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Abstract: Sexually deceptive orchids typically depend on specific insect species for pollination,
which are lured by sex pheromone mimicry. European Ophrys orchids often exploit specific species
of wasps or bees with carboxylic acid derivatives. Here, we identify the specific semiochemicals
present in O. insectifera, and in females of one of its pollinator species, Argogorytes fargeii. Headspace
volatile samples and solvent extracts were analysed by GC-MS and semiochemicals were structurally
elucidated by microderivatisation experiments and synthesis. (Z)-8-Heptadecene and n-pentadecane
were confirmed as present in both O. insectifera and A. fargeii female extracts, with both compounds
being found to be electrophysiologically active to pollinators. The identified semiochemicals were
compared with previously identified Ophrys pollinator attractants, such as (Z)-9 and (Z)-12-C27-C29

alkenes in O. sphegodes and (Z)-9-octadecenal, octadecanal, ethyl linoleate and ethyl oleate in O.
speculum, to provide further insights into the biosynthesis of semiochemicals in this genus. We
propose that all these currently identified Ophrys semiochemicals can be formed biosynthetically from
the same activated carboxylic acid precursors, after a sequence of elongation and decarbonylation
reactions in O. sphegodes and O. speculum, while in O. insectifera, possibly by decarbonylation without
preceding elongation.

Keywords: Ophrys; sexual deception; semiochemicals; fly orchid; pollination

1. Introduction

Pseudocopulation as a means of pollination was first reported over 100 years ago, in two parallel
systems [1,2]. Correvon and Pouyanne made observations of European Ophrys orchids [1], while in
Australia, Cryptostylis orchids were reported to use the same sexually deceptive strategy, in which insect
pollinators attempt copulatory or courtship behaviour with the flower, thereby transferring pollinia [2,3].
Insect sexual attraction is induced through chemical and physical mimicry of female insects. Pollination
by sexual deception is now known to be a phenomenon that has evolved independently multiple times
on different continents. There are several hundred confirmed cases in the Orchidaceae, with many
more likely to be discovered with future studies [4–6]. There are also single reports of sexual deception
in the Asteraceae [7] and Iridaceae [8], indicating that this pollination strategy may be more common
than is currently known.
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Following the initial observations of pollination via sexual deception in Ophrys and Cryptostylis
orchids, an intensive Swedish research program was launched in 1948 to investigate the chemical cues
underlying this bizarre pollination strategy. Ophrys insectifera and some southern European Ophrys
and their solitary bee pollinator species were the main study species [9]. In these early studies, field
experiments demonstrated that floral volatiles were the key to pollinator attraction [9,10]. With the use
of electroantennography (EAG), it was later shown that two species of male sphecid wasp pollinator,
Argogorytes mystaceus and A. fargeii, unlike their conspecific females, responded to tentatively identified
alkanes, alkenes, and terpenes in sorption headspace extracts of O. insectifera flowers [11]. A few years
later, the first evidence of chemical mimicry of several species of Andrena bee pollinators by O. fusca
and O. lutea, was found: aliphatic alcohols, monoterpene- and sesquiterpene alcohols, and aldehydes
attracted the patrolling males to varying degrees [12,13].

The first identification of pollinator sexual attractants in the genus Ophrys did not occur until
the late 1990s, with the successful structural elucidation of attractants from O. sphegodes [14,15].
A key to the detection and identification of the semiochemicals from this species was the use of
gas chromatography coupled with electroantennogram detection (GC-EAD), which revealed a set
of 14 electrophysiologically active compounds to be shared among the orchid and the female of its
bee pollinator, Andrena nigroaenea. Before being confirmed as attractants in field bioassays, these
compounds were identified by GC-MS, including microderivatisation experiments, as a series of
long-chained alkanes and alkenes. Furthermore, three (Z)-7 alkenes were discovered to be responsible
for the attraction of male Colletes cunicularius bees to O. exaltata [16]. The chemical stimuli for the sexual
attraction of various Ophrys pollinators also include other types of structures, as shown when a mixture
of hydroxy- and keto acids, together with aldehydes and esters, were identified as the attractants in O.
speculum, which is pollinated by male Campsoscolia ciliata scoliid wasps [17].

