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SUMMARY 
 
Production of rapeseed oil, rape methyl ester (RME) and ethanol fuel for heavy diesel engines 
can be carried out with different systems solutions, in which the choice of system is usually 
related to the scale of the production. The main purpose of this study was to analyse whether 
the use of a small-scale rapeseed oil, RME and ethanol fuel production system reduced the 
environmental load in comparison to a medium- and a large-scale system. To fulfil this 
purpose, a limited LCA, including air-emissions and energy requirements, was carried out for 
the three fuels and the three plant sizes. 
 
Four different methods to allocate the environmental burden between different products were 
compared: physical allocation according to the lower heat value in the products [MJ/kg], 
economic allocation according to the product prices [SEK/kg], no allocation and allocation 
with a system expansion so that rapemeal and distiller’s waste could replace soymeal mixed 
with soyoil and glycerine could replace glycerine produced from fossil raw material. The 
functional unit, to which the total environmental load was related, was 1.0 MJ of energy 
delivered on the engine shaft to the final consumer. Production of raw materials, cultivation, 
transport, fuel production and use of the fuels produced were included in the systems studied. 
 
The results for small-scale plants (physical allocation) are shown in Table I. It was also shown 
in the study that the differences in environmental impact and energy requirement between 
small-, medium- and large-scale systems were small or even negligible in most cases for all 
three fuels, except for the photochemical ozone creation potential (POCP) during ethanol fuel 
production. The longer transport distances to a certain degree outweighed the higher oil 
extraction efficiency, the higher energy efficiency and the more efficient use of machinery 
and buildings in the large-scale system. The dominating production step was the cultivation, 
in which production of fertilisers, followed by soil emissions and tractive power, made major 
contributions to the environmental load. 
 
Table I. Results for small-scale plants with physical allocation 
 Global warming 

potential 
[g CO2-eq/MJengine] 

Acidification 
potential 

[g SO2-eq/MJengine] 

Eutrophication 
potential 

[mg PO4
3--eq/MJengine]

Photochemical ozone 
creation potential 
[mg C2H4-eq/MJengine] 

Energy 
requirement 

[kJ/MJengine] 
Rapeseed oil 
RME 
Ethanol 

121 
127 
102 

1.94 
1.98 
1.16 

343 
351 
199 

26.1 
23.2 
99.9 

692 
846 
907 

 
The results were, however, largely dependent on the method used for allocation of the 
environmental burden between the products, i.e.: rapeseed oil and meal, RME; meal and 
glycerine; and ethanol fuel and distiller’s waste. The results were also dependent on 
uncertainty in input data, e.g. yield of rapeseed and wheat and use of fertilisers, and on 
alternative production strategies such as use of catalysts when the fuels produced are 
consumed, use of an ignition improver of biomass origin during production of ethanol fuel, or 
use of methanol with biomass origin during production of methanol for transesterification of 
rapeseed. 
 
The costs for production of the fuels in a small-scale plant from raw products grown on a 
small farm excl. EU area compensation were: rapeseed oil 0.85 SEK/MJengine; RME 1.07 
SEK/MJengine; and ethanol fuel 1.29 SEK/MJengine. The corresponding costs for production of 
the fuels in a large-scale plant from raw products grown on a large farm incl. EU area 
compensation were: rapeseed oil 0.33 SEK/MJengine; RME 0.35 SEK/MJengine; and ethanol fuel 
0.57 SEK/MJengine. 
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SAMMANFATTNING 
 
Rapsolja, rapsmetylester (RME) och etanolbränsle avsett för tunga diesel motorer kan 
framställas i olika produktionssystem, varvid valet av system bl.a. beror av i vilken 
storleksskala produktionen sker. Huvudsyftet med detta arbete var att göra en analytisk studie 
för att undersöka om småskalig produktion av rapsolja, RME och etanolbränsle kan minska 
miljöbelastningen i jämförelse med mellanskalig och storskalig produktion. För att uppfylla 
detta syfte gjordes en begränsad livscykelanalys (LCA) inkluderande luftföroreningar och 
energibehov för dessa tre bränslen i tre olika skalor. 
 
Dessutom jämfördes resultaten från fyra olika allokeringsmetoder: fysikalisk allokering med 
avseende på det effektiva värmevärdet [MJ/kg] hos produkterna, ekonomisk allokering med 
avseende på produkternas pris [SEK/kg], ingen allokering och allokering med ett utvidgat 
system så att rapsexpeller/rapsmjöl eller drank ersätter sojamjöl blandat med sojaolja, och 
glycerin ersätter glycerin producerat från fossila råvaror. Som funktionell enhet, till vilken 
miljöbelastningen relaterades, valdes 1,0 MJ rörelseenergi mätt på motoraxeln. Produktion av 
råvaror, odling, transporter, produktion och användning av producerade bränslen ingick i det 
studerade drivmedelssystemet. 
 
För småskaliga produktionsanläggningar (fysikalisk allokering) erhölls resultaten som 
redovisas i tabell II. I studien visades också att skillnaderna i miljöbelastning och energibehov 
mellan små-, mellan- och storskaliga produktionsanläggningar var små eller försumbara för 
de tre studerade drivmedlen med undantag av fotokemiskt ozonbildande gaser vid produktion 
av etanol. För storskaliga system uppvägdes de längre transportavstånden till stor del av högre 
oljeutvinningsgrad, högre energieffektivitet och mer effektivt utnyttjande av maskiner och 
byggnader. Det mest betydelsefulla produktionssteget var odlingen, där produktionen av 
gödselmedel, utsläpp av markgaser och behovet av dragkraft, hade störst inflytande på 
miljöbelastningen. 
 
Tabell II. Resultat för småskaliga anläggningar (fysikalisk allokering) 
 Potential för global 

uppvärmning 
[g CO2-ekv/MJmotor] 

Potential för 
försurning 

[g SO2-ekv/MJmotor]

Potential för 
övergödning 

[mg PO4
3--ekv/MJmotor] 

Potential för foto-
kemisk ozonbildning 

[mg C2H4-ekv/MJmotor] 

Energibehov 
[kJ/MJmotor] 

Rapsolja 
RME 
Etanol 

121 
127 
102 

1.94 
1.98 
1.16 

343 
351 
199 

26.1 
23.2 
99.9 

692 
846 
907 

 
Resultaten var beroende av vilken metod som användes för allokering av miljöbelastningen 
mellan de olika produkterna; rapsolja och rapsexpeller, RME, rapsexpeller och glycerin, samt 
etanolbränsle och drank. Resultaten var även beroende av osäkerheten i ingående data (t.ex. 
erhållna skördar av rapsfrö och vete och pålagd mängd gödselmedel) och alternativa 
produktionsscenarier (t.ex. användning av katalysatorer vid förbränning av de producerade 
bränslena, användning av biobaserade tändförbättrare vid produktion av etanolbränsle och 
användning av biobaserad metanol vid omförestring av rapsolja. 
 
Kostnaderna för småskalig produktion av drivmedel på mindre lantbruksenheter, exklusive 
EU-bidrag, var för rapsolja 0,85 SEK/MJmotor, för RME 1,07 SEK/MJmotor och för 
etanolbränsle 1,29 SEK/MJmotor. Motsvarande kostnader för storskalig produktion av 
drivmedel från råvaror odlade på stora lantbruksföretag, inklusive EU-bidrag, var för rapsolja 
0,33 SEK/MJmotor, för RME 0,35 SEK/MJmotor och för etanolbränsle 0,57 SEK/MJmotor. 
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FOREWORD 
 
This report contains background data for the articles: 
 

• Bernesson, S., Nilsson, D., P-.A. Hansson. 2004. A limited LCA comparing large- and 
small-scale production of rape methyl ester (RME) under Swedish conditions. 
Biomass and Bioenergy, 26(6), 545-559. 

 
• Bernesson, S., Nilsson, D., P-.A. Hansson. 2004. A limited LCA comparing large- and 

small-scale production of ethanol for heavy engines under Swedish conditions. 
Manuscript for possible publication in Biomass and Bioenergy. 

 
These articles are included in my doctoral thesis ‘Farm-scale Production of RME and Ethanol 
for Heavy Diesel Engines – with Emphasis on Environmental Assessment’. 
 
The report contains comprehensive data and assumptions made in the calculations in 
accordance with the transparency criterion for public life cycle assessments. For readers only 
interested in an overview of the study, i.e. the problem formulations, the objectives, the 
system descriptions, the LCA methodology and the most important results, Sections 1, 2, 3.1-
3.2, 4.4-4.7, 5 and 6 are recommended. However, for readers interested in all the results, the 
whole of Section 4, as well as Appendices 1-2, are recommended. 
 
Sections 3.3-3.11 contain detailed descriptions of the assumptions made and the data used in 
the calculations. The main target group for these sections are people interested in a deeper 
knowledge of the systems studied and the data used. These sections may also be of value for 
people involved in LCA studies of similar systems. 
 
I am grateful to my supervisors, Professor Per-Anders Hansson and Researcher Daniel 
Nilsson, for their involvement and comments throughout the work. 
 
I also gratefully acknowledge the Swedish Energy Agency for financial support. 
 
 
Sven Bernesson 
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1 INTRODUCTION 
 

1.1 Background 
 
Transport is becoming more and more important in society. In Sweden, the use of diesel oil 
and petrol has increased from 47 TWh in 1970 to 78 TWh in 2000 (STEM, 2001). A 
changeover to bio-based fuels is therefore an important step towards a more sustainable 
society. Rapeseed oil, rape methyl ester (RME) and ethanol with ignition improver are 
possible bio-based fuels that can be used in diesel engines. The production of biodiesel 
(vegetable oil esters) has increased and was 1.064 million tonnes in the EU in 2002 (EBB, 
2003) of which 3 500 tonnes were produced in Sweden (Norup, pers. comm.). The production 
of fuel ethanol has also increased and in 2001 was 2.2 million cubic metres in the EU, 8 
million cubic metres in the USA and 12 million cubic metres in Brazil (Schmitz, 2003). In 
Sweden, 50 000 cubic metres of ethanol were produced from cereals (mostly wheat) 
(Agroetanol, 2003) and 13 000 cubic metres of ethanol from wood (Baff, 2003). 
 
Fuels from agricultural crops have become more common as vehicle fuels during recent years. 
Rapeseed based fuels and ethanol have been used as fuel in tractors, buses and other diesel 
engined vehicles. Some life cycle assessments (LCAs) and/or energy analyses have been 
conducted to study the environmental load when these fuels are produced and used as fuels 
(Johansson et al., 1992; Börjesson, 1994; Ragnarsson, 1994; Almemark, 1996; Blinge, 1998; 
Hovelius, 1999; Hovelius & Hansson, 1999; Jungk et al., 2000). However, all these studies 
consider large-scale production. Gärtner & Reinhardt (2001) and Reinhardt & Gärtner (2002) 
carried out an LCA study for small-scale RME production, but their results are valid for 
German conditions. Small-scale production of ethanol was studied by Almemark (1996) in the 
scenario analysis. 
 
Rape is an oil plant (Brassica napus) with small dark seeds with an oil content of 40-50%. 
Wheat (Triticum aestivum) is a cereal that normally contains 58-62% of starch (Kaltschmitt & 
Reinhardt, 1997). The starch can be degraded to glucose monomers that can be fermented to 
ethanol. There are two variants of both rape and wheat, early autumn-sown types and spring-
sown types. 
 
For rape, the oil in the seeds can be extracted mechanically in an oil press or chemically with 
a solvent. Normally 65–80% of the oil can be extracted in an oil press (Widmann, 1988; 
Norén, 1990; Bernesson, 1993; Bernesson, 1994; Head et al., 1995; Kaltschmitt & Reinhardt, 
1997). Using solvent extraction, approximately 98% of the oil can be extracted (Norén, 1990; 
Kaltschmitt & Reinhardt, 1997). Solvent extraction is only used in large plants. For wheat, 
84-93% of its starch can be converted to ethanol depending on the process used (Kaltschmitt 
& Reinhardt, 1997; Jacques et al., 1999). 
 
As a fuel, rapeseed oil is more viscous than normal diesel oil, and therefore the engine must 
be modified to use it straight. The oil can be heated before it is injected into the cylinder 
(Tickell, 2000) or the engine can be an Elsbett engine (a variant of direct injected diesel 
engine) (Bernesson, 1993; Bernesson, 1994). The oil consists of triglycerides, which consist 
of a glycerine molecule connected to three fatty acids (Norén, 1990). During 
transesterification, three methanol (or ethanol) molecules replace the glycerine molecule; the 
result is three monoesters (one fatty acid connected to a methanol) with a viscosity similar to 
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normal diesel oil. This fuel can be used in ordinary diesel engines with little or no adjustment. 
If methanol is used for the transesterification of rapeseed oil the resulting fuel is called rape 
methyl ester, often shortened to RME. 
 
Ethanol is a fuel with a high octane number that is suitable for use in otto engines but it has 
bad ignition properties for diesel engines. One way to improve the ignition properties before 
use in diesel engines is to add an ignition improver to increase the fuel’s cetane number 
(Haupt et al., 1999). The compression ratio is usually also increased to limit the requirement 
for ignition improver. Spark plugs, glow plugs and two-fuel systems with alcohol and diesel 
oil can also be used to help improve ignition. The engine must also be modified for a higher 
fuel flow because of a lower heat value in ethanol compared to diesel oil. Before being sold as 
a fuel, the ethanol must be denatured to prevent it being used as a drink (Sekab, 2003). 
 
The production of rapeseed oil, RME and ethanol can be carried out on many different system 
scales. In large-scale systems, process heat can both be produced and used more efficiently 
(Kaltschmitt & Reinhardt, 1997), while processing technologies for rapeseed also have higher 
extraction efficiencies (Bernesson, 1993; Head et al., 1995; Kaltschmitt & Reinhardt, 1997), 
but the transport of raw materials to the processing plant and the transport of residual products 
back to the farms are long-distance. Small-scale systems have been of great interest in 
Sweden because of, for example, simple and less expensive process technologies (Norén & 
Danfors, 1981; Norén, 1990; Norén et al., 1994) and the possibility to increase rural 
employment (Danielsson & Hektor, 1992). Furthermore, the transport of raw materials and 
residual products is decreased or eliminated. 
 
During production of ethanol from wheat at different scales the ethanol yield is not expected 
to vary significantly (Norén & Danfors, 1981; Almemark, 1996; Schmitz, 2003). However, 
larger plants use the process heat more efficiently and this energy can also be produced more 
efficiently (Kaltschmitt & Reinhardt, 1997). 
 
 

1.2 Life cycle assessment (LCA) 
 
A main argument for the production and use of rapeseed oil, RME and ethanol as fuels is their 
potential to reduce the fossil CO2-emissions that contribute to global warming. It is therefore 
important that the choices of production system and scale are made in a way that minimizes 
the total environmental load. Life cycle assessment (LCA) is a powerful method for such 
analyses. In an LCA, the total environmental load of a product is studied throughout its life 
cycle from ‘cradle to grave’ (Lindfors et al., 1995; Wenzel et al., 1997; Lindahl et al., 2001; 
Rydh et al., 2002). 
 
When rapeseed oil is produced, the by-product meal is added to the calculation and when 
RME is produced, the by-product glycerine is added. When ethanol is produced, the by-
product distiller’s waste is added. The meal and distiller’s waste are usually used for animal 
feeding, and the glycerine can be used as a raw material in many industrial processes. When a 
production process contributes to several products, the total system environmental load has to 
be shared between these by allocation. Several methods may be used for allocation in LCA 
(Lindfors et al., 1995; Wenzel et al., 1997; Lindahl et al., 2001; Rydh et al., 2002), and there 
are no obvious rules for which method is the most correct to use. The choice of allocation 
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method may impact on the final results considerably, and it is therefore important to bear in 
mind the effect of allocation on the results of a study. 
 
Life cycle assessment (LCA) could briefly be defined as a process to describe summed 
resource- and environmental consequences coupled to all activities from cradle to grave 
needed for a product or service to fulfil its function. 
 
According to ISO 14040 (ISO, 1997) an LCA is characterized by the following key features: 

• LCA studies should systematically and adequately address the environmental aspects 
of product systems, from raw material acquisition to final disposal. 

• The depth of detail and time frame of an LCA study may vary to a large extent, 
depending on definition of goal and scope. 

• The scope, assumptions, description of data quality, methodologies and output of LCA 
studies should be transparent. LCA studies should discuss and document the data 
sources, and be clearly and appropriately communicated. 

• Provision should be made, depending on the intended application of the LCA study, to 
respect confidentiality and proprietary matters. 

• LCA methodology should be amenable to the inclusion of new scientific findings and 
improvements in the state-of-the-art of the technology. 

• Special requirements are applied to LCA studies, which are used to make a 
comparative assertion that is disclosed to the public. 

• There is no scientific basis for reducing LCA results to a single overall score or 
number, since trade-offs and complexities exist for the systems analysed at different 
stages of their life cycle. 

• There is no single method for conducting LCA studies. Organizations should have 
flexibility to implement LCA practically as established in this International Standard, 
based upon the specific application and the requirements of the user. 

 
There are four phases in an LCA-study: 1. Goal and scope definition; 2. Inventory analysis; 3. 
Impact assessment and 4. Interpretation (Figure 1). During the whole study there are demands 
for continuous interpretation and updating of data and results. 
 

 
Figure 1. Framework for life cycle assessment (ISO, 1997). 
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2 OBJECTIVES 
 
The main objective of this work was to analyse whether the small-scale production of 
rapeseed oil, RME and ethanol reduces the environmental load and costs in comparison to 
medium- and large-scale production of these fuels. Another objective was to compare the 
three fuels with each other with regard to environmental load and costs. A final objective was 
to test the influence of different allocation methods, uncertainty in input data and alternative 
production strategies on the results. 
 
To fulfil these objectives, limited LCAs, including air-emissions, energy requirements and 
cost calculations, were carried out for an example of each production plant size and fuel. For 
all plants, the environmental burdens were allocated by physical allocation after energy 
content of the products in a basic scenario. Then, three alternative allocation methods were 
studied for comparison: economic allocation, no allocation and allocation with an expanded 
system. The study also included sensitivity analyses and Monte Carlo simulations of relevant 
model parameters, and scenario analyses in which e.g. possible future alternatives were 
evaluated. 
 
 

3 MATERIALS AND METHODS 
 

3.1 System descriptions and definitions 
 
This study deals with the autumn (winter) variants of rapeseed and wheat. For rapeseed, only 
mechanical extraction was used in the small- and medium-scale plants, but in the large-scale 
plants was it followed by solvent extraction. Hexane is usually used for solvent extraction and 
was therefore chosen in this study. The transesterification was conducted in the same way for 
all plant sizes and methanol was the alcohol used. For the production of ethanol, the same 
process was used in all three scales, but the distiller’s waste was only dried in the large-scale 
plant. 
 
The model was created in a spreadsheet format. Sensitivity analyses were made with three 
different methods: first as traditionally, one value was changed (±20%) at a time for the most 
important inputs, and the result was observed; second, as a scenario analysis, the influence of 
some changes to the system was observed; and third the probability for differences between 
production scales and fuels was calculated using Monte Carlo simulations. 
 
Small-, medium- and large-scale technology for the production of straight rapeseed oil, RME 
and ethanol as fuels for heavy diesel engines was studied. The model, for each fuel, was built 
up as a cultivation model followed by three parallel models for each production scale (Figure 
2). The small-, medium- and large-scale plants serve areas of 40, 1 000 and 50 000 ha, 
respectively. The model includes, for production of rapeseed fuels: cultivation of rapeseed, 
transport of seed to extraction, extraction, hexane for large-scale extraction, 
transesterification, production of methanol and catalyst for transesterification, transport of 
methanol and glycerine, transport of rapeseed oil, RME and meal to consumption and 
consumption of rapeseed oil and RME in heavy-duty diesel engines (Figure 3). The model 
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includes, for production of ethanol: cultivation of wheat, transport of wheat to ethanol plant, 
ethanol production, transport and production of chemicals used in the ethanol production 
process, treatment of waste water from ethanol production, drying of distiller’s waste in large 
plants, production and transport of chemicals (ignition improver etc.) used to make ethanol 
into a fuel for diesel engines, transport of ethanol fuel and distiller’s waste to consumption 
and consumption of ethanol fuel in heavy-duty diesel engines (Figure 4). In the calculations 
were the seed milling included in the ethanol production. 
 
 

 
Figure 2. Flow-chart showing how the system was built up with cultivation followed by  
small-, medium- and large-scale production of the three fuels. 
 
 

 
Figure 3. Flow-chart showing the operations (in boxes) that were included for small- and 
large-scale production of RME. For the medium-scale system, the same operations as for the 
large-scale were used, with the exception of hexane extraction. The operations ‘cultivation’, 
‘production of methanol’ and ‘production of catalyst’ were identical for all scales. 
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Figure 4. Flow-chart showing the operations (in boxes) that were included for small- and 
large-scale production of ethanol (distillery). For the medium-scale system, the same 
operations as for the large-scale were used, with the exception of drying of distiller’s waste 
(feedstuff). The operations ‘cultivation’, ‘production of enzyme etc. for the ethanol 
production’ and ‘production of ignition improver, MTBE, isobutanol etc.’ were identical for 
all scales. 
 
 
Cultivation of rapeseed and wheat, and transport of the seed and wheat from the field to the 
farm are independent of how the oil is later extracted and transesterified or ethanol produced 
and is therefore the same for all plant sizes (Figures 3 and 4). Methanol and catalyst were 
assumed to be produced at a separate site from the extraction and transesterification (Figure 
3). The same assumption was made for the chemicals used in the ethanol production and to 
make the ethanol into a diesel fuel (Figure 4). The distances to the above-mentioned 
production sites were assumed to be independent of plant size. Therefore these distances were 
the same, in the model, for all the plant sizes. The consumption of the glycerine was assumed 
to be at a site separated from the transesterification. The distance to this site was assumed to 
be independent of plant size. Therefore this distance was also the same, in the model, for all 
the plant sizes. The by-product carbon dioxide from the production of ethanol was assumed 
not to be used in this study due to over-production on the market (Gebro, pers. comm.). 
 
The idea with small-scale production of rapeseed oil, RME or ethanol fuel is to produce the 
fuel at the farm gate. No external transport was required in the small-scale system because 
extraction and the transesterification or ethanol production were performed in a room adjacent 
to the farm seed storage and the farm fuel storage. It was assumed that the fuel produced in 
larger plants (Figures 3 and 4) was transported back to the farm (or an equivalent distance) for 
consumption. This was so as to make all consumption of fuel produced take place on the same 
site. This makes the studied system equivalent with the farm as a reference point. Fuels 
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produced in medium-scale and large-scale plants were therefore transported a distance 
equivalent to the distance back to the farm (Figures 3 and 4). In the same way, and for the 
same reasons, the meal or distiller’s waste from medium-scale and large-scale plants was also 
transported a distance equivalent to the distance back to the farm (Figures 3 and 4). 
 
Because plants of various sizes were to be compared, the machines for oil extraction, 
transesterification and ethanol production had to be included in the studied systems. Large-
scale plants utilize their machines in a more effective way than small-scale systems. Therefore 
the machines for the whole production chain were included in the studied systems. This is a 
difference from most other LCAs on the production of rapeseed oil, RME or ethanol fuels. 
Unfortunately, there were almost no data on the machine weights and the production of the 
machines, so this part of the LCA had to be made with some assumptions of machine weights 
and LCA data on the production of the machines, which made these data uncertain. 
 
The calculations in this study were based on existing data from the literature. No prognoses 
for the future were made. An uncertainty in the literature was that emission data for the 
engines running on the three fuels studied were not of the same generation. This was an 
uncertain factor when the three fuels were compared as regards engine power output. 
 
 

3.2 Assumptions for the LCA 
 
The functional unit to which the total environmental load was related was 1.0 MJ of energy 
delivered on the engine shaft to the final consumer, i.e. 1.0 MJengine [g/MJengine or MJ/MJengine]. 
This was because emissions from the same amount of engine work were to be compared. 
Engines running on ethanol fuel have a slightly better efficiency than engines running on 
RME, and engines running on RME have a slightly better efficiency than engines running on 
straight rapeseed oil. During the calculations the functional unit was field area [ha], because it 
made the calculations easier to perform with the seed yield as start reference. The calculated 
emission values [g/ha] were summed up for each subject. The unit g/MJengine was obtained 
after a final division with total engine work out [MJengine/ha]. In Appendices 1-2, values are 
also accounted for with the functional unit 1.0 MJ of energy in the fuel produced delivered to 
the final consumer i.e. 1.0 MJfuel [g/MJfuel or MJ/MJfuel] excl. emissions when driving on the 
fuel produced. 
 
The LCA was limited to the air emissions: CO2 (fossil origin), CO, HC (hydrocarbons except 
for methane), CH4, NOx (nitrous oxides), SOx (sulphur oxides), NH3, N2O and HCl. These 
emissions were classified into the following environmental impact categories: global warming 
potential (GWP), acidification potential (AP), eutrophication potential (EP) and 
photochemical ozone creation potential (POCP). The category indicators used are presented in 
Table 1. POCP for hydrocarbons (HC) was chosen to be 0.4 g C2H4-eq/g (Hauschild & 
Wenzel, 1998), both for farming and road transport, the main activities for emissions in this 
study. 
 
The energy required in the operations was also included in the LCA. For all fuels used in the 
systems, the energy contents were expressed in lower heating values. The electricity used was 
recalculated to primary energy. PAH (polycyclic aromatic hydrocarbons) and particles were 
not used in any calculations. The allocation was performed by physical allocation after energy 
unit [MJ]. Three alternative allocation methods were studied for comparison: no allocation, 
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economic allocation and allocation with an expanded system (soymeal (soybean meal) and 
soymeal mixed with soyoil (soybean oil) for both rapeseed fuels and ethanol fuel, and fossil 
glycerine for RME). 
 
When replacement of fossil glycerine with glycerine from the transesterification was not 
included in the models for physical, economic and no allocation (see Appendix 1), it had to be 
discussed separately. When fossil carbon atoms from fossil methanol replace the three 
biomass carbon atoms in the glycerine part of the rapeseed oil molecules, 100% biomass 
glycerine is produced. In LCAs with physical or economic allocation, it is not obvious how 
these carbon atoms should be handled. However, they must be discussed or included in the 
calculations in some way. In this study they are handled on a discussion basis. However, the 
replacement of fossil glycerine was included in model for allocation with an expanded 
system. No similar problems were found for the ethanol fuel. 
 
 
Table 1. Impact category indicators used in this study (Hauschild & Wenzel, 1998) 
 
Emissions to air GWP100 years 

[g CO2-eq/g] 
AP 

[g SO2-eq/g] 
EP 

[g PO4
3--eq/g] 

POCP 
[g C2H4-eq/g] 

CO2 1    
SO2, SOx  1   
NOx  0.7 0.13  
NH3  1.88 0.35  
CO 2   0.04 
HCl  0.88   
CH4 23a   0.007 
HC    0.4 
N2O 296a    
a IPCC (2001). 
 
 

3.3 Assumptions for the economic calculations 
 
The economic calculations were conducted on the same plant sizes for production of rapeseed 
oil, RME and ethanol fuel as in the LCA. For the cultivation, a 4 times larger production unit 
was also chosen (300 ha instead of 75 ha). This was because farms in Sweden have to join 
together to achieve profitability. Data for the cultivation were mainly based on the area 
calculations made by Agriwise (2003). Machinery data were mainly based on the machine 
calculations made by Henemo (2002, 2003). A difference from the calculations by Agriwise 
was that overheads, tenancy costs and seed drying costs were included in this study. The 
calculations were made both with and without EU area compensation. The EU area 
compensation was that for oil crops and cereals in the Swedish Region 3 (Jordbruksverket, 
2003). EU area compensation is normally included in production calculations for agricultural 
crops but can easily be changed by political decisions. Calculations were also conducted for 
purchased rapeseed: 2.00 SEK/kg and for purchased wheat: 0.97 SEK/kg (Agriwise, 2003). 
 
Costs for small- and medium-scale extraction and transesterification were mainly based on 
calculations made by Norén et al. (1993) and Norén et al. (1994). Costs for large-scale 
extraction and transesterification were mainly based on calculations made by Conneman & 
Fischer (1998) but with relationships between separate parts as in Norén et al. (1993) and 
Norén et al. (1994). To calculate the costs for the right plant size from the plants in the 
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literature, the costs were assumed to be proportional to the plant size for plants with similar 
design and size. To get more current prices, the price level in Norén et al. (1993) and Norén et 
al. (1994) was adjusted in comparison to prices given by Ferchau (2000) and Oilpress (2003) 
especially for oil presses. For other extraction, transesterification equipment and buildings the 
price trend was assumed to be at the same level. 
 
Costs especially for the larger ethanol production plants were mainly based on calculations 
made by Schmitz (2003) and the investment costs for Agroetanol’s plant in Norrköping 
(Werling, pers. comm.). The investment costs for smaller plants were estimated with some 
help from the investment costs between the different plant sizes for rapeseed oil extraction 
and transesterification. The relationships, in investment cost, between oil extraction and 
transesterification plants and ethanol production plants were assumed to be the same for the 
different plant sizes. 
 
The price level in the calculus was that for 2002. The interest calculated for costing purposes 
was 7%. 
 
 

3.4 Rapeseed and wheat production 
 

3.4.1 Basic data rapeseed production with fertilisers and pesticides 
 
The farm where the rapeseed (winter rape) was grown was assumed to be in the flatlands of 
Svealand in Central Sweden and the harvest was assumed to be 2470 kg rapeseed with 8% 
water and 45% oil (wet weight basis) (estimated after Svenskraps, 2003a; and Engström et al., 
2000). Details of the cultivation are given below in Section 3.4. Seed, fertilisers, air emissions 
during soil cultivation, pesticides, fuels and machinery for cultivation, energy for drying and 
cleaning of the seed, transport of fertilisers to farm (fuels and lubrication oil with 
manufacturing) were included in the cultivation part of the model (see Appendix 1, Tables 
A1-A2). 
 
It was assumed that seed from the previous year was used for sowing. This made the output 
values from the rapeseed cultivation be used to produce the seed for sowing in a circular 
process. A seed rate of 8 kg per hectare was used (Agriwise, 2003). The emissions for the 
seed production were calculated as share of seed of total cultivation emissions: (8 kg seed/ha / 
2470 kg rapeseed/ha harvested) * total cultivation emissions [g/ha] (Table A1, Appendix 1). 
The procedure was repeated in an iterative way until state of equilibrium was obtained. The 
energy requirement was calculated in a corresponding way. 
 
The rapeseed was fertilised during the autumn with 145 kg/ha calcium ammonium nitrate 
(Hydro Suprasalpeter N28) and during the spring with 500 kg/ha Hydro NPK Svavel Bor 20-
3-5. This is equivalent to 140 kg N/ha, 15 kg P/ha and 25 kg K/ha. Emissions when these two 
fertilisers were manufactured are given in Table 2. The rapeseed was fertilised according to 
Jordbruksverket (2001) with fertilisers from the LCI by Davis & Haglund (1999). When the 
area amounts of each fertiliser were multiplied by the emission values in Table 2 and added, 
the emission values in Table A1, Appendix 1, were obtained. 
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Table 2. Emissions from production of fertilisers and pesticides used in rapeseed and wheat 
production 
 

Factor of production CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles Energy 
requirement

 [g/kg] [g/kg] [g/kg] [g/kg] [g/kg] [g/kg] [g/kg] [g/kg] [g/kg] [g/kg] [g/kg] [MJ/kg] 
Manufacturing of fertiliser 
   NPK 20-3-5 S Ba 749 0.18 0.44 0.75 1.5 2.3 0.15 3.8 0.049 0.000080 0.228 10.3

Manufacturing of fertiliser 
   NPK 21-4-7 Sa 746 0.21 0.50 0.76 1.6 2.8 0.16 3.5 0.047 0.000076 0.250 10.2

Manufacturing of fertiliser 
   N 28a 931 0.11 0.34 0.87 1.5 1.3 0.21 5.6 0.065 0.000107 0.228 12.7

Manufacturing of pesticide
   active substancesb 4921 2.66 0.29 0.18 6.9 17.4 0.16 1.5 0.21  0.043 198
a Davis & Haglund (1999). 
b Kaltschmitt & Reinhardt (1997). 
 
 
As biocides, 2 l/ha of the herbicide Butisan S was used to control the weeds and 0.3 l/ha of the 
insecticide Sumi-alpha 5 FW was used, 1 time in 2 years, to control blossom beetles 
(Sonesson, 1993). 
 
The active ingredient in Butisan S is Metazachlor, 500 g/l (Kemikalieinspektionen, 1999). 
The energy for manufacturing of the active ingredients was calculated as an average of all 
herbicides according to Green (1987). Kaltschmitt & Reinhardt (1997) have calculated 
general energy input and emissions for pesticide manufacturing from the figures given by 
Green (1987). These figures also include packaging and transport, etc. and come to 198.1 
MJ/kg active substances. The area need for active substance with requirement of primary 
energy for production could then be calculated as: 2 l/ha * 0.5 kg active substance/l = 1 kg 
active substance/ha. One annual treatment gives after multiplying 1.00 kg active substance/ha 
and 198.1 MJ/ha. 
 
The active ingredient in Sumi-alpha 5 FW is Esfenvalerate, 50 g/l (Kemikalieinspektionen, 
1999). The primary energy for manufacturing of the active ingredient was calculated in the 
same way as for Butisan S, etc. This gives: 0.30 l/ha * 0.05 kg active substance/l = 0.015 kg 
active substance/ha. The 0.5 annual treatment gives after multiplying: 0.0075 kg active 
substance/ha and 1.49 MJ/ha. 
 
The total requirement of pesticides is then 1.0075 kg active substance/ha and year, which 
requires 199.6 MJ/ha to be produced (Table A2, Appendix 1). Emissions and energy 
requirement for manufacturing of the pesticides are given in Table 2. After multiplication: 
(active substance [kg/ha] * emissions [g/kg active] substance (Table 2)) the area emission 
values were obtained (Table A1, Appendix 1). 
 
 

3.4.2 Basic data on wheat production with fertilisers and pesticides 
 
The farm where the wheat (winter wheat) was grown was assumed to be in the flatlands of 
Svealand in Central Sweden and the harvest was assumed to be 5900 kg wheat with 14% 
water (water content at trade price: Agriwise, 2003) and approx. 60% starch (wet weight 
basis) (estimated after Kaltschmitt & Reinhardt, 1997). Details for the cultivation are given 
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below in Section 3.4. Seed, fertilisers, air emissions during soil cultivation, pesticides, fuels 
and machinery for cultivation, energy for drying and cleaning of the seed, transport of 
fertilisers to farm (fuels and lubrication oil with manufacturing) are included in the cultivation 
part of the model (see Appendix 2, Tables A15-A16). 
 
It was assumed that seed from the previous year was used for sowing. This made the output 
values from the wheat cultivation be used to produce the seed for sowing in a circular process. 
A seed rate of 220 kg per hectare was used (Agriwise, 2003). The emissions for the seed 
production were calculated as share of seed of total cultivation emissions: (220 kg seed/ha / 
5900 kg wheat/ha harvested) * total cultivation emissions [g/ha] (Table A15, Appendix 2). 
The procedure was repeated in an iterative way until state of equilibrium was obtained. The 
energy requirement was calculated in a corresponding way. 
 
The wheat was fertilised during the autumn with 115 kg/ha calcium ammonium nitrate (Hydro 
Suprasalpeter N28) and during the spring with 420 kg/ha Hydro NPK Svavel 21-4-7. This is 
equivalent to 120 kg N/ha, 16.8 kg P/ha and 29.4 kg K/ha. Emissions when these two 
fertilisers were manufactured are given in Table 2. The wheat was fertilised according to 
Jordbruksverket (2001) with fertilisers from the LCI by Davis & Haglund (1999). When the 
area amounts of each fertiliser were multiplied by the emission values in Table 2 and added, 
the emission values in Table A15, Appendix 2 were obtained. 
 
As biocides: 1.5 kg/ha of the herbicide Express 50 T and 0.6 l/ha of the herbicide Starane 180 
were used to control the weeds (Agriwise, 2003); 1.0 l/ha of the fungicide Tilt Top 500 EC 
was used 0.6 times in 1 year to control fungus attack, giving 0.6 l/ha (Agriwise, 2003); 1.0 
l/ha of the fungicide Sportak EW was used 0.4 times in 1 year to control sprouts and 0.3 times 
in 1 year to control foot rot, giving 0.7 l/ha (Agriwise, 2003); and 0.3 kg/ha of the insecticide 
Karate 2.5 WG was used 1 time in 2 years to control insects at heading and to control thrips 
and aphids, giving 0.15 kg/ha (Agriwise, 2003). 
 
The active ingredient in Express 50 T is Tribenuronmethyl, 50 percent by weight and in 
Starane Fluroxipyr(1-methylheptylester) 180 g/l (Kemikalieinspektionen, 1999). The energy 
for manufacturing of the active ingredient was calculated as an average of all herbicides 
according to Green (1987). Kaltschmitt & Reinhardt (1997) have calculated general energy 
input and emissions for pesticide manufacturing from the figures given by Green (1987). 
These figures include also packaging and transport, etc. and come to 198.1 MJ/kg active 
substances. This gives: 1.5 kg/ha * 0.5 kg active substance/kg = 0.75 kg active substance/ha 
for Express 50 T and 0.6 l/ha * 0.180 kg active substance/l = 0.108 kg active substance/ha for 
Starane 180, together 0.858 kg active substance/ha. One annual treatment gives after 
multiplying 0.858 kg active substance/ha and 170.0 MJ/ha. 
 
The active ingredient in Tilt Top 500 EC is Fenpropimorf 375 g/l and Propikonazol 125 g/l 
(Kemikalieinspektionen, 1999). The energy for manufacturing of the active ingredient was 
calculated in the same way as for Express 50 T, etc. This gives: 375 g/l + 125 g/l = 0.500 kg 
active substance/l * 1.0 l/ha = 0.50 kg active substance/ha. The 0.6 annual treatment gives 
after multiplying 0.30 kg active substance/ha and 59.4 MJ/ha. 
 
The active ingredient in Sportak EW is Perkloraz 450 g/l (Kemikalieinspektionen, 1999). The 
energy for manufacturing of the active ingredient was calculated in the same way as for 
Express 50 T, etc. This gives: 0.450 kg active substance/l * 1.0 l/ha = 0.45 kg active 
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substance/ha. The 0.7 annual treatment gives after multiplying 0.315 kg active substance/ha 
and 62.4 MJ/ha. 
 
