after another 24 h,
and early cell-death was quantified using HSR imaging as
previously described (Bourras et al. 2019). The leaves were
incubated in the dark on water-soaked absorbent paper, in
100% humidity, 28 �C, in the dark, in an oven. After another
24–48 h, leaves were removed and scored for necrotic cell
death development.

Pst-DC3000 cultures were prepared mostly following the
same protocol as for A. tumefaciens with the following minor
modification. Briefly, DC3000 cultures were grown in Luria
broth (LB) medium supplemented with appropriate antibi-
otics overnight at 28 �C with 200 rpm shaking. The day after,
cultures were harvested by centrifugation 3,300� g, 5 min,
resuspended in fresh LB medium without antibiotics and
further incubated for 30 min at 28 �C with 200 rpm shaking.
Bacteria were washed two times in an AS(–)medium (10 mM
MES-KOH, pH5.6; 10 mM MgCl2; 200), which is a classical AS
medium where acetosyringone is omitted. Finally, the cul-
tures were adjusted in AS(–)medium to an OD of 1.0 before
apoplastic infiltration of N. benthamiana leaves.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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