In Australian sexually deceptive orchids, 1,3-cyclohexanediones (chiloglottones) have been
identified as pollinator attractants in Chiloglottis [18], as have hydroxymethylpyrazines and
a β-hydroxylactone (drakolide) in Drakaea [19–22], (methylthio)phenols, acetophenones and
monoterpenes in Caladenia [23–25], and tetrahydrofuran acid derivatives in Cryptostylis [26].

Besides the discovery of a broad range of compounds pivotal for pollination in sexually deceptive
orchids, there has also been interest in the biosynthesis of these compounds, with the aim to link
biosynthesis to the evolution and speciation of orchids. Schlüter and Schiestl [27] predicted that, in
Ophrys, the biosynthesis of alkenes would follow the biosynthetic pathway for alkanes [28], but with the
addition of an extra desaturation step, potentially achieved by stearoyl-acyl carrier protein desaturases
(SAD). Later, three putative SAD genes (SAD1-SAD3) were isolated [29]. Transgenic expression and
in vitro enzyme assays revealed SAD2 to be a functional desaturase capable of introducing 18:1 ∆9 and
16:1 ∆4 fatty acid intermediates, from which it was hypothesized that (Z)-9 alkenes and (Z)-12 alkenes
are built. Three additional putative SAD genes (SAD4-SAD6) were also identified from an O. sphegodes
transcriptome [30].

In O. sphegodes and O. exaltata, SAD1 and SAD2 expression levels were shown to be significantly
correlated with (Z)-9 and (Z)-12-alkene production, while high SAD5 expression was correlated with
the (Z)-7-alkene production unique to O. exaltata [31]. In vitro enzyme activity studies further showed
that a putative housekeeping desaturase, SAD3, catalyses the general reactions of stearate to oleate
(18:0-ACP to 18:1 ∆9-ACP), and palmitate to palmitoleate (16:0-ACP to 16:1 ∆9-ACP), whereas SAD5 is a
specialized 16:0 ∆9-ACP enzyme [32]. Subsequent elongation of a 16:1 ∆9-ACP to a 26:1 ∆19-coenzyme
A precursor, followed by decarbonylation, would yield the (Z)-7 alkene (25:1 ∆7) that characterizes
O. exaltata.

In O. speculum, the pollinator attractants were also identified as carboxylic acid derivatives [17].
The most attractive compounds from both floral extracts and females of the scoliid wasp pollinator
Campsoscolia ciliata were (ω-1)-hydroxy- and -oxo acids. However, it is noteworthy that the
pseudo-copulation rates in field bioassay experiments more than doubled when aldehydes such
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as (Z)-9-octadecenal and octadecanal, together with the esters ethyl linoleate and ethyl oleate, were
added to the dummy female [17].

The phylogenetic relationships within Ophrys are currently under debate [33–37], with some
phylogenetic analyses indicating that the Argogorytes-pollinated O. insectifera group represents a basal
taxon, while the latest studies place the O. fusca complex, including O. iricolor, as ancestral [36,37]. All
studies agree that wasp pollination is ancestral to bee pollination in Ophrys.

To obtain a broader understanding of the chemical details of semiochemicals in the wasp-pollinated
O. insectifera, and sex pheromone candidates in its pollinator A. fargeii, we used GC-EAD, GC-MS,
microderivatisation reactions, and organic synthesis to identify EAD-active compounds. These
semiochemicals were compared with previously identified pollinator attractants from the bee-pollinated
O. sphegodes and wasp-pollinated O. speculum, and biosynthetic relationships within Ophrys
were proposed.