The active ingredient in Karate 2.5 WG is Lambda-cyhalotrin 2.5 percentage by weight 
(Kemikalieinspektionen, 1999). The energy for manufacturing of the active ingredient was 
calculated in the same way as for Express 50 T, etc. This gives: 2.5 weight-% = 0.025 kg 
active substance/kg * 0.3 kg/ha = 0.0075 kg active substance/ha. The 0.5 annual treatment 
gives after multiplying 0.00375 kg active substance/ha and 0.74 MJ/ha. 
 
The total requirement of pesticides is then 1.48 kg active substance/ha and year, which 
requires 292.5 MJ/ha to be produced (Table A16, Appendix 2). Emissions and energy 
requirement for manufacturing of the pesticides are given in Table 2. After multiplication: 
(active substance [kg/ha] * emissions [g/kg active] substance (Table 2)) the area emission 
values were obtained (Table A15, Appendix 2). 
 
 

3.4.3 Soil emissions 
 
During the cultivation there were also soil emissions of ammonia and nitrous oxide in the 
field depending on the supply of nitrogen. Data from Jungk et al. (2000) were chosen for this 
study because that is close to the average from the other authors and were related to how 
much fertilisers were used. Ammonia emissions were 40 g NH3/kg fertiliser nitrogen and 
nitrous oxide emissions were 19.6 g N2O/kg fertiliser nitrogen. 
 
For rapeseed with a requirement of 140 kg N fertiliser/ha the soil emissions would be 5600 g 
NH3/ha and 2740 g N2O/ha. For wheat with a requirement of 120 kg N fertiliser/ha the soil 
emissions would be 4800 g NH3/ha and 2350 g N2O/ha. See also Tables A1, Appendix 1 and 
A15, Appendix 2. 
 
 

3.4.4 Fuel requirement and emissions during crop production 
 
In the basic scenarios, the machines for the agricultural work were run on MK1 (Swedish 
environmental class 1 diesel oil) fuel, during cultivation of both rapeseed and wheat. In 
alternative scenarios in the scenario analyses the fuels produced (rapeseed oil, RME and 
ethanol fuel) were used. Diesel fuel MK3 (Swedish environmental class 3 diesel oil) was used 
as a reference scenario for help to calculate fuel consumption and emissions for the other fuels 
used. Catalysts were also used on the vehicles in alternative scenarios. 
 
 

3.4.4.1 Requirement of fuels and oils 
 
In Tables 3 (rapeseed cultivation) and 4 (wheat cultivation), the use of machines [hours/ha] 
and fuel consumption are given for each operation. These data also include outwintering. Fuel 
consumption [l/h] (MK3) for tractors and threshing machines at different working conditions 
are given in Databok för driftsplanering 1989 (SLU, 1989). Fuel consumption [l/ha] (MK1) 
for tractors under different working conditions is given in Norén et al. (1999) and for 
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threshing machine and transport (tipping trailer) in Hansson & Mattsson (1999). The use of 
machines [hours in use/ha] was obtained when the fuel consumption [l/ha] was divided by 
fuel consumption [l/h]. These figures were used when the input of machines was calculated. 
Outwintering (resowing) of winter rape is about 10% and outwintering of winter wheat is 
about 5% in Sweden (SCB, 1992) (last year recorded 1990, after that only differences 
between autumn-sown area and next year area with some errors were available, SCB, 2002). 
During resowing, seed drilling was followed by one disc harrowing and two harrowings. The 
small tractor (Tables 3 and 4) was used for seed drilling, rolling, fertiliser spreading and 
spraying. 
 
 
Table 3. Calculations for fuel consumption during cultivation of winter rapeseed (Norén et 
al., 1999; Hansson & Mattsson, 1999; SLU, 1989; Bernesson, 1993) 
 
Field operation  Fuel consumption 

 Use MK3 MK1 RME  Rapeseed oil 

 [h/ha] [l/h] [l/ha] [l/h] [l/ha] [l/h] [l/ha]  [l/h] [l/ha] 

Tractor, 52 kWa 0.98          

Tractor, 66 kWa 3.54          

Plough 2.06 11 22.7 11.3 23.4 11.9 24.5  12.3 25.4

Harrow, 2 timesa 0.54 13 7.0 13.4 7.3 14.0 7.6  14.6 7.9

Seed drilla 0.45 8 3.6 8.2 3.7 8.6 3.9  9.0 4.1

Cambridge roller 0.12 12 1.4 12.4 1.4 12.9 1.5  13.4 1.6

Fertiliser spreader, 2 times 0.26 7 1.8 7.2 1.9 7.5 1.9  7.8 2.0

Sprayer, 2 times 0.15 6 0.90 6.2 0.93 6.5 0.97  6.7 1.01

Threshing machine 1.36 11 15.0 11.3 15.5 11.9 16.2  12.3 16.8

Disc harrow, 1 timea 0.77 13 10.0 13.4 10.3 14.0 10.8  14.6 11.2

Tipping trailer (field – farm) 0.12 6 0.71 6.2 0.73 6.5 0.77  6.7 0.80

Front-loader 0.05 5 0.25 5.2 0.26 5.4 0.27  5.6 0.28

Sum 5.88  63.4  65.4  68.4   71.1
a Machines used for resowing at 10% outwintering. 
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Table 4. Calculations for fuel consumption during cultivation of winter wheat (Norén et al., 
1999; Hansson & Mattsson, 1999; SLU, 1989; Bernesson, 1993) 
 
Field operation  Fuel consumption 

 Use MK3 MK1 RME  Ethanol fuel 

 [h/ha] [l/h] [l/ha] [l/h] [l/ha] [l/h] [l/ha]  [l/h] [l/ha] 

Tractor, 52 kWa 1.02          

Tractor, 66 kWa 3.65          

Plough 2.06 11 22.7 11.3 23.4 11.9 24.5  17.1 35.2

Harrow, 2 timesa 0.52 13 6.7 13.4 6.9 14.0 7.2  20.2 10.4

Seed drilla 0.43 8 3.5 8.2 3.6 8.6 3.7  12.4 5.4

Cambridge roller 0.12 12 1.4 12.4 1.4 12.9 1.5  18.6 2.2

Fertiliser spreader, 2 times 0.26 7 1.8 7.2 1.9 7.5 1.9  10.9 2.8

Sprayer, 2.8 times 0.21 6 1.26 6.2 1.30 6.5 1.36  9.3 1.96

Threshing machine 1.36 11 15.0 11.3 15.5 11.9 16.2  17.1 23.3

Disc harrow, 1 timea 0.74 13 9.6 13.4 9.8 14.0 10.3  20.2 14.8

Tipping trailer (field – farm) 0.28 6 1.68 6.2 1.74 6.5 1.82  9.3 2.62

Front-loader 0.05 5 0.25 5.2 0.26 5.4 0.27  7.8 0.39

Sum 6.03 63.8 65.8  68.8  99.1
a Machines used for resowing at 5% outwintering. 
 
 
Fertilisers were assumed to be transported to the farm by a tractor with two wagons (rapeseed 
cultivation Table 5 and wheat cultivation Table 6). The total load of fertilisers was 16 metric 
tonnes and the transport distance was assumed to be 10 km (one direction). The fuel 
consumption was 9 litres/h with empty wagons and 12 litres/h with loaded wagons given an 
average fuel consumption (MK3 diesel oil fuel) of 10.5 litres/h. The average speed was 
assumed to be 20 km/h. Time for transport with return trip was 1 hour (2*10 km / 20 km/h) 
and the machine time for unloading with front-loader was assumed to be 0.35 hours with the 
labour time 0.5 hours. The fuel consumption (MK3 diesel oil fuel) was assumed to be 5 
litres/h during loading and unloading. Fuel consumption with MK1 diesel fuel oil, RME, 
rapeseed oil and ethanol fuel for transportation of fertilisers to the farm, is accounted for in 
Tables 5 and 6. Transport of fertilisers was separated from field operations because it is not 
obvious that it should be included there. The calculations and assumptions were made in the 
same way as for the field operations. Time in use per area [h/ha] was calculated as: (weight 
fertiliser per hectare / load weight) * time per load. 
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Table 5. Calculations for tractor transport of fertiliser to the farm during cultivation of 
rapeseed (Norén et al., 1999; Hansson & Mattsson, 1999; SLU, 1989; Bernesson, 1993) 
 
Field operation  Fuel consumption 

 Use MK3 MK1 RME  Rapeseed oil 

 [h/ha] [l/h] [l/ha] [l/h] [l/ha] [l/h] [l/ha]  [l/h] [l/ha] 

Tractor, 66 kW 0.054          

Tipping trailer 0.040 10.5 0.423 10.82 0.436 11.32 0.456  11.76 0.474

Front-loader 0.014 5 0.071 5.15 0.073 5.39 0.076  5.60 0.079

Sum 0.054  0.494  0.509  0.532   0.553

 
 
Table 6. Calculations for tractor transport of fertiliser to the farm during cultivation of wheat 
(Norén et al., 1999; Hansson & Mattsson, 1999; SLU, 1989; Bernesson, 1993) 
 
Field operation  Fuel consumption 

 Use MK3 MK1 RME  Ethanol fuel 

 [h/ha] [l/h] [l/ha] [l/h] [l/ha] [l/h] [l/ha]  [l/h] [l/ha] 

Tractor, 66 kW 0.045          

Tipping trailer 0.033 10.5 0.351 10.82 0.362 11.32 0.378  16.30 0.545

Front-loader 0.012 5 0.059 5.15 0.060 5.39 0.063  7.76 0.091

Sum 0.045 0.410 0.422  0.442  0.636

 
 
Consumption of diesel fuel oil MK1, RME, rapeseed oil and ethanol fuel, in Tables 3-6, was 
calculated from the consumption of diesel fuel oil MK3. The energy outputs from the engines 
during the field operations were assumed to be the same, independent of the fuel used. In 
Table 99, Section 3.9, properties are given for all these fuels. In SMP (1993), the engine 
efficiencies are given for an engine running at its best operating point with MK3, MK1 and 
RME (Table 99, Section 3.9). In Aakko et al. (2000), the efficiency is given for an engine 
running on MK3 and in Haupt et al. (1999) for another engine running on ethanol fuel, both 
measured according to ECE R49, so the calculated efficiencies could be used to estimate the 
fuel consumption of ethanol fuel if the fuel consumption of MK3 is known. The volumetric 
fuel consumption for MK1, RME and ethanol fuel could then be calculated as: volumetric fuel 
consumption MK3 * ((heat value MK3 * density MK3 * engine efficiency MK3) / (heat value 
new fuel * density new fuel * engine efficiency new fuel)). For rapeseed oil, the volumetric 
fuel consumption is approx. 12% higher in Elsbett engines than for diesel oil fuel MK3 in 
conventional direct injected diesel engines (Bernesson, 1993; Thuneke, 1999). 
 
The quantity of lubrication oil consumed, including oil used for transmissions and hydraulics, 
was assumed to be 0.7% of the volumetric diesel fuel used (Tables 3-6), for all tractor and 
threshing operations, based on data (lubrication oil) from ASAE (2000). Furthermore, it was 
assumed that manufacturing of lubrication oil results in the same amount of emissions and 
energy requirement for manufacturing of diesel oil (MK1) (Table 13). For the calculations, 
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the density and lower heating value for the lubrication oil was assumed to be as for diesel oil 
(MK3). Area emissions for production of lubrication oil are accounted for in Tables 14-15. 
 
The consumption of lubrication oil was calculated from some equations in ASAE (2000): Oil 
consumption is defined as the volume per hour of engine crankcase oil replaced at the 
manufacturer’s recommended change interval. Consumption is in litres/h, where P is the rated 
engine power in kW. This gives the following equation for diesel engines: 0.00059*P + 
0.02169. For the 52 kW and 66 kW tractors and the threshing machine (75 kW) respectively, 
this gives an oil consumption of 0.052 litres/h, 0.060 litres/h and 0.066 litres/h. If these 
machines were used for 0.98 h/ha, 3.54 h/ha and 1.36 h/ha the consumption of lubrication oil 
would be 0.051 litres/ha, 0.215 litres/ha and 0.090 litres/ha respectively. The total 
consumption of lubrication oil would be 0.356 litres/ha divided by a consumption of 63.4 
litres/ha diesel oil MK3 gives the share of lubrication oil to be 0.561%. If use of oil for 
lubrication of gears, hydraulics and oil slicks etc. is assumed to be an additional 25% of oil, 
the oil consumption would be: 0.701% of the fuel (MK3) consumption. Therefore the 
consumption of lubrication and hydraulic oils was assumed to be 0.70% of the fuel 
consumption in this study (volumetric). This was assumed to be valid independent of the fuel 
used. The same was also assumed to be valid for the lorries used for transportation (Section 
3.7.1). 
 
 

3.4.4.2 Emissions 
 
Hansson et al. (1998) calculated the accounted emissions values, in Table 7, for different field 
operations, when test bench data were combined with recorded time series for the load at the 
engine under some field operations. Not all the required field operations for this study were 
included in Hansson et al. (1998). Therefore emission values for harrowing (high engine load) 
were also used for Cambridge rolling and threshing; baling (low engine load) used for 
spraying; seed drilling also used for fertilising; and stubble cultivation used for disc 
harrowing. 
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Table 7. Regulated emissions for field operations after Hansson et al. (1998) 
 
Field operation MK3, emissions 

[g/MJfuel] 
MK1, emissions 

[g/MJfuel] 
RME, emissions 

[g/MJfuel] 
 Rapeseed oil, 

emissionsa [g/MJfuel] 
 CO NOx HC CO NOx HC CO NOx HC  CO NOx HC 

Plough 0.085 0.988 0.029 0.091 0.935 0.027 0.078 0.967 0.0119  0.085 1.037 0.0160

Harrow 0.042 0.897 0.016 0.046 0.860 0.016 0.030 0.998 0.0089  0.042 0.942 0.0088

Seed drill 0.108 0.948 0.034 0.114 0.900 0.031 0.097 0.905 0.0129  0.108 0.995 0.0187

Cambridge roller 0.042 0.897 0.016 0.046 0.860 0.016 0.030 0.998 0.0089  0.042 0.942 0.0088

Fertiliser spreader 0.108 0.948 0.034 0.114 0.900 0.031 0.097 0.905 0.0129  0.108 0.995 0.0187

Sprayer 0.228 0.860 0.053 0.226 0.819 0.050 0.192 0.821 0.0200  0.228 0.903 0.0292

Threshing machine 0.042 0.897 0.016 0.046 0.860 0.016 0.030 0.998 0.0089  0.042 0.942 0.0088

Disc harrow 0.076 0.747 0.030 0.083 0.708 0.028 0.062 0.778 0.0120  0.076 0.784 0.0165
Tipping trailer 
   (field – farm) 0.150 0.900 0.037 0.163 0.880 0.036 0.147 0.898 0.0164  0.150 0.945 0.0204

Tipping trailer 
   (fertiliser to farm) 0.100 0.708 0.032 0.106 0.681 0.032 0.081 0.771 0.0140  0.100 0.743 0.0176

Front-loader 0.378 1.194 0.068 0.407 1.227 0.067 0.369 1.009 0.0264  0.378 1.254 0.0374
a Emissions for straight rapeseed oil calculated from emissions MK3 (Thuneke, 1999). 
 
 
For vehicles running on straight rapeseed oil there are poor emission values in the literature. 
Thuneke (1999) has made a brief summing-up of emissions from engines running on rapeseed 
oil fuels. In Table 101, Section 3.9, some of these emissions for straight rapeseed oil fuels are 
given in comparison to European diesel oil fuel, in this study equivalent to diesel oil fuel 
MK3. The values in Table 101 were used for calculating the emission values for rapeseed oil 
in Table 7. 
 
There were no emission data for field operations with ethanol fuel in the literature. Therefore 
emissions for field operations with ethanol fuel were calculated as: emissions field operations 
MK1 * (engine efficiency ethanol fuel ECE R49 (Haupt et al., 1999) / engine efficiency MK1 
fuel ECE R49 (after: Aakko et al., 2000 and SMP, 1993)) * (emission ethanol fuel (Haupt et 
al., 1999) / emission MK1 fuel (Aakko et al., 2000)). Emissions for field operations with 
ethanol fuel are accounted for in Table 8. Engine efficiencies are accounted for in Table 99, 
Section 3.9. 
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Table 8. Regulated emissions for field operations with ethanol fuel, calculated after Hansson 
et al. (1998); Aakko et al. (2000); and Haupt et al. (1999) 
 
Field operation Ethanol fuel, 

emissions [g/MJfuel] 
 CO NOx HC 

Plough 0.458 0.694 0.046 

Harrow 0.231 0.639 0.027 

Seed drill 0.573 0.668 0.053 

Cambridge roller 0.231 0.639 0.027 

Fertiliser spreader 0.573 0.668 0.053 

Sprayer 1.136 0.608 0.086 

Threshing machine 0.231 0.639 0.027 

Disc harrow 0.417 0.526 0.048 
Tipping trailer 
   (field – farm) 0.820 0.653 0.062 

Tipping trailer 
   (fertiliser to farm) 0.533 0.506 0.055 

Front-loader 2.047 0.911 0.115 

 
 
Emission values on an area basis [g/ha] (cultivation of rapeseed Tables 9 and 10 and 
cultivation of wheat Tables 11 and 12) were calculated by: emission value [g/MJfuel] (Tables 7 
and 8) * fuel consumption [l/ha] (Tables 3-6) * fuel density [kg/l] (Table 99, Section 3.9) * 
lower heat value [MJ/kg] (Table 99, Section 3.9). Each fuel was handled separately for 
growing of each crop. The summed values in Tables 9-12 were used in the LCA (Tables 14-
15). The area emissions for CO2 and particulates could be calculated in the same way from the 
descriptions of their origin below. 
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Table 9. Regulated emissions for field operations on an area basis, cultivation of rapeseed, 
calculated after Hansson et al. (1998) 
 
Field operation MK3, emissions 

[g/ha] 
MK1, emissions 

[g/ha] 
RME, emissions 

[g/ha]  Rapeseed oil, 
emissions [g/ha] 

 CO NOx HC CO NOx HC CO NOx HC  CO NOx HC 

Plough 68.2 793 23.3 75.0 770 22.2 65.1 807 9.9  76.2 930 14.3

Harrow, 2 timesa 10.5 223 4.0 11.7 220 4.1 7.8 258 2.3  11.7 262 2.4

Seed drilla 13.9 122 4.4 15.0 119 4.1 12.9 121 1.7  15.5 143 2.7

Cambridge roller 2.1 44 0.79 2.3 44 0.81 1.5 51 0.46  2.3 52 0.49

Fertiliser spreader, 2 times 6.9 60 2.2 7.4 59 2.0 6.4 60 0.9  7.7 71 1.3

Sprayer 7.3 27 1.7 7.4 27 1.6 6.4 27 0.7  8.1 32 1.0

Threshing machine 22.3 476 8.5 25.0 468 8.7 16.5 550 4.9  24.9 558 5.2

Disc harrow, 1 timea 26.9 264 10.6 30.1 257 10.2 22.8 286 4.4  30.1 310 6.5
Tipping trailer 
   (field – farm) 3.8 23 0.93 4.2 23 0.93 3.8 23 0.43  4.2 27 0.57

Front-loader 3.3 11 0.60 3.7 11 0.61 3.4 9 0.24  3.7 12 0.37

Sum 165.0 2043 56.9 181.9 1997 55.3 146.7 2194 25.9  184.4 2397 35.0
a Machines used for resowing at 10% outwintering. 
 
 
Table 10. Regulated emissions for transport of fertiliser to the farm on an area basis, 
cultivation of rapeseed, calculated after Hansson et al. (1998) 
 
Operations, transport of  MK3, emissions 

[g/ha] 
MK1, emissions 

[g/ha] 
RME, emissions 

[g/ha]  Rapeseed oil, 
emissions [g/ha] 

fertiliser to the farm CO NOx HC CO NOx HC CO NOx HC  CO NOx HC 
Tipping trailer 
   (fertiliser to farm) 1.50 10.6 0.48 1.63 10.5 0.49 1.26 12.0 0.22  1.67 12.4 0.29

Front-loader 0.94 3.0 0.17 1.04 3.1 0.17 0.96 2.6 0.07  1.05 3.5 0.10

Sum 2.44 13.6 0.65 2.67 13.6 0.66 2.22 14.6 0.29  2.73 15.9 0.40
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Table 11. Regulated emissions for field operations on an area basis, cultivation of wheat, 
calculated after Hansson et al. (1998) 
 
Field operation MK3, emissions 

[g/ha] 
MK1, emissions 

[g/ha] 
RME, emissions 

[g/ha]  Ethanol fuel, 
emissionsa [g/ha] 

 CO NOx HC CO NOx HC CO NOx HC  CO NOx HC 

Plough 68.2 793 23.3 75.0 770 22.2 65.1 807 9.9  336.2 510 34.0

Harrow, 2 timesb 10.0 213 3.8 11.2 210 3.9 7.4 247 2.2  50.3 139 6.0

Seed drillb 13.2 116 4.2 14.3 113 3.9 12.4 115 1.6  64.3 75 6.0

Cambridge roller 2.1 44 0.79 2.3 44 0.81 1.5 51 0.46  10.5 29 1.24

Fertiliser spreader, 2 times 6.9 60 2.2 7.4 59 2.0 6.4 60 0.9  33.4 39 3.1

Sprayer 10.2 38 2.4 10.3 37 2.3 8.9 38 0.9  46.3 25 3.5

Threshing machine 22.3 476 8.5 25.0 468 8.7 16.5 550 4.9  112.3 310 13.3

Disc harrow, 1 timeb 25.7 252 10.1 28.8 245 9.7 21.8 273 4.2  129.1 163 14.8
Tipping trailer 
   (field – farm) 8.9 54 2.20 10.0 54 2.20 9.1 56 1.02  44.7 36 3.37

Front-loader 3.3 11 0.60 3.7 11 0.61 3.4 9 0.24  16.6 7 0.93

Sum 170.7 2057 58.0 188.1 2011 56.4 152.6 2207 26.4  843.6 1332 86.2
a Calculated after Hansson et al. (1998), Aakko et al. (2000) and Haupt et al. (1999). 
b Machines used for resowing at 5% outwintering. 
 
 
Table 12. Regulated emissions for transport of fertiliser to the farm on an area basis, 
cultivation of wheat, calculated after Hansson et al. (1998) 
 
Operations, transport of  MK3, emissions 

[g/ha] 
MK1, emissions 

[g/ha] 
RME, emissions 

[g/ha]  Ethanol fuel, 
emissionsa [g/ha] 

fertiliser to the farm CO NOx HC CO NOx HC CO NOx HC  CO NOx HC 
Tipping trailer 
   (fertiliser to farm) 1.24 8.8 0.40 1.35 8.7 0.41 1.05 10.0 0.18  6.06 5.7 0.62

Front-loader 0.78 2.5 0.14 0.86 2.6 0.14 0.79 2.2 0.06  3.88 1.7 0.22

Sum 2.02 11.3 0.54 2.21 11.3 0.55 1.84 12.1 0.24  9.93 7.5 0.84
a Calculated after Hansson et al. (1998), Aakko et al. (2000) and Haupt et al. (1999). 
 
 
Carbon dioxide emissions could be calculated from the elementary composition of the fuels 
studied. Carbon dioxide of fossil origin contributes to the global warming. Kaltschmitt & 
Reinhardt (1997) give average elementary formulae for MK3, RME and rapeseed oil: 

• MK3: C15H32 gives 72.6 g CO2/MJfuel of which all is of fossil origin; 
• RME: C19H35O2 gives 73.5 g CO2/MJfuel of which 1/19:th, 3.87 g, is of fossil origin if 

the methanol for the transesterification is of fossil origin. If the methanol is 
manufactured from products of biomass origin, no CO2 will be of fossil origin (in this 
study only for the scenario analysis); 

• Rapeseed oil: C57H102O6 gives 74.1 g CO2/MJfuel of which nothing is of fossil origin. 
Calculations [g CO2/ MJfuel]: (number of C * ((12.01 + 2 * 16.00) / (number of C * 12.01 + 
number of H * 1.008 + number of O * 16.00)) * 1000 g/kg) / (lower heat value); atomic 
weights: C: 12.01 g/mole; H: 1.008 g/mole; O: 16.00 g/mole. The lower heat values for the 
fuels are given in Table 99. 
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Uppenberg et al. (2001) state that the emission of fossil carbon dioxide is 73 g/MJfuel for 
diesel oil fuel MK1. The carbon dioxide emissions, on an area basis, can then be calculated 
from the fuel requirement if known. 
 
Ethanol fuel: The carbon dioxide emissions were calculated from the composition of the fuel 
(Table 100). The ethanol is of biomass origin and Beraid, MTBE and isobutanol is of fossil 
origin. Calculation of released carbon dioxide during combustion of 1 kg ethanol fuel: 

• Ethanol: 843.37 g. 
C2H5OH + 3*O2 ---> 2*CO2 + 3*H2O 
Molecular weight C2H5OH: 2 * 12.01 + 6* 1.008 + 16.00 = 46.068 g/mole. 
Amount of CO2 [g]: (2 * 44.01 * 843.37) / (45.068) = 1611.4 g CO2/kg ethanol fuel 
   (biomass origin). 

• Beraid (polyethylene glycol, ignition improver): 70 g. 
2*(C2H4O)n + 5*n*O2 ---> 4*n*CO2 + 4*n*H2O 
Molecular weight (C2H4O)n: (2 * 12.01 + 4 * 1.008 + 16.00) * n = 44.052 * n g/mole. 
Amount of CO2 [g]: (4 * n * 44.01 * 70) / (2 * 44.052 * n) = 139.9 g CO2/kg ethanol  
   fuel (fossil origin). 

• MTBE (methyltertiarybutylether, denaturating agent): 23 g. 
2*C5H12O + 15*O2 ---> 10*CO2 + 12*H2O 
Molecular weight C5H12O: 5 * 12.01 + 12 * 1.008 + 16.00 = 88.146 g/mole. 
Amount of CO2 [g]: (10 * 44.01 * 23) / (2 * 88.146) = 57.4 g CO2/kg ethanol fuel 
   (fossil origin). 

• Isobutanol (denaturating agent): 5 g. 
C4H10O + 6*O2 ---> 4*CO2 + 5*H2O 
Molecular weight C4H10O: 4 * 12.01 + 10 * 1.008 + 16.00 = 74.12 g/mole. 
Amount of CO2 [g]: (4 * 44.01 * 5) / (74.12) = 11.9 g CO2/kg ethanol fuel 
   (fossil origin). 

Molecular weight CO2: 12.01 +2 * 16.00 = 44.01 g/mole. 
Addition gives total emissions of CO2 when ethanol fuel is burnt: 1820.5 g/kg ethanol fuel 

equivalent to (division with the lower heat value) 72.47 g CO2/MJfuel, 
of which fossil     209.2 g/kg ethanol fuel 
equivalent to:     8.326 g CO2/MJfuel, 
of which has biomass origin  1611.4 g/kg ethanol fuel 
equivalent to:   64.14 g CO2/MJfuel. 

 
Emission of SO2, which is the main component in SOx, was calculated from the sulphur 
content in each fuel. According to Aakko et al. (2000), the sulphur content in EN590 
(European diesel fuel) is assumed to be equivalent to MK3; MK1; and RME: 403; 10; and 79 
ppm respectively. The sulphur content in rapeseed oil was assumed to be the same as for 
RME when no sulphur is added or subtracted during the transesterification. 1.00 g sulphur 
gives 2.00 g SO2 (calculated from the relationship between the mole weights of SO2 and 
sulphur: ((32.1 + 2 * 16.00) / 32.1): S 32.1 g/mole; O 16.00 g/mole). The emissions of SO2 
(SOx) [g/ha] could then be calculated from the fuel consumption for each fuel: (S content 
[ppm] / 1000000) * 2.00 [g SO2/g S] * fuel consumption [l/ha] * fuel density [kg/l] (Table 99) 
* 1000 [g/kg]. Ethanol fuel contains no sulphur (Sekab, 2003) and gives therefore no SOx 
emissions. 
 
According to the IVL recommendations particle emissions, on average, are assumed to be 11 
mg/MJfuel for diesel oil fuel MK1 and RME heavy vehicles (Uppenberg et al., 2001). In this 
study, particle emissions for diesel oil fuel MK3 were assumed to be of the same size as for 
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MK1. The literature is not unequivocal on whether particle emissions increase or decrease 
when MK1 and MK3 diesel oil fuels are compared (Aakko et al., 2000; Storey et al., 2000). 
For rapeseed oil the particle emissions are reduced by 30% in comparison to MK3 (Table 
101). According to the IVL recommendations, particle emissions, on average, are assumed to 
be 2.2 mg/MJfuel for ethanol fuel used in heavy vehicles (Uppenberg et al., 2001). This value 
was therefore used in this study when ethanol fuel was used as fuel. 
 
During the scenario analysis, with catalysts in the cultivation machines used, the reduction of 
emissions was assumed to roughly follow results from Aakko et al. (2000) for MK3, MK1, 
RME and rapeseed oil fuels. Therefore CO- HC- and NOx-emissions were reduced by 81%; 
77.5%; and 6% respectively. Particulate emissions were not influenced. For ethanol fuel, the 
reduction of emissions, with catalysts in the cultivation machines, was assumed to roughly 
follow results from Haupt et al. (1999). Therefore CO- and HC-emissions were reduced by 
93% and 45% respectively. NOx- and particulate-emissions were not influenced. 
 
Total emissions and energy requirement for cultivation and fertiliser transport were obtained 
when emissions for production of the fuel used (MK1 in Table 13) and lubrication oil were 
added with the emissions when the fuel was used (Tables 14-15, A1-A2 and A15-A16). Area 
emissions and energy requirement for the production of MK1 (Tables 14-15) could be 
calculated by multiplying: the fuel consumption [l/ha] (Tables 3-6); the fuel density [kg/l] 
(Table 99); the lower heat value [MJ/kg] (Table 99); and emissions during manufacturing of 
the fuel [g/MJfuel] (Table 13). For the scenario analyses, rapeseed oil, RME or ethanol fuel 
were also used for cultivation and transport depending on the system studied. Values for 
production of rapeseed oil, RME or ethanol fuel were taken from this study and were different 
depending on the plant size studied (Tables A3-A14, Appendix 1 and Tables A17-A22, 
Appendix 2). The calculations were then made in an iterative procedure. In the basic scenario 
MK1 was used for cultivation and transport. 
 
 
Table 13. Emissions from production of MK1 diesel oil fuel (Uppenberg et al., 2001) 
 
Factor of production CO2 CO HC CH4 NOx SOx Particles Input 

energy 
 [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [MJ/MJfuel]

Production of MK1 diesel oila 3.5 0.002 0.033 0.002 0.031 0.019 0.001 0.06
a In this study also assumed to be valid for MK3 diesel oil. 
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Table 14. Total emissions for tractive power and transport of fertiliser during cultivation of 
rapeseed with MK1 fuel 
 
Production factor CO2 CO HC CH4 NOx SOx N2O Particles Input 

energy
 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha]

Tractive power:          

   Diesel fuel consumption 168032 181.95 55.29  1996.50 1.06  25.32 2301.80

   Production of diesel fuel 8056 4.60 75.96 4.60 71.36 43.73 0 2.30 138.11

   Production of lubrication oil 57 0.03 0.53 0.03 0.50 0.31 0 0.02 0.97

   Total emissions tractive power 176145 186.58 131.78 4.64 2068.36 45.10 0 27.64 2440.88

Transport of fertiliser:          

   Diesel fuel consumption 1308 2.67 0.66  13.60 0.01  0.20 17.92

   Production of diesel fuel 63 0.036 0.59 0.036 0.56 0.34 0 0.02 1.08

   Production of lubrication oil 0.44 0.0003 0.004 0.0003 0.004 0.002 0 0.0001 0.01
   Total emissions transport 
      of fertiliser 1371 2.71 1.26 0.036 14.16 0.35 0 0.22 19.00

 
 
Table 15. Total emissions for tractive power and transport of fertiliser during cultivation of 
winter wheat with MK1 fuel 
 
Production factor CO2 CO HC CH4 NOx SOx N2O Particles Input 

energy
 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha]

Tractive power:          

   Diesel fuel consumption 169077 188.08 56.38  2011.26 1.07  25.48 2316.12

   Production of diesel fuel 8106 4.63 76.43 4.63 71.80 44.01 0 2.32 138.97

   Production of lubrication oil 57 0.03 0.54 0.03 0.50 0.31 0 0.02 0.98

   Total emissions tractive power 177240 192.74 133.35 4.66 2083.56 45.38 0 27.81 2456.07

Transport of fertiliser:          

   Diesel fuel consumption 1085 2.21 0.55  11.28 0.01  0.16 14.86

   Production of diesel fuel 52 0.03 0.49 0.030 0.46 0.28 0 0.01 0.89

   Production of lubrication oil 0.4 0.0002 0.003 0.0002 0.003 0.002 0 0.0001 0.01
   Total emissions transport of 
      fertiliser 1137 2.24 1.04 0.030 11.74 0.29 0 0.18 15.76

 
 
In an alternative scenario (Tables 155-166), ploughing was replaced by three disc harrowings 
with assumptions according to Hansson et al. (1998) and Norén et al. (1999) and Hansson & 
Mattsson (1999) about fuel consumptions and emissions (see Tables 3 and 5). The seed yield 
was assumed not to be influenced by this operation. 
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3.4.4.3 Drying of the seed 
 
The rapeseed was dried to 8% and the wheat was dried to 14% water content (wet basis) on 
the farm. An 8% water content in the rapeseed is the optimum water content for oil extraction 
(Bernesson, 1993). The trade water content in wheat is 14%. The average harvest water 
content is approx. 15% for rapeseed and approx. 20% for wheat in the flatlands of Central 
Sweden (Grimmark, pers. comm.). The energy requirement for drying with heating oil (MK3) 
is 0.15 litres per kg water removal if the drying is done in a hot-air drier and cereal grain (e.g. 
wheat) is dried (Bernesson, 1993). For drying oil plants the energy requirement is 10-15% 
lower, which in this study was assumed to be 87.5% of the energy requirement for drying 
cereal grain. 
 
When the rapeseed harvest was 2470 kg/ha at 8% water, it was equivalent to 2673 kg/ha at 
15% water and 203 kg water had to be removed. For this 26.7 litres heating oil (MK3) 
containing 944 MJ was required. In the same way the wheat harvest was 5900 kg/ha at 14% 
water, equivalent to 6342.5 kg/ha at 20% water, and 442.5 kg water had to be removed. For 
this 66.4 litres heating oil (MK3) containing 2347 MJ was required. The energy requirement 
for drying was assumed to be independent of the liquid fuel used (the lower heat values and 
the densities for fuels are given in Table 99). The emissions, on a fuel energy basis (Table 
16), were also assumed to be independent of the liquid fuel used (excluding SOx-emissions 
and fossil CO2-emissions which depend on the fuel used). For calculation of CO2- and SOx-
emissions see Section 3.4.4.2 above. 
 
The area emissions (Tables 17-18) were calculated by multiplying the energy requirement for 
drying [MJ/ha] (see above) by the emissions [g/MJfuel] (Table 16). In the basic scenario diesel 
fuel MK1 was used for drying, other fuels were used in the scenario analysis. In the total 
emissions for drying emissions for manufacturing of the fuel (MK1, Table 13) were also 
included (Tables 17-18, A1-A2 and A15-A16). In the basic scenario 0.132 litres MK1 (0.15 * 
0.875 * ((density MK3 * lower heat value MK3) / (density MK1 * lower heat value MK1))) 
were required for each litre water removed from the rapeseed and 0.151 litres MK1 (0.15 * 
((density MK3 * lower heat value MK3) / (density MK1 * lower heat value MK1))) were 
required for each litre water removed from the wheat. This means that 26.8 litres MK1/ha was 
required to dry the rapeseed and 66.7 litres MK1/ha was required to dry the wheat. 
 
 
Table 16. Emissions, drying of rapeseed and wheat with liquid fuels (Kaltschmitt & 
Reinhardt, 1997) 
 
Production factor CO HC CH4 NOx N2O Particles 

 [g/MJfuel][g/MJfuel][g/MJfuel][g/MJfuel] [g/MJfuel] [g/MJfuel] 

Drying emissions 0.03 0.005 0.007 0.03 0.001 0.001 
 
 
For drying and cleaning the rapeseed, 0.03 MJ electricity / kg wet product (15% water) was 
required (Sonesson, 1993). For drying and cleaning the wheat, 0.038 MJ electricity / kg wet 
product (20% water) was required (Sonesson, 1993: 0.017 MJ electricity / kg wet product to 
remove 200 kg water from wheat, here 442.5 kg water was removed). Emissions for 
electricity production are accounted for in Table 49, Section 3.6. The area emissions and 
energy requirement (Tables 17-18, A1-A2 and A15-A16) were obtained by multiplying; wet 
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seed yield [kg/ha]; electricity requirement [MJ/kg wet seed]; and emissions for electricity 
production [g/MJ]. 
 
