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Summary

� The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-RELATED (CLE) pep-

tide ligands in connection with their receptors are important players in cell-to-cell communica-

tions in plants. Here, we investigated the function of the Populus CLV3/ESR-RELATED 47

(PttCLE47) gene during secondary growth and wood formation in hybrid aspen (Populus

tremula 9 tremuloides) using an RNA interference (RNAi) approach.
� Expression of PttCLE47 peaks in the vascular cambium. Silencing of the PttCLE47 gene

expression affected lateral expansion of stems and decreased apical height growth and leaf

size.
� In particular, PttCLE47 RNAi trees exhibited a narrower secondary xylem zone with less

xylem cells/cell file. The reduced radial growth phenotype also correlated with a reduced

number of cambial cell layers. In agreement with these results, expression of several cambial

regulator genes was downregulated in the stems of the transgenic trees in comparison with

controls.
� Altogether, these results suggest that the PttCLE47 gene is a major positive regulator of

cambial activity in hybrid aspen, mainly promoting the production of secondary xylem. Fur-

thermore, in contrast to previously characterized CLE genes expressed in the wood-forming

zone, PttCLE47 appears to be active at its site of expression.

Introduction

In plants, peptide-receptor signalling modules have important
roles in mediating cell-to-cell communications and interactions
during growth, development, and responses to environmental
stimuli. One of the best-studied gene families encoding such
small peptide ligands is the CLAVATA3 (CLV3)/EMBRYO
SURROUNDING REGION (ESR)-RELATED (CLE) gene fam-
ily (Clark et al., 1995; Fletcher et al., 1999). CLE genes encode
small proteins (c. 60–120 aa), which carry an N-terminal signal
peptide and a C-terminal conserved CLE peptide domain of
length 12–13 aa (Oelkers et al., 2008; Ohyama et al., 2008,
2009). The CLE peptide domain is excised from its prepropep-
tide by serine proteases and carboxypeptidases, and posttransla-
tionally modified (i.e. hydroxylation and arabinosylation) to
become biologically active (Fiers et al., 2005, 2006; Ito et al.,
2006; Ni & Clark, 2006; Ohyama et al., 2008, 2009; Ni et al.,

2011). In addition, the signal peptide is essential for the release
of the active CLE peptide into the extracellular space, where it
functions (Rojo et al., 2002).

In Arabidopsis thaliana, CLE genes are expressed with different
tissue specificities and mainly interact with the plasma-mem-
brane-associated LEUCINE-RICH REPEAT RECEPTOR-
LIKE KINASEs (LRR-RLKs) (Clark et al., 1995; Sharma et al.,
2003; Hirakawa et al., 2008; Jun et al., 2010). Prominent exam-
ples from this peptide family include CLV3 and CLE40, which
are involved in the regulation of stem cell pools in the shoot api-
cal meristem and root apical meristem, respectively, in
Arabidopsis (Clark et al., 1995; Brand et al., 2000; Schoof et al.,
2000; Stahl & Simon, 2009; Stahl et al., 2009). Other than their
roles in stem cell homoeostasis in apical meristems, CLE genes
also regulate a variety of other biological processes, such as expan-
sion of lateral roots in response to nitrogen availability (Araya
et al., 2014), embryo and endosperm development (Fiume &
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Fletcher, 2012), phloem initiation (Ren et al., 2019) and pro-
tophloem development (Rodriguez-Villalon et al., 2014), pro-
toxylem development (Kondo et al., 2011; Qian et al., 2018),
stomatal development (Qian et al., 2018) and closure upon dehy-
dration stress (Takahashi et al., 2018; Zhang et al., 2018), pol-
len–pistil interactions (Endo et al., 2013), and autoregulation of
nodulation (Okamoto et al., 2009, 2013; Mortier et al., 2010;
Reid et al., 2011).

The secondary xylem (wood) and the secondary phloem of the
plants are generated by the proliferative activity of the vascular
cambium – a secondary meristematic tissue that contains the vas-
cular stem cells. It has been shown that, similar to the apical
meristems, the activity of the vascular stem cells in the procam-
bium/cambium in Arabidopsis stems and hypocotyls is also medi-
ated by an interaction between the CLE peptide TRACHEARY
ELEMENT DIFFERENTIATION INHIBITORY FACTOR
(TDIF)/CLE41/CLE44 and the LRR-RLK PHLOEM
INTERCALATED WITH XYLEM (PXY)/TDIF RECEPTOR
(TDR) (Ito et al., 2006; Hirakawa et al., 2008; Etchells &
Turner, 2010). CLE41 and CLE44 genes are expressed in the
phloem tissues and neighbouring cells in the inflorescence stems
and hypocotyl (Hirakawa et al., 2008; Etchells & Turner, 2010).
The secreted TDIF/CLE41/CLE44 peptide is perceived by
TDR/PXY, which shows an expression maximum in procam-
bium and in the xylem side of the cambium (i.e. in the stem cell
organizer) (Hirakawa et al., 2008; Etchells & Turner, 2010;
Smetana et al., 2019). This interaction promotes the vascular cell
divisions, suppresses the xylem cell specification, and controls the
patterning of the vascular tissues (Ito et al., 2006; Hirakawa et al.,
2008, 2010; Etchells & Turner, 2010; Etchells et al., 2012,
2013).