2. Results and Discussion

To identify semiochemicals in O. insectifera, and sex pheromone candidates in Argogorytes fargeii
pollinators, solvent extractions of flowers and insects, and floral headspace sampling, were conducted.
Samples of O. insectifera labella were extracted in solvents of increasing polarity, from n-hexane,
to dichloromethane, to methanol. Headspace volatile sampling was performed using solid phase
extraction (SPME). Furthermore, whole females of A. fargeii were extracted in dichloromethane. Due
to the very limited number of pollinators available, we were restricted to evaluating biological
activity using gas chromatography coupled with electroantennography (GC-EAD). Since we were
unable to locate males of A. fargeii, GC-EAD was used to detect which components of the various
extracts were detected by A. mystaceus, a closely related species that is the second main pollinator
of O. insectifera [9]. Two compounds from the floral extracts were repeatedly EAD-active (elicited
responses in six out of 10, and two out of 10 EAD experiments). These two compounds were tentatively
identified by mass spectrometry (GC-MS) as a C17 alkene and n-pentadecane. In previous studies on
O. insectifera, n-pentadecane (2, Figure 1a) was indeed found to be active in EAG experiments, while
no alkenes were isolated or identified [11]. Here, we found that n-pentadecane and the C17 alkene
were present in the female A. fargeii (six extracts of individual insects) and were also present in only
minor amounts in floral solvent extracts (three extracts of 10 flowers). We investigated the double
bond location by dimethyldisulfide (DMDS) microderivatisation of a semi-preparative GC purified
compound that was extracted from the wasp. The observation of identical retention times and mass
spectra between the semiochemical isolated from the wasp and the synthesized (Z)-8-heptadecene
(1), before and after treatment with DMDS, meant that the double bond position and configuration of
the natural product could be confirmed. Furthermore, a floral extract was treated analogously, and
was confirmed to contain identical mass fragments at the same relative intensity and retention time,
confirming that the compound detected by A. mystaceus was shared between O. insectifera and female
A. fargeii. In addition to the semiochemicals identified from flowers, another two C15-alkenes and
one C17-diene were identified from females of A. fargeii. These compounds were also isolated by
semi-preparative GC and treated with DMDS. Candidate compounds were synthesized and co-injected
with natural extracts (on two GC columns) and tested with GC-EAD. The monoenes were subsequently
confirmed as (Z)-6-pentadecene (3) and (Z)-7-pentadecene (4), while the diene was identified as
(Z,Z)-6,9-heptadecadiene (5) (Figure 1).
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Figure 1. (a) Semiochemicals from Ophrys insectifera (1–2; 1 = (Z)-8-heptadecene, 2 = n-pentadecane) 
and female Argogorytes mystaceus (1–5; 3 = (Z)-6-pentadecene, 4 = (Z)-7-pentadecene, 5 = 
(Z,Z)-6,9-heptadecadiene). (b) GC-MS total ion chromatograms of female A. fargeii (upper trace) and 
O. insectifera (lower trace). (c) GC-EAD of SPME extracts of O. insectifera to antenna of A. mystaceus 
males. Two replicated analyses are shown. (d) GC-EAD of synthetic standards 1‒5 to antenna of A. 
mystaceus. Two replicated analyses are shown. 

The GC-EAD and GC-MS analyses of the floral extracts showed that n-pentadecane (2) was of 
low abundance and was electrophysiologically active in only two experiments, while 
(Z)-8-heptadecene (1) was active in six experiments. When tested as synthetics at higher 
concentrations (100 ng to 1 µg), both compounds were strongly EAD-active in replicated 
experiments. However, the additional alkenes 3–5 from A. fargeii, when tested as synthetic samples 
at the higher concentration, elicited consistently less frequent and/or weaker EAD responses 
compared to the orchid-produced 1 and 2 (Figure 1, Table 1). 

Table 1. Occurrence of semiochemicals in Ophrys insectifera (SPME extracts) and Argogorytes fargeii 
females (solvent extracts), with electroantennographic responses in A. mystaceus males. 

$$$$Argogorytes mystaceus visiting 
Ophrys insectifera 

Compound 
Abundance in 

$$$$O. 
insectifera 

Abundance in 
$$$$A. fargeii 

(Female) 
EAD-Activity 

1 ✔✔ ✔✔ ✔✔ 
2 ✔ ✔✔ ✔ 
3 – ✔ (✔) 
4 – ✔ (✔) 

5 – ✔✔ (✔) 

✔✔= very abundant compound (>20% of base peak area); repeated (6 extracts, >6 synthetic samples) 
strong EAD-responses. ✔ = abundant compound (>10% of base peak area); repeated EAD-responses 
(2 extracts, >6 synthetic samples). (✔) = occasional weaker EAD-response (generally less than 50% of 
response of orchid semiochemicals, >3 synthetic samples). Photo A.M. Weinstein. 