 
Table 17. Total emissions for drying of rapeseed with MK1 fuel 
 
Production factor CO2 CO HC CH4 NOx SOx NH3 N2O Particles Input 

energy
 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha]

Heat for drying:           

   Production of drying fuel 3303 1.89 31.15 1.89 29.26 17.93  0.00 0.94 56.63

   Combustion of drying fuel 68900 28.32 4.72 6.61 28.32 0.44  0.94 0.94 943.84
   Total emissions heat 
      for drying 72204 30.20 35.87 8.49 57.57 18.37   0.94 1.89 1000.47

Electricity for drying and 
      cleaning of the seed:           

   Electricity consumed 
      in rural area 692 1.59 0.26 4.32 1.32 1.15 0.019 0.063 0.22 171.82

 
 
Table 18. Total emissions for drying of winter wheat with MK1 fuel 
 
Production factor CO2 CO HC CH4 NOx SOx NH3 N2O Particles Input 

energy
 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha]

Heat for drying:           

   Production of drying fuel 8213 4.69 77.44 4.69 72.74 44.58  0.00 2.35 140.79

   Combustion of drying fuel 171298 70.40 11.73 16.43 70.40 1.08  2.35 2.35 2346.54
   Total emissions heat 
      for drying 179510 75.09 89.17 21.12 143.14 45.67   2.35 4.69 2487.33

Electricity for drying and 
      cleaning of the seed:           

   Electricity consumed 
      in rural area 2079 4.77 0.77 12.99 3.98 3.45 0.058 0.19 0.66 516.32

 
 

3.4.5 Economics of rapeseed and wheat production 
 
In Tables 19 and 20, the economic conditions are described for rapeseed and wheat cultivation 
respectively, in this study. During the economic calculation the same conditions were in 
principle chosen as during the LCA. In addition to the LCA-study, calculations were also 
conducted on a larger, more cost-effective farm unit. Another difference was purchased seed 
for the sowing, the reason for this was that LCA-data were difficult to obtain for purchased 
seed. 
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Table 19. Costs in cultivation of rapeseed 
 
Factors of production Basic scenario, 75 ha farm unit Larger farm, 300 ha farm unit 

 Quantity Price Cost Quantity Price Cost 

 […/ha] [SEK/…] [SEK/ha] […/ha] [SEK/…] [SEK/ha] 

Seed [kg]a 8.8 60 528 8.8 60 528
Fertiliser: Hydro NPK Svavel Bor  
   20-3-5 [kg] 500 2.60 1302 500 2.60 1302

Fertiliser: Hydro Suprasalpeter, N28 [kg] 145 2.80 405 145 2.80 405

Pesticides, herbicide [kg] 2 380 760 2 380 760

Pesticides, insecticide [kg] 0.15 220 33 0.15 220 33

Fuel, tractive power, etc. [litres]ab 65.9 5.70 376 65.9 5.70 376

Lubrication oil etc. tractive power, etc.ac 56  56

Fuel, heat for seed drying [litres] 26.8 5.70 153 26.8 5.70 153
Electricity for drying and cleaning  
   of the seed [kWh] 22.3 0.719 16 22.3 0.719 16

Crop insurance 28  28

Cultivation charge 84  62

Sum primary costs 1 3741  3719

Machinery maintenancea 755  872

Interest circulating capital 246  222

Sum primary costs 2 4742  4813

Machinery depreciation and interesta 1713  1125
Tax and insurance, field machines  
   and driera 26  21

Keeping area costs, field machines 
   and driera 185  79

Tenancy (Agriwise, 2003) 934  934

Sum costs (excl. labour) 7600  6972

Total machine operator labour [h]a 7.54 180 1357 3.88 180 698

Labour work managementd 136  70

Sum costs (incl. labour) 9092  7740
EU area compensation 
   (subtracted income)e 2338  2338

Sum costs with EU area compensation 6754  5402
a Including extra requirement of seed, fuel, oil, maintenance, labour, etc. because of outwintering. 
a Also including threshing machine and fertiliser transport. 
b Lubrication oil costs was assumed to be 15% of fuel costs (Agriwise, 2002 and 2003). 
c Assumed to be 10% of machine operator work. 
d Oil crops in Swedish region 3 (Jordbruksverket, 2003). 
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Table 20. Costs cultivation of winter wheat 
 
Factors of production Basic scenario, 75 ha farm unit Larger farm, 300 ha farm unit 

 Quantity Price Cost Quantity Price Cost 

 […/ha] [SEK/…] [SEK/ha] […/ha] [SEK/…] [SEK/ha] 

Seed [kg]a 231 3.39 783 231 3.39 783

Fertiliser: Hydro NPK Svavel 21-4-7 [kg] 420 2.91 1224 420 2.91 1224

Fertiliser: Hydro Suprasalpeter, N28 [kg] 115 2.80 322 115 2.80 322

Pesticides, herbicide [times] 1 287 287 1 287 287
Pesticide, fungicide (Tilt Top 500 EC) 
   [times] 0.6 400 240 0.6 400 240

Pesticide, fungicide (Sportak EW) 
   [times] 0.7 445 312 0.7 445 312

Pesticides, insecticide [times] 0.5 39.9 20 0.5 39.9 20

Fuel, tractive power, etc. [litres]ab 66.2 5.70 377 66.2 5.70 377

Lubrication oil etc. tractive power, etc.ac 57  57

Fuel, heat for seed drying [litres] 66.7 5.70 380 66.7 5.70 380
Electricity for drying and cleaning  
   of the seed [kWh] 66.9 0.719 48 66.9 0.719 48

Crop insurance 28  28
Analysis winter wheat 
   [SEK/10000 kg wet seed] 0.634 145 92 0.634 145 92

Sum primary costs 1 4169  4169

Machinery maintenancea 863  933

Interest circulating capital 274  247

Sum primary costs 2 5305  5348

Machinery depreciation and interesta 2034  1307
Tax and insurance, field machines  
   and driera 31  23

Keeping area costs, field machines 
   and driera 291  120

Tenancy (Agriwise, 2003) 934  934

Sum costs (excl. labour) 8594  7732

Total machine operator labour [h]a 8.24 180 1484 4.32 180 778

Labour work managementd 148  78

Sum costs (incl. labour) 10226  8588
EU area compensation 
   (subtracted income)e 2338  2338

Sum costs with EU area compensation 7888  6250
a Including extra requirement of seed, fuel, oil, maintenance, labour, etc. because of outwintering. 
b Also including threshing machine and fertiliser transport. 
c Lubrication oil costs was assumed to be 15% of fuel costs (Agriwise, 2002 and 2003). 
d Assumed to be 10% of machine operator work. 
e Oil crops in Swedish region 3 (Jordbruksverket, 2003). 
 
 
The prices of fertilisers were calculated from prices of nitrogen, phosphorous and potassium: 
10.13 SEK/kg N; 11.70 SEK/kg P; and 4.54 SEK/kg K given by Agriwise (2003). When the 
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composition for each fertiliser was known (20% N, 3% P, 5% K and 4% S for Hydro NPK 
Svavel Bor 20-3-5; 21% N, 4% P, 7% K and 2.2% S for Hydro NPK Svavel 21-4-7 and 
27.6% N for Hydro Suprasalpeter, N28 calcium ammonium nitrate) their prices could be 
calculated. 
 
The fuel requirement for tractive power, 65.9 litres/ha for rapeseed cultivation and 66.2 
litres/ha for wheat cultivation, in this study also includes fuel for threshing machine (see 
Tables 3 and 4) and transport of fertiliser to the farm (Tables 5 and 6). 26.8 l/ha were used for 
drying the rapeseed and 66.7 litres/ha for drying the wheat. The fuel used in both these 
applications was assumed to be MK1 with a price of 5.70 SEK/litre (Henemo, 2002 and 
2003). The fuel requirement was not assumed to change in the scenario with the larger farm 
(Tables 19 and 20). 
 
The labour requirement for tractive power (incl. threshing machine) was assumed to be the 
same as when the machines were used for each operation with 20% time added as 
maintenance and wasted time for each operation (Henemo, 2002 and 2003). For transportation 
of fertiliser, the labour time for loading and unloading was assumed to be 0.5 h each. This 
makes the total time for loading, unloading and transport 2 hours (1 h loading/unloading + 1 h 
transport loaded/unloaded, 2*10 km at a speed of 20 km/h). Then, for rapeseed cultivation, 
the total load was 16 000 kg and 645 kg was required on each hectare, this gives a labour 
requirement of 0.08 h/ha. In the same way for wheat cultivation, when 535 kg fertiliser was 
required on each hectare, this gives a labour requirement of 0.07 h/ha. For drying 2.5 tonnes 
of seed, 0.4 h of labour was required (Agriwise, 2003) and therefore the labour requirement 
was assumed to be barely 0.40 h/ha for drying the rapeseed. For drying the wheat, the labour 
requirement was proportionally greater, which with a seed harvest of 5.9 tonnes gives a labour 
requirement of approx. 0.94 h/ha. The labour cost for work management was assumed to be 
10% of machine operator work costs. For the large farm, the labour requirement was assumed 
to be halved for almost all operations except for transporting the seed from the field to the 
farm and transportation of fertilisers. These were not assumed to decrease because of longer 
distances on a bigger farm. The cost for the labour was assumed to be 180 SEK/h, i.e. the cost 
for an experienced machine operator in 2002 (estimated after SCB, 2003; Agriwise, 2003; and 
Henemo, 2002 and 2003). 
 
The price for the electricity on the farms consisted of: electricity price 0.27 SEK/kWh; tax 
0.227 SEK/kWh; grid charge 0.152 SEK/kWh; and fixed grid charge simple tariff 0.07 
SEK/kWh together 0.719 SEK/kWh (Vattenfall, 2003 and Brännström, pers. comm.). Value-
added tax was not included. The fixed grid charge was assumed to be valid for an 80 Ampere 
connection with an annual consumption of 75 000 kWh. This gives a grid charge of 5507 
SEK/year divided by 75 000 kWh/year = approx. 0.07 SEK/kWh. 
 
The crop insurance was valid for a farm in the flatlands of Central Sweden growing 80% 
cereal grain and 20% oil crops in 2002 (Agriwise, 2003). 
 
The cultivation charge (only rapeseed) was calculated as 300 SEK/year with an additional 
charge of 0.022 SEK/kg seed produced (9% water content wet basis, the trade water content 
for rapeseed). This charge would then be 83.5 SEK/ha if 14% of the area on a 75 ha farm was 
cropped with rapeseed that yielded 2497 kg/ha (yield at 9% water) (62.1 SEK/ha if 14% of the 
area of a 300 ha farm was cropped) (Svenskraps, 2003b). 
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Analysis cost for winter wheat: 145 SEK/10 000 kg not dried seed (Agriwise, 2003) gave 
approx. 92 SEK/ha (if the yield was 6342 kg wheat/ha with 20% water, wet weight basis). 
 
Outwintering costs were calculated as fuel, labour, maintenance, depreciation and interest 
(machines and tractors) for one disc harrowing, two harrowings and one seed drilling each 
10% of the years for rapeseed and each 5% of the years for wheat. Extra seed was also 
included in the outwintering costs. In Tables 19 and 20, outwintering costs are included in the 
appropriate items. The outwintering costs were 105 SEK/ha in the basic scenario and 91 
SEK/ha in the scenario with the large farm for rapeseed. The outwintering costs were 65 
SEK/ha in the basic scenario and 58 SEK/ha in the scenario with the large farm for wheat. 
 
Interest circulating capital was calculated as: (Sum prime costs 1 + maintenance + labour 
cost) * factor calculation of demand of circulating capital. The factor calculation of demand of 
circulating capital is 0.6 for winter crops and 0.3 for spring crops (Agriwise, 2003). The 
difference to Agriwise (2003) and SLU (1989) in this study is that the maintenance for all 
machines used was included in the calculations (not just tractors, threshing machine and 
sprayer). Costs for outwintering were included in interest circulating capital. Labour for work 
management was not included in interest of circulating capital. 
 
Tax and insurance costs were assumed to be 0.2% of the replacement value for tractors and 
threshing machines and 0.1% of the replacement value for other machines (Tables 22, 21, 25 
and 26), after Henemo (2002). To get the values on an area basis they were multiplied by the 
use [h/ha] and divided by annual use [h]. 
 
Keeping area costs were calculated after Henemo (2002 and 2003). The keeping area is the 
floor area each machine requires during storage. The demand for floor area is about twice the 
machine-area. The price for the floor-area was assumed to be 180 SEK/m2 for tractors and 
front-loaders and 120 SEK/m2 for other machines (Tables 21-26), which corresponds to a 
building tenancy of 90 and 60 SEK/m2 respectively. These figures could be valid for a 
mixture between new and old storage houses. To get the values on an area basis they were 
multiplied by the use [h/ha] divided by annual use [h]. 
 
Maintenance and capital costs (depreciation and interest) (Tables 21-26) were mainly 
calculated after Henemo (2002 and 2003). These values are dependent on how much each 
machine is used on each hectare and how much it is used annually. Maintenance costs 
[SEK/ha] were calculated as: maintenance costs [SEK/h and 1000 SEK replacement value] * 
replacement value [1000 SEK] * use [h/ha]. 
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Table 21. Basic economic data for cultivation machines, rapeseed and wheat cultivation 
 
Machine, use on 75 ha farm Repl. value Residual Maintenance Length of life Annual use Keeping 

   in the flatlands of Central Sweden [SEK] (A)a valueb cost (B)c [years] (C) [hours] (D) area [m2]

   Tractor, 52 kW, 4WD 295000 73750 0.07 12 300 8
   Tractor, 66 kW, 4WD, incl. transp. 
     fertiliser to farm 400000 100000 0.07 12 550 8

   Front-loader, 1500 kg, incl. transp. 
     fertiliser to farm 60000 15000 0.20 12 15 2

   Plough, four wings, semi-mounted 80000 20000 0.90 12 200 6

   Harrow, 6 m 110000 27500 0.70 12 80 10

   Precision seed drill, 9 rowsd  110000 27500 0.80 12 70 10

   Seed drill, 4.0 md 100000 25000 0.50 15 100 10

   Cambridge roller, 6 m 60000 15000 0.50 15 30 12
   Fertiliser spreader, towed 4000 l, 
     12 m boom 200000 50000 0.65 10 70 14

   Sprayer, 1000 l, carried, 12 m boom 110000 27500 1.25 12 30 6

   Threshing machine, 3.0 m 525000 131250 0.30 15 130 32

   Disc harrow, 3.6 m 115000 28750 0.50 15 160 20
   Tipping trailer, 10 tonnes, 
     incl. transp. fertiliser to farm (*2) 70000 17500 0.50 15 50 14

   Hot air drier, incl. air heater, conti-  
     nuous flow drier, SLU (1989) costs  
     assumed not to be increased 

500000 0 0.05 50 530 100

a Replacement value (Henemo, 2002). 
b Residual value assumed to be 25% of the replacement value. 
c Maintenance cost (Henemo, 2002 and 2003) [SEK/h and 1000 SEK replacement value] (B). 
d Precision seed drill, 9 rows used for rapeseed, and seed drill, 4.0 m used for wheat. 
 
 
Capital costs (depreciation and interest) were calculated using the annuity method (Ljung & 
Högberg, 1988). The calculation interest was set at 7% for these calculations. Then the annual 
capital cost was (Equations 1-3): 
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where: A = Replacement value; 

R = Residual value; 
U = Use [h/ha] and 
D = Annual use [h/year]. 

 
The present value factor: 
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where:  i = Calculation interest; 
 C = Length of life [years], calculated. 
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The fixed annual factor: 

1
100

i1

100
i1

100
i

An C

C

−⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +∗

=                      (3) 

 
In the calculation for cultivation machines, the residual value was assumed to be 25% of the 
replacement value for field machines and zero for the dryer (Tables 21 and 24). 
 
 
Table 22. Basic data for cultivation machines used in economic calculation, rapeseed 
cultivation 
 
Machine, use on 75 ha farm Use Maint. cost Keeping area Tax and insurance Annual capital

   in the flatlands of Central Sweden [h/ha] [SEK/ha] costs [SEK/ha] [SEK/ha]a cost [SEK/ha] 

   Tractor, 52 kW, 4WD 0.98 20.2 4.7 1.92 107.6
   Tractor, 66 kW, 4WD, incl. transp. 
     fertiliser to farm 3.60 100.7 9.4 5.23 292.9

   Front-loader, 1500 kg, incl. transp. 
     fertiliser to farm 0.06 0.8 1.5 0.26 28.7

   Plough, four wings, semi-mounted 2.06 148.6 7.4 0.83 92.4

   Harrow, 6 m, 2 times 0.54 41.7 8.1 0.74 83.3

   Precision seed drill, 9 rows 0.45 39.9 7.8 0.71 79.8

   Cambridge roller, 6 m 0.12 3.5 5.6 0.23 23.3
   Fertiliser spreader, towed 4000 l, 
     12 m boom, 2 times 0.26 33.4 6.2 0.73 91.3

   Sprayer, 1000 l, carried, 12 m boom, 
     2 times 0.15 20.6 3.6 0.55 61.6

   Threshing machine, 3.0 m 1.36 214.8 40.3 11.01 549.9

   Disc harrow, 3.6 m, 1 time 0.77 44.3 11.6 0.55 55.3
   Tipping trailer, 10 tonnes, 
     incl. transp. fertiliser to farm (*2) 0.20 7.0 6.7 0.28 27.8

   Hot air drier, incl. air heater, conti- 
     nuous flow drier, SLU (1989) costs  
     assumed not to be increased 

3.20 80.0 72.5 3.02 218.7

Sum 755.5 185.3 26.08 1712.5
a Tax and insurance assumed to be 0.2% of replacement value for tractors and threshing machines and 0.1% of  
   the replacement value for other machines (Henemo, 2002). 
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Table 23. Basic data for cultivation machines used in economic calculation, wheat cultivation 
 
Machine, use on 75 ha farm Use Maint. cost Keeping area Tax and insurance Annual capital

   in the flatlands of Central Sweden [h/ha] [SEK/ha] costs [SEK/ha] [SEK/ha]a cost [SEK/ha] 

   Tractor, 52 kW, 4WD 1.02 21.0 4.9 2.00 111.9
   Tractor, 66 kW, 4WD, incl. transp. 
     fertiliser to farm 3.69 103.4 9.7 5.37 300.5

   Front-loader, 1500 kg, incl. transp. 
     fertiliser to farm 0.06 0.7 1.5 0.25 27.6

   Plough, four wings, semi-mounted 2.06 148.6 7.4 0.83 92.4

   Harrow, 6 m, 2 times 0.52 39.8 7.8 0.71 79.6

   Seed drill, 4.0 m 0.43 21.7 5.2 0.43 43.2

   Cambridge roller, 6 m 0.12 3.5 5.6 0.23 23.3
   Fertiliser spreader, towed 4000 l, 
     12 m boom, 2 times 0.26 33.4 6.2 0.73 91.3

   Sprayer, 1000 l, carried, 12 m boom, 
     2.8 times 0.21 28.9 5.0 0.77 86.2

   Threshing machine, 3.0 m 1.36 214.8 40.3 11.01 549.9

   Disc harrow, 3.6 m, 1 time 0.74 42.3 11.0 0.53 52.7
   Tipping trailer, 10 tonnes, 
     incl. transp. fertiliser to farm (*2) 0.35 12.2 11.7 0.49 48.6

   Hot air drier, incl. air heater, conti- 
     nuous flow drier, SLU (1989) costs  
     assumed not to be increased 

7.70 192.5 174.3 7.26 526.4

Sum 862.6 290.5 30.62 2033.6
a Tax and insurance assumed to be 0.2% of replacement value for tractors and threshing machines and 0.1% of  
   the replacement value for other machines (Henemo, 2002). 
 
 
The summed values in Tables 21-23 are used in Tables 19 and 20. 
 
In the scenario with a larger farm unit (Tables 24-26) the larger machines with approximately 
double the capacity were chosen with replacement values after Henemo (2002). For the drier a 
reasonable higher replacement value was assumed. The annual use of the machines was in 
most cases assumed to be doubled. An exception was the threshing machine, where an annual 
use of more than 180 hours would be difficult to achieve in Central Sweden because of the 
weather conditions during harvest. The threshing machine had to be comparably larger for 
this reason. The machine length of life was increased and because of that the residual values 
had to be decreased to a lower value, here assumed to be 10%. The total use of the machines 
was then close to what is possible and so are the machine costs. 
 
The summed up values in Tables 24-26 are used in Tables 19 and 20. 
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Table 24. Basic economic data for cultivation machines, larger farm, rapeseed and wheat 
cultivation 
 
Machine, use on 300 ha farm Repl. value Residual Maintenance Length of life Annual use Keeping 

   in the flatlands of Central Sweden [SEK] (A)a valueb cost (B)c [years] (C) [hours] (D) area [m2]

   Tractor, 100 kW, 4WD 565000 56500 0.07 20 600 10
   Tractor, 140 kW, 4WD, incl. transp. 
     fertiliser to farm 785000 78500 0.07 20 1100 10

   Front-loader, larger, incl. transp. 
     fertiliser to farm 75000 7500 0.20 20 30 2

   Plough, eight wings, semi-mounted 160000 16000 0.90 20 400 10

   Harrow, 12 m 200000 20000 0.70 20 160 16

   Precision seed drill, 18 rowsd  320000 32000 0.80 20 140 15

   Seed drill, 8.0 md 300000 30000 0.50 20 200 15

   Cambridge roller, 12 m 150000 15000 0.50 35 60 18
   Fertiliser spreader, towed 4000 l, 
     20 m boom 240000 24000 0.65 15 140 18

   Sprayer, 3600 l, towed, 24 m boom 360000 36000 1.25 15 60 18

   Threshing machine, 7.5 m 1700000 170000 0.30 20 180 50

   Disc harrow, 7.2 m 200000 20000 0.50 20 320 25
   Tipping trailer, 15 tonnes, 
     incl. transp. fertiliser to farm (*2) 175000 17500 0.50 20 120 20

   Hot air drier, incl. air heater, conti- 
     nuous flow drier, SLU (1989) costs  
     assumed not to be increased 

1000000 0 0.05 50 530 150

a Replacement value (Henemo, 2002). 
b Residual value assumed to be 10% of the replacement value. 
c Maintenance cost (Henemo, 2002 and 2003) [SEK/h and 1000 SEK replacement value] (B). 
d Precision seed drill, 18 rows used for rapeseed, and seed drill, 8.0 m used for wheat. 
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Table 25. Basic data for cultivation machines used in economic calculation, larger farm, 
rapeseed cultivation 
 
Machine, use on 300 ha farm Use Maint. cost Keeping area Tax and insurance Annual capital

   in the flatlands of Central Sweden [h/ha] [SEK/ha] costs [SEK/ha] [SEK/ha]a cost [SEK/ha] 

   Tractor, 100 kW, 4WD 0.49 19.3 1.5 0.92 42.3
   Tractor, 140 kW, 4WD, incl. transp. 
     fertiliser to farm 1.93 105.8 3.2 2.75 126.4

   Front-loader, larger, incl. transp. 
     fertiliser to farm 0.03 0.5 0.4 0.08 7.4

   Plough, eight wings, semi-mounted 1.03 148.6 3.1 0.41 38.0

   Harrow, 12 m, 2 times 0.27 37.9 3.2 0.34 31.1

   Precision seed drill, 18 rows 0.23 58.1 2.9 0.52 47.7

   Cambridge roller, 12 m 0.06 4.4 2.1 0.15 11.2
   Fertiliser spreader, towed 4000 l, 
     20 m boom, 2 times 0.13 20.1 2.0 0.22 23.3

   Sprayer, 3600 l, towed, 24 m boom, 2 times 0.08 33.8 2.7 0.45 47.6

   Threshing machine, 7.5 m 0.68 347.7 22.7 12.88 592.1

   Disc harrow, 7.2 m, 1 time 0.39 38.5 3.6 0.24 22.1
   Tipping trailer, 15 tonnes, 
     incl. transp. fertiliser to farm (*2) 0.20 17.4 4.0 0.29 26.7

   Hot air drier, incl. air heater, conti- 
     nuous flow drier, SLU (1989) costs  
     assumed not to be increased 

0.80 40.0 27.2 1.51 109.4

Sum 872.0 78.5 20.75 1125.2
a Tax and insurance assumed to be 0.2% of replacement value for tractors and threshing machines and 0.1% of  
   the replacement value for other machines (Henemo, 2002). 
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Table 26. Basic data for cultivation machines used in economic calculation, larger farm, 
wheat cultivation 
 
Machine, use on 300 ha farm Use Maint. cost Keeping area Tax and insurance Annual capital

   in the flatlands of Central Sweden [h/ha] [SEK/ha] costs [SEK/ha] [SEK/ha]a cost [SEK/ha] 

   Tractor, 100 kW, 4WD 0.51 20.1 1.5 0.96 44.0
   Tractor, 140 kW, 4WD, incl. transp. 
     fertiliser to farm 2.04 112.2 3.3 2.91 134.0

   Front-loader, larger, incl. transp. 
     fertiliser to farm 0.03 0.5 0.4 0.08 7.1

   Plough, eight wings, semi-mounted 1.03 148.6 3.1 0.41 38.0

   Harrow, 12 m, 2 times 0.26 36.2 3.1 0.32 29.7

   Seed drill, 8.0 m 0.22 32.5 1.9 0.32 29.9

   Cambridge roller, 12 m 0.06 4.4 2.1 0.15 11.2
   Fertiliser spreader, towed 4000 l, 
     20 m boom, 2 times 0.13 20.1 2.0 0.22 23.3

   Sprayer, 3600 l, towed, 24 m boom, 2.8 times 0.11 47.3 3.8 0.63 66.7

   Threshing machine, 7.5 m 0.68 347.7 22.7 12.88 592.1

   Disc harrow, 7.2 m, 1 time 0.37 36.8 3.4 0.23 21.1
   Tipping trailer, 15 tonnes, 
     incl. transp. fertiliser to farm (*2) 0.35 30.4 7.0 0.51 46.6

   Hot air drier, incl. air heater, conti- 
     nuous flow drier, SLU (1989) costs  
     assumed not to be increased 

1.93 96.3 65.4 3.63 263.2

Sum 932.9 119.8 23.25 1306.8
a Tax and insurance assumed to be 0.2% of replacement value for tractors and threshing machines and 0.1% of  
   the replacement value for other machines (Henemo, 2002). 
 
 

3.5 Fuel production: performance, requirement for energy and chemicals etc. 
 

3.5.1 Oil extraction 
 
The use of machinery was dependent on the size of the plant. The extraction in the smallest 
plant was made by a hole cylinder type of oil expeller and in the medium- and large-size 
plants by a strainer type of oil expeller. The extraction capacity of an oil expeller decreases 
with higher oil extraction efficiency and vice versa (Widmann, 1988; Maurer, 1991; 
Bernesson, 1993; Schön et al., 1994; Bernesson, 1994). In the large-scale plant the extraction 
take place in two steps, pressing and hexane extraction. The more advanced solvent extraction 
technique with hexane was used in order to extract more oil from the seeds. 
 
In extraction of rapeseed, oil extraction efficiencies of 58-82% (Widmann, 1988; Maurer, 
1991; Bernesson, 1993; Schön et al., 1994; Bernesson, 1994) have been attained with hole 
cylinder expellers, and extraction efficiencies of 70-88% (Thompson & Peterson, 1982; 
Widmann, 1988; Maurer, 1991; Head et al., 1995) with strainer oil expellers. The lower range 
in the intervals normally represents oil presses used in practice and the upper range oil presses 
used in laboratory conditions. In this study, the oil extraction efficiencies were assumed to be 
68% in the small-scale plant (Bernesson, 1993; Bernesson, 1994), 75% in the medium-scale 
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plant (Head et al., 1995) and 98% in the large-scale plant (Maurer, 1991; Schön et al., 1994; 
Kaltschmitt & Reinhardt, 1997). The extraction efficiencies chosen correspond to oil 
extraction capacities that are realistic for each type of expeller in practice. In a scenario 
analysis, oil extraction efficiencies of 73% for small-scale plants and 80% for medium-scale 
plants were also studied. 
 
The electricity consumption was 0.22-0.36 MJ/kg seed for the plant sizes studied (Table 27). 
Small oil presses have a higher consumption of energy. Medium- and large-scale oil 
extraction plants consume the same amount of energy due to the fact that the higher 
complexity at the large plant is compensated for by higher efficiency. 
 
 
Table 27. Oil extraction efficiency and energy consumption for plants with different sizes 
 
Plant size Oil extraction efficiency Energy consumption 

 [%] [MJel/kg seed] [MJel/kg oil] 

Small-scale plant   68ab 0.359a 1.17a 

Medium-scale plant 75c 0.216d 0.64d 

Large-scale plant 98d 0.216d 0.49d 
a After Bernesson (1993); Bernesson (1994); and Bernesson (1998). 
b After Widmann (1988). 
c After Head et al. (1995). 
d After Kaltschmitt & Reinhardt (1997). 
 
 
The electricity requirement for the small-scale extraction, 0.30 kWh/litre oil (approx. 0.36 
MJ/kg seed) was calculated after Bernesson (1993) and Bernesson (1994). For medium- and 
large-scale extraction the electricity requirement was 60 kWh/tonne seed (0.216 MJ/kg seed) 
(Kaltschmitt & Reinhardt, 1997) (Table 27). All process energy was assumed to be electricity. 
The corresponding area electricity requirement [MJel/ha] (Table 50, Section 3.6.1) was 
obtained when the electricity requirement [MJel/kg seed] was multiplied by the seed harvest 
[kg seed/ha] (Section 3.4.1) or when the electricity requirement [MJel/kg oil] was multiplied 
by the oil harvest [kg oil/ha] (Table 28). 
 
Some data for oil extraction in different production plants of seed with an oil content of 45% 
are given in Table 28. These data are necessary for the physical allocation in this study 
(Section 3.10). 
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Table 28. Some data for oil extraction in different production plants, including properties of 
the meal 
 
Type of plant Extraction Share of total as: Water-

wastage Share of total as: Harvest of: 

 efficiency Oil Meal during 
extraction Sediment of which oil Oil Expeller 

 [%] [%] [%] [%] [%] [%] [kg/ha] [kg/ha] 

Small-scale plant 68 30.60 65.80 2 1.6 1.0   756 1625 

Medium-scale plant 75 33.75 64.25 2     0     0   834 1587 

Large-scale plant 98 44.10 53.90 2     0     0 1089 1331 
 
 
Hexane was used for the solvent part of the oil extraction in large-scale plants. Solvent 
extraction was not used in medium- and small-scale plants. The losses of hexane during the 
extraction phase are 0.6-1.5 kg/tonnes rapeseed, with an average of 1.0 kg/tonne (Kaltschmitt 
& Reinhardt, 1997). 0.375 kg/tonne rapeseed of this hexane is lost as HC (hydrocarbons) from 
the extraction plant, which means 0.93 kg/ha if the seed harvest is 2470 kg/ha. In Table 29 
emissions from production of and extraction with hexane are accounted for. 
 
 
Table 29. Emissions from production of and use of hexane for extraction (Kaltschmitt & 
Reinhardt, 1997) 
 
Factor of production CO2 CO HC CH4 NOx SOx NH3 N2O HCl Particles MJ 
Production of hexane 
[g/kg hexane]. 543 0.34 0.51 0.66 1.84 2.5 0.002 0.0131 0.0036 0.085 52.1 

Emissions, production 
of hexane [g/ha] 1341 0.84 1.26 1.62 4.54 6.2 0.0049 0.032 0.0089 0.210 129 

Hexane emission, 
extraction [g/ha] 0 0 0.93 0 0 0 0 0 0 0 0 

Total emissions 
hexane [g/ha] 1341 0.84 2.19 1.62 4.54 6.2 0.0049 0.03 0.0089 0.210 129 

 
 
For electricity see Section 3.6 and for transport see Section 3.7. 
 
 

3.5.2 Transesterification 
 
Contribution of emissions came from production of methanol, catalyst and electricity for 
transesterification. 
 
The emissions to air during the transesterification process are probably negligibly small and 
contain probably methanol as the main part. Emissions to water may be higher especially if 
the ester after transesterification is washed by water. No data on emissions from the 
transesterification process were found in the available literature. 
 
According to assumptions after Kaltschmitt & Reinhardt (1997), the consumption of 
electricity is 0.60 MJel/kg RME (also including thermal energy) for the transesterification. 
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Emissions from the production of electricity are described in Table 49, Section 3.6.1. The area 
electricity requirement (see Table 50) could be calculated from the RME yields: 727 kg/ha; 
802 kg/ha; and 1048 kg/ha for small-; medium-; and large-scale plants respectively (see 
Section 3.6.1). More complexity at bigger plants was compensated for by higher efficiency. 
Therefore the energy demand was the same for all the plant sizes studied. 
 
In Table 30, the emissions when methanol and catalyst are manufactured are accounted for. In 
the basic scenario, methanol produced from fossil natural gas was used. In the scenario 
analysis was also methanol produced from biomass Salix studied. Methanol has a lower heat 
value of 19.8 MJ/kg (Mörtstedt & Hellsten, 1982). 
 
 
Table 30. Emissions and energy requirement from production of methanol and catalyst 
 
Factor of production CO2 CO HC CH4 NOx SOx N2O Particles Input 

energy
Production of fossil methanol [g or MJ/ 
   MJ methanol] (Furnander, 1996) 18 0.0050 0.0028 0.0023 0.040 0.00037 0.00029 0 0.63 

Production of biomass methanol [g or MJ/ 
   MJ methanol] (Furnander, 1996) 16 0.038 0.020 0.00010 0.145 0.0056 0.00048 0.00027 2.29 

Production of NaOH catalyst [g or MJ/ 
   kg NaOH] (Finnveden et al., 1994) 364 0.111 0.0043 0.00065 1.51 1.29 0 0.00046 10.4 

Production of KOH catalyst [g or MJ 
   /kg KOH] (recalculated from NaOH) 260 0.079 0.003066 0.00047 1.08 0.92 0 0.00033 7.4 

 
 
In the LCA-analysis, the emissions from the production of the potassium hydroxide are 
assumed to be the same, on a molar basis, as for sodium hydroxide (Table 30). This may be 
plausible when the heat of formation is the same (-425 kJ/mole) for both substances (Aylward 
& Findlay, 1994). The atomic weights are: potassium: 39.1 [g/mole]; sodium: 23.0 g/mole; 
oxygen: 16.0 [g/mole]; and hydrogen: 1.0 [g/mole] (Aylward & Findlay, 1994). This gives the 
mole weights for: KOH to 56.1 g and for NaOH to 40.0 g. With the same amount of emissions 
on a mole basis, the emissions for KOH will be reduced by a factor of 40.0/56.1=0.713 on a 
weight basis. More KOH will be consumed if the same amount is consumed on a mole basis: 
56.1/40.0=1.40 * the amount of NaOH will be consumed on a weight basis. To produce 1 kg 
NaOH, 3.87 MJ thermal energy and 6.54 MJ electrical energy were consumed, in total 10.41 
MJ/kg. With the same reasoning as above, the energy demand for producing 1 kg KOH is 
(40.0/56.1*10.41 MJ/kg) = 7.42 MJ/kg. 
 
The demand for methanol is 110 kg / 1000 kg rapeseed oil (Norén, 1990) during the 
transesterification, assumed to be independent of plant size. The catalyst was potassium 
hydroxide (caustic potash, KOH). Potassium hydroxide was chosen over sodium hydroxide, 
because potassium may be used as fertiliser after the transesterification. Glycerine with 
potassium hydroxide is therefore assumed to be easy to get rid of. The demand for catalyst is 
2000 kg / 200 m3 rapeseed oil (Norén et al., 1993). In Table 31 the demands for methanol and 
catalyst are given on an area basis. 
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Table 31. Demand for methanol and catalyst at the different plant sizes 
 
Plant size Demand for methanol Demand for catalyst 

 [kg/ha] [kg/ha] 

Small-scale   83   8.2 

Medium-scale   92   9.1 

Large-scale 120 11.8 
 
 
In Table 32, area emissions from the production of methanol and catalyst for the three studied 
plant sizes are accounted for. If the demand for methanol (Table 31) [kg/ha], the lower heat 
value for methanol (19.8 MJ/kg) and the emission value for production of fossil methanol 
(Table 30) [g/MJ methanol] are multiplied, the area emission values for production of 
methanol in Table 32 are obtained. The area emission values for biomass methanol, which is 
studied in a scenario analysis, can be calculated in the same way. If the demand for catalyst 
(Table 31) [kg/ha] and the emission value for production of KOH catalyst (Table 30) [g/kg 
KOH] are multiplied, the area emission values for production of catalyst in Table 32 are 
obtained. 
 
 
Table 32. Area emissions and energy requirement from production and use of fossil methanol 
and catalyst 
 
Chemical CO2 CO HC CH4 NOx SOx N2O Particles Input energy

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha] 

Small-scale:          

   Methanol 29782 8.21 4.66 3.80 66.0 0.613 0.478 0 1044 

   Catalyst 2130 0.649 0.0252 0.00383 8.84 7.55 0 0.00268 60.9 

Medium-scale:          

   Methanol 32848 9.05 5.13 4.19 72.8 0.676 0.527 0 1151 

   Catalyst 2349 0.716 0.0278 0.00422 9.75 8.33 0 0.00296 67.2 

Large-scale:          

   Methanol 42921 11.83 6.71 5.48 95.1 0.883 0.689 0 1504 

   Catalyst 3070 0.936 0.0363 0.00552 12.73 10.88 0 0.00386 87.8 
 
 
For electricity see Section 3.6 and for transport see Section 3.7. Transportation of catalyst was 
neglected in the model because its contribution would be small (about 1% of that for 
methanol transported the same distance). The glycerine produced was assumed to be sold raw. 
 
 

3.5.3 Production of ethanol fuel 
 
The ethanol was produced from wheat in a conventional fermentation process, with hydrolysis 
(gelatinization, liquefication and saccharification), fermentation and distillation, in all the 
plant sizes studied. The wheat was ground to meal in a hammermill before the process (in this 
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study included in the process). The process is described in Norén & Danfors (1981); 
Almemark (1996); Kaltschmitt & Reinhardt (1997); Jacques et al. (1999); Schmitz (2003); 
and Agroetanol (2003). 
 
Wheat contains normally 58-65% (wet basis) of starch (Almemark, 1996; Kaltschmitt & 
Reinhardt, 1997; Jacques et al., 1999; Schmitz, 2003; Agroetanol, 2003). Therefore the starch 
content in this study was assumed to be 60%. During the cooking process the starch is 
hydrolysed (Jacques et al., 1999): 1) The meal is mixed with water and enzymes (e.g. α-
amylase) and heated to break down the granular structure of the starch and make a viscous 
liquid gel (gelatinization); 2) During the liquefaction the gelatinized starch is partially 
hydrolysed (by e.g. α-amylase to give soluble dextrins (short-chain polymers of glucose 
molecules); 3) During the saccharification, dextrins are degraded to glucose with help from 
e.g. the enzyme glucoamylase. Chemically, Equation 4 could describe the hydrolysis: 
 

 (glucose)        (water)         (starch)   
OHC nOH n)OHC( 61262n5106 →+

                    (4) 

 
After the hydrolysis a sugar-rich mash is obtained, the sugar in which could be fermented to 
ethanol if mixed with yeast (e.g. Saccharomyces cerevisiae). The optimal temperature for this 
type of yeast is 32°C (Jacques et al., 1999). Chemically, Equation 5 could describe the 
fermentation: 
 

 (ethanol) dioxide)(carbon  (glucose) 
OHHC 2CO 2OHC 5226126 +→

                    (5) 

 
Finally the distillation is performed. For use as fuel in diesel engines with addition of ignition 
improver and denaturants, the ethanol does not need to be anhydrous and therefore there was 
no need for a final dehydration in this study. This is a divergence from other plants in the 
literature, where dehydration is included in the process (Almemark, 1996; Kaltschmitt & 
Reinhardt, 1997; Jacques et al., 1999; Schmitz, 2003; Agroetanol, 2003). 
 