Reports suggested that the TDIF/CLE41/CLE44-PXY/TDR
signalling module is evolutionarily conserved in regulating the
secondary growth and wood formation of Populus trees (Etchells
et al., 2015; Kucukoglu et al., 2017). Aside from TDIF/CLE41/
CLE44-like genes, a recent study showed that the xylem-pro-
duced peptide PtrCLE20 negatively regulates cambial activity in
Populus (Zhu et al., 2019). Poplars are deciduous, hardwood trees
and widely cultivated world-wide as bioenergy feed stocks and
for production of pulp, paper, packing, and woody material.
Accompanied by the available sequenced genome (Tuskan et al.,
2006), transformation and in vitro propagation techniques
(Nilsson et al., 1992), as well as transcriptomic resources
(Schrader et al., 2004; Sundell et al., 2017), it is one of the best
model plants in understanding the molecular basis of tree growth
and development, particularly the formation of wood. Other
than the studies already mentioned, functional information
regarding the roles of different CLE peptides in this important
tree species is scarce. This prompted us to investigate the function
of the cambium-expressed CLE gene PttCLE47in hybrid aspen.
Our results demonstrate that PttCLE47 has a role in controlling
stem secondary growth by positively regulating the cell division
activity of the vascular cambium in trees at its site of expression.
It also affects overall growth and leaf size.

Materials and Methods

Plant material and growth conditions

Transgenic and wild-type (WT) hybrid aspen (Populus tremula
9 tremuloides Michx, clone T89) plants were propagated from
cuttings in tissue culture for 4 wk and transferred to soil. For
phenotypic characterization they were grown under long day
conditions (18 h : 6 h, light : dark, 22°C : 18°C) with 60–70%
humidity for 3 months. During this period, they were rotated
weekly to randomize environmental effects. Plant growth was
assessed by measuring plant height, number of internodes, and
stem width once a week for 6 wk. Height of the trees was mea-
sured from the shoot tips to the bottom of the stems. Stem
width was measured and followed in the first visible internodes
at the bottom of trees, 20 cm above the soil level. The number
of internodes and leaves was counted omitting 3 cm from the
shoot tips and a 20 cm long section above the soil (this part of
the stem normally grows inside the tissue culture media during
clonal propagation of trees, and upon transferring the plants to
soil it grows slightly atypical with smaller, nonexpanding leaves
independent of genotype; hence, it is omitted). In order to cal-
culate the leaf areas, leaves (numbers 7 and 21, counted 3 cm
below the shoot tip) were scanned and leaf area was calculated
using IMAGEJ software (http://imagej.net). All statistical analyses
were performed by GraphPad PRISM v.8, using recommended
tests. Phenotypes were compared using either an unpaired para-
metric t-test (to compare means of two groups at a time; i.e.
WT vs RNA interference (RNAi)-n in 1 wk) by assuming a
Gaussian distribution with Welch’s correction (for unequal vari-
ance) or a Holm–Sidak multiple comparisons t-test (to compare
groups of means within each of the rows of data at a time; i.e.
WT vs RNAi-n over multiple weeks of growth), without assum-
ing consistent standard deviations.

Cloning and transformation of hybrid aspen

The gene accession no. for PtCLE47 gene is Potri.017G074600.1
(Han et al., 2016). It was also annotated as PtrCLE25C (Zhu
et al., 2019). Peptide sequences for PtCLE47 and AtCLE25
(AT3G28455) were obtained from Zhu et al. (2019). For RNAi
plants, a 155 bp long RNAi fragment (also targeting the putative
predicted active PttCLE47 peptide domain) was amplified from
hybrid aspen stem complementary DNA (cDNA) using Phusion
High-Fidelity DNA Polymerase (Thermo Fisher Scientific,
Waltham, MA, USA). The RNAi fragment was cloned via the
Gateway Technology (Thermo Fisher Scientific) first into
pDONR201 and further transferred into pK7GWIWG2 (I)
(Karimi et al., 2002), using the Escherichia coli bacterial strain
DH5a. The binary vector was transformed into Agrobacterium
tumefaciens C58 strain GV3101 pMP90RK, and hybrid aspen
trees were transformed as described previously (Nilsson et al.,
1992). The primers utilized are listed in Supporting Information
Table S1.
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Gene expression analysis