By analysing the GC-MS traces of floral extracts, it was observed that larger amounts of 
compounds 1 and 2 were present in headspace samples of flowers compared with solvent extracts. 
Although headspace extractions and solvent extractions are not directly comparable, our findings 
indicate that the flowers likely continuously produce compounds (indicated by increasing quantity 

Figure 1. (a) Semiochemicals from Ophrys insectifera (1–2; 1 = (Z)-8-heptadecene, 2 = n-pentadecane)
and female Argogorytes mystaceus (1–5; 3 = (Z)-6-pentadecene, 4 = (Z)-7-pentadecene, 5 =

(Z,Z)-6,9-heptadecadiene). (b) GC-MS total ion chromatograms of female A. fargeii (upper trace)
and O. insectifera (lower trace). (c) GC-EAD of SPME extracts of O. insectifera to antenna of A. mystaceus
males. Two replicated analyses are shown. (d) GC-EAD of synthetic standards 1–5 to antenna of A.
mystaceus. Two replicated analyses are shown.

The GC-EAD and GC-MS analyses of the floral extracts showed that n-pentadecane (2) was of low
abundance and was electrophysiologically active in only two experiments, while (Z)-8-heptadecene (1)
was active in six experiments. When tested as synthetics at higher concentrations (100 ng to 1 µg), both
compounds were strongly EAD-active in replicated experiments. However, the additional alkenes 3–5
from A. fargeii, when tested as synthetic samples at the higher concentration, elicited consistently less
frequent and/or weaker EAD responses compared to the orchid-produced 1 and 2 (Figure 1, Table 1).

Table 1. Occurrence of semiochemicals in Ophrys insectifera (SPME extracts) and Argogorytes fargeii
females (solvent extracts), with electroantennographic responses in A. mystaceus males.
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Argogorytes mystaceus visiting
Ophrys insectifera

Compound Abundance in
O. insectifera

Abundance in
A. fargeii (Female) EAD-Activity

1 44 44 44

2 4 44 4

3 – 4 (4)
4 – 4 (4)
5 – 44 (4)

44= very abundant compound (>20% of base peak area); repeated (6 extracts, >6 synthetic samples) strong
EAD-responses. 4 = abundant compound (>10% of base peak area); repeated EAD-responses (2 extracts, >6
synthetic samples). (4) = occasional weaker EAD-response (generally less than 50% of response of orchid
semiochemicals, >3 synthetic samples). Photo A.M. Weinstein.

By analysing the GC-MS traces of floral extracts, it was observed that larger amounts of compounds
1 and 2 were present in headspace samples of flowers compared with solvent extracts. Although
headspace extractions and solvent extractions are not directly comparable, our findings indicate that
the flowers likely continuously produce compounds (indicated by increasing quantity with an increase
in SPME sampling time), rather than depend on stored compounds (indicated by very low amounts
in solvent extracts) in the floral tissue. This observation is in agreement with earlier studies of O.
insectifera and O. sphegodes, favouring headspace sorption extraction over solvent extraction [14,38].
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In addition to comparing observations between various Ophrys systems, it is of further interest
to extend this comparison to other sexually deceptive orchids with known semiochemistry. Such
cases are predominantly Australian, where the pollinator attractants in hammer orchids and spider
orchids, unlike in Ophrys, have been found to be stored in relatively large amounts within the floral
tissue [21,23,25].

The discovery of (Z)-8-heptadecene (1) in O. insectifera, detected by males of A. mystaceus, provides
important insights about the chemistry of Ophrys orchids. In earlier studies of the biosynthetic
pathways for the longer chained C25 and C27 alkenes from O. exaltata and O. sphegodes, C16- and C18

activated carboxylic acids have been proposed as intermediates [32] (Figure 2). In fact, it has been
proposed that in the plastid of the lip epidermis cell of the labellum of O. exaltata and O. sphegodes,
16:0-ACP and 18:0-ACP are transformed to 16:1 ∆4-ACP and 18: 1 ∆9-ACP by SAD2, before being
elongated in the cuticle [29]. If instead, 16:0-ACP and 18:1 ∆9-ACP are decarbonylated, the exact
compounds found to be EAD-active in O. insectifera, n-pentadecane (2) and (Z)-8-heptadecane (1),
would be formed (Figure 2).
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Figure 2. Proposed biosynthesis of bioactive alkenes in Ophrys sphegodes (from [32]) and O. insectifera.