Because the ethanol does not ignite properly if used pure in a diesel engine, it has to be mixed 
with an ignition improver before such use. In this study the ignition improver Beraid 3540 
was assumed to be used. To prevent the use of the ethanol fuel as a drink it must also contain 
denaturants, in this study assumed to be MTBE (methyl-tertiary-butyl ether) and isobutanol 
(for composition of the fuel see Table 100). 
 
In Table 33 inputs of grain, water, electricity and heat (as steam) with efficiencies when the 
ethanol is produced for the three plant sizes studied are accounted for. The output of ethanol, 
distiller’s waste (feedstuff) and carbon dioxide is also accounted for. The distiller’s waste was 
only dried (to DDGS: distiller’s dried grain with solubles, Jacques et al. (1999)) in the largest 
plant. Larger plants were also assumed to utilize electricity and steam (heat) more efficiently 
than smaller plants. 
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Table 33. Some data for the ethanol plants studied 
 
Factor of production Plant size [ha] 

 40 1000 50000

Ethanol yield [tonne/tonne wheat] 0.296 0.296 0.296

Carbon dioxide yield [tonne/tonne wheat] 0.264 0.264 0.264

Feedstuff yield (dried, DDGS) [tonne/tonne wheat]                  -                  - 0.321

Feedstuff yield wet with 9.1% dry matter [tonne/tonne wheat] 3.21 3.21                  - 

Water requirement [tonne/tonne wheat] 3.78 3.78 0.897

Direct requirement of electricity:    

    assumed increased requirement because of lower efficient    

    technology in a smaller plants [%] 20 10 0

    fermentation:    

       which gives the following el. requirements [MJ/tonne ethanol] 528.3 484.3 440.3

       equivalent to [MJ/tonne wheat] 156.5 143.5 130.4

    distillation:  

       which gives the following el. requirements [MJ/tonne ethanol] 316 290 263

       equivalent to [MJ/tonne wheat] 94 86 78

    drying of distiller’s waste (large-scale); pumping (smaller scales):  

       which gives the following el. requirements [MJ/tonne ethanol] 3.90 3.90 734

       equivalent to [MJ/tonne wheat] 1.15 1.15 217

    total electric energy [MJ/tonne wheat] 251 230 426

Steam requirement:    

    assumed increased requirement because of lower efficient    

    technology in a smaller plants [%] 20 10 0

    fermentation:    

       which gives the following steam requirements [MJ/tonne ethanol] 925 847 770

       equivalent to [MJ/tonne wheat] 274 251 228

       steam requirement (26 bar from water, 10°C) [tonne/tonne wheat] 0.099 0.091 0.083

    distillation:  

       which gives the following steam requirements [MJ/tonne ethanol] 5430 4977 4525

       equivalent to [MJ/tonne wheat] 1608 1474 1340

       steam requirement (26 bar from water, 10°C) [tonne/tonne wheat] 0.583 0.534 0.486

    drying of distiller’s waste:    

       which gives the following steam requirements [MJ/tonne ethanol]                  -                  - 5283

       equivalent to [MJ/tonne wheat]                  -                  - 1565

       steam requirement (26 bar from water, 10°C) [tonne/tonne wheat]                  -                  - 0.567

    total thermal energy [MJ/tonne wheat] 1882 1725 3134

    efficiency during production of thermal energy [%] 75 84 87.5

    supply of thermal energy as wood chips [MJ/tonne wheat] 2510 2054 3581

    total requirement of steam [tonne/tonne wheat] 0.682 0.625 1.135

    water + steam [tonne/tonne wheat] 4.47 4.41 2.03
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The production of ethanol, carbon dioxide and feedstuff was calculated from the information 
from Agroetanol (2003) that 2.65 kg wheat gives 1 litre ethanol, 0.7 kg carbon dioxide and 
0.85 kg dried feedstuff (91% dry matter). Undried distiller’s waste has a dry matter content of 
9.1% (SBI-Trading, 2003), in this study valid for small- and medium-sized plants. The 
difference in water content gives the extra water requirement in small- and medium-scale 
plants in comparison to large-scale plants. The requirements for water (Table 33) and 
chemicals (Table 38) are accounted for by Almemark (1996). 
 
The electricity requirement of the large-scale plants was mainly calculated from the electricity 
requirement for the Agroetanol-ethanol plant in Norrköping (Agroetanol, 2003). The ethanol 
plant in Norrköping consumes 320 kWh electricity/1000 litres ethanol (Agroetanol, 2003) 
(1.152 MJ/litre ethanol = 1.468 MJ/kg ethanol) of which: approx. 30% is used before the 
distillation; approx. 20% is used for the distillation and dehydration; and approx. 50% is used 
for the dewatering of mash and feed (distiller’s waste) handling (Werling, pers. comm.). 
These data for the electricity consumption were used in this study for the large-scale plant 
after the electricity requirement for dehydration (30.3 MJ/tonne ethanol: Jacques et al., 1999) 
had been subtracted. When the distiller’s waste was not dried in small- and medium-scale 
plants, they had no requirement for electricity for this application. In small- and medium-scale 
plants the distiller’s waste was assumed to only be pumped out to the transport vehicle with a 
liquid manure pump with an electricity requirement of approx. 0.36 MJ/1000 kg pumped 
(wet) material (estimated after DLG, 1980). Because of less efficient techniques, the 
consumption of electricity was assumed to be 10 and 20% higher for medium- and small-scale 
plants respectively in comparison to large-scale plants. The electricity requirements in the 
ethanol plants studied are accounted for in Table 33. The production of electricity is described 
in Section 3.6.1 and the emissions during production of electricity are accounted for in Table 
49. 
 
The heat requirement of the large-scale plants was mainly calculated from the steam heat 
requirement of the Agroetanol-ethanol plant in Norrköping (Agroetanol, 2003). The ethanol 
plant in Norrköping consumes 2400 kWh steam heat/1000 litres ethanol (Agroetanol, 2003) 
(8.64 MJ/litre ethanol = 11.0 MJ/kg ethanol) of which: approx. 7% is used for heating of the 
products before the distillation; approx. 45% is used for the distillation and dehydration; and 
approx. 48% is used for the dewatering of mash and feed (distiller’s waste) handling 
(Werling, pers. comm.). These data for the heat consumption were used in this study for the 
large-scale plant after the steam heat requirement for dehydration (1427 MJ/tonne ethanol 
(Jacques et al., 1999) and it was assumed that 70% of that was possible to recover at other 
parts in the process if dehydration was not required. Therefore 30% of this steam heat, 
equivalent to 428 MJ/tonne ethanol, could be saved when the dehydration of the ethanol was 
excluded) had been subtracted. When the distiller’s waste was not dried in small- and 
medium-scale plants there was no requirement of steam heat for this application. Because of 
less efficient technique the consumption of steam heat was assumed to be 10 and 20% higher 
for medium- and small-scale plants respectively in comparison to large-scale plants. The 
requirements for steam heat, in the studied ethanol plants, are accounted for in Table 33. 
 
The emissions during production of the steam were assumed to be as accounted for by 
Kaltschmidt & Reinhardt (1997) for three different sized boilers (Table 34): 30 kW 
continuous combustion; 4 000 kW fed fire grate boiler; and 20 000 kW fluidized bed roaster. 
In this study spruce wood chips were the fuel in the basic scenario and Salix wood chips the 
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fuel in a scenario analysis (Table 35). The efficiency for the large plant for production of 
steam was assumed to be 87.5%, estimated after the energy quotient for the Agroetanol plant: 
(energy in consumed steam: 2400 kWh / requirement of fuel energy to produce the steam: 
2743 kWh) (Agroetanol, 2003). The efficiencies for the small-scale and medium-scale plants 
were assumed to be as for the 30 kW and 4000 kW heating plants in Kaltschmitt & Reinhardt 
(1997) (Table 33). The emissions during production of the spruce wood chips and Salix wood 
chips are accounted for in Table 35. The total emission values for use of the steam heat are 
obtained if the values for the studied type of fuel (Table 35) are added to the emission values 
for the types of heating plants studied (Table 34). In Table 36 the energy requirements (as 
fuel) of the main processes in the ethanol production are accounted for. These values are 
obtained when the values for energy requirement [MJ/tonne wheat] (Table 33) are divided by 
the efficiency during production of thermal heat (Table 33) and multiplied by the wheat 
harvest [tonne/ha] (Section 3.4.2). The emission and energy requirement values on an area 
basis (Table 37) are obtained if the values in Tables 34 and 35 are added and multiplied by the 
values for fuel energy requirement in Table 36. With this procedure it is possible to study 
some more scenarios (for the scenario analysis) than the basic scenario accounted for in Table 
37. It is necessary to split up the emission and energy requirement values in Table 37 in the 
different processes because they are used in different ways during the allocation procedure 
(Section 3.10 and Tables A17-A22, Appendix 2). 
 
 
Table 34. Combustion of wood chips for production of heat (steam) (Kaltschmidt & 
Reinhardt, 1997) 
 
Type of plant CO2

e CO HC CH4 NOx SO2 (SOx) N2O HCl Particles

 [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel]

Spuce wood chips, 30 kWa 105.9 0.054 0.0276 0.0096 0.06 0.011 0.0036 0.0058 0.0204

Spuce wood chips, 4000 kWb 105.9 0.042 0.005 0.002 0.13 0.0036 0.004 0.0033 0.0029

Spuce wood chips, 20000 kWc 105.9 0.0556 0.0017 0.0006 0.0972 0.0036 0.0057 0.0033 0.0029

Salix wood chips, 4000 kWb 105.4 0.042 0.005 0.002 0.1514 0.0111 0.004 0.0033 0.0029

Salix wood chips, 20000 kWc 105.4 0.0556 0.0017 0.0006 0.1133 0.0111 0.0057 0.0033 0.0029

Salix wood chips, 30 kWad 105.4 0.054 0.0276 0.0096 0.0699 0.0339 0.0036 0.0058 0.0204
a Continuous combustion of wood chips, assumed to be equivalent to small-scale. 
b Fed fire grate boiler, assumed to be equivalent to medium-scale. 
c Fluidized bed roaster, assumed to be equivalent to large-scale. 
d Estimated from 4 and 20 MW Salix wood chips and 30 kW spruce wood chips. 
e During the calculations: 0 g/MJfuel because CO2 has bio-origin and therefore does not contribute to the GWP. 
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Table 35. Production and distribution of chips from forest wood and Salix, emissions and 
energy requirement (Uppenberg et al., 2001) 
 
Type of fuel CO2 CO HC NOx SO2 (SOx) NH3 Particles Input energy

 [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [MJ/MJfuel] 

Forest (spruce) wood chips 3 0.015 0.0043 0.047 0.0027           - 0.0039 0.040

Salix wood chips 3.3 0.011 0.0027 0.033 0.0021 0.00066 0.0026 0.047
 
 
Table 36. Requirement for steam heat in different parts of the process of importance for the 
allocation 
 
Process / Plant size Small-scale Medium-scale Large-scale

 [MJfuel/ha] [MJfuel/ha] [MJfuel/ha] 

Ethanol fermentation 2154 1763 1539 

Ethanol distillation 12653 10356 9038 

Drying of distiller’s waste etc. 0 0 10552 

Total requirement of steam heat 14808 12119 21129 

 
 
Table 37. Area emissions and energy requirement during steam production 
 
Process CO2 CO HC CH4 NOx SOx N2O HCl Particles Input 

energy
 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha]

Small-scale:           

   Ethanol fermentation 6463 149 69 21 231 30 8 12 52 86

   Ethanol distillation 37959 873 404 121 1354 173 46 73 307 506

   Total requirement for steam heat 44423 1022 472 142 1584 203 53 86 360 592

Medium-scale:           

   Ethanol fermentation 5290 101 16 4 312 11 7 6 12 71

   Ethanol distillation 31068 590 96 21 1833 65 41 34 70 414

   Total requirement for steam heat 36358 691 113 24 2145 76 48 40 82 485

Large-scale:           

   Ethanol fermentation 4617 109 9 1 222 10 9 5 10 62

   Ethanol distillation 27114 638 54 5 1303 57 52 30 61 362

   Drying of distiller’s waste etc. 31657 745 63 6 1522 66 60 35 72 422

   Total requirement for steam heat 63388 1492 127 13 3047 133 120 70 144 845
 
 
When the same production processes were assumed to be used in the different ethanol 
production scales, the requirement of chemicals during the ethanol production did not differ 
between scales. In this study, the values for the requirements for chemicals and enzymes as 
accounted for in Almemark (1996) were used (Table 38). Finnveden et al. (1994) report that 
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0.3 kg yeast/1053 kg ethanol E95 equivalent to 0.3 kg yeast/1000 kg ethanol is used during 
ethanol production. The same amount of yeast was assumed to be used when ethanol was 
produced from wheat in this study. The yeast used was produced in the ethanol plants and did 
not require to be externally purchased. The emissions when the chemicals, enzymes and yeast 
were produced are accounted for in Table 39. These emissions on an area basis [g/ha] are 
accounted for in Table 40, calculated by multiplying the used amount [kg/ha] (Table 38) by 
the emissions [g/kg] (Table 39). The emissions when other chemicals and scum reduction 
agent were produced were assumed to be the average of when phosphoric acid, sulphuric acid, 
sodium hydroxide and calcium chloride were produced (Table 39) because of a lack of data in 
the literature. The emissions when enzymes were produced were assumed to be as for yeast 
(Table 39), also because of a lack of data in the literature. The total emissions during 
production of chemicals (Table 40) are also accounted for as: emissions from production of 
chemicals for ethanol production in Tables A17-A22, Appendix 2. 
 
 
Table 38. The chemicals used during the production of ethanol 
 
Chemical Amount Pure Amount (pure) 

 [kg/tonne wheat] [kg/tonne wheat] [kg/ha] 

Phosphoric acid (75%) 0.160 0.120 0.71

Sulphuric acid (93%) 2.152 2.001 11.81

Sodium hydroxide (50%) 0.310 0.155 0.91

Calcium chloride (30%) 1.366 0.410 2.42

Other chemicals 0.177 0.177 1.04

Scum reduction agent 0.055 0.055 0.33

Novo BAN 240 L (enzyme) 0.249 0.249 1.47

Novo AMG 300 L (enzyme) 0.719 0.719 4.24

Econase CE 15 (enzyme) 0.183 0.183 1.08

Yeast 0.089 0.089 0.52

Total  4.158 24.53
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Table 39. Emissions during production of chemicals used during ethanol production 
 
Chemical CO2 CO HC CH4 NOx SOx NH3 Particles Input energy

 [g/kg] [g/kg] [g/kg] [g/kg] [g/kg] [g/kg] [g/kg] [g/kg] [MJ/kg] 

Phosphoric acida 1600 0.26   3.1 7.88  0.6 20

Sulphuric acida 239 0.039   0.46 1.18  0.09 3

Sodium hydroxidea 364 0.111 0.0043 0.00065 1.51 1.29  0.00046 10.41

Calcium chlorideb 141 0.045 0.0043  0.58 0.76   1.55

Other chemicalsc 586 0.114 0.0043 0.00065 1.41 2.78  0.23 8.74

Scum reduction agentc 586 0.114 0.0043 0.00065 1.41 2.78  0.23 8.74
Novo BAN 240 L 
   (enzyme)d 280 0.165 0.034 0.00024 1.66 1.17 0.014 0.077 6.32

Novo AMG 300 L 
   (enzyme)d 280 0.165 0.034 0.00024 1.66 1.17 0.014 0.077 6.32

Econase CE 15 (enzyme)d 280 0.165 0.034 0.00024 1.66 1.17 0.014 0.077 6.32

Yeasta 280 0.165 0.034 0.00024 1.66 1.17 0.014 0.077 6.32
a Finnveden et al. (1994). 
b LCA-emissions CaCl2, assumed to be as for NaCl (Stripple, 2001) with transport NaCl  
   (Finnveden et al., 1994). 
c Assumed to be as average of above. 
d Assumed to be as yeast. 
 
 
Table 40. Emissions during production of chemicals, on an area basis, used during ethanol 
production 
 
Chemical CO2 CO HC CH4 NOx SOx NH3 Particles Input energy

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha] 

Phosphoric acid 1136 0.185   2.19 5.59  0.4259 14.2

Sulphuric acid 2822 0.460   5.45 13.93  1.0625 35.4

Sodium hydroxide 333 0.101 0.0039 0.00060 1.38 1.18  0.0004 9.5

Calcium chloride 342 0.109 0.0104  1.41 1.83   3.8

Other chemicals 612 0.119 0.0045 0.00068 1.47 2.90  0.2403 9.1

Scum reduction agent 191 0.037 0.0014 0.00021 0.46 0.91  0.0751 2.9
Novo BAN 240 L 
   (enzyme) 411 0.242 0.0499 0.00035 2.44 1.72 0.021 0.1134 9.3

Novo AMG 300 L 
   (enzyme) 1188 0.700 0.1442 0.00102 7.04 4.96 0.059 0.3275 26.8

Econase CE 15 (enzyme) 302 0.178 0.0366 0.00026 1.79 1.26 0.015 0.0831 6.8

Yeast 147 0.087 0.0178 0.00013 0.87 0.61 0.007 0.0405 3.3
Total emissions during 
   production of chemicals 7482 2.218 0.2688 0.00325 24.50 34.90 0.102 2.3687 121.1

 
 
The pollutants in the waste water from the ethanol plants was assumed to be the same, 
independent of plant size. In the large plant the waste water from dewatering of the distiller’s 
waste was recirculated and therefore did not contribute to the BOD7 (biological oxygen 
demand: oxygen demand during 7 days’ decomposition of organic water under standard 
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conditions) and COD (chemical oxygen demand: oxygen demand during complete 
decomposition of organic material) in the waste water from the plant. The waste water 
contains 0.996 kg BOD7/tonne processed wheat and 1.49 kg COD/tonne processed wheat 
(Almemark, 1996). The energy requirements to remove BOD7 and COD from waste water are 
2.5 kWh/kg BOD7 removed and 2.5*2.5=6.25 kWh/kg COD removed (Lindfors et al., 1995) 
if treated mechanically, chemically and biologically. If multiplied, the energy requirement to 
remove the organic material from the waste is obtained: 2.49 kWh/tonne wheat (8.96 
MJ/tonne wheat) for BOD7 and 9.33 kWh/tonne wheat (33.6 MJ/tonne wheat) for COD. For 
the further calculations the value for COD was chosen because it is the biggest. Only one 
value of BOD7 and COD should be chosen because they are both a measure of the organic 
content in the waste water. The energy required was assumed to be electricity as consumed on 
the different plant scales with their conditions. On an area basis this requirement of electricity 
was 198 MJel/ha after multiplying by the seed yield (Section 3.4.2). The area emissions for the 
waste water treatment, with the assumptions above, as accounted for in Table 41 and Tables 
A17-A22 in Appendix 2, were obtained by multiplying the electricity requirement by the 
electricity emissions for the appropriate plant scale in Table 49. 
 
 
Table 41. Emissions during treatment of waste water, at different plant sizes, if the energy 
used is electricity 
 
Plant size CO2 CO HC CH4 NOx SOx NH3 N2O Particles Input energy

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha] 

Small-scale 1710 3.93 0.632 10.7 3.27 2.83 0.0480 0.155 0.545 425

Medium-scale 1671 3.84 0.618 10.4 3.20 2.77 0.0469 0.151 0.533 415

Large-scale 1632 3.75 0.604 10.2 3.12 2.71 0.0458 0.148 0.520 405
 
 
To make a legitimate diesel fuel from the ethanol it has to be mixed with ignition improver 
(Beraid 3540), denaturants (MTBE and isobutanol) and corrosion inhibitor (morpholine) 
(Table 42). Throughout this report, a fuel with the composition as in Table 42 is called 
ethanol fuel unless otherwise specified. This fuel corresponds to the fuel Etamax D marketed 
by Sekab (Sekab, 2003). The requirement of these components was the same independent of 
the size of the ethanol production plant. From the composition of the ethanol fuel (Table 100 
in Section 3.9) the requirement of the chemicals described above (see also Table 42) could be 
calculated. The emissions to produce Beraid, MTBE and isobutanol (Table 43) are accounted 
by Ericson & Odéhn (1999). The emissions when morpholine was produced were assumed to 
be as the average of when Beraid, MTBE and isobutanol were produced (Table 43) because of 
a lack of data in the literature. These emissions on an area basis are accounted for in Table 44 
(also in Tables A17-A22, Appendix 2), as are the total area emissions when chemicals used to 
make the ethanol into ethanol fuel are produced. They were obtained by multiplying the 
amount (pure) [kg/ha] (Table 42) of each chemical by the emissions [g/kg] (Table 43). 
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Table 42. Chemicals used to make the ethanol produced into a legal diesel fuel 
 
Chemical Amount Amount (pure)

 [kg/tonne wheat] [kg/ha] 

Beraid 24.59 145.1

MTBE 8.08 47.7

Isobutanol 1.76 10.4

Morpholine 0.0316 0.187

Total  203.3
 
 
Table 43. Emissions during production of chemicals used to make the ethanol produced into 
ethanol fuel 
 
Chemical CO2 CO HC CH4 NOx SOx Particles Input energy

 [g/kg] [g/kg] [g/kg] [g/kg] [g/kg] [g/kg] [g/kg] [MJ/kg] 

Beraida 1024 0.354 4.69 0.0397 3.59 2.38 0.583 34.4

MTBEa 1150 0.069 3.90 0.0093 1.88 0.33 0.121 34.9

Isobutanola 735 0.028 3.91 0.0243 1.27 0.44 0.064 36.7

Morpholineb 586 0.114 0.0043 0.00065 1.41 2.78 0.230 8.74
a Ericson & Odéhn (1999). 
b Assumed to be as average for Beraid, MTBE and isobutanol used to make the ethanol produced into  
   ethanol fuel. 
 
 
In a scenario analysis the ignition improver Beraid and the denaturants MTBE and isobutanol 
were assumed to be produced of bio-origin. To estimate the emission and energy requirement 
for this production, the relationship between each emission (or energy requirement) was 
assumed to be as between production of biomass methanol and fossil methanol (Table 30) 
(the ratio between biomass methanol and fossil methanol). This ratio was multiplied by the 
emissions and energy requirement for fossil ignition improver and denaturants etc. to get the 
corresponding values for biomass ignition improver and denaturants etc. (Table 44). 
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Table 44. Area emissions during production of chemicals used to make the ethanol produced 
into ethanol fuel, also including estimated emissions for chemicals of bio-origin 
 
Chemical CO2 CO HC CH4 NOx SOx Particles Input energy

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha] 

Beraida 148481 51.42 679.6 5.75 520.6 345.5 84.59 4993

MTBEa 54793 3.27 185.7 0.45 89.8 15.5 5.76 1666

Isobutanola 7611 0.29 40.5 0.25 13.2 4.6 0.66 380

Morpholineb 109 0.021 0.00080 0.00012 0.26 0.52 0.043 1.63
Beraid + 
   morpholine 148590 51.44 679.6 5.75 520.9 346.0 84.63 4995

Denaturants 62404 3.56 226.1 0.70 103.0 20.1 6.42 2046

Total 210994 55.00 905.8 6.45 623.9 366.1 91.05 7041
Beraid from 
   biomassc 130609 396.20 4805.8 0.25 1889.8 5181.3  18043

MTBE from 
   biomassc 48198 25.23 1312.9 0.02 326.0 232.7  6019

Isobutanol from 
   biomassc 6695 2.22 286.1 0.01 47.9 68.6  1374

Morpholine from 
   biomassc 96 0.163 0.00567 0.00001 0.95 7.77  5.89

Beraid + 
   morpholinec 130705 396.36 4805.8 0.25 1890.7 5189.1  18049

Denaturantsc 54893 27.45 1599.1 0.03 373.9 301.3  7393

Totalc 185598 423.81 6404.9 0.28 2264.6 5490.4  25442
a Ericson & Odéhn (1999). 
b Assumed to be as average for Beraid, MTBE and isobutanol used to make the ethanol produced into  
   ethanol fuel. 
c Estimated with help from the relationship in emissions and energy requirement between methanol with 
   biomass origin and methanol with fossil origin. For further explanation see the text above the table. 
 
 

3.5.4 Economics 
 

3.5.4.1 Rapeseed oil and RME 
 
Costs for labour and chemicals (hexane, methanol and catalyst) are important during the 
production of the rapeseed oil and RME fuels. These are also costs that are dependent on the 
plant size. In Table 45 the costs for labour, hexane, methanol and catalyst are accounted for 
on an area basis (see also Tables 123-124, 126-127 and 129-130). Costs for electricity are 
accounted for in Section 3.6.2. 
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Table 45. Various costs, oil extraction and transesterification 
 
Plant sizes and production factors Amount Price Cost 

 […/ha] [SEK/…] [SEK/ha]

Small-scale:    

   Labour, [h] extraction 3.63 180 654

   Labour, [h] transesterification 7.50 180 1350

   Methanol [kg] 83.1 3.45 287

   Catalyst [kg] 8.21 9.00 74

Medium-scale: 

   Labour, [h] extraction 2.70 240 648

   Labour, [h] transesterification 2.70 240 648

   Methanol [kg] 91.7 3.00 275

   Catalyst [kg] 9.05 9.00 81

Large-scale: 

   Labour, [h] extraction 0.72 300 216

   Labour, [h] transesterification 0.34 300 101

   Hexane [kg] 2.47 5.52 14

   Methanol [kg] 119.8 2.40 288

   Catalyst [kg] 11.83 9.00 106
 
 
The costs for labour (extraction and transesterification) were assumed to be as for an 
experienced farm machine operator 2002 for the small-scale plants: 180 SEK/hour (estimated 
after SCB, 2003; Agriwise, 2003; and Henemo, 2002 and 2003). For the large-scale plants the 
labour costs was estimated to be as for labour at Agroetanol (calculated after: Werling, pers. 
comm.): 300 SEK/hour. For medium-scale plants the labour costs were assumed to be as the 
average between large- and small-scale plants: 240 SEK/hour. Calculation of labour-time on 
an area basis was performed using the following assumptions: 

• Small-scale extraction: 0.5 labour-hours for each 20 hours the oil press is working 
(Bernesson, 1993). This gives for: 145.2 h oil press/ha * 0.5 h labour / 20 h oil press = 
3.63 h labour/ha; 

• Small-scale transesterification: Assumed to be 1 hour labour work for each 20 hours 
the process is working. This gives: (1 h labour / 20 h process time) * 6000 h process 
time/year / 40 ha = 7.50 h labour/ha; 

• Medium-scale extraction: 9 labour work hours for each 20 hours the oil press is 
working. This gives: (6000 h oil press / 1000 ha) * 9 h labour / 20 h oil press = 2.70 h 
labour/ha; 

• Medium-scale transesterification: 9 hours labour work for each 20 hours the process is 
working. This gives: (6000 h process / 1000 ha) * 9 h labour / 20 h process = 2.70 h 
labour/ha; 

• Large-scale extraction: Assumed to be 120 labour hours (15 men, one day) for each 20 
hours the oil press is working: (120 h labour / 20 h oil press) * 6000 h oil press/year / 
50000 ha/year = 0.72 h labour/ha; 
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• Large-scale transesterification: Assumed to be 56 labour hours (7 men, one day) for 
each 20 hours the oil press is working: (56 h labour / 20 h oil press) * 6000 h oil 
press/year / 50000 ha/year = 0.336 h labour/ha. 

 
The price for hexane (hexane technical grade 65/75) was 5.52 SEK/kg if 100-150 m3/year was 
purchased from Univar AB at least as 28 tonnes each time (Björck, pers. comm.). The price 
for methanol, purchased from MB Sveda AB, was: 3.45 SEK/kg if at least 4 m3 was delivered 
at the same time if the annual consumption was 3-7 m3 (small-scale); 3.00 SEK/kg if at least 
30 tonnes was delivered at the same time if the annual consumption was 100-150 m3 
(medium-scale); and 2.40 SEK/kg if at least 30 tonnes was delivered at the same time if the 
annual consumption was 500-10 000 m3 (large-scale) (Olsson, Pia, pers. comm.). The price 
for the catalyst was 9 SEK/kg (Norén et al., 1993) and this price was not assumed to change 
during the past ten years. 
 
Various costs have been assumed to be 5% in the calculations. Various costs consist of e.g. 
insurances, tax, water or chemicals (phosphorous acid or adsorbent for the transesterification) 
etc. (Tables 123-124, 126-127 and 129-130). 
 
The receipts when the meal and glycerine were sold are accounted for in Table 107 in Section 
3.10 on allocation. The prices for the products are accounted for in Table 105. 
 
 

3.5.4.2 Ethanol fuel 
 
Costs for labour, chemicals, electricity and heat are important during the production of the 
ethanol fuel. These are also costs that are dependent on the plant size (see also Tables 125, 
128 and 131). The costs for electricity are accounted in Section 3.6.2. In Table 46, the costs 
for labour and chemicals are accounted for on an area basis. 
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Table 46. Labour and chemicals costs, ethanol fuel production 
 
Production factors Small-scale production Medium-scale production Large-scale production 

 Amount Price Cost Amount Price Cost Amount Price Cost 

 […/ha] [SEK/…] [SEK/ha] […/ha] [SEK/…] [SEK/ha] […/ha] [SEK/…] [SEK/ha]

Labour [h] 21.5 180 3870 6.88 240 1651  1.03 300 310
Phosphoric acid 
   (75%) [kg] 0.95 15.40 15 0.95 5.80 5  0.95 4.75 4

Sulphuric acid 
   (93%) [kg] 12.69 3.92 50 12.69 2.95 38  12.69 1.94 25

Sodium hydroxide 
   (50%) [kg] 1.83 6.71 12 1.83 3.09 6  1.83 1.48 3

Calcium chloride 
   (30%) [kg] 8.06 3.04 25 8.06 2.28 18  8.06 2.06 17

Other chemicals 
   [kg] 1.04 7.27 8 1.04 3.53 4  1.04 2.56 3

Scum reduction 
   agent [kg] 0.33 80.00 26 0.33 40.00 13  0.33 20.00 7

Enzymes [kg] 6.79 42.80 291 6.79 37.80 257  6.79 32.80 223

Yeast [kg] 0.52 0 0 0.52 0 0  0.52 0 0

Suma   425 340   280

Beraid [kg] 145.1 25.00 3627 145.1 20.00 2901  145.1 15.00 2176

MTBE [kg] 47.7 9.04 431 47.7 9.04 431  47.7 4.85 231

Isobutanol [kg] 10.4 15.00 155 10.4 10.00 104  10.4 6.25 65

Morpholine [kg] 0.19 30.00 6 0.19 30.00 6  0.19 20.24 4

Sumb   4218 3441   2476
a Sum for chemicals used in the ethanol production process. 
b Sum for chemicals for making ethanol into ethanol fuel. 
 
 
The costs for labour (ethanol fuel production) (Table 46) were assumed to be as for an 
experienced farm machine operator in 2002 for the small-scale plants: 180 SEK/hour 
(estimated after SCB, 2003; Agriwise, 2003; and Henemo, 2002 and 2003). For the large-
scale plants the labour costs were estimated to be as for labour at Agroetanol (calculated after: 
Werling, pers. comm.): 300 SEK/hour. For medium-scale plants the labour costs were 
assumed to be as the average between large- and small-scale plants: 240 SEK/hour. 
Calculation of labour-time on an area basis was calculated using the following assumptions: 

• Small-scale ethanol fuel production: Assumed to be 0.5 people working 40 
hours/week, 43 weeks/year (estimated after: Schmitz, 2003, but a more simple plant 
without drying and marketing, and also estimated after the rapeseed extraction and 
transesterification above): 860 h labour work on an area of 40 ha gives 21.5 h labour 
work/ha. 
860 h labour work / 6000 h/year process time = 0.143 hours labour work each process-
time hour; 

• Medium-scale ethanol fuel production: Assumed to be 4 people working 40 
hours/week, 43 weeks/year (estimated after: Schmitz, 2003, but a more simple plant 
without drying and marketing, and also estimated after the rapeseed extraction and 
transesterification above): 6880 h labour work on an area of 1000 ha gives 6.88 h 
labour work/ha. 
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6880 h labour work / 6000 h/year process time = 1.15 hours labour work each process-
time hour; and 

• Large-scale ethanol fuel production: Assumed to be 30 people working 40 
hours/week, 43 weeks/year (estimated after: Schmitz, 2003; see also Table 95: plant 
size 360 m3/day): gives 51 600 h labour work on an area of 50 000 ha gives: 1.03 h 
labour work/ha. 
51 600 h labour work / 6000 h/year process time = 8.60 hours labour work each 
process-time hour. 

 
The price for the chemicals used (Table 46): 
Phosphoric acid: The price for phosphoric acid (technical grade 75%) was 4.75 SEK/kg if 45-
50 tonnes/year was purchased from Univar AB, at least as 28 tonnes each time (Björck, pers. 
comm.); 5.80 SEK/kg if 900-1000 kg/year was purchased from Univar AB as an 800 litre 
container each time (Björck, pers. comm.); and 15.40 SEK/kg if 30-40 kg/year was purchased 
from Univar AB as a 25 litre can each time (Björck, pers. comm.). Technical grade is good 
enough to use in a feedstuff (Janheden, pers. comm.). 
Sulphuric acid: The price for sulphuric acid (food grade 96%) was 2.00 SEK/kg (93%: 1.94 
SEK/kg) if 580-600 tonnes/year was purchased from Kemira AB, at least as 40 tonnes each 
time (Björck, pers. comm.; Olsson, Ulrika, pers. comm.); 3.05 SEK/kg (93%: 2.95 SEK/kg) if 
10-15 tonnes/year was purchased from Kemira AB as an 800 litre container each time 
(Björck, pers. comm.; Olsson, Ulrika, pers. comm.); and 4.05 SEK/kg (93%: 3.92 SEK/kg) if 
450-500 kg/year was purchased from Kemira AB as a 60 litre can each time (Björck, pers. 
comm.; Olsson, Ulrika, pers. comm.). Prices for sulphuric acid technical grade from Björck 
(pers. comm.), and these prices supplemented to food grade from Olsson, Ulrika (pers. 
comm.). 
Sodium hydroxide: The price for sodium hydroxide (technical grade 45%) was given if 
purchased from Univar AB (Björck, pers. comm.). For food grade instead of technical grade, 
the price was 300 SEK/tonne higher (Gustafsson, pers. comm.). The price for sodium 
hydroxide (50%) food grade [SEK/kg] could then be calculated as: price NaOH (technical 
grade 45%) [SEK/kg] * (50/45) + extra price for food grade (100%) [SEK/kg] * (50/100). The 
price for sodium hydroxide (technical grade 45%) was 1.20 SEK/kg (food grade 50%: 1.48 
SEK/kg) if 90-100 tonnes/year was purchased from Akzo Nobel Base Chemicals AB through 
Univar AB at least as 40 tonnes each time (Björck, pers. comm.; Gustafsson, pers. comm.); 
2.65 SEK/kg (food grade 50%: 3.09 SEK/kg) if 1.5-2 tonnes/year was purchased from Akzo 
Nobel Base Chemicals AB through Univar AB as an 800 litre container each time (Björck, 
pers. comm.; Gustafsson, pers. comm.); and 5.90 SEK/kg (food grade 50%: 6.71 SEK/kg) if 
70-90 kg/year was purchased from Akzo Nobel Base Chemicals AB through Univar AB as a 
60 litre can each time (Björck, pers. comm.; Gustafsson, pers. comm.). 
Calcium chloride: The price for calcium chloride (technical grade 33.5% or 36%) was given if 
purchased from Univar AB (Björck, pers. comm.). For food grade instead of technical grade 
the price was approx. 300 SEK/tonne higher (Lindgren, pers. comm.). The price for calcium 
chloride (30%) food grade [SEK/kg] could then be calculated as: price CaCl2 (technical grade 
33.5 or 36%) [SEK/kg] * (30/33.5 or 30/36) + extra price for food grade (33.5% or 36%) 
[SEK/kg] * (30/33.5 or 30/36). The price for calcium chloride (technical grade 33.5%) was 
2.00 SEK/kg (food grade 30%: 2.06 SEK/kg) if approx. 400 tonnes/year was purchased from 
Kemira Kemi AB through Univar AB at least as 40 tonnes each time (Björck, pers. comm.; 
Lindgren, pers. comm.); the price for calcium chloride (technical grade 33.5%) was 2.25 
SEK/kg (food grade 30%: 2.28 SEK/kg) if 7-10 tonnes/year was purchased from Kemira 
Kemi AB through Univar AB as an 800 litre container each time (Björck, pers. comm.; 
Lindgren, pers. comm.); and the price for calcium chloride (technical grade 36%) was 3.35 
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SEK/kg (food grade 30%: 3.04 SEK/kg) if 300-400 kg/year was purchased from Kemira 
Kemi AB through Univar AB as a 200 litre barrel each time (Björck, pers. comm.; Lindgren, 
pers. comm.). 
Other chemicals: The price for other chemicals was calculated as the average price [SEK/kg] 
of: phosphoric acid (75%), sulphuric acid (93%), sodium hydroxide (50%) and calcium 
chloride (30%) purchased to the ethanol plants studied. 
Scum reduction agent: The price for scum reduction agent (diluted, ready to be used) was 20 
SEK/kg if 15-20 tonnes/year was purchased from Univar AB as a 1000 kg container each time 
(Börjesson, pers. comm.); 40 SEK/kg if 300-350 kg/year was purchased from Univar AB as a 
200 kg barrel each time (Börjesson, pers. comm.); and 80 SEK/kg if 10-15 kg/year was 
purchased from Univar AB as a 25 kg can each time (Börjesson, pers. comm.). 
Enzymes: The price for the enzymes was estimated from the costs for enzymes at Agroetanol 
in Norrköping. Costs for enzymes: 5 000 000 SEK/year (Werling, pers. comm.) when 50 000 
m3 ethanol/year is produced, equivalent to 39 250 tonnes ethanol/year. This gives an enzyme 
cost of 127.40 SEK/tonne ethanol. If 1.748 tonne ethanol/ha (Table 100) is produced, this 
gives an enzyme cost of 222.60 SEK/ha. Division by 6.79 kg enzyme/ha (Tables 46 and 38: 
three types of enzymes) gives an enzyme price of 32.80 SEK/kg. This was assumed to be the 
enzyme price in the large-scale plant. The enzyme price was assumed to be 5 SEK/kg higher 
(37.8 SEK/kg) in the medium-scale plant and 10 SEK/kg higher (42.8 SEK/kg) in the small-
scale plant. 
Yeast: The yeast was home grown and therefore did not contribute to any external cost. The 
cost was included in the ordinary operating cost (Werling, pers. comm.). 
Beraid: The price for Beraid 3540 was 15 SEK/kg if 7000-8000 tonnes/year was purchased 
from Akzo Nobel Surface Chemistry AB as a 40 tonne lorry load each time (Lif, pers. 
comm.); 20 SEK/kg if 140-150 tonnes/year was purchased from Akzo Nobel as a 15 tonne 
lorry load each time (Lif, pers. comm.); and 25 SEK/kg if 5-10 tonnes/year was purchased 
from Akzo Nobel as an 800 kg container each time (Lif, pers. comm.). 
MTBE: The price for MTBE was 3.59 SEK/litre (4.85 SEK/kg, density MTBE see Table 100) 
if 2000-2500 tonnes/year was purchased from Preem Petroleum AB as a 48 m3 tank lorry load 
each time (Eriksson, Anders, pers. comm.); 6.69 SEK/litre (9.04 SEK/kg) if 140-150 
tonnes/year was purchased from Preem Petroleum AB as a 15 m3 tank lorry load each time 
(Eriksson, Anders, pers. comm.); and 6.69 SEK/litre (9.04 SEK/kg) if 400-500 kg/year was 
purchased from Preem Petroleum AB as a 3 m3 tank lorry load each time (Eriksson, Anders, 
pers. comm.). 
Isobutanol: The price for isobutanol was 6.25 SEK/kg if 500-600 tonnes/year was purchased 
from Perstorp AB as a 30-40 tonne lorry load each time (Svärd, pers. comm.); 10 SEK/kg if 
10-15 tonnes/year was purchased from Perstorp AB as a 1000 litre container each time 
(Svärd, pers. comm.); and 15 SEK/kg if 400-500 kg/year was purchased from Perstorp AB as 
a 200 kg barrel each time (Svärd, pers. comm.). 
Morpholine: The price for morpholine was 2.2 Euro/kg (20.24 SEK/kg if 9.2 SEK/Euro) if 
approx. 10 tonnes/year was purchased from BASF Chemicals Nordic - Cheadle/UK as a 200 
kg barrel each time (Alm, pers. comm.); and 30 SEK/kg if 180-190 kg/year or 7-8 kg/year 
was purchased from BASF as a 200 kg barrel each time (Alm, pers. comm.). 
 