For in silico gene expression analyses, expression data of
PtCLE47, PtCLE24 (Potri.008G191500.1) and PtCLE28
(Potri.010G039800.1) were extracted from the ASPWOOD
database (http://aspwood.popgenie.org; Sundell et al., 2017). For
transcriptional analyses of PttCLE47 in different tissues of hybrid
aspen, a cDNA sample set from 6-month-old trees described pre-
viously by Kucukoglu et al. (2017) was used. For subsequent gene
expression analyses, stem segments from 18-d-old internodes of
transgenic PttCLE47 RNAi trees and corresponding 18 d-old
WT internodes were harvested. As a control, stem segments from
11-d-old internodes of WT trees, which displayed similar thick-
ness to 18 d-old internodes of PttCLE47 RNAi trees, were also
collected. For expression analysis in stocks segments of grafted
plants, internodes 5 cm below the graft junctions were sampled.
Total RNA was extracted using the cetyl trimethylammonium
bromide method (Chang et al., 1993). Following the extraction,
total RNA was treated with DNAse using the Ambion DNA-
freeTM DNA Removal Kit (Thermo Fisher Scientific) and cDNA
was synthesized using the iScriptTM cDNA Synthesis Kit (Bio-
Rad) according to the manufacturer’s instructions. Quantitative
PCR (qPCR) analysis was performed in 10 µl reactions using the
LightCycler® 480 SYBR Green I Master (Roche Life Science) in
LightCycler® 480 instrument II (Roche Life Science). Each sam-
ple was analysed by three technical replicates. Detected expres-
sion levels were normalized against UBQ or the geometric mean
of expression for four reference genes (18S, UBQ, 50S, TIP41-
like; Livak & Schmittgen, 2001). All statistical analyses were per-
formed using GraphPad PRISM v.8 for Mac OS X (GraphPad
Inc.). Expression data were compared using an unpaired para-
metric t-test (to compare means of two groups at a time, i.e. WT
vs RNAi-n) by assuming a Gaussian distribution with Welch’s
correction (for unequal variance). The primers utilized are listed
in Table S1.

Histology

For histological analysis, stem segments from 18-d-old intern-
odes of transgenic PttCLE47 RNAi trees and corresponding 18-
d-old WT internodes were harvested. Stem segments from 11-d-
old internodes of WT trees, which displayed similar thickness to
18-d-old internodes of PttCLE47 RNAi trees, were used as a con-
trol. These samples were fixed in a 5% formaldehyde, 5% acetic
acid, and 50% ethanol mixture, gradually dehydrated, and
embedded in Leica HistoResin (Leica Biosystems, Wetzlar, Ger-
many). Thin cross-sections (5 lm) were cut using a Leica RM
2055 rotary microtome (Leica Biosystems) and stained with tolu-
idine blue and ruthenium red. Thick cross-sections (100 lm)
were cut using a vibrating-blade microtome (Microm Microtech
France, Brignais, France) and stained with safranin and Alcian
blue, Bright-field images were taken using a Leica DM2500 opti-
cal microscope (Leica Microsystems, Wetzlar, Germany).
Secondary xylem and secondary phloem widths were measured
using the IMAGEJ software (http://imagej.net), from the border of
the cambium to the outermost cells of the pith and phloem

fibres, respectively. Bark size was measured from the border of
the cambium to the outermost cells of the cortex. The number of
undifferentiated cambial cells and secondary xylem cells was cal-
culated by counting 10 cell files and three cell files, respectively,
from three trees per line. All statistical analyses were performed
using GraphPad PRISM v.8. Tissue thicknesses were compared
using a Holm–Sidak multiple comparisons t-test (to compare
groups of means within each rows of data at a time, i.e. WT-
18D vs RNAi-n-18D for multiple characteristics, including
thickness of secondary xylem, secondary phloem, and bark),
without assuming consistent standard deviations. The number of
cambial cells was compared using an unpaired parametric t-test
(to compare means of two groups at a time, i.e. WT vs RNAi-n)
by assuming a Gaussian distribution with Welch’s correction (for
unequal variance).