In a similar manner, our results can be compared to the pollinator attractants previously identified
in O. speculum. Out of the blend of eight electrophysiologically active compounds that showed the
highest pollinator attraction in field bioassays, three compounds: hexadecanal, (Z)-9-octadecenal,
and ethyl oleate, show strong structural similarity with the hydrocarbons that we identified in O.
insectifera. In fact, decarbonylation of these semiochemicals, in a similar way as proposed in the case of
O. sphegodes (Figure 2), would yield pentadecane (2) from hexadecanal and (Z)-8-heptadecene (1) from
(Z)-9-octadecenal and ethyl oleate.

Compared to the recent studies of Australian Drakaea and Caladenia orchids, where multiple,
structurally diverse pollinator attractants have been identified in multiple species [21–23,25], the
structural similarities between the semiochemicals of O. insectifera, O. sphegodes, and O. speculum are
evident, all being clearly biosynthetically closely related carboxylic acid derived compounds. It is
also interesting to note the difference in volatility compared to the widely studied Australian systems,
where “traditional” volatiles are used as long-range attractants, while the European systems utilise
less volatile cuticular hydrocarbons, such as the C27–C29 alkenes in O. sphegodes, which have been
proven sufficiently volatile to lure pollinators from a distance as attractants [15]. Furthermore, it is
relevant to note that in the case of O. insectifera and A. fargeii, the orchid and pollinator share the exact
same semiochemicals, which is in agreement with other investigated Ophrys systems, including O.
sphegodes [39] and O. speculum [17], as well as with most Australian systems [4] (but see [40]).
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In conclusion, we have identified (Z)-8-heptadecene (1) and pentadecane (2) as shared
semiochemicals from O. insectifera and A. fargeii. Access to denser populations of A. fargeii or A.
mystaceus would be required to undertake bioassays testing the field activity of these compounds as
pollinator attractants. Nevertheless, this study provides an important first step in the identification of
key compounds that, once pollinator populations have been located, are available to be tested in field
behavioural bioassays. Furthermore, the identification of these semiochemicals and comparison with
related species within the genus shows strong commonalities in structures and suggests a conserved
biosynthetic pathway for semiochemical production within Ophrys.

3. Materials and Methods

3.1. General Experimental Procedures

NMR spectra (Supplementary Materials) were acquired on a Bruker Avance (Bruker, Billerica,
MA, USA) 500 or 600 MHz spectrometer with CDCl3 as solvent. Chemical shifts were calibrated to
resonances attributed to the residual solvent signal.

EIMS (70 eV) were recorded on an Agilent 5973 mass detector connected to an Agilent 6890 GC
equipped with a DB5-MS column (Agilent, Santa Clara, CA, USA, 50 m × 0.2 mm × 0.33 µm) using
helium as the carrier gas.

Semi-preparative gas chromatography was performed on an HP 5890 GC (Agilent, USA), equipped
with a three-way glass splitter separating the gas flow post column into the FID and the collector. An
RTX-5 column, 30 m × 0.53 mm id × 5 µm film (Restek, Bellefonte, PA, USA) was used. Samples of 3
µL were injected in splitless mode (1 min) and helium was used as the carrier gas. A custom-made
manual fraction collector was used, with samples collected in glass capillaries (100 × 1.55 mm id,
Hirschmann Laborgeräte, Eberstadt, Germany) positioned in an aluminium holder submerged in a dry
ice/acetone bath. All fractions were eluted with dichloromethane and stored at −20 ◦C until used for
microderivatisation experiments [26].

GC-EAD data were recorded using an Agilent 6890 GC equipped with an identical column as
the GC-MS and a flame ionization detector (FID) using helium as carrier gas. A GC effluent splitter
(split ratio 1:1) was used to split the flow to the FID and EAD. The split for EAD was passed through a
Syntech effluent conditioner (Syntech, Buchenbach, Germany) containing a heated transfer line, with
the outlet placed in a purified and humidified airstream, where the electrodes holding the antenna
were presented. For each EAD run, an excised antenna with the tip cut off, was mounted on a holder
consisting of two electrodes using electrode gel. The electrode was connected to a PC via a serial
Syntech intelligent data acquisition controller (IDAC) interface for simultaneous recording of the FID
and EAD signals in the Syntech software package.