In Table 47 (see also Tables 125, 128 and 131) the heat costs during the production of ethanol 
in the plants is accounted for (for technical details see also Table 33). The price for the wood 
chips is that price (excl. tax) large district heating plants pay for wood chips in the middle of 
Sweden 2002 (STEM, 2003). 
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Table 47. Costs for process heat as steam 
 
 Process energy:  Drying of distiller’s waste: 

 Plant size  Plant size 

 Small Medium Large Small Medium Large 

Heat requirement [kWh/ha] 3085 2828 2571 0 0 2565

   as wood chips fuel [kWh/ha] 4113 3366 2938 0 0 2931

Heat cost [SEK/ha]a 526 431 376 0 0 375
a Price for wood chips: 0.128 SEK/kWhfuel. 
 
 
The cost for treatment of waste water was assumed to be as the energy cost, as electricity, for 
degradation of COD (Table 52). Figures from Agroetanol (Werling, pers. comm.) about costs 
for both fresh water and handling of waste water indicate that the costs for fresh water are 
about the same size as for handling waste water with the assumption according to the above. 
The costs for the fresh water were therefore assumed to be as the energy costs for handling of 
waste water. Costs for fresh water and handling of waste water are accounted as a lump sum 
in Table 52 (see also Tables 125, 128 and 131). 
 
Various costs were assumed to be 5% in the calculations (Tables 125, 128 and 131). Various 
costs consist of e.g. insurances, tax, chemicals not listed or water etc. 
 
The receipts when the distiller’s waste was sold are accounted for in Table 109 in Section 
3.10, allocation. The prices for the products are accounted for in Table 105. 
 
 

3.6 Electricity 
 

3.6.1 Production of electricity 
 
The electricity for the production of the rapeseed oil, RME and ethanol fuels were, in the 
basic scenario, assumed to be Swedish electricity (Table 49) (Uppenberg et al., 2001). In the 
scenario analysis, this was replaced by electricity mainly produced from fossil fuels 
(Kaltschmitt & Reinhardt, 1997) for comparison. The Swedish electricity consists of mainly 
hydropower and nuclear power (Table 48). 
 
The efficiency in Table 48 means total energy output [%] of fuel energy input. The 
efficiencies for different plants are valid for today’s production (Brännström-Norberg et al., 
1996). Values for modern future plants, with somewhat higher efficiencies, are accounted for 
in Uppenberg et al. (2001). The efficiency of 85% could be used for combined power and 
heating plants because fuel energy and energy use for the production is allocated according to 
physical terms [MJ] where heat and electricity are treated in the same way. 
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Table 48. Swedish electricity, supply according to the 1999 statistics 
 
Type of electricity Share Ref.b Efficiency Ref.b Energy use Ref.b Total energy use

 [%]  [%]  [MJ/MJel]  [MJpr/MJel] 

Hydro power 48.2  100  0.0037 1 0.484

Nuclear power 44.3 1 33 2 0.061 1 1.369

Wind power 0.2  100  0.029 1 0.0024

CHPa, oil 1.3 1 85 2 0.078 1 0.017

CHPa, coal 2.4 1 85 2 0.050 1 0.030

CHPa, natural gas 0.5 1 85 2 0.067 1 0.0058

CHPa, biofuels 2.8 1 85 2 0.046 1 0.034

Cold condensing, oil 0.2 1 40 2 0.13 1 0.0053

Sum: 100.0    0.033  1.948

Grid loss, small-scale, rural area 10.0 2     0.195

Total:       2.142

Grid loss, medium-scale 7.5      0.146

Total:       2.094

Grid loss, large-scale, machinery 5.0 2     0.097

Total:       2.045
a Combined power and heating plant. 
b Reference: 1) Uppenberg et al. (2001); 2) Brännström-Norberg et al. (1996). 
 
 
Energy use (Table 48) includes energy for production of fuel with transport, construction of 
power plant, running of power plant, demolition of power plant and handling of remnants of 
the fuel used (Brännström-Norberg et al., 1996). The sum of energy use is calculated as the 
sum of each energy use value multiplied by its share of the Swedish electricity production. 
This value could be compared with the energy use for production of Swedish electricity, 
0.032 MJ/MJel (Uppenberg et al., 2001). The values are almost the same. 
 
In the total energy use (Table 49), efficiency and energy use for production are included. They 
are calculated as share of electricity production multiplied by inversion of efficiency added 
with energy use. The sum of the total energy use (Table 48) is that value the produced 
Swedish electricity should be multiplied by to get the total energy input for production of 
electricity. To get the total energy input for consumed electricity, this value has to be 
multiplied by the grid losses (Table 48) (assumed after Brännström-Norberg et al., 1996): 5% 
for large-scale plants and energy tied up in machines and buildings; 7.5% for medium-scale 
plants; and 10% for small-scale plants and electricity consumed on the farm during seed 
production. The emission values for production of Swedish electricity (Uppenberg et al., 
2001) are multiplied by the grid losses in this way to get the emission values for electricity 
consumption (Table 49). 
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Table 49. Emissions from electricity production 
 
Type of electricity CO2 CO HC CH4 NOx SOx NH3 N2O HCl Particles Input 

energy

 [g/ 
MJel] 

[mg/ 
MJel] 

[mg/ 
MJel]

[mg/ 
MJel]

[mg/ 
MJel]

[mg/ 
MJel]

[mg/ 
MJel]

[mg/ 
MJel]

[mg/ 
MJel] 

[mg/ 
MJel] 

[MJ/ 
MJel] 

Swedish electricity 
   (Uppenberg et al., 2001) 7.842 18.0 2.90 49.0 15.0 13.0 0.22 0.71  2.50 1.032 

Grid loss (10%), 
   small-scale, rural area 8.626 19.8 3.19 53.9 16.5 14.3 0.24 0.78  2.75 2.142 

Grid loss (7.5%), 
   medium-scale 8.430 19.4 3.12 52.7 16.1 14.0 0.24 0.76  2.69 2.094 

Grid loss (5%), 
   large-scale, machinery 8.234 18.9 3.05 51.5 15.8 13.7 0.23 0.75  2.63 2.045 

Fossil fuel electricity  
   (Kaltschmitt & Reinhardt,  
   1997) 

201 48.9 5.19 400.0 174.7 143.3 0.04 7.50 11.67 1.86 3.167 

 
 
The fossil fuel electricity (Table 49) is equivalent to German electricity produced in 1995 
(Kaltschmitt & Reinhardt, 1997) which was based on: 26% coal; 30% brown coal; 5% natural 
gas; 1% heavy oil; 34% nuclear power; and 4% hydropower, which fact explains its higher 
emission values. Grid losses are included but not differentiated between production scales. 
 
In Table 50, area electricity requirements for the main processes in the rapeseed oil, RME and 
ethanol fuel productions are accounted for. For oil extraction these values are obtained when 
the values for electricity requirement [MJel/kg seed] (Table 27) are multiplied by the seed 
yield [kg/ha] (Section 3.4.1) or the values for electricity requirement [MJel/kg oil] (Table 27) 
are multiplied by the oil yield [kg/ha] (Table 28). For transesterification, the area electricity 
requirements are obtained when the electricity requirement for transesterification [MJel/kg 
RME] (Section 3.5.2) is multiplied by the RME yield [kg/ha] (Section 3.5.2). For ethanol fuel, 
the electricity requirements according above are obtained when the values for electricity 
requirement [MJ/tonne wheat] (Table 33) are multiplied by the wheat harvest [tonne/ha] 
(Section 3.4.2). 
 
The area emissions and energy requirement during the use of electricity for oil extraction, 
transesterification and ethanol fuel production are accounted for in Table 51 (see also Tables 
A3-A14 and A17-A22, Appendices 1 and 2). These values are obtained when the emission 
values [g/MJel] for electricity production (Table 49) are multiplied by the values for electricity 
requirement in Table 50. With this procedure it is possible to study some more scenarios (for 
the scenario analysis) than the basic scenario. The emission and energy requirement values in 
Table 50 have to be split up in the different processes because they are used in different ways 
during the allocation procedure (Section 3.10). The emissions for electricity assumed to be 
used for treatment of waste water from the production of ethanol are accounted for in Table 
41. How these emissions were calculated is described in Section 3.5.3. 
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Table 50. Requirement of electricity in different parts of the process of importance for the 
allocation during production of rapeseed oil, RME and ethanol fuel 
 
Process / Plant size Small-scale Medium-scale Large-scale 

 [MJel/ha] [MJel/ha] [MJel/ha] 

Rapeseed oil and RME:    

   Oil extraction   886   534   534 

   Transesterification   436   481   629 

   Total requirement of electricity 1323 1015 1162 

Ethanol fuel:    

   Ethanol fermentation   923   846   769 

   Ethanol distillation   552   506   460 

   Handling of distiller’s waste etc.       7       7 1282 

   Total requirement of electricity 1482 1359 2512 
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Table 51. Area emissions and energy requirement during production of electricity 
 
Process CO2 CO HC CH4 NOx SOx NH3 N2O Particles Input 

energy
 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha]

Rapeseed oil and RME:           

Small-scale:           

   Oil extraction 7645 17.5 2.83 47.8 14.6 12.7 0.214 0.692 2.44 1899

   Transesterification 3763 8.6 1.39 23.5 7.2 6.2 0.106 0.341 1.20 935

   Total 11409 26.2 4.22 71.3 21.8 18.9 0.320 1.033 3.64 2833

Medium-scale:          

   Oil extraction 4498 10.3 1.66 28.1 8.6 7.5 0.126 0.407 1.43 1117

   Transesterification 4056 9.3 1.50 25.3 7.8 6.7 0.114 0.367 1.29 1007

   Total 8554 19.6 3.16 53.4 16.4 14.2 0.240 0.774 2.73 2124

Large-scale:          

   Oil extraction 4393 10.1 1.62 27.4 8.4 7.3 0.123 0.398 1.40 1091

   Transesterification 5177 11.9 1.91 32.3 9.9 8.6 0.145 0.469 1.65 1286

   Total 9570 22.0 3.54 59.8 18.3 15.9 0.268 0.866 3.05 2377

Ethanol fuel:           

Small-scale:          

   Ethanol fermentation 7965 18.3 2.95 49.8 15.2 13.2 0.223 0.721 2.54 1978

   Ethanol distillation 4762 10.9 1.76 29.8 9.1 7.9 0.134 0.431 1.52 1183

   Handling of distiller’s waste etc. 59 0.13 0.022 0.37 0.11 0.10 0.0016 0.0053 0.019 15

   Total 12786 29.3 4.73 79.9 24.5 21.2 0.359 1.158 4.08 3175

Medium-scale:          

   Ethanol fermentation 7135 16.4 2.64 44.6 13.6 11.8 0.200 0.646 2.27 1772

   Ethanol distillation 4266 9.8 1.58 26.7 8.2 7.1 0.120 0.386 1.36 1059

   Handling of distiller’s waste etc. 57 0.13 0.021 0.36 0.11 0.10 0.0016 0.0052 0.018 14

   Total 11459 26.3 4.24 71.6 21.9 19.0 0.321 1.037 3.65 2846

Large-scale:          

   Ethanol fermentation 6336 14.5 2.34 39.6 12.1 10.5 0.178 0.574 2.02 1573

   Ethanol distillation 3788 8.7 1.40 23.7 7.2 6.3 0.106 0.343 1.21 941

   Handling of distiller’s waste etc. 10560 24.2 3.90 66.0 20.2 17.5 0.296 0.956 3.37 2622

   Total 20683 47.5 7.65 129.2 39.6 34.3 0.580 1.873 6.59 5137
 
 

3.6.2 Electricity costs 
 
The price of electricity depends on the size of the plant (Vattenfall, 2003; Brännström, pers. 
comm.; Roswall, pers. comm.). The price for the electricity consists of three main parts: the 
electricity (in kWh), tax and grid charge (grid charge and fixed grid charge). The reason that 
large plants can get lower prices (of both electricity and grid charge) is that they can buy high-
tension electricity. Such electricity can be delivered with lower grid losses (Brännström-
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Norberg et al., 1996). The prices in Table 52 exclude value-added tax. The prices for the 
electricity are expected average prices for the years around 2003 (Brännström, pers. comm.). 
For small-plants, the fixed grid charge for a consumer around Uppsala consuming 75 000 
kWh, with an 80 ampere main fuse, is 5507 SEK/year recalculated to approx. 0.07 SEK/kWh 
(Vattenfall, 2003). For medium-scale plants the grid charge (grid charge + fixed grid charge) 
is 0.015-0.02 SEK/kWh lower than for small plants (Brännström, pers. comm.), in this study 
assumed to be 0.02 SEK/kWh lower, making the total grid charge 0.202 SEK/kWh. For large 
plants the grid charge is about 0.15 SEK/kWh (Roswall, pers. comm.). 
 
 
Table 52. Components of electricity prices for different scales of oil extraction, 
transesterification and ethanol fuel production 
 
 Plant size 

 Small Medium Large 

Electricity [SEK/kWh] 0.27 0.27 0.245 

Tax [SEK/kWh] 0.227 0.227 0.227 

Grid charge [SEK/kWh] 0.152 0.202 0.15 

Fixed grid charge [SEK/kWh] 0.07 0 0 

Total [SEK/kWh] 0.719 0.699 0.622 

Oil extraction, electricity requirement [kWh/ha] 246 148 148 

   Electricity cost, oil extraction [SEK/ha] 177 104 92 

Transesterification, electricity requirement [kWh/ha] 121 134 175 

   Electricity cost, transesterification [SEK/ha] 87 93 109 

Ethanol fuel production, electricity requirement [kWh/ha] 412 378 698 

   Electricity cost, ethanol fuel production [SEK/ha] 296 264 434 

Ethanol prod., electricity, treatment of waste water [kWh/ha] 55 55 55 

   Electricity cost, treatment of waste water [SEK/ha] 40 38 34 

     As above, also including fresh water for the process [SEK/ha] 79 77 69 
 
 

3.7 Transport 
 

3.7.1 Transport data 
 
Transport of rapeseed, meal, wheat and dried distiller’s waste was assumed to be carried out 
by an open-sided lorry (total weight 60 tonnes, load weight 40 tonnes, see Table 75) if the 
transport distance was longer than 20 km. At shorter distances, transport was by tractors with 
wagons carrying a load of 20 metric tonnes (10 tonnes each) (Table 74), for fertilisers metric 
16 tonnes (Table 72) (see Section 3.4.4). A tractor with a 20 tonne tank wagon (Table 74), for 
medium-sized ethanol plants, transported wet distiller’s waste. This tank wagon was assumed 
to have a weight and rolling resistance corresponding to the two above-described wagons 
together. A tank lorry with a load weight of 36.5 tonnes (see Table 75) transported rapeseed 
oil, RME and ethanol fuel. Methanol, glycerine, chemicals for ethanol production (large-scale 
plant) and chemicals to make the ethanol into ethanol fuel (medium- and large-scale plant) 
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were transported by the same type of tank lorry. Chemicals for ethanol production (medium- 
and small-scale plant) and chemicals to make the ethanol into ethanol fuel (small-scale plant) 
were transported by a lorry carrying a load weight of 40 tonnes. 
 
For the calculations (Berggren, 1999) it was assumed that the lorries were powered by a 12.1 
litre, 309 kW Volvo D12A engine with turbo-charger and intercooler. For the calculations 
(Berggren, 1999) it was assumed that the tractor was powered by a 4.4 litre, 70 kW Valmet 
420 DS engine with turbo-charger (66 kW on the power take-off). 
 
Transport distances were: 110 km for all plant sizes for methanol, glycerine, chemicals for 
ethanol production and chemicals to make the ethanol into ethanol fuel; 110 km for large-
scale plants for rapeseed, meal, rapeseed oil, RME, wheat, ethanol as ethanol fuel and dried 
distiller’s waste; and 7 km for medium-scale plants for rapeseed, meal, rapeseed oil, RME, 
wheat, ethanol as ethanol fuel and wet distiller’s waste. At small-scale plants, rapeseed, meal, 
rapeseed oil, RME, wheat, ethanol as ethanol fuel and wet distiller’s waste were not 
transported outside the farm, because the processing was performed on farm. At allocation 
with expanded system (Section 3.10), soymeal with added soyoil was assumed to be 
transported by an open-sided lorry carrying 40 tonnes, 110 km. 
 
Transport included emissions from burning of the transport fuel, manufacturing of the 
transport fuel, lubrication oil and transport machinery. 
 
During transport of the chemicals, the load capacity of the transporting lorries was assumed 
not to be fully utilized. This was because lorries used for this task will transport different 
chemicals to a lot of customers, where they will load or unload. The assumed figures are high 
because empty return trips were assumed, even if it is not so in reality. Packaging of the 
chemicals and coverage of the lorries also reduced the amount of each chemical transported. 
For transport of chemicals: 65% of the load capacity was assumed to be used when chemicals 
for production of ethanol and chemicals for making ethanol into ethanol fuel were transported 
to small-scale plants; 75% of the load capacity was assumed to be used when chemicals for 
production of ethanol and chemicals for making ethanol into ethanol fuel were transported to 
medium-scale plants; 90% of the load capacity was assumed to be used when chemicals for 
production of ethanol were transported to large-scale plants; and 100% of the load capacity 
was assumed to be used when chemicals for making ethanol into ethanol fuel were 
transported to large-scale plants. To take the above-described effect into consideration in the 
calculations, energy requirement and emission values were divided by the above-described 
values. As described above, no consideration was given to chemicals used for production of 
rapeseed oil or RME. After transport of methanol and glycerine, the return trips were assumed 
to be empty. 
 
To get the total emissions and fuel consumption for a transport, emissions and fuel 
consumption for full load transport have to be added to them for empty transport (Tables 55 
and 56). When rapeseed was transported from the farm to extraction, meal was transported 
back to the farm on the return trip if there were enough meal to fill up the transport vehicle. 
When wheat was transported from the farm to ethanol production (only large-scale), dried 
distiller’s waste was transported back to the farm on the return trip if there were enough 
distiller’s waste to fill up the transport vehicle. This meant that the empty return trips were 
reduced when seed or wheat were transported and fully eliminated when meal or dried 
distiller’s waste were transported back to the farm. Transport of soymeal during allocation 
with expanded system was assumed to be with empty return trips. 
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Calculation of share of transport that carries meal on return trip is: (yield of meal or dried 
distiller’s waste / hectare) / (yield of rapeseed or wheat / hectare). For medium-scale 
extraction: 1587 kg meal/ha / 2470 kg rapeseed/ha = 64.25% of the transport; for large-scale 
extraction: 1331 kg meal/ha / 2470 kg rapeseed/ha = 53.90% of the transport; and for large-
scale ethanol production: 1892 kg dried distiller’s waste/ha / 5900 kg wheat/ha = 32.08% of 
the transport. The part of the return transport, which is not filled with meal or dried distiller’s 
waste (not utilized return transport) was added to emissions and fuel consumption for the full 
loaded rapeseed or wheat transport to get total fuel consumption and emissions for the 
transport of seed and was calculated thus: for medium-scale extraction: (2470 – 1587) / 2470 
= 35.75%; for large-scale extraction: (2470 – 1331) / 2470 = 46.10%; and for large-scale 
ethanol production: (5900 – 1892) / 5900 = 67.92%. 
 
The quantity of lubrication oil consumed was assumed to be 0.7% of the volumetric diesel 
fuel used, for both lorries and tractors, based on data from ASAE (2000), including oil used 
for transmissions and hydraulics (for descriptions and assumptions see Section 3.4.4.1: 
Requirement of fuels and oils). 
 
 

3.7.1.1 Estimation of some missing values for an open-sided lorry 
 
From the fuel consumption and emissions values with MK1 fuel for lorries and tractors in 
Berggren (1999), values including acceleration on public roads were chosen for this study. 
Three types of lorries were studied, all with a vehicle total weight of 60 tonnes. The three 
types were: timber lorry (max load 42.5 tonnes, empty weight 17.5 tonnes); bulk lorry (max 
load 36.5 tonnes, empty weight 23.5 tonnes); and container lorry (max load 32.5 tonnes, 
empty weight 27.5 tonnes) (see Table 54). 
 
In this study, a tank lorry was used for transport of the fluids. For the tank lorry, the data for 
the bulk lorry were assumed to be valid (max load 36.5 tonnes, Table 75). Seed and meal 
were assumed to be transported with an open-sided lorry (max load 40.0 tonnes, empty weight 
20.0 tonnes, Table 75) that was missing in Berggren (1999). The missing fuel consumption 
and emission values, for this lorry empty, were assumed to be possible to calculate with 
Newton’s general interpolation formula from the corresponding values for the lorries 
described above (for explanation see: Equation 6; Table 53; Equation 7; and Table 54) (Eldén 
& Wittmeyer-Koch, 1992). The interpolation was made on empty lorries when all types of 
fully loaded lorries have the same total weight and fuel consumptions with emissions. The 
general formula is given in Equation 6, a calculation schedule in Table 53 that is put together 
in Equation 7. The results from the calculation are accounted in Table 54. 
 
The general polynomial for Newton’s general interpolation formula (Eldén & Wittmeyer-
Koch, 1992) is: 
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Table 53. Calculation schedule with Newton’s general interpolation formula (Eldén & 
Wittmeyer-Koch, 1992) 
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Table 54. Results from calculations with Newton’s general interpolation formula, energy 
requirement and emissions for a lorry with 20 tonnes empty weight 
 
Empty weight Fuel 

consumption  
Energy 

requirement 
CO- 

emissions  
NOx- 

emissions  
HC- 

emissions  
[metric tonnes] [g/km] [kWhengine/km] [g/km] [g/km] [g/km] 

x f1(x) f2(x) f3(x) f4(x) f5(x) 

x1     17.5 263.8 1.18 1.00 7.42 0.240 

x2     23.5 305.7 1.41 1.17 8.79 0.220 

x3     27.5 334.6 1.56 1.25 9.71 0.220 

x     20.0 P1(x) = 281.1 P2(x) = 1.28 P3(x) = 1.08 P4(x) = 7.99 P5(x) = 0.229 
 
 

3.7.1.2 Emissions and input energy 
 
The emission and energy requirement values in Table 54 from Berggren (1990) could be 
converted to the values for MK1 fuel in Tables 55-56 by division by the load [tonnes] for each 
type of lorry. In Tables 55 and 56, ton-kilometre is expressed as tonkm. 
 
In the basic scenario, transport was made with diesel oil MK1. For the scenario analysis, 
rapeseed oil, RME or ethanol fuel were used as fuels for the transport depending on the fuel 
studied. Consumption of diesel oil MK3, RME, rapeseed oil, and ethanol fuel in Tables 55 
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and 56 was calculated from the consumption of diesel oil MK1 in Berggren (1999). 
Consumption of and emissions from the use of MK3 diesel oil (Tables 55-56) were only used 
in the calculations to get engine efficiencies for MK1 and RME (Table 102) and fuel 
consumption and emissions for rapeseed oil (Tables 101 and 102). The energy outputs from 
the engines during the transport were assumed to be the same independent of the fuel used. In 
Table 99, Section 3.9, properties for all these fuels are given. In SMP (1993) the engine 
efficiencies are given for an engine running at its best operating point with MK3, MK1 and 
RME (Table 99, Section 3.9). In Aakko et al. (2000) the engine efficiency with MK3, 
measured according to ECE R49, is given. With assumption of the same relationship between 
the efficiencies according to ECE R49 for MK3, MK1 and RME as measured in SMP (1993), 
the efficiencies according to ECE R49 for MK1 and RME could be estimated and used for the 
fuel consumption calculations (see Table 99). From the fuel consumptions in Haupt et al. 
(1999) the engine efficiency with the ethanol fuel assumed to be used in this study, measured 
according to ECE R49, could be calculated (Table 99). 
 
The emissions and fuel consumption values for the transport with the MK3, RME and ethanol 
fuel were calculated during comparison to the values for MK1. This was conducted by 
comparison by emission and fuel requirement data from other fuels (SMP, 1993; Berggren, 
1999; Haupt et al., 1999; Aakko et al., 2000). 

• Fuel consumption MK3, RME or ethanol fuel [g/tonkm] (Tables 55-56) could be 
calculated as: fuel consumption MK1 [g/tonkm] (Tables 55-56) * (engine efficiency 
MK1 (Table 99) / engine efficiency new fuel) (Table 99) * (lower heat value MK1 
[MJ/kg] (Table 99) / lower heat value new fuel [MJ/kg] (Table 99)). 

• Emissions MK3, RME or ethanol fuel [g/tonkm] (Tables 55-56) could be calculated 
as: emission value MK1 [g/tonkm] (Tables 55-56) * (emission new fuel [g/MJengine] 
(Table 102) / (emission MK1 [g/MJengine] (Table 102)). 

• Particle emissions ethanol fuel [g/tonkm] (Tables 55-56) could be calculated as: 
emission value MK1 [g/tonkm] (Tables 55-56) * (emission ethanol fuel [g/MJfuel] 
(Table 102) / (emission MK1a [g/MJfuel] (Table 102)) * (engine efficiency MK1 (Table 
99) / engine efficiency ethanol fuel) (Table 99). 
   a calculated as: ((A/B) * (C/D)) / ((E * (F/1000)) where: 
   A = 0.057 g/kWhengine (Aakko et al., 2000); 
   B = 3.6 kWh/MJ; 
   C = 1660.68 MJengine out for lorry and 920.232 MJengine out for tractor (Berggren, 
      1999); 
   D = 171.594 km driven distance for lorry and 171.428 km driven distance for tractor  
      (Berggren, 1999); 
   E = 43.3 MJ/kg MK1; 
   F = 558.54 g MK1/km for lorry and 338.15 g MK1/km for tractor (Berggren, 1999). 

• Energy use for MK3, RME or ethanol fuel [MJfuel/tonkm] (Tables 55-56) could be 
calculated as: energy use for MK1 [MJfuel/tonkm] (Tables 55-56) * (engine efficiency 
MK1 (Table 102) / engine efficiency new fuel (Table 102)). 

 
The volumetric fuel consumption with rapeseed oil in Elsbett engines was approx. 12% higher 
than with diesel oil MK3 in conventional direct injected diesel engines (Bernesson, 1993 and 
1994; Thuneke, 1999) (Section 3.9, Table 99). The emissions with rapeseed oil in relation to 
diesel oil MK3 are accounted for in Table 101 (Section 3.9), and from these values the 
emissions and fuel consumption with rapeseed oil fuel could be calculated. 
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• Fuel consumption rapeseed oil [g/tonkm] (Tables 55-56) could be calculated as: fuel 
consumption MK3 [g/tonkm] (Tables 55-56) * 1.12 * (density rapeseed oil (Table 99) 
/ density diesel fuel MK3 (Table 99)). 

• Emissions rapeseed oil [g/tonkm] (Tables 55-56) could be calculated as: emission 
value in relation to MK3 (Table 101) * emission value MK3 [g/tonkm] (Tables 55-
56). 

• Energy use for rapeseed oil [MJfuel/tonkm] (Tables 55-56) could be calculated as: 
energy use for MK3 [MJfuel/tonkm] * 1.12 * ((density rapeseed oil [kg/litre] (Table 99) 
* lower heat value rapeseed oil [MJ/kg] (Table 99)) / (density MK3 [kg/litre] (Table 
99) * lower heat value MK3 [MJ/kg] (Table 99))). 

 
During the scenario analysis, with catalysts in the transport vehicles used, the reduction of 
emissions was assumed to roughly follow results from Aakko et al. (2000) for MK3, MK1, 
RME and rapeseed oil fuels. Therefore CO- HC- and NOx-emissions were reduced by 81%; 
77.5%; and 6% respectively. Particulate emissions were not influenced. For ethanol fuel, the 
reduction of emissions, with catalysts in the vehicles used, was assumed to roughly follow 
results from Haupt et al. (1999). Therefore CO- and HC-emissions were reduced by 93%; and 
45% respectively. NOx-and particulate-emissions were not influenced. 
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Table 55. Emissions lorry transport, by road driving (after Berggren, 1999) 
 
Total emissions transport Load Fuel CO NOx HC Particles Energy Energy 

 [metric 
tonnes]

[g/ton-
km] 

[g/ton-
km] 

[g/ton-
km] 

[g/ton-
km] 

[g/ton- 
km] 

[MJengine/
tonkm] 

[MJfuel/ 
tonkm] 

MK1 diesel oil:  

     bulk lorry or tank lorry, full load 36.5 15.3 0.046 0.46 0.0066 0.0042 0.265 0.663

     bulk lorry or tank lorry, empty 0 8.4 0.032 0.24 0.0060 0.0022 0.139 0.363

     open-sided lorry, full load 40 14.0 0.042 0.42 0.0060 0.0038 0.242 0.605

     open-sided lorry, empty 0 7.0 0.027 0.20 0.0057 0.0018 0.115 0.304

MK3 diesel oil:  

     bulk lorry or tank lorry, full load 36.5 15.1 0.041 0.54 0.0053 0.0055 0.265 0.646

     bulk lorry or tank lorry, empty 0 8.3 0.029 0.28 0.0049 0.0029 0.139 0.353

     open-sided lorry, full load 40 13.8 0.038 0.49 0.0049 0.0050 0.242 0.589

     open-sided lorry, empty 0 6.9 0.024 0.23 0.0046 0.0024 0.115 0.296

RME:  

     bulk lorry or tank lorry, full load 36.5 17.4 0.034 0.60 0.0025 0.0022 0.265 0.671

     bulk lorry or tank lorry, empty 0 9.5 0.024 0.31 0.0023 0.0012 0.139 0.367

     open-sided lorry, full load 40 15.9 0.031 0.55 0.0023 0.0020 0.242 0.613

     open-sided lorry, empty 0 8.0 0.020 0.26 0.0022 0.0010 0.115 0.308

Rapeseed oil:  

     bulk lorry or tank lorry, full load 36.5 18.8 0.041 0.56 0.0029 0.0039 0.265 0.721

     bulk lorry or tank lorry, empty 0 10.3 0.029 0.29 0.0027 0.0020 0.139 0.395

     open-sided lorry, full load 40 17.2 0.038 0.51 0.0027 0.0035 0.242 0.658

     open-sided lorry, empty 0 8.6 0.024 0.24 0.0025 0.0017 0.115 0.331

Ethanol fuel:  

     bulk lorry or tank lorry, full load 36.5 23.5 0.206 0.31 0.0101 0.0013 0.265 0.591

     bulk lorry or tank lorry, empty 0 12.9 0.144 0.16 0.0092 0.0007 0.139 0.324

     open-sided lorry, full load 40 21.5 0.188 0.28 0.0092 0.0012 0.242 0.539

     open-sided lorry, empty 0 10.8 0.121 0.13 0.0087 0.0006 0.115 0.271
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Table 56. Emissions tractor transport by road driving (after Berggren, 1999) 
 
Total emissions transport Load Fuel CO NOx HC Particles Energy Energy 

 [metric 
tonnes]

[g/ton-
km] 

[g/ton-
km] 

[g/ton-
km] 

[g/ton-
km] 

[g/ton- 
km] 

[MJengine/
tonkm] 

[MJfuel/ 
tonkm] 

MK1 diesel oil: full load 20 16.9 0.044 0.59 0.0155 0.0042 0.268 0.732

                          empty 0 11.1 0.053 0.30 0.0175 0.0023 0.147 0.482

MK3 diesel oil: full load 20 16.7 0.040 0.68 0.0125 0.0056 0.268 0.713

                          empty 0 11.0 0.048 0.35 0.0142 0.0031 0.147 0.469

RME: full load 20 19.3 0.033 0.77 0.0059 0.0022 0.268 0.742

           empty 0 12.7 0.040 0.39 0.0067 0.0012 0.147 0.488

Rapeseed oil: full load 20 20.8 0.040 0.72 0.0069 0.0039 0.268 0.797

                       empty 0 13.7 0.048 0.36 0.0078 0.0021 0.147 0.525

Ethanol fuel: full load 20 26.0 0.197 0.39 0.0237 0.0014 0.268 0.653

                      empty 0 17.1 0.238 0.20 0.0268 0.0009 0.147 0.430
 
 
The fuel consumption and emission values in Tables 55 and 56 (given per ton-kilometre) 
could be converted to values on an area basis (per hectare) when the values for full load and 
empty transport were added. However, empty transport was eliminated if return transport 
could be used for transport: for medium- and large-scale transport of rapeseed and large-scale 
transport of wheat, the return transport was partly used for transport of meal and dried 
distiller’s waste respectively. The value for the return transport has to be multiplied by this 
value (see above: Calculation of share of transport that carries meal on return trip is…, etc.) 
before the addition according to the above could be performed. No return transport was 
required for medium- and large-scale meal transport and large-scale transport of distiller’s 
waste because such transport was made as return transport for rapeseed and wheat 
respectively. 

• Emissions (CO, HC NOx and particles) [g/ha], and fuel consumption [g/ha or 
MJfuel/ha] for transport of rapeseed, meal, rapeseed oil RME, methanol, glycerine, 
wheat, wet distillers waste, dried distiller’s waste and soybean meal (expanded system, 
see Section 3.10.2) (Tables 57 and 58) were calculated as: Emissions [g/tonkm] or fuel 
consumption [g/tonkm or MJfuel/tonkm] full load transport (Tables 55-56) + (share 
‘not utilized return transport’ (see above) * emissions [g/tonkm] or fuel consumption 
[g/tonkm or MJfuel/tonkm] empty transport (Tables 55-56)) * (yield/requirement of 
transported product [kg/ha] (Tables 65-66) / 1000 [kg/tonne]) * transport distance 
[km] (see above). 

• Emissions (CO, HC NOx and particles) [g/ha], and fuel consumption [g/ha or 
MJfuel/ha] for transport of production chemicals and fuel chemicals used during 
production of ethanol fuel (Table 58) were calculated as: ((Emissions [g/tonkm] or 
fuel consumption [g/tonkm or MJfuel/tonkm] full load transport (Tables 55-56) + 
emissions [g/tonkm] or fuel consumption [g/tonkm or MJfuel/tonkm] empty transport 
(Tables 55-56)) / share of load capacity assumed to be used (see above and Table 66)) 
* (requirement of transported product [kg/ha] (Table 66) / 1000 [kg/tonne]) * transport 
distance [km] (see above). 

 
The way in which CO2-, SOx- and particle-emissions were calculated and the assumptions 
made are accounted for in Section 3.4.4.2. CO2-emissions [g/ha] (Tables 57-58) were 
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calculated by multiplying fossil CO2-emissions [g/MJfuel] (Section 3.4.4.2) by the fuel 
consumption as energy in fuel [MJfuel/ha] (Tables 57-58). The SOx-emissions [g/ha] (Tables 
57-58) were calculated as: (sulphur content in fuel [ppm] (Section 3.4.4.2) / 1000000) * 2.00 
(1.00 g sulphur gives 2.00 g SO2, Section 3.4.4.2) * fuel consumption [g/ha] (Tables 57-58). 
The particles emissions in Tables 57-58 could be calculated from the values in Tables 55-56 
in the same way as the other emissions. 
 