Grafting

Grafting experiments were performed as previously described
(Nieminen et al., 2008). Briefly, transgenic and WT hybrid
aspens were propagated from cuttings in tissue culture for 4 wk
and transferred to soil. After 50 d, 5 cm long scions were excised
and trimmed into a triangular shape. Simultaneously, longitudi-
nal splits were made in stock stems, and trimmed scions were
inserted. The scion–stock graft junction was secured with
parafilm, and grafted plants were covered with plastic bags until
after the graft junction to prevent drying. Bags were removed
after 2 wk, when grafted scions started producing new leaves.
Plant growth was assessed by measuring stem girths 5 cm below
the graft junctions for 6 wk. Statistical analysis was performed
using GraphPad PRISM v.8. Stem widths of stocks were compared
using an unpaired parametric t-test (to compare means of two
groups at a time, i.e. WT/WT vs RNAi/RNAi) by assuming a
Gaussian distribution with Welch’s correction (for unequal vari-
ance).

Results

PttCLE47 is highly expressed in the cambium of hybrid
aspen

The Populus trichocarpa genome encodes 52 CLE genes (Zhu
et al., 2019), hereafter referred to as PtCLEs (for P. trichocarpa)
or PttCLEs (for P. tremula 9 tremuloides, hybrid aspen). Recent
studies indicated that 33 PtCLEs are expressed, with various levels
of specificity, in the Populus stem, including secondary phloem,
vascular cambium, expanding xylem, and maturing lignified
xylem tissues (Han et al., 2016; Zhu et al., 2019). This suggests
that members of the PtCLE family may potentially regulate a
diversity of functions during vascular development in Populus
trees, such as cambial activity, specification of xylem and phloem
cell types, or secondary cell wall formation. Based on these gene
expression profiles (Han et al., 2016; Zhu et al., 2019), we
decided to focus on the previously uncharacterized PtCLE47
gene, which shows a strong expression gradient over the vascular
cambium (Fig. 1a). We verified the transcript levels of PttCLE47
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via qPCR analysis in different tissues of hybrid aspen trees,
including shoot apices, leaves, stems, phloem-cambium and
xylem tissues, as well as roots (Fig. 1b). PttCLE47 transcript
levels were most abundant in the phloem-cambium samples,
which is in agreement with the RNA-sequencing data (Fig. 1a),
suggesting that PttCLE47 may be involved in the regulation of
vascular development in hybrid aspen. A lower but detectable
PttCLE47 expression was also observed in shoot apices, young
leaves, young stems, and roots (Fig. 1b).

Previous phylogenetic analyses (Han et al., 2016; Zhu et al.,
2019) indicated that the PtCLE47 gene encodes a small A-type
peptide (subtype III) similar to Arabidopsis CLE25 (Fig. 1c). A-
type peptides include CLV3 and similar peptides based on
sequence and functional similarity, whereas B-type peptides con-
tain only TDIF/CLE41/CLE44-like peptides (Whitford et al.,
2008). CLE25 is expressed in the vascular tissues of the shoot,
root, and young leaf primordia in Arabidopsis (Jun et al., 2010;
Takahashi et al., 2018), consistent with our findings. Interest-
ingly, though, when investigated in detail, CLE25 expression was
found to follow the development of the phloem cell lineage dur-
ing vascular development (Ren et al., 2019). Moreover, knockout
mutants of cle25 cause delayed protophloem differentiation in
the primary roots of Arabidopsis, which suggests that CLE25
mainly regulates phloem formation. Though the expression of
PtCLE47 peaks over the vascular cambium (Fig. 1a), its closest
homologues PtCLE24 and PtCLE28 (Han et al., 2016) display
slightly shifted expression patterns towards the differentiating

phloem in trees (Fig. 1a). Therefore, whereas the PtCLE24 and
PtCLE28 genes may represent the functional orthologues of the
CLE25 gene in Populus, the PtCLE47 gene may have acquired a
different function during Populus tree evolution.

Silencing of PttCLE47 affects apical/lateral growth, and leaf
size in hybrid aspen

To investigate the function of PttCLE47 in trees, we gener-
ated transgenic hybrid aspen trees with RNAi-mediated gene-
silencing of PttCLE47 gene expression (Figs 2, S1). A total of
14 transgenic lines were generated, and four lines (lines 1, 4,
8, and 13) with reduced expression of PttCLE47 compared
with WT trees were chosen for further analysis (Fig. 2a).
qPCR analysis of PttCLE47 transcript levels in stems of these
four lines displayed that the expression of PttCLE47 was
reduced to 7–17% of the WT levels. In Populus, PtCLE28
and PtCLE24 genes display high sequence similarity to
PtCLE47 (Han et al., 2016). Expressions of these two genes
were affected only minimally in the PttCLE47 RNAi plants
(Fig. S2a,b), suggesting that the PttCLE47 RNAi construct is
specific and does not target similar genes.