Solvents for extractions and purifications were of HPLC grade.

3.2. Plant Material and Insects

All plants and insects were collected in June over four years (2016–2019) at various field locations
in Sweden. Ophrys insectifera were sourced from several populations across the central parts of Öland.
Flowers were kept in cooler boxes (ca. 4 ◦C) while transported to the laboratory, where they were
either sampled with solid-phase microextraction (SPME), extracted with hexane, dichloromethane
or methanol, or kept as baiting flowers to collect male insects. Male Argogorytes mystaceus were
collected from O. insectifera flowers on stems (20 flowers) near Torslunda, Öland or near Södertälje,
Södermanland. Female Argogorytes fargeii were collected from food plants, Pastinaca sativa, near
Långöre, Öland.
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3.3. Extraction and Isolation

Flowers for SPME were enclosed in oven bags (Multix 25 cm × 38 cm, McPherson’s Limited,
Kingsgrove, NSW, Australia) and sampled for 24 h (DVB/CAR/PDMS, Supelco, Bellefonte, PA, USA) at
room temperature. For solvent extractions, labella were removed and batches of 20 were extracted in
each solvent (ca. 1 mL) for 48 h. The extracts were concentrated under a gentle stream of nitrogen at
room temperature to a final volume of ca. 0.1 mL, stored at −20 ◦C and subsequently used for GC-MS
and GC-EAD analyses. Female A. fargeii were extracted in dichloromethane (ca. 0.5 mL) for 48 h. The
extracts were concentrated and treated as for the floral extracts.

3.4. Structure Elucidations of Alkenes

From a concentrated dichloromethane extract of a female A. fargeii, the two fractions containing
C15-alkenes and C17-alkenes were isolated by semi-preparative GC. Each fraction, in hexane (30 µL),
was treated with DMDS (50 µL) and iodine in diethyl ether (5 µL, 60 mg/mL). The reaction mixtures
were left at 40 ◦C in vials over night before being washed with sodium bisulphite (5%) and concentrated
to ca. 20 µL under nitrogen before being analysed by GC-MS [41]. The fraction containing C15-alkenes
contained two compounds, with characteristic ions for 6-pentadecene (M = 304, fragments m/z = 131,
173) and 7-pentadecene (M = 304, fragments m/z = 145, 159). The fraction containing C17-alkenes
contained one monoene and one diene, with characteristic ions for 8-heptadecene (M = 332, fragments
m/z = 159, 173, also present in O. insectifera) and 6,9-heptadecene (M = 362, fragments m/z = 131, 155,
159, 183, 203 and 231) [42].

3.5. Preparation of Alkenes

All alkenes apart from 7-pentadecene were prepared from the corresponding C16- and
C18-carboxylic acids (oleic acid, linoleic acid, palmitoleic acid) via a modified Barton reductive
decarboxylation [43]. 7-Pentadecene was synthesised via 7-pentadecyne, prepared from
1-bromoheptyne and octylmagnesium chloride [44]. The alkyne was partially reduced to the cis-alkene
in a low yield by the method of Obora et al. [45], although in amounts sufficient to our needs.

Supplementary Materials: Supplementary materials (NMR spectra for all semiochemicals) can be found at
http://www.mdpi.com/1422-0067/21/2/620/s1.
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Abbreviations

EAG Electroantennography
GC Gas chromatography
EAD Electroantennographic detection
SAD Stearoyl-acyl carrier protein desaturase
ACP Acyl-carrier protein
EIMS Electron impact mass spectrometry
GCMS Gas chromatography mass spectrometry
NMR Nuclear magnetic resonance
FID Flame ionization detector
HPLC High-pressure liquid chromatography
SPME Solid-phase microextraction
DVB Divinyl benzene
CAR Carboxen
PDMS Polydimethylsiloxane
DMDS Dimethyl disulphide
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