 
Table 57. Vehicle emissions and energy requirement for transport during production of 
rapeseed oil and RME 
 
Type of transport and vehicle Fuel cons. CO2 CO HC NOx SOx Particles Energy in fuel

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJfuel/ha] 

Small-scale:  

     methanol, tank lorry 217 684 0.71 0.115 6.4 0.0043 0.059 9.4

     glycerine, tank lorry 207 656 0.68 0.110 6.2 0.0041 0.056 9.0

Medium-scale:  

     methanol, tank lorry 239 755 0.79 0.127 7.1 0.0048 0.065 10.3

     glycerine, tank lorry 229 723 0.75 0.122 6.8 0.0046 0.062 9.9

     RME, tank lorry 133 420 0.44 0.071 4.0 0.0027 0.036 5.8

     rapeseed oil, tank lorry 138 437 0.46 0.074 4.1 0.0028 0.037 6.0

     rapeseed, tractor, two wagons  361 1141 1.09 0.376 12.0 0.0072 0.088 15.6

     meal, tractor, two wagons 188 594 0.49 0.172 6.6 0.0038 0.047 8.1

Large-scale:  

     methanol, tank lorry 312 986 1.03 0.166 9.3 0.0062 0.084 13.5

     glycerine, tank lorry 299 945 0.99 0.159 8.9 0.0060 0.081 12.9

     RME, tank lorry 2729 8627 9.00 1.453 81.2 0.0545 0.737 118.2

     rapeseed oil, tank lorry 2837 8968 9.36 1.510 84.4 0.0567 0.766 122.8

     rapeseed, open-sided lorry 4674 14774 14.79 2.346 140.0 0.0933 1.269 202.4

     meal, open-sided lorry 2045 6464 6.15 0.879 62.0 0.0408 0.561 88.5

Small-scale, total: rapeseed oil 0 0 0 0 0 0 0 0

                              RME 424 1340 1.40 0.226 12.6 0.0085 0.115 18.4

Medium-scale, total: rapeseed oil 687 2172 2.03 0.622 22.7 0.0137 0.172 29.8

                              RME 1149 3633 3.56 0.868 36.5 0.0230 0.297 49.8

Large-scale, total: rapeseed oil 9556 30205 30.29 4.735 286.4 0.1908 2.596 413.8

                              RME 10059 31796 31.95 5.003 301.4 0.2009 2.732 435.6
Small-scale soymeal, 
   open-sided lorry 3449 10901 11.33 1.925 102.4 0.0689 0.928 149.3

Medium-scale soymeal, 
   open-sided lorry 3357 10610 11.03 1.874 99.6 0.0670 0.904 145.3

Large-scale soymeal, 
   open-sided lorry 2767 8745 9.09 1.545 82.1 0.0552 0.745 119.8
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Table 58. Vehicle emissions and energy requirement for transport during production of 
ethanol and ethanol fuel 
 
Type of transport and vehicle Fuel cons. CO2 CO HC NOx SOx Particles Energy in fuel

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJfuel/ha] 

Small-scale:  
     production chemicals, 
       open-sided lorry 114 362 0.38 0.064 3.4 0.0023 0.031 5.0

     fuel chemicals, 
       open-sided lorry 722 2282 2.37 0.403 21.4 0.0144 0.194 31.3

Medium-scale:  
     production chemicals, 
       open-sided lorry 99 313 0.33 0.055 2.9 0.0020 0.027 4.3

     fuel chemicals, tank lorry 706 2231 2.33 0.376 21.0 0.0141 0.191 30.6

     wheat, tractor, two wagons 1158 3660 4.01 1.363 36.7 0.0231 0.271 50.1
     distiller’s waste, 
       tractor, tank wagon  3714 11738 12.85 4.372 117.8 0.0742 0.871 160.8

     ethanol fuel, tank lorry 343 1086 1.13 0.183 10.2 0.0069 0.093 14.9

Large-scale:  

     production chemicals, tank lorry 93 295 0.31 0.050 2.8 0.0019 0.025 4.0

     fuel chemicals, tank lorry 529 1674 1.75 0.282 15.8 0.0106 0.143 22.9

     wheat, open-sided lorry 12160 38436 39.14 6.415 362.7 0.2428 3.288 526.5
     distiller’s waste, 
       open-sided lorry 2907 9188 8.74 1.249 88.1 0.0580 0.797 125.9

     ethanol fuel, tank lorry 5397 17061 17.80 2.873 160.6 0.1078 1.458 233.7

Small-scale, total 836 2644 2.75 0.467 24.8 0.0167 0.225 36.2

Medium-scale, total 6020 19028 20.64 6.348 188.7 0.1202 1.452 260.7

Large-scale, total 21087 66653 67.74 10.868 630.0 0.4211 5.712 913.1
Small-scale soymeal, 
   open-sided lorry 3952 12492 12.98 2.206 117.3 0.0789 1.064 171.1

Medium-scale soymeal, 
   open-sided lorry 3952 12492 12.98 2.206 117.3 0.0789 1.064 171.1

Large-scale soymeal, 
   open-sided lorry 3952 12492 12.98 2.206 117.3 0.0789 1.064 171.1

 
 
To get the total emissions for the transport (Tables 63 and 64, see also Tables A3-A14 and 
A17-A22, Appendices 1-2), the energy requirement and emissions for production of the fuel 
used (Tables 59 and 60) and the lubrication oil used (Tables 61 and 62) have to be added to 
the emission values during the transport (Tables 57 and 58). 

• The emission and energy requirement for manufacture of the required fuel (Tables 59 
and 60) could be calculated as: fuel consumption [g/ha] (Tables 57 and 58) * (lower 
heat value for fuel used [MJ/kg] (Table 99) / 1000 [g/kg]) * emissions and energy 
requirement for fuel production [g/MJfuel] (MK1: see Table 13; rapeseed oil, RME and 
ethanol fuel an iterative procedure, also depending on the plant size). 

• The emissions and energy requirement for manufacturing of the lubrication oil used 
(Tables 61 and 62) could be calculated as: 0.7% (see above) * (fuel consumption 
[g/ha] (Tables 57 and 58) / (density of fuel used [kg/l] (Table 99) * 1000 [g/kg])) * 
density MK3 [kg/l] (Table 99: assumed to be as for MK3) * lower heat value MK3 
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[MJ/kg] (Table 99: assumed to be as for MK3) * emissions and energy requirement 
for fuel production of MK1 [g/MJfuel] (MK1: see Table 13, assumed also to be valid 
for lubrication oil). 

 
 
Table 59. Emissions and energy requirement for production of the MK1 fuel used for 
transport during production of rapeseed oil and RME 
 
Type of transport and vehicle CO2 CO HC NOx SOx CH4 Particles Input energy

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha] 

Small-scale:   

     methanol, tank lorry 33 0.019 0.31 0.29 0.18 0.019 0.0094 0.56

     glycerine, tank lorry 31 0.018 0.30 0.28 0.17 0.018 0.0090 0.54

Medium-scale:   

     methanol, tank lorry 36 0.021 0.34 0.32 0.20 0.021 0.0103 0.62

     glycerine, tank lorry 35 0.020 0.33 0.31 0.19 0.020 0.0099 0.59

     RME, tank lorry 20 0.012 0.19 0.18 0.11 0.012 0.0058 0.35

     rapeseed oil, tank lorry 21 0.012 0.20 0.19 0.11 0.012 0.0060 0.36

     rapeseed, tractor, two wagons  55 0.031 0.52 0.48 0.30 0.031 0.0156 0.94

     meal, tractor, two wagons  28 0.016 0.27 0.25 0.15 0.016 0.0081 0.49

Large-scale:   

     methanol, tank lorry 47 0.027 0.45 0.42 0.26 0.027 0.0135 0.81

     glycerine, tank lorry 45 0.026 0.43 0.40 0.25 0.026 0.0129 0.78

     RME, tank lorry 414 0.236 3.90 3.66 2.25 0.236 0.1182 7.09

     rapeseed oil, tank lorry 430 0.246 4.05 3.81 2.33 0.246 0.1228 7.37

     rapeseed, open-sided lorry 708 0.405 6.68 6.27 3.85 0.405 0.2024 12.14

     meal, open-sided lorry 310 0.177 2.92 2.74 1.68 0.177 0.0885 5.31

Small-scale, total: rapeseed oil 0 0 0 0 0 0 0 0

                              RME 64 0.037 0.61 0.57 0.35 0.037 0.0184 1.10

Medium-scale, total: rapeseed oil 104 0.060 0.98 0.92 0.57 0.060 0.0298 1.79

                              RME 174 0.100 1.64 1.54 0.95 0.100 0.0498 2.99

Large-scale, total: rapeseed oil 1448 0.828 13.65 12.83 7.86 0.828 0.4138 24.83

                              RME 1524 0.871 14.37 13.50 8.28 0.871 0.4356 26.13

Small-scale soymeal, open-sided lorry 523 0.299 4.93 4.63 2.84 0.299 0.1493 8.96

Medium-scale soymeal, open-sided lorry 509 0.291 4.80 4.51 2.76 0.291 0.1453 8.72

Large-scale soymeal, open-sided lorry 419 0.240 3.95 3.71 2.28 0.240 0.1198 7.19
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Table 60. Emissions and energy requirement for production of the MK1 fuel used for 
transport during production of ethanol and ethanol fuel 
 
Type of transport and vehicle CO2 CO HC NOx SOx CH4 Particles Input energy

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha] 

Small-scale:   

     production chemicals, open-sided lorry 17 0.0099 0.16 0.15 0.094 0.0099 0.0050 0.30

     fuel chemicals, open-sided lorry 109 0.0625 1.03 0.97 0.594 0.0625 0.0313 1.88

Medium-scale:   

     production chemicals, open-sided lorry 15 0.0086 0.14 0.13 0.082 0.0086 0.0043 0.26

     fuel chemicals, tank lorry 107 0.0611 1.01 0.95 0.581 0.0611 0.0306 1.83

     wheat, tractor, two wagons  175 0.1003 1.65 1.55 0.952 0.1003 0.0501 3.01

     distiller’s waste, tractor, tank wagon  563 0.3216 5.31 4.98 3.055 0.3216 0.1608 9.65

     ethanol fuel, tank lorry 52 0.0297 0.49 0.46 0.283 0.0297 0.0149 0.89

Large-scale:   

     production chemicals, tank lorry 14 0.0081 0.13 0.13 0.077 0.0081 0.0040 0.24

     fuel chemicals, tank lorry 80 0.0458 0.76 0.71 0.436 0.0458 0.0229 1.38

     wheat, open-sided lorry 1843 1.0530 17.38 16.32 10.004 1.0530 0.5265 31.59

     distiller’s waste, open-sided lorry 441 0.2517 4.15 3.90 2.391 0.2517 0.1259 7.55

     ethanol fuel, tank lorry 818 0.4674 7.71 7.25 4.441 0.4674 0.2337 14.02

Small-scale, total 127 0.0724 1.20 1.12 0.688 0.0724 0.0362 2.17

Medium-scale, total 912 0.5213 8.60 8.08 4.953 0.5213 0.2607 15.64

Large-scale, total 3196 1.8261 30.13 28.30 17.348 1.8261 0.9131 54.78

Small-scale soymeal, open-sided lorry 599 0.3422 5.65 5.30 3.251 0.3422 0.1711 10.27

Medium-scale soymeal, open-sided lorry 599 0.3422 5.65 5.30 3.251 0.3422 0.1711 10.27

Large-scale soymeal, open-sided lorry 599 0.3422 5.65 5.30 3.251 0.3422 0.1711 10.27
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Table 61. Emissions and energy requirement for production of the lubrication oil used for 
transport during production of rapeseed oil and RME 
 
Type of transport and vehicle CO2 CO HC NOx SOx CH4 Particles Input energy

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha] 

Small-scale:   

     methanol, tank lorry 0.23 0.000132 0.0022 0.0020 0.00125 0.000132 0.000066 0.0040

     glycerine, tank lorry 0.22 0.000126 0.0021 0.0020 0.00120 0.000126 0.000063 0.0038

Medium-scale:   

     methanol, tank lorry 0.25 0.000145 0.0024 0.0023 0.00138 0.000145 0.000073 0.0044

     glycerine, tank lorry 0.24 0.000139 0.0023 0.0022 0.00132 0.000139 0.000070 0.0042

     RME, tank lorry 0.14 0.000081 0.0013 0.0013 0.00077 0.000081 0.000040 0.0024

     rapeseed oil, tank lorry 0.15 0.000084 0.0014 0.0013 0.00080 0.000084 0.000042 0.0025

     rapeseed, tractor, two wagons  0.38 0.000220 0.0036 0.0034 0.00209 0.000220 0.000110 0.0066

     meal, tractor, two wagons  0.20 0.000114 0.0019 0.0018 0.00109 0.000114 0.000057 0.0034

Large-scale:   

     methanol, tank lorry 0.33 0.000190 0.0031 0.0029 0.00180 0.000190 0.000095 0.0057

     glycerine, tank lorry 0.32 0.000182 0.0030 0.0028 0.00173 0.000182 0.000091 0.0055

     RME, tank lorry 2.91 0.001662 0.0274 0.0258 0.01578 0.001662 0.000831 0.0498

     rapeseed oil, tank lorry 3.02 0.001727 0.0285 0.0268 0.01641 0.001727 0.000864 0.0518

     rapeseed, open-sided lorry 4.98 0.002845 0.0469 0.0441 0.02703 0.002845 0.001423 0.0854

     meal, open-sided lorry 2.18 0.001245 0.0205 0.0193 0.01183 0.001245 0.000622 0.0373

Small-scale, total: rapeseed oil 0 0 0 0 0 0 0 0

                              RME 0.45 0.000258 0.0043 0.0040 0.00245 0.000258 0.000129 0.0077

Medium-scale, total: rapeseed oil 0.73 0.000418 0.0069 0.0065 0.00397 0.000418 0.000209 0.0125

                              RME 1.22 0.000700 0.0115 0.0108 0.00665 0.000700 0.000350 0.0210

Large-scale, total: rapeseed oil 10.18 0.005817 0.0960 0.0902 0.05527 0.005817 0.002909 0.1745

                              RME 10.72 0.006124 0.1010 0.0949 0.05818 0.006124 0.003062 0.1837

Small-scale soymeal, open-sided lorry 3.67 0.002099 0.0346 0.0325 0.01995 0.002099 0.001050 0.0630

Medium-scale soymeal, open-sided lorry 3.58 0.002044 0.0337 0.0317 0.01941 0.002044 0.001022 0.0613

Large-scale soymeal, open-sided lorry 2.95 0.001684 0.0278 0.0261 0.01600 0.001684 0.000842 0.0505
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Table 62. Emissions and energy requirement for production of the lubrication oil used for 
transport during production of ethanol and ethanol fuel 
 
Type of transport and vehicle CO2 CO HC NOx SOx CH4 Particles Input energy

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha] 

Small-scale:   

     production chemicals, open-sided lorry 0.12 0.000070 0.00115 0.00108 0.00066 0.000070 0.000035 0.0021

     fuel chemicals, open-sided lorry 0.77 0.000440 0.00725 0.00681 0.00418 0.000440 0.000220 0.0132

Medium-scale:   

     production chemicals, open-sided lorry 0.11 0.000060 0.00100 0.00094 0.00057 0.000060 0.000030 0.0018

     fuel chemicals, tank lorry 0.75 0.000430 0.00709 0.00666 0.00408 0.000430 0.000215 0.0129

     wheat, tractor, two wagons  1.23 0.000705 0.01163 0.01092 0.00670 0.000705 0.000352 0.0211

     distiller’s waste, tractor, tank wagon 3.96 0.002261 0.03730 0.03504 0.02148 0.002261 0.001130 0.0678

     ethanol fuel, tank lorry 0.37 0.000209 0.00345 0.00324 0.00199 0.000209 0.000105 0.0063

Large-scale:   

     production chemicals, tank lorry 0.10 0.000057 0.00094 0.00088 0.00054 0.000057 0.000028 0.0017

     fuel chemicals, tank lorry 0.56 0.000322 0.00532 0.00500 0.00306 0.000322 0.000161 0.0097

     wheat, open-sided lorry 12.95 0.007403 0.12214 0.11474 0.07033 0.007403 0.003701 0.2221

     distiller’s waste, open-sided lorry 3.10 0.001770 0.02920 0.02743 0.01681 0.001770 0.000885 0.0531

     ethanol fuel, tank lorry 5.75 0.003286 0.05422 0.05093 0.03122 0.003286 0.001643 0.0986

Small-scale, total 0.89 0.000509 0.00840 0.00789 0.00484 0.000509 0.000255 0.0153

Medium-scale, total 6.41 0.003665 0.06047 0.05680 0.03482 0.003665 0.001832 0.1099

Large-scale, total 22.47 0.012837 0.21181 0.19898 0.12195 0.012837 0.006419 0.3851

Small-scale soymeal, open-sided lorry 4.21 0.002406 0.03970 0.03729 0.02286 0.002406 0.001203 0.0722

Medium-scale soymeal, open-sided lorry 4.21 0.002406 0.03970 0.03729 0.02286 0.002406 0.001203 0.0722

Large-scale soymeal, open-sided lorry 4.21 0.002406 0.03970 0.03729 0.02286 0.002406 0.001203 0.0722
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Table 63. Total emissions and energy requirement for transport during production of 
rapeseed oil and RME 
 
Type of transport and vehicle CO2 CO HC NOx SOx CH4 Particles Input energy

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha] 

Small-scale:   

     methanol, tank lorry 718 0.73 0.43 6.7 0.18 0.019 0.068 9.9

     glycerine, tank lorry 687 0.70 0.41 6.5 0.18 0.018 0.065 9.5

Medium-scale:   

     methanol, tank lorry 791 0.81 0.47 7.4 0.20 0.021 0.075 11.0

     glycerine, tank lorry 758 0.77 0.45 7.1 0.19 0.020 0.072 10.5

     RME, tank lorry 440 0.45 0.26 4.1 0.11 0.012 0.042 6.1

     rapeseed oil, tank lorry 458 0.47 0.27 4.3 0.12 0.012 0.043 6.3

     rapeseed, tractor, two wagons  1196 1.12 0.90 12.5 0.31 0.031 0.104 16.6

     meal, tractor, two wagons  622 0.51 0.44 6.8 0.16 0.016 0.055 8.6

Large-scale:   

     methanol, tank lorry 1034 1.06 0.62 9.7 0.26 0.027 0.098 14.3

     glycerine, tank lorry 991 1.01 0.59 9.3 0.25 0.026 0.094 13.7

     RME, tank lorry 9043 9.24 5.38 84.9 2.32 0.238 0.856 125.3

     rapeseed oil, tank lorry 9401 9.60 5.59 88.3 2.41 0.247 0.890 130.3

     rapeseed, open-sided lorry 15487 15.19 9.07 146.3 3.97 0.408 1.472 214.6

     meal, open-sided lorry 6776 6.33 3.82 64.7 1.74 0.178 0.650 93.9

Small-scale, total: rapeseed oil 0 0 0 0 0 0 0 0

                              RME 1405 1.44 0.84 13.2 0.36 0.037 0.133 19.5

Medium-scale, total: rapeseed oil 2277 2.09 1.61 23.6 0.58 0.060 0.202 31.5

                              RME 3809 3.66 2.52 38.0 0.98 0.100 0.347 52.8

Large-scale, total: rapeseed oil 31664 31.13 18.49 299.3 8.11 0.833 3.013 438.8

                              RME 33331 32.83 19.48 315.0 8.53 0.877 3.171 461.9

Small-scale soymeal, open-sided lorry 11427 11.63 6.89 107.0 2.93 0.301 1.079 158.3

Medium-scale soymeal, open-sided lorry 11123 11.32 6.70 104.2 2.85 0.293 1.050 154.1

Large-scale soymeal, open-sided lorry 9167 9.33 5.53 85.8 2.35 0.241 0.865 127.0
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Table 64. Total emissions and energy requirement for transport during production of ethanol 
and ethanol fuel 
 
Type of transport and vehicle CO2 CO HC NOx SOx CH4 Particles Input energy

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha] 

Small-scale:         

     production chemicals, open-sided lorry 379 0.39 0.23 3.6 0.097 0.0100 0.036 5.25

     fuel chemicals, open-sided lorry 2393 2.43 1.44 22.4 0.613 0.0630 0.226 33.15

Medium-scale:         

     production chemicals, open-sided lorry 329 0.33 0.20 3.1 0.084 0.0086 0.031 4.55

     fuel chemicals, tank lorry 2339 2.39 1.39 22.0 0.599 0.0616 0.221 32.41

     wheat, tractor, two wagons 3836 4.11 3.03 38.3 0.982 0.1010 0.322 53.16

     distiller’s waste, tractor, tank wagon 12305 13.17 9.72 122.8 3.151 0.3239 1.032 170.51

     ethanol fuel, tank lorry 1138 1.16 0.68 10.7 0.291 0.0300 0.108 15.77

Large-scale:         

     production chemicals, tank lorry 309 0.32 0.18 2.9 0.079 0.0081 0.029 4.28

     fuel chemicals, tank lorry 1754 1.79 1.04 16.5 0.449 0.0462 0.166 24.31

     wheat, open-sided lorry 40292 40.20 23.91 379.2 10.317 1.0604 3.818 558.33

     distiller’s waste, open-sided lorry 9632 9.00 5.43 92.0 2.466 0.2535 0.924 133.47

     ethanol fuel, tank lorry 17885 18.27 10.64 167.9 4.580 0.4707 1.694 247.83

Small-scale, total 2772 2.82 1.67 26.0 0.710 0.0729 0.262 38.41

Medium-scale, total 19947 21.17 15.01 196.8 5.108 0.5250 1.715 276.41

Large-scale, total 69871 69.57 41.21 658.5 17.891 1.8389 6.631 968.22

Small-scale soymeal, open-sided lorry 13095 13.33 7.89 122.6 3.353 0.3446 1.236 181.46

Medium-scale soymeal, open-sided lorry 13095 13.33 7.89 122.6 3.353 0.3446 1.236 181.46

Large-scale soymeal, open-sided lorry 13095 13.33 7.89 122.6 3.353 0.3446 1.236 181.46
 
 

3.7.2 Transportation costs 
 
According to Agriwise (2003) the costs for lorry transport 30, 40 and 100 km are: 0.035; 
0.041; and 0.070 SEK/kg transported material respectively. With minor changes these figures 
can be expressed as the equation: transport cost (Tables 65 and 66) [SEK/kg transported 
material] = 0.02 + 0.0005 * distance [km] (Section 3.7.1). These costs are valid for transport 
with a fully loaded open-sided lorry. When an open-sided lorry carries 40.0 tonnes and a tank 
lorry 36.5 tonnes, a difference of approx. 10% arises, and since the tank lorry is more 
complicated and therefore more expensive the costs for transport with a tank lorry were 
assumed to be 15% higher. Choices of transport distances for different transport are described 
above in Section 3.7.1. Transport costs [SEK/ha] could be calculated by multiplying product 
weight [kg/ha] and transport cost [SEK/kg product] (Tables 65 and 66). 
 
If return load was taken, the transport cost [SEK/kg transported material] could be calculated 
as: 0.5 * (1 + share of return trips empty (Section 3.7.1)) * (0.02 + 0.0005 * distance [km] 
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(Section 3.7.1)). The way in which share of empty trips was calculated using figures and 
products transported is accounted for in Section 3.7.1. 
 
If the share of the lorry’s loading capacity used for transport [%] is less than 100% (Table 66) 
the transport cost [SEK/ha] is calculated as: product weight [kg/ha] * transport cost [SEK/kg 
transported material] / (share of the lorry’s loading capacity used for transport [%] / 100). 
 
Labour time [h/ha] for loading (Table 65 for rapeseed oil and RME and Table 66 for ethanol 
fuel) and unloading a lorry could be calculated as: time for loading and unloading [h] (see 
below) / (load on lorry [kg] (Table 75) / weight of product [kg/ha] (Tables 65 and 66)). For 
both an open-sided lorry and a tank lorry, the time for loading and unloading was assumed to 
be 1.5 hours. Exceptions are chemicals and enzymes for ethanol production (all scales) and 
chemicals for making the ethanol into a diesel fuel for medium- and small-scale plants where 
the time for loading and unloading was assumed to be 3.0 hours. This was because transport 
was assumed not only to be used for the transport in question and therefore correspondingly 
more work was required for the actual loading and unloading. If the lorry’s loading capacity is 
not fully utilized (Table 66) the labour time for loading and unloading is calculated as: (time 
for loading and unloading [h] (see above) / (load on lorry [kg] (Table 75) / weight of product 
[kg/ha] (Tables 65 and 66))) / (share of the lorry’s loading capacity used for transport [%] 
(Table 66) / 100). 
 
The weight of each transported product on an area basis [kg/ha] is given in Table 65 for 
rapeseed oil and RME, and in Table 66 for ethanol fuel. The cost for the lorry transportation 
labour was assumed to be 180 SEK/h, the cost for an experienced machine operator in 2002 
(estimated after SCB, 2003; Agriwise, 2003; and Henemo, 2002 and 2003). Then the labour 
part of the transportation cost [SEK/ha] could be calculated by multiplying the labour time 
[h/ha] by the labour cost [SEK/h] (Tables 65 and 66). 
 
The total transport cost (Tables 65 and 66; and Tables 123-131) was obtained by adding the 
labour and transport costs. 
 
 



 77

Table 65. Costs of transport by lorry, production of rapeseed oil and RME 
 
Type of plant and material transported  Loading and unloading  Transporting Total 

 Product 
weight 

Labour 
time 

Labour 
cost  Transport 

cost 
Transport 

cost 
transport 

cost 

 [kg/ha] [h/ha] [SEK/ha]  [SEK/kg 
product] [SEK/ha] [SEK/ha]

Small-scale plant:   

     transport of methanol 83.1 0.00342 0.615  0.0863 7.2 7.8

     transport of glycerine 79.7 0.00327 0.589  0.0863 6.9 7.5

Medium-scale plant:   

     transport of methanol 91.7 0.00377 0.678  0.0863 7.9 8.6

     transport of glycerine 87.9 0.00361 0.650  0.0863 7.6 8.2

     transport of RME 802 0.0330 5.93  0.0270 21.7 27.6

     transport of rapeseed oil 834 0.0343 6.17  0.0270 22.5 28.7

Large-scale plant:   

     transport of seed 2470 0.0926 16.67  0.0548 135.3 152.0

     transport of meal 1331 0.0499 8.99  0.0375 49.9 58.9

     transport of methanol 120 0.00492 0.886  0.0863 10.3 11.2

     transport of glycerine 115 0.00472 0.849  0.0863 9.9 10.8

     transport of RME 1048 0.0431 7.75  0.0863 90.4 98.1

     transport of rapeseed oil 1089 0.0448 8.06  0.0863 93.9 102.0
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Table 66. Costs of transport by lorry, production of ethanol and ethanol fuel 
 
Type of plant and material transported  Loading and unloading Transporting  Total 

 Product 
weight Labour time Labour 

cost 
Transport 

cost 
Transport 

cost  transport 
cost 

 [kg/ha] [h/ha] [SEK/ha] [SEK/kg 
product] [SEK/ha]  [SEK/ha]

Share of 
the lorry’s 

loading 
capacity 
used for 
transport 

[%] 
Small-scale plant:   

     transport of chemicals 32.2 0.00372 0.669 0.0750 3.7  4.4 65
     transport of chemicals to 
       make ethanol fuel 203.3 0.02345 4.222 0.0750 23.5  27.7 65

Medium-scale plant:   

     transport of chemicals 32.2 0.00322 0.580 0.0750 3.2  3.8 75
     transport of chemicals to 
       make ethanol fuel 203.3 0.02228 4.010 0.0863 23.4  27.4 75

     transport of ethanol fuel 2072 0.0852 15.33 0.0270 56.0  71.3 100

Large-scale plant:   

     transport of chemicals 32.2 0.00294 0.529 0.0863 3.1  3.6 90
     transport of chemicals to 
       make ethanol fuel 203.3 0.00835 1.50 0.0863 17.5  19.0 100

     transport of wheat 5900 0.2213 39.83 0.0630 371.5  411.4

     transport of distiller’s waste 1892 0.07097 12.77 0.0375 71.0  83.7

     transport of ethanol fuel 2072 0.08516 15.33 0.0863 178.7  194.1 100
 
 
The fuel consumption [l/ha] (Tables 67 and 68) for tractor transport could be calculated as: 
((fuel consumption, full load [g/tonkm] (Table 56) + share of return load empty (Section 
3.7.1) * fuel consumption, empty [g/tonkm] (Table 56)) / fuel density (813 g/litre for MK1, 
see also Table 99)) * the yield [tonne/ha] (rapeseed 2470 kg/ha; meal (medium-scale) 1587 
kg/ha; wheat 5900 kg/ha; or wet distiller’s waste 18925 kg/ha) * the transport distance (7 km, 
Section 3.7.1). During transport of rapeseed, the wagons were fully loaded one way and 
empty 35.75% (see Section 3.7.1) of the return trips. During transport of meal, the return trips 
were fully used for transport of rapeseed (0% empty). During medium-scale production of 
ethanol fuel, the return transport was empty (100% empty) after transport of wheat and 
distiller’s waste. Transport costs [SEK/ha] could be obtained by multiplying by the fuel price 
(5.70 SEK/l: i.e. what farmers paid for MK1 diesel oil in 2002 and 2003 (Henemo, 2002 and 
2003)) (Tables 67 and 68). 
 
Labour time was assumed to be 0.70 hours for loading and 0.30 hours for unloading, together 
1.0 hour for rapeseed, meal and wheat. Labour time was assumed to be 0.50 hours for loading 
and 0.50 hours for unloading, together 1.0 hour for wet distiller’s waste. Labour time for 
transport of seed 7 km and return at an average speed of 20 km/h and empty on 35.75% of the 
return trips (for explanation see above) gives: 7 km / 20 km/h + 0.3575 * 7 km / 20 km/h = 
0.475 hours, with loading and unloading 1.475 hours. Calculated in the same way, the labour 
time for transporting (7 km): meal was 0.35 hours when no return trips were required (used 
for seed transport) and 1.35 hours with loading and unloading added; wheat 0.70 hours when 
return trips were included and 1.70 hours with loading and unloading added; and distiller’s 
waste 0.70 hours when return trips were included and 1.70 hours with loading and unloading 
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added. Labour time [h/ha] (Tables 67 and 68) could then be calculated as: (yield [kg/ha] (see 
above) / 20 000 kg load) * labour loading, unloading and transport [h] (see above). Use of 
machines [h/ha] (Table 70) is obtained if only transport time is included in the above 
calculations (of labour time). 
 
The cost for the tractor transportation labour was assumed to be 180 SEK/h, the cost for an 
experienced machine operator in 2002 (estimated after SCB, 2003; Agriwise, 2003; and 
Henemo, 2002 and 2003). Then the labour part of the transportation cost [SEK/ha] could be 
calculated by multiplying (Tables 67-68) by the labour time [h/ha]. 
 
The calculations in Tables 69 and 70 are described in Section 3.4.5: Economics of rapeseed 
and wheat production. The same assumptions were deemed to be valid in these calculations. 
Here, calculations were only performed for machines used on the basis of farm size (75 ha). 
This was because using machines from the bigger farm would only have small or negligible 
effects on the production costs for rapeseed oil, RME and ethanol fuel. The use [h/ha] of the 
wagons in Table 70 is twice as big as the use of the tractor because 2 wagons were used and 
therefore the factor was multiplied by 2. The summed up values in Table 70 are used in 
Tables 67 and 68. Summed up values in Tables 67 and 68 are used for calculations in Tables 
126-128. 
 
 
Table 67. Costs of transport by tractor, production of rapeseed oil and RME 
 
Factors of production Transport of rapeseed Transport of meal 

 Quantity Price Cost Quantity Price Cost 

 […/ha] [SEK/…] [SEK/ha] […/ha] [SEK/…] [SEK/ha] 

Tractor fuel transport [litres] 0.44 5.70 2.53 0.23 5.70 1.32

Lubrication oil etc. tractive power, etc.a 0.38  0.20

Machinery maintenance 5.75  2.72

Machinery depreciation and interest 21.18  10.02

Tax and insurance, machines 0.25  0.12

Keeping area costs, machines 4.10  1.94

Sum costs (excl. labour) 34.19  16.32

Labour costs [h] 0.18 180 32.79 0.11 180 19.28

Sum costs (incl. labour) 66.98  35.60
a Lubrication oil costs was assumed to be 15% of fuel costs (Agriwise, 2002 and 2003). 
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Table 68. Costs of transport by tractor, production of ethanol and ethanol fuel 
 
Factors of production Transport of wheat Transport of distiller’s waste 

 Quantity Price Cost Quantity Price Cost 

 […/ha] [SEK/…] [SEK/ha] […/ha] [SEK/…] [SEK/ha] 

Tractor fuel transport [litres] 1.42 5.70 8.12 4.57 5.70 26.04

Lubrication oil etc. tractive power, etc.a   1.22   3.91

Machinery maintenance   20.24   64.91

Machinery depreciation and interest   74.54   239.09

Tax and insurance, machines   0.88   2.82

Keeping area costs, machines   14.42   23.99

Sum costs (excl. labour)   119.41   360.75

Labour costs [h] 0.50 180 90.27 1.61 180 289.55

Sum costs (incl. labour)   209.68   650.30
a Lubrication oil costs was assumed to be 15% of fuel costs (Agriwise, 2002 and 2003). 
 
 
Table 69. Costs of transport by tractor, basic data for transportation of rapeseed, meal, wheat 
and distiller’s waste used for medium-scale plants in economic calculation, part 1 
 
Machines, used for the transportation Repl. value Residual Maintenance Length of life Annual use Keeping

 [SEK] (A)a valueb cost (B)c [years] (C) [hours] (D) area [m2]

Tractor, 66 kW, 4WD 400000 100000 0.07 12 550 8

Rapeseed, meal and wheat:       

   Tipping trailer, 10 tonnes (*2) 70000 17500 0.50 15 50 14

Distiller’s waste:   

   Tank wagon, 20 tonnes 140000 35000 0.50 15 50 14
a Replacement value (Henemo, 2002). 
b Residual value assumed to be 25% of the replacement value. 
c Maintenance cost (Henemo, 2002 and 2003) [SEK/h and 1000 SEK replacement value] (B). 
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Table 70. Costs of transport by tractor, basic data for transportation of rapeseed, meal, wheat 
and distiller’s waste used for medium-scale plants in economic calculation, part 2 
 
Machines, used for the transportation Use Maint. cost Keeping area Tax and insurance Annual capital 

 [h/ha] [SEK/ha] costs [SEK/ha] [SEK/ha]a cost [SEK/ha] 

Transport of rapeseed:      

   Tractor, 66 kW, 4WD. 0.06 1.6 0.15 0.09 4.8

   Tipping trailer, 10 tonnes (*2). 0.12 4.1 3.94 0.16 16.4

Sum  5.8 4.10 0.25 21.2

Transport of meal:      

   Tractor, 66 kW, 4WD. 0.03 0.8 0.07 0.04 2.3

   Tipping trailer, 10 tonnes (*2). 0.06 1.9 1.87 0.08 7.8

Sum  2.7 1.94 0.12 10.0

Transport of wheat:      

   Tractor, 66 kW, 4WD. 0.21 5.8 0.54 0.30 16.8

   Tipping trailer, 10 tonnes (*2). 0.41 14.5 13.88 0.58 57.7

Sum  20.2 14.42 0.88 74.5

Transport of distiller’s waste:      

   Tractor, 66 kW, 4WD. 0.66 18.5 1.73 0.96 53.9

   Tank wagon, 20 tonnes. 0.66 46.4 22.26 1.85 185.2

Sum  64.9 23.99 2.82 239.1
a Tax and insurance assumed to be 0.2% of replacement value for tractors and threshing machines and 0.1% of 
   the replacement value for other machines (Henemo, 2002). 
 
 

3.7.3 Derivation of transportation formulas 
 
The transport distances were estimated with equations according to Overend (1982) from the 
chosen areas (40, 1000 and 50 000 ha) and the annual yield. The collection areas were 
assumed to be circular. For areas up to 300 ha, 10% of the ground was assumed to be 
cultivated with rapeseed or ethanol wheat; up to 5000 ha, 5% of the ground was assumed to 
be cultivated with rapeseed or ethanol wheat; and above 5000 ha, 1% of the ground was 
assumed to be cultivated with rapeseed or ethanol wheat. The reduction in share of total area 
with rapeseed or wheat for larger plants was a result of the increased share of non-farm area 
as the territory included was enlarged. On farm level, still one seventh of the cultivated area 
was rapeseed or ethanol wheat. The average transport distance was estimated using Equations 
8-12: 
 
where:  

τ∗∗= RR 3
2                      (8) 

 
and 

π
AnR ∗

=  (km)                     (9) 
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and 
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   when Equations 8-11 are combined. 
 
 R = Maximum extent (km). 
R = Average haulage distance (km). 
τ = Tortuosity factor i.e. ratio of actual distance travelled to line of sight distance. 
        The tortuosity factor has a value of about 1.3 where the roads make a pattern with  
        straight angles, which was assumed to be the situation in this study. 
 n = Assuming a ‘pie slice’ shape to the harvest area with the processing plant at the apex, n is  
        the number of ‘slices’ to complete a circular geometry (in this study n = 1). 
A = Area (km2). 
Acrop  = Area of the studied crop (ha). 
 ø = Fraction of A planted with the crop. 
 M = Biomass productivity (harvest) (tonne / (ha * year). 
 p = Plant size (tonne / day). 
 P = Plant size (tonne / year). 
 
Calculations with Equation 12 above gave for 40 ha (small-scale) a transport distance of 1 
km, assumed to be the distance the seed was transported from field to farm (in this study). For 
1000 ha a transport distance of 6.9 km was obtained and therefore 7 km was assumed to be 
the distance for the medium-scale plants. For the large-scale plants (50 000 ha) a transport 
distance of 109.3 km was obtained and therefore 110 km was assumed to be the transport 
distance for these plants in this study. 
 
 

3.8 Machinery and manufacturing 
 
Energy and material consumption (weight) for manufacturing of agricultural machines, 
transport lorries, oil extraction, transesterification and ethanol fuel production machinery with 
spare parts was calculated after data from Pimentel (1980) and Bowers (1992), revised by 
Börjesson (1994). 
 
The emissions for manufacturing and use of the machines and buildings could be calculated if 
life cycle data were available on manufacturing and use of the machines. Unfortunately no 
such data were available for this study, but data on the energy requirement for machines were 
available and used (Pimentel, 1980; Bowers, 1992; Börjesson, 1994) and also for building 
material (Spugnoli et al., 1992). In this study, this energy was assumed to be electricity. In 
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Tables 71-74 and 76-77 and 85-90, the requirement of machines on an area basis [kg/ha] was 
also accounted for to make it possible for a reader with access to life cycle machinery data to 
easily understand its importance. 
 
The energy for manufacturing the machines and the buildings was assumed to be produced by 
Swedish electricity (Uppenberg et al., 2001) in the basic scenario and in the scenario analysis 
with fossil fuel electricity (for description see Section 3.6.1). 