The PttCLE47 RNAi lines and corresponding WT trees were
propagated from in vitro cuttings and grown on soil under
glasshouse conditions. After 10 wk of growth, transgenic trees
displayed a small but significant reduction in height growth (Figs
2b,c, S1a,b), and had thinner trunks (Figs 2d, S1c) in

(a)

(b) (c)

Fig. 1 PttCLE47 is highly expressed in the
cambial zone of Populus. (a) Smoothed and
micrometre-scaled expression of PtCLE47
(black), PtCLE24 (turquoise), and PtCLE28
(brown) as retrieved from the AspWood
RNA-sequencing database (http://aspwood.
popgenie.org). The y-axis shows average
variance-stabilizing transformation (VST)
expression, and the x-axis shows tangential
samples over the wood-forming zone (T1-
nn). Secondary phloem, cambium,
expanding xylem, and lignified xylem are
marked. (b) Relative transcript abundance of
PttCLE47. Expression levels were quantified
via quantitative PCR in different tissues of
hybrid aspen and normalized against UBQ
reference gene expression. Average
expression of PttCLE47 in all samples is
equalized to one. Values are means� SE
(n = 3). (c) Sequence alignment of AtCLE25
and PtCLE47 peptides. Asterisks show
conserved amino acid sequences. At,
Arabidopsis thaliana; Pt, Populus
trichocarpa.
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comparison with WT trees. However, internode numbers of
PttCLE47 RNAi plants remained unchanged (Figs 2e, S1d), sug-
gesting that the difference in height growth could be related to
the differences in internode lengths rather than the initiation rate
of leaves at the shoot apex. Taken together, these results suggest
that PttCLE47 promotes both apical and lateral growth in hybrid
aspen.

We also observed a difference between the sizes of the
PttCLE47 RNAi and WT leaves (Fig. 3a). The decrease in
the leaf size of the PttCLE47 RNAi trees was apparent both
in young expanding leaves (leaf number 7) and fully grown
leaves (leaf number 21), resulting in c. 40–50% reductions in
final leaf size (Fig. 3b). Although this aspect has not been
investigated further, it is worth mentioning that the shape of
the PttCLE47 RNAi leaves was also slightly different than
WT leaves, where RNAi leaves displayed more lobes in com-
parison. In accordance with a role in controlling leaf growth
and shape, PttCLE47 is also expressed in the young expanding
leaves (Fig. 1b).

Reduced lateral growth of PttCLE47 RNAi trees is due to
local effects in the stem

Even though our phenotyping results suggested that PttCLE47
RNAi and WT plants display similar shoot apical meristem activ-
ities (i.e. initiation rate of leaves at the shoot apex each week were
not changed and, as a result, WT and RNAi plants display similar
numbers of internodes; Figs 2e, S1d), leaves of the transgenic
trees were smaller than those of WT trees (Fig. 3). This may have
an effect on the total photosynthetic area of RNAi trees and, in
turn, reduce the amount of carbon available for growth and wood
formation. Therefore, to exclude the effects of reduced leaf area
on the radial growth of PttCLE47 RNAi trees, we performed a
reciprocal grafting experiment (Figs 4a, S3a). For this purpose,
one transgenic line (line 8) was reciprocally grafted to WT, and
lateral thickening of stocks below the graft junctions was moni-
tored. At 8 wk after grafting, as expected, stocks of WT/WT
(scion/stock) were still significantly thicker than stocks of RNAi/
RNAi (Fig. 4a). This is consistent with the thin-stemmed

(a)

(b)

(c)

(d)

(e)

Fig. 2 PttCLE47 RNA interference (RNAi)
transgenic hybrid aspen trees display reduced
growth. (a) RNAi-mediated downregulation
levels of the PttCLE47 gene in transgenic
hybrid aspen plants. Relative transcript
abundance of PttCLE47 was quantified via
quantitative PCR and normalized against
geometric means of the expression of four
reference genes (18S, UBQ, 50S, and Tip41-

like). Values are means� SE (n = 3). (b, c)
PttCLE47 RNAi trees are shorter in
comparison with wild-type (WT) plants: (b)
WT (left) and PttCLE47 RNAi trees (right);
(c) plant height for 10-wk-old plants. (d)
PttCLE47 RNAi trees are thinner in
comparison with WT plants. Stem width for
10-wk-old plants. (e) Internode numbers for
10-wk-old plants. Values are means� SE
(n = 7–10 for PttCLE47 RNAi plants, n = 6 for
WT). Statistical significances are determined
using an unpaired parametric t-test with
Welch’s correction. t-test significance for
different means: **, P < 0.01; ***, P < 0.001.