• Emissions values on an area basis [g/ha] (Tables 78-79 and 91-92) were obtained 
when the energy demand on an area basis [MJ/ha] (Tables 71-74 (agricultural 
machines and fertiliser transport), Tables 76-77 (transport), Tables 85-87 (machinery) 
and Tables 88-90 (buildings, when values for wood and concrete is added)) were 
multiplied by emissions values [g/MJel] (Table 49) for the production of electricity. 

• Energy requirement values on an area basis [MJ/ha] (Tables 78-79 and 91-92) were 
obtained when the energy demand on an area basis [MJ/ha] (Tables 71-74 (agricultural 
machines and fertiliser transport), Tables 76-77 (transport), Tables 85-87 (machinery) 
and Tables 88-90 (buildings, when values for wood and concrete is added)) was 
multiplied by energy requirement values [MJ/MJel] (Table 49) for the production of 
electricity. 

 
Energy requirement for production of raw material for agricultural machines was estimated to 
21.6 MJ/kg (Börjesson, 1994) (Tables 71-73). The same was assumed for lorries (Table 75) 
and machines, machinery equipment and tanks for oil extraction (Table 82), transesterification 
(Table 83) and ethanol production (Table 84). 
 
The energy requirement for manufacturing of agricultural machines (tied-up energy) (Tables 
71-73) was estimated at: 9.72 MJ/kg machine for tractors; 8.28 MJ/kg machine for threshing 
machines; 5.76 MJ/kg machine for ploughs; 5.40 MJ/kg machine for other tilling machines; 
and 4.68 MJ/kg machine for seed drills, sprayers, fertiliser spreaders, front-loaders and 
wagons (Pimentel, 1980 and Bowers, 1992, revised by Börjesson, 1994). For a lorry with a 
wagon 24 m long, the energy demand was assumed to be the average between tractors and 
wagons: 7.20 MJ/kg machine (Table 75). For oil presses the energy requirement was assumed 
to be 9.72 MJ/kg machine (Table 82) (20% of the total machinery weight for medium- and 
large-scale plants) as for tractors because both mainly consist of steel and cast iron. For 
equipment for grain drying (Tables 71 and 73), oil seed and expeller handling and the 
sedimentation tanks, the energy requirement was assumed to be 4.68 MJ/kg machine (Table 
82) as for seed drills, sprayers, fertiliser spreaders, front-loaders and wagons. They consist 
mainly of the same materials. Equipment for transesterification (Table 83) or ethanol 
production (Table 84) was assumed to consist of 25% heavier machines that like e.g. tractors 
require 9.72 MJ/kg machine for manufacturing and of 75% lighter machines that like e.g. 
wagons require 4.68 MJ/kg machine for manufacturing. 
 
Energy in spare parts was calculated using the Equation 13 (Pimentel, 1980 and Bowers, 
1992, revised by Börjesson, 1994): 
 
EEp = EEam * 1/3 * MTAR * 1.5                  (13) 
 
  where: 
EEp = embodied energy in parts (MJ);  
EEam = embodied energy in assembled machine (MJ) (energy for raw material and 
manufacturing); 



 84

1/3 = only 1/3 of the repair cost is assumed to be spare parts, the remaining 2/3 is cost of 
labour and not included here; 
MTAR = multiplier for total accumulated repairs; 
1.5 = factor used to get better agreement with the conditions of today, since the above formula 
had been proven to give too low values. 
Multiplier for total accumulated repair (MTAR) according to Pimentel (1980) that is the 
proportion between the cost of each machine new and the repair cost during the life time of 
the machine (Tables 71-73): tilling machines, MTAR = 0.93; fertiliser spreaders, MTAR = 0.91; 
tractors, MTAR = 0.82; seed drills, sprayers, wagons, MTAR = 0.76; threshing machines, front-
loaders, MTAR = 0.46. For a lorry with a wagon 24 m long (Table 75), MTAR was assumed to 
be the average between tractors and wagons: MTAR = 0.79. For oil presses the multiplier for 
total accumulated repair energy requirement was assumed as for heavy machines e.g. tractors: 
MTAR = 0.82. For grain drying (Tables 71 and 73): MTAR = 0.76 as for e.g. seed drills. For 
equipment for oil seed and expeller handling and the sedimentation tanks (Table 82): MTAR = 
0.46 as for e.g. front-loaders and threshing machines. For transesterification (Table 83) and 
ethanol production (Table 84) equipment, the multiplier for total accumulated repair (MTAR) 
was assumed to be MTAR = 0.46 as for e.g. front-loaders and threshing machines. They consist 
of similar materials. 
 
 

3.8.1 Agricultural machines and transport 
 
For calculation of the emissions and energy demand tied-up to machinery (agricultural etc.) 
the following values are important (Tables 71-74): 

• Input machinery [kg/ha] was calculated as: use [h/ha] * weight [kg] / durability [h]. 
• Machine energy [MJ/ha] was calculated as: use [h/ha] * total energy demand [MJ/kg 

machine] * weight [kg] / durability [h]. 
 
The calculation of total tied-up energy in agricultural machines [MJ/kg machine and MJ/ha] 
for production of rapeseed and wheat including hot air drying is accounted for in Tables 71 
and 73 respectively. Calculation of total tied-up energy in machines [MJ/kg machine and 
MJ/ha] for transporting fertilisers to the farm is accounted for in Table 72. In the basic 
scenario the energy required to manufacture those machines was assumed to be Swedish 
electricity with 5% grid losses [g/MJel or MJ/MJel] (Table 49). Calculations of area emissions 
and energy requirement (Tables 78-79) are described above. 
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Table 71. Calculation of tied-up energy in machines for production of rapeseed (inputs kg/ha: 
Norén et al., 1999; Hansson & Mattsson, 1999; SLU, 1989; Bernesson, 1993; Sonesson, 
1993; and MJ/ha: Börjesson, 1994; Pimentel, 1980) 
 
Machinery Use Weight Durability Input Tied-up energy 

[MJ/kg machine] for: Energy

 [h/ha] [kg] [h] [kg/ha] Raw 
material

Manu-
facture

Spare 
parts Total [MJ/ha]

Tractor, 52 kWa 0.98 3500 10000 0.34 21.6 9.72 12.84 44.16 15.1

Tractor, 66 kWa 3.54 5000 10000 1.77 21.6 9.72 12.84 44.16 78.2

Plough 2.06 1200 3000 0.83 21.6 5.76 12.72 40.08 33.1

Harrow, 2 timesa 0.54 1700 1000 0.92 21.6 5.40 12.56 39.56 36.4

Seed drilla 0.45 800 1200 0.30 21.6 4.68 9.99 36.27 11.0

Cambridge roller 0.12 2500 1000 0.29 21.6 5.40 12.56 39.56 11.5

Fertiliser spreader, 2 times 0.26 1500 1000 0.39 21.6 4.68 11.96 38.24 14.7

Sprayer, 2 times 0.15 600 450 0.20 21.6 4.68 9.99 36.27 7.3

Threshing machine 1.36 6000 2500 3.27 21.6 8.28 6.87 36.75 120.3

Disc harrow, 1 timea 0.77 2500 3500 0.55 21.6 5.40 12.56 39.56 21.8

Tipping trailer (field – farm) 0.12 3000 1000 0.36 21.6 4.68 9.99 36.27 12.9

Front-loader 0.05 560 300 0.09 21.6 4.68 6.04 32.32 3.0

Hot air drier 3.20 4150 10000 1.33 21.6 4.68 9.99 36.27 48.2

Air heater 3.20 850 5000 0.54 21.6 4.68 9.99 36.27 19.7

Sum    11.18     433.2
a Machines used for resowing at 10% outwintering. 
 
 
Table 72. Calculation of tied-up energy in machines for transport of fertiliser to the farm 
(inputs kg/ha: Norén et al., 1999; Hansson & Mattsson, 1999; SLU, 1989; Bernesson, 1993; 
Sonesson, 1993; and MJ/ha: Börjesson, 1994; Pimentel, 1980) 
 
Machinery Use Weight Durability Input Tied-up energy 

[MJ/kg machine] for: Energy

 [h/ha] [kg] [h] [kg/ha] Raw 
material

Manu-
facture

Spare 
parts Total [MJ/ha]

Rapeseed:   

Tractor, 66 kW 0.054 5000 10000 0.027 21.6 9.72 12.84 44.16 1.20

2 * Tipping trailer 0.040 6000 1000 0.242 21.6 4.68 9.99 36.27 8.77

Front-loader 0.014 560 300 0.026 21.6 4.68 6.04 32.32 0.85

Sum    0.295     10.82

Wheat:        

Tractor, 66 kW 0.045 5000 10000 0.023 21.6 9.72 12.84 44.16 1.00

2 * Tipping trailer 0.033 6000 1000 0.201 21.6 4.68 9.99 36.27 7.28

Front-loader 0.012 560 300 0.022 21.6 4.68 6.04 32.32 0.71

Sum  0.245  8.98
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Table 73. Calculation of tied-up energy in machines for production of wheat (inputs kg/ha: 
Norén et al., 1999; Hansson & Mattsson, 1999; SLU, 1989; Bernesson, 1993; Sonesson, 
1993; and MJ/ha: Börjesson, 1994; Pimentel, 1980) 
 
Machinery Use Weight Durability Input Tied-up energy 

[MJ/kg machine] for: Energy

 [h/ha] [kg] [h] [kg/ha] Raw 
material

Manu-
facture

Spare 
parts Total [MJ/ha]

Tractor, 52 kWa 1.02 3500 10000 0.36 21.6 9.72 12.84 44.16 15.7

Tractor, 66 kWa 3.65 5000 10000 1.82 21.6 9.72 12.84 44.16 80.5

Plough 2.06 1200 3000 0.83 21.6 5.76 12.72 40.08 33.1

Harrow, 2 timesa 0.52 1700 1000 0.88 21.6 5.40 12.56 39.56 34.8

Seed drilla 0.43 800 1200 0.29 21.6 4.68 9.99 36.27 10.5

Cambridge roller 0.12 2500 1000 0.29 21.6 5.40 12.56 39.56 11.5

Fertiliser spreader, 2 times 0.26 1500 1000 0.39 21.6 4.68 11.96 38.24 14.7

Sprayer, 2 times 0.21 600 450 0.28 21.6 4.68 9.99 36.27 10.2

Threshing machine 1.36 6000 2500 3.27 21.6 8.28 6.87 36.75 120.3

Disc harrow, 1 timea 0.74 2500 3500 0.53 21.6 5.40 12.56 39.56 20.8

Tipping trailer (field - farm) 0.28 3000 1000 0.84 21.6 4.68 9.99 36.27 30.5

Front-loader 0.05 560 300 0.09 21.6 4.68 6.04 32.32 3.0

Hot air drier 7.70 4150 10000 3.20 21.6 4.68 9.99 36.27 115.9

Air heater 7.70 850 5000 1.31 21.6 4.68 9.99 36.27 47.5

Sum    14.37     549.0
a Machines used for resowing at 5% outwintering. 
 
 
At medium-scale extraction or ethanol production, the rapeseed or wheat respectively was 
transported the 7 km to the extraction or ethanol production plant by tractor transport. The 
meal from the oil extraction was transported back on the return trip if there was enough meal 
to fill up a transport, which was a tractor pulling two wagons with a total load of 20 metric 
tonnes and the average speed was assumed to be 20 km/h. The wet distiller’s waste was 
transported back to the farm with a tractor pulling a tank wagon with a total load of 20 metric 
tonnes and the average speed was assumed to be 20 km/h. 

• Total time for the rapeseed transport (including empty return trips): (rapeseed 
transport + share of return transport empty) * (distance / speed): (1 + (1 – 1587 kg 
meal/ha / 2470 kg seed/ha)) * 7 km / 20 km/h = 0.475 hours. When this time was 
divided by the area from which one tractor-load carried (20 tonnes / 2.47 ton 
rapeseed/ha), the time during which the machines were used for transporting seed for 
1 hectare was obtained (0.059 hours/ha) (see Tables 74 and 76). 

• Total time for meal transport: 7 km / 20 km/h = 0.35 hours. When this time was 
divided by the area from which one tractor-load carried (20 tonnes / 1.587 tonne 
meal/ha), the time during which the machines were used for transporting seed for 1 
hectare was obtained (0.028 hours/ha) (see Tables 74 and 76). 

• Total time for the wheat transport (including empty return trips): (wheat transport + 
return transport empty) * (distance / speed): 2 * 7 km / 20 km/h = 0.70 hours. When 
this time was divided by the area from which one tractor-load carried (20 tonnes / 5.90 
tonne wheat/ha), the time during which the machines were used for transporting wheat 
for 1 hectare was obtained (0.2065 hours/ha) (see Tables 74 and 77). 
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• Total time for the transport of wet distiller’s waste (including empty return trips): 
(distiller’s waste transport + return transport empty) * (distance / speed): 2 * 7 km / 20 
km/h = 0.70 hours. When this time was divided by the area from which one tractor-
load carried (20 tonnes / 18.925 tonne wet distiller’s waste/ha) the time during which 
the machines were used for transporting wheat for 1 hectare was obtained (0.6624 
hours/ha) (see Tables 74 and 77). 

 
 
Table 74. Calculation of tied-up energy in machines for tractor transportation (inputs kg/ha: 
Norén et al., 1999; Hansson & Mattsson, 1999; SLU, 1989; Bernesson, 1993; Sonesson, 
1993; and MJ/ha: Börjesson, 1994; Pimentel, 1980) 
 
Machinery Use Weight Durability Input Tied-up energy 

[MJ/kg machine] for: 
Machine 
energy 

 [h/ha] [kg] [h] [kg/ha] Raw 
material

Manu-
facture 

Spare 
parts Total [MJ/ha]

Medium-scale transport of rapeseed:          

Tractor, 66 kW 0.059 5000 10000 0.029 21.6 9.72 12.84 44.16   1.30 
2 * Tipping trailer 
   (3000 kg each) 0.059 6000   1000 0.352 21.6 4.68   9.99 36.27 12.77 

Total machinery, transport of rapeseed   0.381     14.06 

Medium-scale transport of meal:          

Tractor, 66 kW 0.028 5000 10000 0.014 21.6 9.72 12.84 44.16   0.61 
2 * Tipping trailer 
   (3000 kg each) 0.028 6000   1000 0.167 21.6 4.68   9.99 36.27   6.04 

Total machinery, transport of meal   0.181       6.66 

Medium-scale transport of wheat:         

Tractor, 66 kW 0.207 5000 10000 0.103 21.6 9.72 12.84 44.16   4.56 
2 * Tipping trailer 
   (3000 kg each) 0.207 6000   1000 1.239 21.6 4.68   9.99 36.27 44.93 

Total machinery, transport of wheat   1.342     49.49 

Medium-scale transport of distiller’s waste:        

Tractor, 66 kW 0.662 5000 10000 0.331 21.6 9.72 12.84 44.16   14.63 

Tank wagon (6000 kg) 0.662 6000   1000 3.974 21.6 4.68   9.99 36.27 144.13 

Total machinery, transport of distiller’s waste  4.305     158.75 
 
 
During the transport by lorry the average speed was assumed to be 70 km/h. The distance was 
110 km for transport of methanol, glycerine, chemicals for ethanol production and chemicals 
to make ethanol into a legal diesel fuel independent of plant scale. The distance was also 110 
km for transport of rapeseed, meal, rapeseed oil, RME, wheat, distiller’s waste, and ethanol 
fuel to/from the large-scale plant and 7 km for transport of rapeseed oil, RME and ethanol fuel 
from the medium-scale plant. The time for the transport was: 

• 2 * 110 km / 70 km/h = 3.14 hours for transport of methanol, glycerine, chemicals for 
ethanol production and chemicals to make ethanol into a legal diesel fuel for all plant 
sizes; this transport time was also valid for rapeseed oil, RME and ethanol fuel 
transport from large-scale plants. 

• 2 * 7 km / 70 km/h = 0.20 hours for transport of rapeseed oil, RME and ethanol fuel 
from medium-scale plants. 
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• (1 + (1 – 1331 kg meal/ha / 2470 kg seed/ha)) * 110 km / 70 km/h = 2.30 hours (seed 
transport + share of return transport empty) * (distance / speed) for transport of 
rapeseed during large-scale extraction (including empty return trips). 

• (1 + (1 – 1892 kg meal/ha / 5900 kg seed/ha)) * 110 km / 70 km/h = 2.64 hours for 
transport of wheat during large-scale ethanol fuel production (including empty return 
trips). 

• 110 km / 70 km/h = 1.57 hours for large-scale meal and distiller’s waste transport. 
 
Calculation of the other parameters in Tables 76 and 77: 

• The distance travelled per area basis (distance input [km/ha]) was calculated as: 
distance [km] (one way and often (+) also return: see above and Section 3.7.1) * 
product weight [tonne/ha] (Tables 65 and 66) / lorry max load [tonne] (Table 75) (type 
of lorry used: see Tables 76-77). 

• The distance travelled per area basis (distance input [km/ha], Table 77) for tied-up 
energy in transportation of chemicals for production of ethanol and to make the 
ethanol into a legal diesel fuel was calculated as: (the distance [km] (one way and (+) 
return: see above) * product weight [tonne/ha] (Table 66) / lorry max load [tonne] 
(Table 75) (used type of lorry: see Table 77)) / (share of capacity utilized value [%] 
(Table 77) / 100). Utilized load capacity during transport and its reasons is explained 
in Section 3.7.1 

• Lorry time input on an area basis (time input [hours/ha]) was calculated as: time for 
transport [hours] (see above) * product weight [tonne/ha] (Tables 65 and 66) / lorry 
max load [tonne] (Table 75). For tractor transport see calculation description above 
and Table 74. 

• Lorry time input on an area basis (time input [hours/ha], Table 77) for tied-up energy 
in transportation of chemicals for production of ethanol and to make the ethanol into a 
legal diesel fuel was calculated as: time for transport [hours] (see above) * (product 
weight [tonne/ha] (Table 66) / lorry max load [tonne] (Table 75)) / (share of capacity 
utilized value [%] (Table 77) / 100). 

• Machine input on an area basis [kg/ha] was calculated as: distance input [km/ha] 
(Tables 76 and 77) * input [kg/km] (Table 75). For tractor transport see calculation 
description above and Table 74. 

• Machine energy on an area basis [MJ/ha] was calculated as: distance input [km/ha] 
(Tables 76 and 77) * machine energy [MJ/km] (Table 75). For tractor transport see 
calculation description above and Table 74. 

 
 
Table 75. Conditions for the two types of lorries for calculation of tied-up energy in 
machines, after Berggren (1999), Börjesson, (1994) and Pimentel (1980) 
 
Machinery Max load Weight Durability Input Tied-up energy 

[MJ/kg machine] for: 
Machine 
energy 

Machine 
energy 

 [tonne] [tonne] [km] [kg/km] Raw 
material

Manu-
facture

Spare 
parts Total [MJ/km] [MJ/tonkm]

Tank lorry 36.5 23.5 1200000 0.0196 21.6 7.20 11.38 40.18 0.787 0.022 

Open-sided lorry 40.0 20.0 1200000 0.0167 21.6 7.20 11.38 40.18 0.670 0.017 
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Table 76. Some area-based data for the lorry and tractor transport during production of 
rapeseed oil and RME 
 
Type of transport and vehicle Distance input Time input Machine input Machine energy

 [km/ha] [hours/ha] [kg/ha] [MJ/ha] 

Small-scale:     

     methanol, tank lorry 0.50 0.0072 0.0098   0.39 

     glycerine, tank lorry 0.48 0.0069 0.0094   0.38 

Medium-scale:     

     methanol, tank lorry 0.55 0.0079 0.0108   0.43 

     glycerine, tank lorry 0.53 0.0076 0.0104   0.42 

     RME, tank lorry 0.31 0.0044 0.0060   0.24 

     rapeseed oil, tank lorry 0.32 0.0046 0.0063   0.25 

     rapeseed, tractor, two wagons   0.0587 0.3814 14.06 

     meal, tractor, two wagons   0.0278 0.1805   6.66 

Large-scale:     

     methanol, tank lorry 0.72 0.0103 0.0141   0.57 

     glycerine, tank lorry 0.69 0.0099 0.0135   0.54 

     RME, tank lorry 6.32 0.0902 0.1237   4.97 

     rapeseed oil, tank lorry 6.57 0.0938 0.1286   5.17 

     rapeseed, open-sided lorry 9.92 0.1418 0.1654   6.65 

     meal, open-sided lorry 3.66 0.0523 0.0610   2.45 

Small-scale, total: rapeseed oil           0          0        0 

                              RME  0.0140 0.0192   0.77 

Medium-scale, total: rapeseed oil  0.0910 0.5682 20.97 

                                  RME  0.1063 0.5891 21.81 

Large-scale, total: rapeseed oil  0.2879 0.3550 14.26 

                              RME  0.3045 0.3778 15.18 

Small-scale soymeal, open-sided lorry 4.11 0.1174 0.0685   2.75 

Medium-scale soymeal, open-sided lorry 4.00 0.1142 0.0666   2.68 

Large-scale soymeal, open-sided lorry 3.30 0.0941 0.0549   2.21 
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Table 77. Some area-based data for the lorry and tractor transport during production of 
ethanol fuel 
 
Type of transport and vehicle Distance input Time input Machine input Machine energy Share of capa-

city utilized 
 [km/ha] [hours/ha] [kg/ha] [MJ/ha] [%] 

Small-scale:      

     production chemicals, open-sided lorry   0.27 0.0039 0.0045     0.18   65 

     fuel chemicals, open-sided lorry   1.72 0.0246 0.0287     1.15   65 

Medium-scale:      

     production chemicals, open-sided lorry   0.24 0.0034 0.0039     0.16   75 

     fuel chemicals, tank lorry   1.63 0.0233 0.0320     1.29   75 

     wheat, tractor, two wagons  0.2065 1.3423   49.49 100 

     distiller’s waste, tractor, tank wagon  0.6624 4.3053 158.75 100 

     ethanol fuel, tank lorry   0.79 0.0114 0.0156 0.63 100 

Large-scale:      

     production chemicals, tank lorry   0.22 0.0031 0.0042     0.17   90 

     fuel chemicals, tank lorry   1.23 0.0175 0.0240     0.96 100 

     wheat, open-sided lorry 27.25 0.3892 0.4541   18.24 100 

     distiller’s waste, open-sided lorry   5.20 0.0743 0.0867     3.48 100 

     ethanol fuel, tank lorry 12.49 0.1784 0.2446     9.83 100 

Small-scale, total  0.0285 0.0332     1.33  

Medium-scale, total  0.9069 5.6991 210.32  

Large-scale, total  0.6626 0.8137   32.69  

Small-scale soymeal, open-sided lorry   4.71 0.1345 0.0784     3.15 100 

Medium-scale soymeal, open-sided lorry   4.71 0.1345 0.0784     3.15 100 

Large-scale soymeal, open-sided lorry   4.71 0.1345 0.0784     3.15 100 
 
 
The emissions and energy requirement values for machinery inputs for agricultural operations 
and for the transport, if the machines were produced with energy originating in Swedish 
electricity (Tables 78 and 79, see also Tables A1-A22, Appendices 1-2) could be calculated 
as: machine energy [MJ/ha] (Tables 76 and 77) * emissions production of electricity [g/MJel] 
(electricity produced with 5% grid losses: Table 49). In a scenario analysis the influence of 
producing the machines with electricity with a large proportion of fossil energy was studied. 
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Table 78. Emissions and energy requirements for production of machinery for agricultural 
machines and transport, during production of rapeseed oil and RME, if assumed to be 
produced with Swedish electricity 
 
Type of machines CO2 CO HC CH4 NOx SOx NH3 N2O Particles Input 

energy 
 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha]

Agricultural operations 3567 8.19 1.32 22.3 6.82 5.91 0.100 0.323 1.14 886

Fertiliser transport 89.1 0.205 0.0330 0.557 0.170 0.148 0.00250 0.00807 0.0284 22.1

Small-scale:          

   transport of methanol 3.25 0.00745 0.00120 0.0203 0.00621 0.00538 0.0000911 0.000294 0.00103 0.806

   transport of glycerine 3.11 0.00714 0.00115 0.0194 0.00595 0.00516 0.0000873 0.000282 0.000992 0.772

   transport of soymeal 22.6 0.0520 0.00837 0.142 0.0433 0.0375 0.000635 0.00205 0.00722 5.62

Medium-scale:          

   transport of rapeseed 116 0.266 0.0428 0.724 0.222 0.192 0.00325 0.0105 0.0369 28.8

   transport of meal 54.8 0.126 0.0203 0.342 0.105 0.0909 0.00154 0.00496 0.0175 13.6

   transport of rapeseed oil 2.07 0.00475 0.000766 0.0129 0.00396 0.00343 0.0000581 0.000188 0.000660 0.514

   transport of methanol 3.58 0.00822 0.00132 0.0224 0.00685 0.00594 0.000100 0.000324 0.00114 0.889

   transport of glycerine 3.43 0.00787 0.00127 0.0214 0.00656 0.00569 0.0000962 0.000311 0.00109 0.852

   transport of RME 1.99 0.00457 0.000737 0.0125 0.00381 0.00330 0.0000559 0.000180 0.000635 0.495

   transport of soymeal 22.0 0.0506 0.00815 0.138 0.0422 0.0365 0.000618 0.00200 0.00703 5.47

Large-scale:          

   transport of rapeseed 54.7 0.126 0.0202 0.342 0.105 0.0907 0.00153 0.00495 0.0174 13.6

   transport of meal 20.2 0.0463 0.00746 0.126 0.0386 0.0335 0.000566 0.00183 0.00644 5.01

   transport of rapeseed oil 42.5 0.0976 0.0157 0.266 0.0814 0.0705 0.00119 0.00385 0.0136 10.6

   transport of methanol 4.68 0.0107 0.00173 0.0292 0.00895 0.00776 0.000131 0.000424 0.00149 1.16

   transport of glycerine 4.48 0.0103 0.00166 0.0280 0.00857 0.00743 0.000126 0.000406 0.00143 1.11

   transport of RME 40.9 0.0939 0.0151 0.256 0.0783 0.0678 0.00115 0.00370 0.0130 10.2

   transport of soymeal 18.2 0.0417 0.00672 0.114 0.0348 0.0301 0.000510 0.00164 0.00579 4.51
Small-scale, totala:    
   rapeseed oil 0 0 0 0 0 0 0 0 0 0
   RME 6.4 0.0146 0.0024 0.040 0.0122 0.0105 0.00018 0.00058 0.0020 1.6
Medium-scale, totala:    
   rapeseed oil 172.7 0.3964 0.0639 1.079 0.3303 0.2863 0.00484 0.01563 0.0551 42.9
   RME 179.6 0.4123 0.0664 1.122 0.3436 0.2978 0.00504 0.01626 0.0573 44.6
Large-scale, totala:    
   rapeseed oil 117.4 0.2696 0.0434 0.734 0.2246 0.1947 0.00329 0.01063 0.0374 29.2
   RME 125.0 0.2869 0.0462 0.781 0.2391 0.2072 0.00351 0.01132 0.0398 31.0
a Physical allocation, fuel production. 
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Table 79. Emissions and energy requirements for production of machinery for agricultural 
machines and transport, during production of ethanol fuel, if assumed to be produced with 
Swedish electricity 
 
Type of machines CO2 CO HC CH4 NOx SOx NH3 N2O Particles Input 

energy 
 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha]

Agricultural operations 4520 10.4 1.67 28.2 8.65 7.49 0.127 0.409 1.44 1123

Fertiliser transport 73.9 0.170 0.0273 0.462 0.141 0.123 0.00207 0.00669 0.0236 18.4

Small-scale:    
   transport of chemicals 
     for ethanol production 1.50 0.00345 0.000556 0.00939 0.00287 0.00249 0.0000422 0.000136 0.000479 0.373

   transport of chemicals 
     to make ethanol into a 
     legal diesel fuel 

9.48 0.0218 0.00351 0.0593 0.0181 0.0157 0.000266 0.000859 0.00302 2.36

   transport of soymeal 25.95 0.0596 0.00960 0.162 0.0496 0.0430 0.000728 0.00235 0.00827 6.45

Medium-scale:    
   transport of chemicals 
     for ethanol production 1.30 0.00299 0.000482 0.00814 0.00249 0.00216 0.0000365 0.000118 0.000415 0.323

   transport of chemicals 
     to make ethanol into a 
     legal diesel fuel 

10.58 0.0243 0.00391 0.0661 0.0202 0.0175 0.000297 0.000958 0.00337 2.63

   transport of wheat 408 0.935 0.151 2.55 0.780 0.676 0.0114 0.0369 0.130 101
   transport of distiller’s 
     waste 1307 3.00 0.483 8.17 2.50 2.17 0.0367 0.118 0.417 325

   transport of ethanol fuel 5.15 0.0118 0.00190 0.0322 0.00985 0.00854 0.000144 0.000466 0.00164 1.28

   transport of soymeal 25.95 0.0596 0.00960 0.162 0.0496 0.0430 0.000728 0.00235 0.00827 6.45

Large-scale:    
   transport of chemicals 
     for ethanol production 1.40 0.00321 0.000517 0.00873 0.00267 0.00232 0.0000392 0.000127 0.000446 0.347

   transport of chemicals 
     to make ethanol into a 
     legal diesel fuel 

7.94 0.0182 0.00294 0.0496 0.0152 0.0132 0.000223 0.000719 0.00253 1.97

   transport of wheat 150 0.345 0.0556 0.939 0.287 0.249 0.00421 0.0136 0.0479 37.3
   transport of distiller’s 
     waste 28.7 0.0659 0.0106 0.179 0.0549 0.0476 0.000805 0.00260 0.00915 7.13

   transport of ethanol fuel 80.9 0.186 0.0299 0.506 0.155 0.134 0.00227 0.00733 0.0258 20.1

   transport of soymeal 25.95 0.0596 0.00960 0.162 0.0496 0.0430 0.000728 0.00235 0.00827 6.45

Small-scale, totala 11.0 0.025 0.0041 0.069 0.021 0.018 0.00031 0.00099 0.0035 2.7

Medium-scale, totala 1731.8 3.975 0.6404 10.821 3.312 2.871 0.04858 0.15679 0.5521 430.1

Large-scale, totala 269.17 0.618 0.0995 1.682 0.515 0.446 0.00755 0.02437 0.0858 66.8
a Physical allocation, fuel production. 
 
 
The reasons that the machinery contribution was higher for medium-scale transport of 
rapeseed, meal, wheat and distiller’s waste (Tables 76-79) in comparison to large-scale 
transport were the following (see also Tables 57-64): 

1) Medium-scale transport was made with farm tractors and wagons that during their 
lifetime (especially the wagons) are used much less than the lorries, which are used 
only for transport every day during their life time; 
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2) The amount of wet distiller’s waste (18925 kg/ha) transported was much higher from 
medium-scale plants than the amount of dried distiller’s waste (1892 kg/ha) 
transported from large-scale plants; 

3) During the medium-scale transport of wheat and distiller’s waste, no return load was 
taken because wet distiller’s waste requires to be transported in a tank wagon. During 
large-scale transport of wheat, dried distiller’s waste can be transported on the return 
trip. This makes the advantage even greater for the tied-up machine energy in large-
scale transport of wheat and distiller’s waste. 

 
The reason that the area emissions (Table 79) and machinery inputs (Table 77) sometimes 
rose when transport of chemicals for production of ethanol or transport of chemicals for 
making ethanol into a legal diesel fuel was compared with a larger-scale plant is that a tank 
lorry, which is heavier (Table 75) and therefore carries less load, was used instead of an open-
sided lorry. 
 
 

3.8.2 Machines and buildings 
 
This section deals with an estimation of energy and emissions bound to the machinery and 
buildings used to produce rapeseed oil, RME and ethanol fuel. The aim was to estimate the 
magnitude of these values (no exact values) to evaluate whether they have any importance for 
the production of the fuels studied. To do this, the approximate weight of the machines and 
buildings had to be estimated. From these weights it was possible to calculate the energy 
requirement and emissions from the manufacturing (construction). 
 
To estimate the weight of oil extraction, transesterification and ethanol fuel production plants 
at different sizes, the material demand for building plants with different sizes had to be 
estimated. To do this, mathematical formulas for how the material demands relates to the size 
of a plant were derived (Equations 14-24). This relationship may be dependent on the area of 
the vessels in the plant or the total processed volume. The processed volume is proportional to 
the processed weight because: 
 
M = ρ  * V                    (14) 
 
 where: m = weight [kg]; ρ  = density [kg/m3]; V = volume [m3]. 
 
The wall area of a cylinder is: 
 

4
d*2hdA

2∗
+∗∗=

ππ                    (15) 

 
 where: A = cylinder area [m2]; d = diameter [m]; h = height [m]. 
 
If the diameter is equivalent to the height: d = h: 
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The volume of a cylinder: 
 

h
4
dV

2

∗
∗

=
π ; if d = h: 

4
dV

3∗
=

π  [m3]                 (17) 

 
Then the cylinder diameter when the volume is known will be (after rewriting the Equation 
17): 
 

3
V4d

π
∗

=                     (18) 

 
If this Equation (18) is put into Equation 16 for the wall area of a cylinder, then: 
 

3
2

V4
2
3A ⎟

⎠
⎞

⎜
⎝
⎛ ∗

∗∗=
π

π                    (19) 

 
If the constant F replaces the numerals in Equation 19, the equation for the cylinder area will 
be: 
 

3
2

V*FA =                     (20) 
 

and 54.54
2
3F

3
2

≈⎟
⎠
⎞

⎜
⎝
⎛∗∗=

π
π . 

 
If the material demand (M) for building the extraction or transesterification plant is 
proportional to the cylinder area: 
 

3
2

V*FM =                     (21) 
 
if the volume or weight of the processed material is known. The exponent is equal to 2/3. 
 
Another possibility is that the material demand (M) for building the oil extraction, 
transesterification or ethanol fuel production plant is proportional to the cylinder volume. 
Then the material demand for building the plant will be: 
 

1V*FM =                     (22) 
 
To find out which of these two Equations (21 and 22) was the most correct to use, the weights 
of cisterns with known volume were compared with these two formulae. The same was done 
for some oil presses. The results indicated that the reality would be something in between. 
Therefore another formula was suggested where the exponent was the mean of the exponents 
in the derived formulas: 
 

6
5

2
13

2

=
+

                    (23) 
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The third derived formula is thus: 
 

6
5

V*FM =                     (24) 
 
This formula (Equation 24) was used in the basic scenario in the model and the other two 
formulas (Equations 21 and 22) were used for scenario analysis as well. In the following 
Tables (80-81 and 85-90) the exponent from Equations 21; 22; and 24 called ‘y’ and the 
whole equation is shortened to xy for simplicity. 
 
For the medium-scale oil extraction plant the machinery, wood in buildings and concrete in 
building weights were assumed to be 10 000 kg, 30 000 kg and 120 000 kg respectively 
(Table 80). For the medium-scale transesterification plant the machinery, wood in buildings 
and concrete in buildings weights were assumed to be 5 000 kg, 15 000 kg and 60 000 kg 
respectively (Table 80). The weights of the medium-scale transesterification plants were 
assumed to be half the weights for the corresponding parts of the oil extraction plants. The 
weights mentioned above were estimated with some help from drawings in Norén et al. 
(1993). To estimate the weights for ethanol fuel production plants, the weights for oil 
extraction and transesterification plants were added and multiplied by the constant 2.8 for 
machine parts and 2.0 for building parts (Table 81). In this way the weights 42 000 kg, 90 000 
kg and 360 000 kg for machinery, wood in buildings and concrete in buildings respectively 
were obtained. The reason for these higher weights was that ethanol plants produced almost 
twice as much fuel on an area basis compared to oil extraction and transesterification plants, 
they processed approx. 2.4 times as much material and the investments costs were approx. 3.8 
and 3 times as much, as for oil extraction and transesterification plants for machinery and 
buildings respectively, mainly based on investment data in Schmitz (2003). Ethanol plants 
were also more complicated than oil extraction and transesterification plants. 
 
For the small-scale plant the weight of the oil press (heavy) was 62 kg (after Ferchau, 2000) 
and the weight of the sedimentation vessels (not heavy) was 200 kg (4 sedimentation vessels * 
50 kg) (Tables 80 and 81). The weight of other equipment (not heavy) varied depending on 
the chosen exponent ‘y’. For medium- and large-scale extraction plants 20% of the total 
machine weight was assumed to be oil press equipment (heavy) and 80% other equipment 
(not heavy) (Table 80). Equipment for transesterification and ethanol fuel production was 
assumed to consist of 25% heavier machines and of 75% lighter equipment independent of the 
chosen exponent ‘y’ (Table 83: transesterification and Table 84: ethanol fuel production). 
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Table 80. Weight of machines and buildings for different plant sizes for oil extraction and 
transesterification 
 
Production factors /  
   The exponent ‘y’ 5/6 5/6 5/6 2/3 2/3 2/3 1 1 1 

Plant size [ha] 40 1000 50000 40 1000 50000 40 1000 50000

Amount of harvested oil [kg/ha] 756 834 1089 756 834 1089 756 834 1089

Amount of harvested oil [kg] 30233 833625 54463500 30233 833625 54463500 30233 833625 54463500

Oil extraction:          

   Oil extraction machinery [kg] 684 10000 260500 1170 10000 135721 400 10000 500000

   Wood in buildings [kg] 2052 30000 781501 3509 30000 407163 1200 30000 1500000

   Concrete in buildings [kg] 8208 120000 3126004 14035 120000 1628651 4800 120000 6000000

Transesterification:          

   Transesterification machinery [kg] 315 5000 162773 548 5000 81107 181 5000 326667

   Wood in buildings [kg] 946 15000 488319 1643 15000 243322 544 15000 980000

   Concrete in buildings [kg] 3782 60000 1953276 6574 60000 973287 2176 60000 3920000
 
 
Table 81. Weight of machines and buildings for different plant sizes for ethanol fuel 
production 
 
Production factors /  
   The exponent ‘y’ 5/6 5/6 5/6 2/3 2/3 2/3 1 1 1 

Plant size [ha] 40 1000 50000 40 1000 50000 40 1000 50000

Amount of harvested ethanol [kg/ha] 1748 1748 1748 1748 1748 1748 1748 1748 1748

Amount of harvested ethanol [kg] 69909 1747736 87386792 69909 1747736 87386792 69909 1747736 87386792

Ethanol fuel production:          

   Machine weight [kg] 2873 42000 1094102 4912 42000 570028 1680 42000 2100000

   Wood in buildings [kg] 6156 90000 2344503 10526 90000 1221488 3600 90000 4500000

   Concrete in buildings [kg] 24624 360000 9378013 42106 360000 4885952 14400 360000 18000000
 
 
For the oil extraction plants, it was the processed area of rapeseed (proportional to the 
volume/weight of extracted rapeseed) that was used to calculate the weights of the small- and 
large-scale plants. However, for the transesterification plants, it was the weight of processed 
rapeseed oil that was used to calculate the weights of the small- and large-scale plants. The 
advantage with this procedure was that different oil extraction efficiencies in oil extraction 
plants of different sizes could be taken into consideration. For the ethanol plants it was the 
processed area of wheat (proportional to the weight of processed wheat and the weight of 
obtained ethanol) that was used to calculate the weights of the small- and large-scale plants. 
 