� 2019 The Authors

New Phytologist� 2019 New Phytologist Trust
New Phytologist (2020) 226: 75–85

www.newphytologist.com

New
Phytologist Research 79



phenotype of the ungrafted PttCLE47 RNAi plants (Figs 2d,
S1c). WT/RNAi stocks also displayed compromised stem thick-
ening in comparison with WT/WT stocks, suggesting that WT
scions could only partially rescue the thin-stemmed phenotype of
RNAi stocks. Thus, our data showed that reduced PttCLE47
activity during secondary growth rather than reduced leaf size is
the major cause of the thin-stemmed phenotype of the mutant
trees. Interestingly, RNAi/WT stocks were also thinner than WT/
WT stocks after this growth period, which may be caused by the
systemic spread of the RNAi signals across the graft junction from
transgenic scions to nontransgenic stocks (Palauqui et al., 1997;
Voinnet & Baulcombe, 1997; Han & Grierson, 2008). This
hypothesis was supported by the fact that expression of PttCLE47
was downregulated in stocks of RNAi/WT plants compared with
stocks of WT/WT plants (Fig. S3b).

Downregulation of PttCLE47 causes reduced wood forma-
tion in hybrid aspen

Next, we investigated the effects of PttCLE47 downregulation on
vascular development by histological comparison of cross-sec-
tions from stems of PttCLE47 RNAi and WT trees (Fig. 4). Our
anatomical observations (Fig. 4d) and measurements of the sec-
ondary vascular tissues (Fig. 4b) revealed that, in comparison
with the WT stems of similar age (18-d-old internodes, denoted

as WT-18D), stems of the transgenic trees (18-d-old internodes,
denoted as RNAi-18D) exhibited a narrower secondary xylem
zone (Fig. 4b,d) with less xylem cells per radial cell file (Fig. 4c).
The secondary xylem size of the transgenic trees (18-d-old intern-
odes, denoted as RNAi-18D) was similar to that of WT trees
with an earlier developmental stage (11-d-old internodes,
denoted as WT-11D; Fig. 4b,d). On the other hand, the size of
the secondary phloem in PttCLE47 RNAi trees remained unaf-
fected (Fig. 4b,d). Interestingly, the development of the cortex
region in the transgenic trees was also impeded, which con-
tributed to the thin-stemmed phenotype (denoted as bark;
Fig. 4b). These results suggest that PttCLE47 acts mainly as a
promoter of wood formation in hybrid aspen.

Downregulation of PttCLE47 causes reduced cambial activ-
ity in hybrid aspen

As the number of new xylem and phloem cells is determined by
the periclinal divisions of the cambial cells, we next studied the
structure of the cambial zone in the stems of PttCLE47 RNAi
and WT trees (Fig. 5). The cambial cells, localized between the
differentiating xylem and phloem cells, can be observed as flat,
thin-walled files of cells. Our data demonstrated that, in the
PttCLE47 RNAi trees, the vascular cambium consists of fewer cell
layers than in WT trees of similar age (Fig. 5a,b). Altogether,

(a)

(b)

Fig. 3 PttCLE47 RNA interference (RNAi)
transgenic hybrid aspen trees display reduced
leaf size. (a) Leaves from wild-type (WT; left)
and PttCLE47 RNAi trees (right). (b) Leaf
areas fromWT and transgenic plants. Values
are means� SE (n = 7–8 for PttCLE47 RNAi

plants, n = 12 for WT plants). Statistical
significances are determined using the Holm–
Sidak multiple comparisons t-test, without
assuming consistent SD. t-test significance
for different means: **, P < 0.01; ***,
P < 0.001.
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these results indicate that PttCLE47 is a positive regulator of
cambial activity in hybrid aspen, and mainly promotes the sec-
ondary xylem production.

To further characterize the molecular function of PttCLE47,
we studied the expression of important cambial regulator genes
in the stems of PttCLE47 RNAi and WT trees (Fig. 5c). The
expression levels of the class III homeodomain-leucine zipper (HD-
Zip III) transcription factor genes PttHB4 (Zhu et al., 2018) and
PttHB7 (Zhu et al., 2013) was dramatically reduced in the stems
of RNAi lines, both with respect to similar age and developmental
stage of WT stems (Fig. 5c). Additionally, expression of Populus
WUSCHEL-RELATED HOMEOBOX4-like genes (PttWOX4a/
b; Kucukoglu et al., 2017), which are positive regulators of cam-
bial activity and identity in Populus, and their upstream regulator
PttPXYa (Etchells et al., 2015; Kucukoglu et al., 2017), were also
reduced in the stems of transgenic plants (Fig. 5c). Thus, these
results suggest that PttCLE47 could act upstream of these HD-
Zip IIIs and the PXY-WOX4 module in hybrid aspen.

Discussion

Previous work on the roles of CLE peptides has been mainly lim-
ited to Arabidopsis, and only little is known about their functions

in different plant species, including trees. This motivated us to
investigate the role of PttCLE47, a putative peptide-encoding
gene, in hybrid aspen. We showed that PttCLE47 is predomi-
nantly expressed in the vascular tissues, particularly in the vascu-
lar cambium of trees. To analyse the function of the PttCLE47
gene, we generated knockdown trees with decreased expression of
the PttCLE47 gene. Repression of this gene led to many defects
in the mutant plants, including reduced apical growth and leaf
size and impaired radial growth. Through grafting, we showed
that reduction in the leaf size of the transgenic plants cannot
explain the decrease in the lateral growth. A detailed anatomical
examination revealed that RNAi plants had reduced secondary
xylem formation because the vascular cambium of these plants
contains fewer cell layers than that of WT. Altogether, our results
demonstrated that PttCLE47 gene is a major positive regulator of
cambial activity and secondary xylem formation in hybrid aspen.
Notably, the action of PttCLE47, likely through the active
PttCLE47 peptide, seems to be cell autonomous for the vascular
cambium, functioning locally at the site of expression. Although
most CLE peptides act noncell autonomously – that is, CLV3
(Clark et al., 1995; Brand et al., 2000; Schoof et al., 2000),
CLE40 (Stahl & Simon, 2009; Stahl et al., 2009), and TDIF/
CLE41/CLE44 (Ito et al., 2006; Hirakawa et al., 2008; Ohyama

(a)

(d)

(b) (c)

Fig. 4 PttCLE47 RNA interference (RNAi) transgenic hybrid aspen trees display reduced secondary xylem development. (a) Reciprocal grafts between wild-
type (WT) and PttCLE47 RNAi trees (line 8). Graph shows the stock width 8 wk after the graft junction was formed. The WT scion only partially
complements the RNAi stocks. Values are means� SE (n = 7–11). (b) Total widths of the secondary xylem, secondary phloem, and bark. Measurements
were taken from the 18-d-old or 11-d-old internodes (from the shoot tips) Values are means� SE (n = 3). (c) Number of xylem cells/cell file in 18-d-old
internodes fromWT and PttCLE47 RNAi plants. Values are means� SE (n = 9, three biological replicates/line). (d) Anatomical comparison betweenWT
and PttCLE47 RNAi plants. Cross-sections were taken from the 18-d-old internodes of the PttCLE47 RNAi plants and corresponding WT plants (18-d-old
stem segments displaying similar developmental age, 11-d-old stem segments displaying similar developmental stage/size). Double-sided arrows (white)
indicate secondary xylem regions. Bars, 500 lm. Statistical significances are determined using an unpaired parametric t-test with Welch’s correction for (a,
c) and the Holm–Sidak multiple comparisons t-test, without assuming consistent SD, for (b). t-test significance for different means: **, P < 0.01; ***,
P < 0.001. 18D, 18 d old; 11D, 11 d old; Xm, secondary xylem.
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et al., 2008; Etchells & Turner, 2010) – it has also previously
been observed that both the ligand CLE45 and the receptor
BARELY ANY MERISTEM 3 are active in the same tissue in the
primary roots to control protophloem development (Rodriguez-
Villalon et al., 2014). Therefore, a similar mechanism may be

active here as well. Notably, in the PttCLE47 RNAi trees, size of
the cortex region was also slightly reduced compared with that of
WT trees (Fig. 4b), which was partly responsible for the thin-
stemmed phenotype. Therefore, it will be interesting in the
future to study the expression of PttCLE47 in the cortex to

(a) (b)

(c)

Fig. 5 Reduced secondary xylem size results from the reduced cambial activity in PttCLE47 RNA interference (RNAi) transgenic hybrid aspen trees. (a)
Anatomical comparison between cambiums of wild-type (WT) and PttCLE47 RNAi plants. Cross-sections were taken from 18-d-old transgenic stems and
corresponding WT plants (18-d-old stem segments displaying similar developmental age). Bars, 100 lm. Double-sided arrows (white) indicate cambial
region. (b) Number of cambium cells/cell file in 18-d-old internodes fromWT and PttCLE47 RNAi plants. Values are means� SE (n = 30, three biological
replicates/line). (c) Cambial regulator genes are downregulated in PttCLE47 RNAi lines. Relative transcript abundance of PttHB4, PttHB7, PttWOX4a/b,
and PttPXYawere quantified via quantitative PCR and normalized against geometric means of the expression of four reference genes (18S, UBQ, 50S, and
Tip41-like). Values are means� SE (n = 3). Statistical significances are determined using an unpaired parametric t-test with Welch’s correction against WT-
18D. t-test significance for different means: *, P < 0.05; **, P < 0.01; ***, P < 0.001. Cm, vascular cambium; 18D, 18 d old; 11D, 11 d old.

Fig. 6 Model for regulation of cambial activity through CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-RELATED (CLE) peptides in
Populus. Phloem produced PttCLE41, and cambial-expressed PttCLE47 regulates cambial activity (cambial cell proliferation) positively in Populus. Xylem-
derived PttCLE20 inhibits cambial activity negatively in Populus. Secondary phloem is indicated in orange, vascular cambium is indicated in blue, and
secondary xylem is indicated in green. Arrows show peptide movement and positive or negative function in regulating cambial cell proliferation.
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determine if PttCLE47 peptide functions locally in this region as
it does in the vascular cambium, or if it works noncell
autonomously from the vascular cambium to affect the cortex
development.

Previous phylogenetic analysis revealed that PtCLE47 together
with its homologous genes PtCLE24 and PtCLE28 groups with
Arabidopsis CLE25 gene (Han et al., 2016). CLE25 mainly regu-
lates phloem formation in Arabidopsis and is expressed in the
phloem cell lineage of stems and roots (Ren et al., 2019). Inter-
estingly, our results showed that, in comparison with developing
phloem-expressed PtCLE24 and PtCLE28, expression of
PtCLE47 is diverged and highest in the vascular cambium of
trees. This points to the fact that true orthologues of CLE25 in
poplar are PtCLE24 and PtCLE28 genes. Analysis of the Populus
genome assembly provided evidence for two whole genome
duplication events: one as a result of the salicoid event roughly
65Ma, and an older eurosid duplication event, which coincided
with the divergence of Populus and Arabidopsis lineages (Tuskan
et al., 2006). These duplication events may have contributed to
the expansion of the CLE25 gene clade in poplar, subsequent
changes in gene expression patterns between PtCLE47 vs
PtCLE24 and PtCLE28, and rewiring of the gene regulatory net-
works downstream of these genes. As a result, this may have
caused the functional differentiation of PtCLE47 during evolu-
tion.

Previous studies using Populus as a model system for wood for-
mation identified some important regulators of cambial develop-
ment, including PtrHB4 (Zhu et al., 2018), PtrHB7 (Zhu et al.,
2013), PttWOX4a/b (Kucukoglu et al., 2017), and PttPXYa
(Etchells et al., 2015). Hence, we investigated the expressions of
these key players in our mutant trees. PtrHB4 encodes an HD-
Zip III transcription factor similar to PHABULOSA and
PHAVOLUTA in Arabidopsis (Zhu et al., 2018). In Arabidopsis,
HD-Zip IIIs have recently been shown to position and maintain
cambial stem cells (Smetana et al., 2019). In poplar, HD-Zip III
transcription factors are required for cambium development
(Robischon et al., 2011; Zhu et al., 2013, 2018). In particular,
PtrHB4 is critical for the formation of a closed vascular cambium
ring from fascicular and interfascicular cambium (Zhu et al.,
2018). Additionally, PtrHB7, a homologue of AtHB8, controls a
balanced differentiation between secondary xylem and secondary
phloem tissues during lateral growth in Populus, such that
PtrHB7-silenced plants display a reduction in xylem but increase
in phloem size (Zhu et al., 2013). Consistent with our mutant
phenotypes, the expressions of both PttHB7 and PttHB4 are
downregulated in the stems of RNAi trees, both in comparison
with WT stems at the same developmental stage or at the same
age. PttWOX4a/b and PttPXYa genes, which are both key regula-
tors of cambial activity and identity in Populus (Etchells et al.,
2015; Kucukoglu et al., 2017), also showed a modest but signifi-
cant downregulation in the stems of mutant trees. Taken
together, these results indicate that PttCLE47 might be part of a
complex network of regulators of cambium activity and sec-
ondary growth.

Finally, it appears that there are many CLE peptides that affect
cambial activity from different sides of the cambium, including

PttCLE41 on the phloem side (Etchells et al., 2015; Kucukoglu
et al., 2017), PttCLE20 on the xylem side (Zhu et al., 2019), and
PttCLE47 in the cambial zone itself (Fig. 6). Previously, it was
shown that, by overexpressing PttCLE41 and its receptor PttPXY
in their original expression domains, one can significantly
improve woody biomass production. Hence, our findings on the
proliferative role of another CLE peptide in regulating cambial
development and radial stem growth may contribute to the devel-
opment of more efficient plant biomass production systems if/
when used together with their signalling receptors. However, to
achieve this, a more detailed characterization is required to eluci-
date the exact mechanism of how PttCLE47 controls cambial
development in Populus.
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