The weights (Tables 80 and 81) were calculated from the machinery weight of a medium-
sized plant (1000 ha) with the formula xy where y = (2/3+1)/2 = 5/6, in the basic scenario (y = 
2/3 or 1 in the scenario analyses), and x was the relationship between the area of rapeseed or 
wheat cultivated for a medium-sized plant and the area of rapeseed or wheat cultivated for the 
actual plant size (1000 ha / area of cultivated rapeseed or wheat for actual plant size: 40; 
1000; or 50000 ha) for oil extraction and ethanol fuel production plants respectively. The 
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assumed weight of the machinery or building material for the medium-sized plant (e.g. 10000 
kg machinery) was divided by the value of xy and the result was assumed to be the weight of 
the machinery or building material for the actual plant size (Table 80: oil extraction and Table 
81: ethanol fuel production). 
 
For transesterification plants, x was the relationship between the weight of total harvested oil 
[kg] (oil yield [kg/ha] (Table 80) * plant size [ha] (Table 80)) for a medium-scale plant 
(833625 kg) and the weight of total harvested oil for the actual plant size (833625 kg oil / 
30233; 833624; or 54463500 kg oil). The assumed weight of the machinery or building 
material for the medium-sized plant (e.g. 5000 kg machinery) was divided by the value of xy 
and the result was assumed to be the weight of the machinery or building material for the 
actual plant size (Table 80). 
 
The area use [h/ha] (Table 82) of the machine equipment in the small-scale plant was 
calculated as: area seed yield [kg/ha] / process or machine capacity [kg/h]. With a capacity of 
17 kg seed/h (Bernesson, 1993) and a seed yield of 2470 kg/ha, one hectare would be 
processed in 145 hours and 40 hectares processed in 5812 hours, which should be possible to 
achieve during commercial operation (Bernesson, 1993). For medium- and large-scale 
extraction and all sizes of transesterification and ethanol fuel production, the annual time of 
operation was assumed to be 6000 hours. The area use [h/ha] (Tables 82-84) was obtained 
after dividing the annual time of operation [h] (see above) by the processed annual area [ha] 
(Tables 81-82). The area use [h/ha] for fixed installations (like sedimentation vessels) and 
buildings (oil extraction, transesterification and ethanol fuel production) was calculated as 
annual time (8760 h/year) / processed area [ha/year] (see above). This gave for small-, 
medium- and large-scale plants: 219 h/ha; 8.76 h/ha; and 0.1752 h/ha respectively. 
 
How tied-up energy for machines was calculated is described early in Section 3.8 (see also 
Tables 82-84). For wood, the tied-up energy for production etc. is 2.52 MJ/kg and for steel 
reinforced concrete 2.94 MJ/kg (Spugnoli et al., 1992). Tied-up energy for machines is 
accounted for in Tables 85-87 and tied-up energy for buildings is accounted for in Tables 88-
90. 
 
The durability of small-scale machinery was assumed to be 60 000 hours, and for medium- 
and large-scale machinery 100 000 hours (Tables 82-84). For sedimentation vessels the 
durability was assumed to be 25 years (219 000 hours) and for building parts (all plant sizes) 
50 years (438 000 hours). 
 
For calculation of the emissions, the machine or building input [kg/ha] or the machine or 
building energy [MJ/ha] was required (Tables 85-90). The machine and building input [kg/ha] 
was calculated as: area use [h/ha] (machines: Tables 82-84; buildings: see above) * weight 
[kg] (machines: Tables 85-87, buildings: Tables 80-81) / durability [h] (machines: Tables 82-
84; buildings: see above). When the values obtained were multiplied by emissions [g/kg 
machine or building material] the emission values [g/ha] on an area basis were obtained. This 
was not done in this study because of difficulties in getting good emission values for machine 
and building materials. Machine input is accounted for in Tables 85-87 and building input is 
accounted for in Tables 88-90. 
 
The machine (Tables 85-87) and building (Tables 88-90) energy (tied-up) [MJ/ha] could be 
calculated as: annual use [h/ha] (machines: Tables 82-84; buildings: see above) * weight [kg] 
(machines: Tables 85-87, buildings: Tables 80-81) * tied-up energy in machines (Tables 82-
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84) or buildings (see above)) [MJ/kg] / durability [h] (machines: Tables 82-84; buildings: see 
above). In this study this energy requirement was assumed to be Swedish electricity (all 
machines and buildings assumed to be produced with electrical energy with 5% grid losses). 
In a scenario analysis, the use of electricity produced from mainly fossil resources was studied 
(Table 49). The area emissions [g/ha] and input energy [MJ/ha] (Tables 91-92, see also Tables 
A3-A14 and A17-A22, Appendices 1-2) could be calculated from this tied up energy by 
multiplication by the emissions [g/MJel] and energy requirement [MJ/MJel] for the production 
of electricity (Table 49). 
 
 
Table 82. Calculation of tied-up energy in machines for extraction (Börjesson, 1994; 
Pimentel, 1980) 
 
Machinery Use Durability Tied-up energy [MJ/kg machine] for: 

 [h/ha] [h] Raw material Manufacture Spare parts Total 

Small-scale extraction:       

   Oil press 145   60000 21.6 9.72 12.84 44.16 

   Transportation equipment 145   60000 21.6 4.68   6.04 32.32 

   Sedimentation vessels 219 219000 21.6 4.68   6.04 32.32 

Medium-scale extraction:       
   Oil press equipment 
     (20% of total machinery weight) 6.00 100000 21.6 9.72 12.84 44.16 

   Other equipment 
     (80% of total machinery weight) 6.00 100000 21.6 4.68   6.04 32.32 

Large-scale extraction:       
   Oil press equipment 
     (20% of total machinery weight) 0.12 100000 21.6 9.72 12.84 44.16 

   Other equipment 
     (80% of total machinery weight) 0.12 100000 21.6 4.68   6.04 32.32 
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Table 83. Calculation of tied-up energy in machines for transesterification (Börjesson, 1994; 
Pimentel, 1980) 
 
Machinery Use Durability Tied-up energy [MJ/kg machine] for: 

 [h/ha] [h] Raw material Manufacture Spare parts Total 

Small-scale transesterification:       
   Heavier equipment 
     (25% of total machinery weight) 150   60000 21.6 9.72 7.20 38.52 

   Other equipment 
     (75% of total machinery weight) 150   60000 21.6 4.68 6.04 32.32 

Medium-scale transesterification:       
   Heavier equipment 
     (25% of total machinery weight) 6.00 100000 21.6 9.72 7.20 38.52 

   Other equipment 
     (75% of total machinery weight) 6.00 100000 21.6 4.68 6.04 32.32 

Large-scale transesterification:       
   Heavier equipment 
     (25% of total machinery weight) 0.12 100000 21.6 9.72 7.20 38.52 

   Other equipment 
     (75% of total machinery weight) 0.12 100000 21.6 4.68 6.04 32.32 

 
 
Table 84. Calculation of tied-up energy in machines for ethanol fuel production (Börjesson, 
1994; Pimentel, 1980) 
 
Machinery Use Durability Tied-up energy [MJ/kg machine] for: 

 [h/ha] [h] Raw material Manufacture Spare parts Total 

Small-scale ethanol fuel production:       
   Heavier equipment 
     (25% of the machine weight) 150   60000 21.6 9.72 7.20 38.52 

   Other equipment 
     (75% of the machine weight) 150   60000 21.6 4.68 6.04 32.32 

Medium-scale ethanol fuel production:       
   Heavier equipment 
     (25% of the machine weight) 6.00 100000 21.6 9.72 7.20 38.52 

   Other equipment 
     (75% of the machine weight) 6.00 100000 21.6 4.68 6.04 32.32 

Large-scale ethanol fuel production:       
   Heavier equipment 
     (25% of the machine weight) 0.12 100000 21.6 9.72 7.20 38.52 

   Other equipment 
     (75% of the machine weight) 0.12 100000 21.6 4.68 6.04 32.32 
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Table 85. Some area-based data for the oil extraction machinery 
 
Machinery Machine 

weight
Machine 

input 
Machine 
energy

Machine 
weight

Machine 
input 

Machine 
energy 

Machine 
weight 

Machine 
input 

Machine 
energy

 [kg] [kg/ha] [MJ/ha] [kg] [kg/ha] [MJ/ha] [kg] [kg/ha] [MJ/ha]

The exponent ‘y’ 5/6 5/6 5/6 2/3 2/3 2/3 1 1 1 

Small-scale extraction:          

   Oil press 62 0.15 6.63 62 0.15 6.63 62 0.15 6.63

   Transportation equipment 422 1.02 33.03 908 2.20 71.04 138 0.33 10.80

   Sedimentation vessels 200 0.20 6.46 200 0.20 6.46 200 0.20 6.46

   Total 684 1.37 46.13 1170 2.55 84.14 400 0.68 23.90

Medium-scale extraction:          
   Oil press equipment 
     (20% of total machinery weight) 2000 0.12 5.30 2000 0.12 5.30 2000 0.12 5.30

   Other equipment 
     (80% of total machinery weight) 8000 0.48 15.52 8000 0.48 15.52 8000 0.48 15.52

   Total 10000 0.60 20.82 10000 0.60 20.82 10000 0.60 20.82

Large-scale extraction:          
   Oil press equipment 
     (20% of total machinery weight) 52100 0.06 2.76 27144 0.03 1.44 100000 0.12 5.30

   Other equipment 
     (80% of total machinery weight) 208400 0.25 8.08 108577 0.13 4.21 400000 0.48 15.52

   Total 260500 0.31 10.84 135721 0.16 5.65 500000 0.60 20.82
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Table 86. Some area-based data for the oil transesterification machinery 
 
Machinery Machine 

weight
Machine 

input 
Machine 
energy

Machine 
weight

Machine 
input 

Machine 
energy 

Machine 
weight 

Machine 
input 

Machine 
energy

 [kg] [kg/ha] [MJ/ha] [kg] [kg/ha] [MJ/ha] [kg] [kg/ha] [MJ/ha]

The exponent ‘y’ 5/6 5/6 5/6 2/3 2/3 2/3 1 1 1 

Small-scale transesterification:          
   Heavier equipment 
     (25% of total machinery weight) 79 0.20 7.59 137 0.34 13.19 45 0.11 4.37

   Other equipment 
     (75% of total machinery weight) 236 0.59 19.10 411 1.03 33.20 136 0.34 10.99

   Total 315 0.79 26.69 548 1.37 46.39 181 0.45 15.36

Medium-scale transesterification:          
   Heavier equipment 
     (25% of total machinery weight) 1250 0.08 2.89 1250 0.08 2.89 1250 0.08 2.89

   Other equipment 
     (75% of total machinery weight) 3750 0.23 7.27 3750 0.23 7.27 3750 0.23 7.27

   Total 5000 0.30 10.16 5000 0.30 10.16 5000 0.30 10.16

Large-scale transesterification:          
   Heavier equipment 
     (25% of total machinery weight) 40693 0.05 1.88 20277 0.02 0.94 81667 0.10 3.78

   Other equipment 
     (75% of total machinery weight) 122080 0.15 4.74 60830 0.07 2.36 245000 0.29 9.50

   Total 162773 0.20 6.62 81107 0.10 3.30 326667 0.39 13.28
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Table 87. Some area-based data for the ethanol fuel production machinery 
 
Machinery Machine 

weight
Machine 

input 
Machine 
energy

Machine 
weight

Machine 
input 

Machine 
energy 

Machine 
weight 

Machine 
input 

Machine 
energy

 [kg] [kg/ha] [MJ/ha] [kg] [kg/ha] [MJ/ha] [kg] [kg/ha] [MJ/ha]

The exponent ‘y’ 5/6 5/6 5/6 2/3 2/3 2/3 1 1 1 

Small-scale ethanol fuel production:          
   Heavier equipment 
     (25% of the machine weight) 718 1.80 69.17 1228 3.07 118.28 420 1.05 40.45

   Other equipment 
     (75% of the machine weight) 2155 5.39 174.11 3684 9.21 297.73 1260 3.15 101.82

   Total 2873 7.18 243.28 4912 12.28 416.00 1680 4.20 142.27

Medium-scale ethanol fuel production:         
   Heavier equipment 
     (25% of the machine weight) 10500 0.63 24.27 10500 0.63 24.27 10500 0.63 24.27

   Other equipment 
     (75% of the machine weight) 31500 1.89 61.09 31500 1.89 61.09 31500 1.89 61.09

   Total 42000 2.52 85.36 42000 2.52 85.36 42000 2.52 85.36

Large-scale ethanol fuel production:          
   Heavier equipment 
     (25% of the machine weight) 273525 0.33 12.64 142507 0.17 6.59 525000 0.63 24.27

   Other equipment 
     (75% of the machine weight) 820576 0.98 31.83 427521 0.51 16.58 1575000 1.89 61.09

   Total 1094102 1.31 44.47 570028 0.68 23.17 2100000 2.52 85.36

 
 
Table 88. Some area-based data for the oil extraction buildings 
 
Building parts Building 

input 
Building 
energy 

Building 
input 

Building 
energy 

Building 
input 

Building 
energy 

 [kg/ha] [MJ/ha] [kg/ha] [MJ/ha] [kg/ha] [MJ/ha] 

The exponent ‘y’ 5/6 5/6 2/3 2/3 1 1 

Small-scale extraction:       

   Wood in buildings 1.03   2.59 1.75   4.42 0.60 1.51 

   Concrete in buildings 4.10 12.07 7.02 20.63 2.40 7.06 

   Total buildings 5.13 14.65 8.77 25.05 3.00 8.57 

Medium-scale extraction:       

   Wood in buildings 0.60   1.51 0.60   1.51 0.60 1.51 

   Concrete in buildings 2.40   7.06 2.40   7.06 2.40 7.06 

   Total buildings 3.00   8.57 3.00   8.57 3.00 8.57 

Large-scale extraction:       

   Wood in buildings 0.31   0.79 0.16   0.41 0.60 1.51 

   Concrete in buildings 1.25   3.68 0.65   1.92 2.40 7.06 

   Total buildings 1.56   4.46 0.81   2.33 3.00 8.57 
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Table 89. Some area-based data for the transesterification buildings 
 
Building parts Building 

input 
Building 
energy 

Building 
input 

Building 
energy 

Building 
input 

Building 
energy 

 [kg/ha] [MJ/ha] [kg/ha] [MJ/ha] [kg/ha] [MJ/ha] 

The exponent ‘y’ 5/6 5/6 2/3 2/3 1 1 

Small-scale transesterification:       

   Wood in buildings 0.47 1.19 0.82   2.07 0.27 0.69 

   Concrete in buildings 1.89 5.56 3.29   9.66 1.09 3.20 

   Total buildings 2.36 6.75 4.11 11.73 1.36 3.88 

Medium-scale transesterification:       

   Wood in buildings 0.30 0.76 0.30   0.76 0.30 0.76 

   Concrete in buildings 1.20 3.53 1.20   3.53 1.20 3.53 

   Total buildings 1.50 4.28 1.50   4.28 1.50 4.28 

Large-scale transesterification:       

   Wood in buildings 0.20 0.49 0.10   0.25 0.39 0.99 

   Concrete in buildings 0.78 2.30 0.39   1.14 1.57 4.61 

   Total buildings 0.98 2.79 0.49   1.39 1.96 5.60 
 
 
Table 90. Some area-based data for the ethanol fuel production buildings 
 
Building parts Building 

input 
Building 
energy 

Building 
input 

Building 
energy 

Building 
input 

Building 
energy 

 [kg/ha] [MJ/ha] [kg/ha] [MJ/ha] [kg/ha] [MJ/ha] 

The exponent ‘y’ 5/6 5/6 2/3 2/3 1 1 

Small-scale ethanol fuel production:       

   Wood in buildings   3.08   7.76   5.26 13.26 1.80   4.54 

   Concrete in buildings 12.31 36.20 21.05 61.90 7.20 21.17 

   Total buildings 15.39 43.95 26.32 75.16 9.00 25.70 

Medium-scale ethanol fuel production:      

   Wood in buildings   1.80   4.54   1.80   4.54 1.80   4.54 

   Concrete in buildings   7.20 21.17   7.20 21.17 7.20 21.17 

   Total buildings   9.00 25.70   9.00 25.70 9.00 25.70 

Large-scale ethanol fuel production:       

   Wood in buildings   0.94   2.36   0.49   1.23 1.80   4.54 

   Concrete in buildings   3.75 11.03   1.95   5.75 7.20 21.17 

   Total buildings   4.69 13.39   2.44   6.98 9.00 25.70 
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Table 91. Emissions and energy requirements for production of machinery and buildings, for 
oil extraction and transesterification plants, if assumed to be produced with Swedish 
electricity 
 
Type of machines CO2 CO HC CH4 NOx SOx NH3 N2O Particles Input 

energy 
 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha]

Small-scale:           

   Machinery oil extraction 380 0.872 0.140 2.37 0.726 0.630 0.0107 0.0344 0.121 94.3

   Buildings oil extraction 121 0.277 0.0446 0.754 0.231 0.200 0.00338 0.0109 0.0385 30.0
   Machinery 
     transesterification 220 0.504 0.0813 1.37 0.420 0.364 0.00617 0.0199 0.0701 54.6

   Buildings 
     transesterification 55.6 0.128 0.0206 0.347 0.106 0.0922 0.00156 0.00503 0.0177 13.8

Medium-scale:          

   Machinery oil extraction 171 0.393 0.0634 1.07 0.328 0.284 0.00481 0.0155 0.0546 42.6

   Buildings oil extraction 70.5 0.162 0.0261 0.441 0.135 0.117 0.00198 0.00639 0.0225 17.5
   Machinery 
     transesterification 83.7 0.192 0.0309 0.523 0.160 0.139 0.00235 0.00758 0.0267 20.8

   Buildings 
     transesterification 35.3 0.0810 0.0130 0.220 0.0675 0.0585 0.000990 0.00319 0.0112 8.76

Large-scale:          

   Machinery oil extraction 89.3 0.205 0.0330 0.558 0.171 0.148 0.00251 0.00808 0.0285 22.2

   Buildings oil extraction 36.8 0.0844 0.0136 0.230 0.0703 0.0609 0.00103 0.00333 0.0117 9.13
   Machinery 
     transesterification 54.5 0.125 0.0201 0.340 0.104 0.0903 0.00153 0.00493 0.0174 13.5

   Buildings 
     transesterification 23.0 0.0527 0.00849 0.144 0.0439 0.0381 0.000644 0.00208 0.00732 5.70

 
 
Table 92. Emissions and energy requirements for production of machinery and buildings, for 
ethanol fuel production plants, if assumed to be produced with Swedish electricity 
 
Type of machines CO2 CO HC CH4 NOx SOx NH3 N2O Particles Input 

energy 
 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [MJ/ha] 

Small-scale:           

   Machinery 2003 4.60 0.741 12.5 3.83 3.32 0.0562 0.181 0.639 497

   Buildings 362 0.831 0.134 2.26 0.692 0.600 0.0102 0.0328 0.115 89.9

Medium-scale:          

   Machinery 703 1.61 0.260 4.39 1.34 1.17 0.0197 0.0636 0.224 175

   Buildings 212 0.486 0.0783 1.32 0.405 0.351 0.00594 0.0192 0.0675 52.6

Large-scale:          

   Machinery 366 0.841 0.135 2.29 0.700 0.607 0.0103 0.0332 0.117 90.9

   Buildings 110 0.253 0.0408 0.689 0.211 0.183 0.00309 0.0100 0.0352 27.4
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3.8.3 Investment costs for machines and buildings 
 
For calculation of the production costs for the studied scales of rapeseed oil, RME and ethanol 
fuel, the investment costs of the plants must be estimated. Table 93 shows how the investment 
costs used in small- and medium-scale plants in this study were estimated from earlier studies 
(Norén et al., 1993; Norén et al., 1994) with oil extraction and transesterification when they 
were compared with more recent prices on oil presses (Ferchau, 2000; Oilpress, 2003). For 
large-scale plants the costs were estimated from costs in a study made by Conneman & 
Fischer (1998). The investment costs for small- and medium-scale plants (this study), in Table 
93, are used for the investment costs in Table 94. 
 
For large-scale plants the costs were estimated in this way: 

• The plant studied in Conneman & Fischer (1998) produced 75 000 tonnes RME/year, 
and the processed area could be calculated as: 75 000 tonnes/year / 1.048 tonnes 
RME/ha = 71 565 ha, which can be compared with 50 000 ha in this study. 

• Investment cost: 25 000 000 DM * 4.5 SEK/DM (Riksbanken, 2003) = 112 500 000 
SEK. 

• Annual RME production in the plant studied: 50 000 ha/year * 1.048 tonnes RME/ha 
= 52 400 tonnes RME/year. 

• The relationship: 52 400 / 75 000 = 0.7, with assumed price increase of 0.85 gives an 
investment of 112 500 000 * 0.85 = 95 625 000 SEK, which is almost 100 000 000 
SEK for the transesterification plant alone (not together with oil extraction). 

For a plant with only transesterification or extraction, the investment for buildings was 
assumed to be 1/3 of the total investment. For a plant with transesterification and extraction 
together, the investment for buildings was assumed to be 1/4 of the total investment. This 
gives: 67 000 000 SEK invested in the machines, and 33 000 000 invested in the buildings if 
the plant only contained transesterification or oil extraction (Table 94). SEK 23 000 000 was 
invested in buildings for each part (transesterification and oil extraction) for a building 
containing both oil extraction and transesterification, together 46 000 000 SEK (Table 94). 
The increased share for the oil extraction compared to medium-scale extraction was justified 
because solvent hexane extraction was added to the mechanical extraction. 
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Table 93. Investment costs [SEK] for some small- and medium-scale oil extraction and 
transesterification plants to estimate the costs in this study 

 

Small 
planta 

Small plant, 
today’s 
pricesb 

Small plant, 
this study 

Medium 
plantc 

Medium 
plant, 

today’s 
pricesd 

Medium 
plant, this 

study 

Oil press capacity [kg seed/h] 15 17 17 100 400 400
Oil press 33000 47000 50000 160000 580000 580000
Screw conveyer, seed to oil press 6000 8545 8000 15000 54375 50000
Seed bin   1000 1000 3625 4000
Flat belt conveyer for expeller 10000 14242 14000 20000 72500 70000
Floor for storing of expeller   10000 50000 181250 180000
Sedimentation tanks 3000 4273 5000 40000 145000 150000
Pre-sedimentation tank   2000 8000 29000 30000
Screw conveyer for sediment   6000 10000 36250 36000
Tank for sediment   1000 5000 18125 20000
Tank for oil after sedimentation 5000 7121 9000 20000 72500 72500
Electric installation 6000 8545 8500 20000 72500 72500
Electric mounting 5000 7121 7500 20000 72500 72500
Other mounting 15000 21364 22000 20000 72500 72500
Unforeseen   16000 41000 148625 150000
Total machinery, oil extraction 83000 118212 160000 430000 1558750 1560000
Transesterification equipment:       
Reactor-tank with heating and stirring  47414 44000 150000 543750 550000
Intermediate storage  6034 3000 20000 72500 70000
Mixing tank methanol + catalyst  6034 12000 20000 72500 70000
Distillation equipment for methanol 
   and water  7759 15000 25000 90625 90000

Methanol tank with concrete slab  10345 10000 35000 126875 120000
RME tank with concrete slab  34483 35000 120000 435000 400000
Pumps  8621 9000 30000 108750 100000
Valves  3448 2000 10000 36250 40000
Piping  3448 2000 10000 36250 40000
Electric and control installation  34483 20000 110000 398750 400000
Mounting  8621 10000 30000 108750 100000
Unforeseen  18966 18000 60000 217500 220000
  189655 180000 620000 2247500 2200000
Planning approx. 10%   35000 100000 362500 360000
Check-up, management, examination 
   etc. approx. 5%   15000 50000 181250 180000

Total machinery   390000 1200000 4350000 4300000
Of this 50% is oil extraction and 
   50% transesterification.       

Free-standing, building incl. concrete slab   70000 200000 725000 720000
Build-in of pressing plant   30000 150000 543750 550000
Total buildings   100000 350000 1268750 1270000
Building only for oil extraction 
   assumed to be 70% of these costs:   70000 245000 888125 889000
a Norén et al. (1994). 
b Oilpress Skeppsta Maskin 26:th March 2003, (Oilpress, 2003). Price Skeppsta oil press Type 55: 47000 SEK /  
   price oil press 15 kg/h (Norén et al., 1994) = 1.424. All investment costs below the oil press were derived by  
   multiplying by the ratio (47000 / 33000) = 1.424. 
c Norén et al. (1993). 
d Price Reinartz AP10/06: 124640 DKK (Ferchau, 2000) * 1.23 SEK/DKK (Riksbanken, 2003) = 153307  
   SEK almost = 160000 SEK (Norén et al., 1993). The price for AP14/30: 471200 DKK * 1.23 SEK/DKK =  
   579576 SEK almost 580000 SEK. All investment costs below the oil press were derived by multiplying  
   by the ratio (580000 / 160000) = 3.625. (Price Reinartz: oil press 100 kg/h / oil press 400 kg/h). 
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Table 94. Investment costs oil extraction and transesterification plants 
 
Type of investment Small-scale Medium-scale Large-scale 

 [SEK] [SEK] [SEK] 

Oil extraction (only):    

   Machinery 160000 1560000  

   Planning, check-up, examination etc. 25000 270000  

   Total machinery extraction 185000 1830000 67000000 

   Buildings oil extraction 70000 889000 33000000 

   Total oil extraction 255000 2719000 100000000 

Oil extraction with transesterification:    

  Oil extraction:    

   Machinery 160000 1560000  

   Planning, check-up, examination etc. 25000 270000  

   Total machinery extraction 185000 1830000 67000000 

   Buildings oil extraction 50000 635000 23000000 

  Transesterification:    

   Machinery 180000 2200000  

   Planning, check-up, examination etc. 25000 270000  

   Total machinery extraction 205000 2470000 67000000 

   Buildings oil extraction 50000 635000 23000000 

   Total oil extraction and transesterification 490000 5570000 180000000 
 
 
In Table 95, some data for ethanol plants that produce ethanol from wheat (Schmitz, 2003) are 
accounted for. One of these plants is only slightly larger than for the large plant in this study 
(serviced area with assumptions as in this study: 53 844 ha in comparison to 50 000 ha). The 
investment for that plant of 639.3 MSEK may be compared with 180 MSEK (Table 94) for an 
oil extraction plant with transesterification of about the same size. The investment of approx. 
420 MSEK for the Swedish ethanol plant in Norrköping (Werling, pers. comm.) indicates that 
the price for an ethanol plant in Sweden will be somewhat higher than for a plant of the same 
size in Germany ((50 000 m3 ethanol/year / 60 000 m3 ethanol/year) * 446 MSEK (Table 95) 
= 371 MSEK). This together with the ethanol plant in this study not having the equipment to 
dehydrate the ethanol indicates that an investment cost of approx. 650 MSEK for the large-
scale plant would be reasonable. If the costs of building an ethanol plant, in comparison to 
building an combined oil extraction and transesterification plant, were assumed to be 200% 
more for building parts and 280% more for machine parts, the total investment cost would be 
647.2 MSEK (Table 96) and the above line of argument would be fulfilled. Therefore it was 
assumed that the investment costs for constructing modern ethanol plants on all scales were 
200% more for building parts and 280% more for machine parts, in comparison to combined 
oil extraction and transesterification plants in this study. The investment costs for constructing 
of modern small- and medium-scale ethanol plants were not accounted for in the literature. 
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Table 95. Data for ethanol plants in Schmitz (2003) 
 
Plant size [m3/day] 60 180 360 720

Plant size [m3/year]a 19980 59940 119880 239760

Investment ethanol plant [Euro*106] 31.63 48.49 69.49 105.64

Buildings ethanol plant [SEK*106]b 291.0 446.1 639.3 971.9

Area as in this study [ha] 8974 26922 53844 107689

Staff [number full time working] 18 26 30 34

Staff [h/year]c 30960 44720 51600 58480

Work [h/ha] 3.45 1.66 0.96 0.54
a Plant in operation 333 days a year. 
b 1 Euro = 9.2 SEK (Riksbanken, 2003). 
c Annual working time if staff is working 43 weeks / year. 
 
 
Table 96. Estimated investment costs for the ethanol plants 
 
Type of investment / Plant size [ha] 40 1000 50000 

Machinery ethanol plant [SEK] 1482000 16340000 509200000 

Buildings ethanol plant [SEK] 300000 3810000 138000000 

Total [SEK] 1782000 20150000 647200000 
 
 
Capital costs (depreciation and interest) were calculated using the annuity method (Ljung & 
Högberg, 1988) (Tables 97-98). The calculation interest was chosen to be 7% for these 
calculations. For description of calculations see Section 3.4.5. Residual values were assumed 
to be 10% of replacement values for machinery and 0% of replacement values for buildings. 
 
Maintenance costs [SEK/ha] (Tables 97-98) (6% of replacement values) were calculated as: 
(replacement value [SEK] * (maintenance cost, [%] of replacement value / 100)) / serviced 
area [ha]. Length of life was assumed to be 15 years for machinery and 50 years for buildings 
(Tables 97-98). For calculation of use [h/ha] (Tables 97-98) and description of annual use 
[hours] (Tables 97-98) see Section 3.8.2. 
 
Maintenance costs [SEK/ha] and annual capital costs [SEK/ha] (Tables 97 and 98) are also 
accounted for in the economic calculations in Tables 123-131. 
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Table 97. Basic data for machinery and buildings used for oil extraction and 
transesterification 
 
Production scale and use Use Replace-

ment value
Mainten- 
ance cost 

Length of 
life 

Annual 
use 

Residual 
value 

Annual 
capital cost

 [h/ha] [SEK] (A)a [SEK/ha] 
(B)b [years] (C) [hours] (D) [SEK]c [SEK/ha] 

Small-scale extraction:        

   Machinery 145 185000 277.5 15 5812 18500 489

   Buildings 219 70000 105.0 50 8760 0 127

Sum   382.5    616

Small-scale transesterification:       

   Machinery, extraction 145 185000 277.5 15 5812 18500 489

   Machinery, transesterification 150 205000 307.5 15 6000 20500 542

   Buildings, extraction 219 50000 75 50 8760 0 91

   Buildings, transesterification 219 50000 75 50 8760 0 91

Sum   735    1213

Medium-scale extraction:       

   Machinery 6.00 1830000 109.8 15 6000 183000 194

   Buildings 8.76 889000 53.34 50 8760 0 64

Sum   163.14    258

Medium-scale transesterification:       

   Machinery, extraction 6.00 1830000 109.8 15 6000 183000 194

   Machinery, transesterification 6.00 2470000 148.2 15 6000 247000 261

   Buildings, extraction 8.76 635000 38.1 50 8760 0 46

   Buildings, transesterification 8.76 635000 38.1 50 8760 0 46

Sum   334.2    547

Large-scale extraction:       

   Machinery 0.12 67000000 80.4 15 6000 6700000 142

   Buildings 0.18 33000000 39.6 50 8760 0 48

Sum   120    190

Large-scale transesterification:       

   Machinery, extraction 0.12 67000000 80.4 15 6000 6700000 142

   Machinery, transesterification 0.12 67000000 80.4 15 6000 6700000 142

   Buildings, extraction 0.18 23000000 27.6 50 8760 0 33

   Buildings, transesterification 0.18 23000000 27.6 50 8760 0 33

Sum   216    350
a Replacement value (Table 94). 
b Maintenance costs [SEK/ha] assumed to be 6% of the replacement value for both machinery and buildings. 
c Residual value assumed to be 10% of the replacement value for machinery and 0% of the replacement  
   value for buildings. 
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Table 98. Basic data for machinery and buildings used for ethanol fuel production 
 
Production scale and use Use Replace-

ment value
Mainten- 
ance cost 

Length of 
life 

Annual 
use 

Residual 
value 

Annual 
capital cost

 [h/ha] [SEK] (A)a [SEK/ha] 
(B)b [years] (C) [hours] (D) [SEK]c [SEK/ha] 

Small-scale:        

   Machinery 150 1482000 2223 15 6000 148200 3920

   Buildings 219 300000 450 50 8760 0 543

Sum   2673    4464

Medium-scale:        

   Machinery 6.00 16340000 980.4 15 6000 1634000 1729

   Buildings 8.76 3810000 229 50 8760 0 276

Sum   1209    2005

Large-scale:        

   Machinery 0.12 509200000 611 15 6000 50920000 1078

   Buildings 0.18 138000000 166 50 8760 0 200

Sum   777    1278
a Replacement value (Table 96). 
b Maintenance costs [SEK/ha] assumed to be 6% of the replacement value for both machinery and buildings. 
c Residual value assumed to be 10% of the replacement value for machinery and 0% of the replacement  
   value for buildings. 
 
 

3.9 Use of the fuels produced 
 
The rapeseed oil, RME and ethanol fuel produced were assumed to be used in up to date 
diesel engines. Therefore, emissions data were chosen from Aakko et al. (2000) who made 
tests with RME, MK1 and MK3 fuels according to the European 13 mode, ECE R49 on a 210 
kW, Volvo DH10A-285 engine with turbo-charger and intercooler (Table 102). Emissions 
with rapeseed oil fuels were assumed to be influenced in comparison to MK3 in the same way 
as is accounted for in Thuneke (1999) (Table 101). Ethanol fuel was tested by Haupt et al. 
(1999) according to the European 13 mode, ECE R49 in a 191 kW, 11 litre, in-line 6 cylinder 
Scania DSE1101 engine with a compression ratio of 24:1, turbo-charger, intercooler and a 
Bosch injection pump. In tests of ethanol fuel with a catalyst, a Scania catalyst was used. The 
name used for the ethanol fuel in Haupt et al. (1999) was ET7. Aakko et al. (2000) was 
preferred before Haupt et al. (1999) as a source for MK1 engines because newer engines with 
lower emissions were used in the their tests. Section 3.4.4.2 describes how emissions of CO2 
and SOx were calculated when MK1, MK3, rapeseed oil, RME and ethanol fuels were 
consumed. Emissions on an area basis are accounted for in Table 103. 
 
Aakko et al. (2000) accounts only for the fuel consumption when MK3 fuel is used 
[kg/MJengine = (mg/MJengine / 1 000 000)] (Table 102) from which the efficiency could be 
calculated by inversion after multiplying by the heat value [MJfuel/kg] (Table 99). The 
efficiency for ethanol fuel in Haupt et al. (1999) could be calculated in the same way after 
conversion of kWh to MJ. The efficiency for RME was calculated using the assumption that 
the efficiencies for different fuels on the engine measured by Aakko et al. (2000) have the 
same relationships as were measured by SMP (1993) (Table 99) (e.g. efficiency RME = 
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efficiency MK3 (Tables 99 and 102) * (efficiency RME (Table 99: SMP, 1993) / efficiency 
MK3 (Table 99: SMP, 1993))). The volumetric fuel consumption with rapeseed oil fuel was 
12% bigger than with MK3 fuel (Bernesson, 1993 and 1994) (Table 99). The efficiency with 
rapeseed oil (Table 102) could be calculated as (all factors accounted for in Table 99): 
(volume MK3 * density MK3 * lower heat value MK3 * efficiency MK3) / (volume rapeseed 
oil * density rapeseed oil * lower heat value rapeseed oil). 
 
 
Table 99. Properties of the fuels (SMP, 1993 and 1994; Bernesson, 1993 and 1994; Aylward 
& Findlay, 1994; Solomons, 1996; Haupt et al., 1999; Thuneke, 1999; Aakko et al., 2000; 
Schmitz, 2003; Lif, pers. comm.; and Sekab, 2003) 
 
Fuel Density Heat valuea Volumetric consumption Engine efficiency 

 [kg/l] [MJ/kg] compared to MK3b [%]c [%]d 

Diesel fuel oil MK3 (fossil) 0.826e 42.8e 1 39 36.3 

Diesel fuel oil MK1 (fossil) 0.813e 43.3e 1.03 38 35.3 

RME (rape methyl ester) 0.886e 38.5e 1.08     37.5 34.9 

Rapeseed oil 0.921f 38.3f 1.12   

Ethanol fuel 0.830g 25.1h   39.6 
a Lower (effective) heat value. 
b Calculated as: (lower heat value MK3 * density MK3 * engine efficiency MK3) /  
   (lower heat value new fuel * density new fuel * engine efficiency new fuel) for MK1 and RME; 
   for straight rapeseed oil fuel in an Elsbett engine is measured to be approx. 12% higher than for diesel oil 
   fuel (MK3) in a conventional direct injected engine (Bernesson, 1993 and 1994; Thuneke, 1999). 
c Efficiency measured at maximum power at a Valmet 420 DS engine (70-71 kW) (SMP, 1993). 
d Efficiency measured according to ECE R49 (Aakko et al., 2000: MK3) (calculated from Aakko et al. (2000) 
   by assuming the same relationship between engine efficiencies as in SMP (1993) for MK1 and RME; and 
   Haupt et al. (1999) for ethanol fuel). 
e SMP (1993). 
f SMP (1994). 
g Sekab (2003). 
h Calculated after Aylward & Findlay (1994); Schmitz (2003); Solomons (1996); Lif (pers. comm.); 
   and Sekab (2003). 
 
 
Table 100 presents components, with properties, included in the ethanol fuel. The 
composition of this fuel could be used for calculation of its lower heat value and emissions of 
fossil carbon dioxide. Hydrous ethanol used during the production of ethanol fuel contains 
6.5% water by weight (Sekab, 2003). When the composition and lower heat values for all 
components in the ethanol fuel are known, it is possible to calculate its lower heat value 
(Table 99). It could be calculated as the sum of the product of the composition [%] (/ 100) and 
the lower heat values [MJ/kg] of all components (Table 100) that are included in the ethanol 
fuel. The ethanol fuel also contains also 90 ppm morpholine (not mentioned in Table 100) as a 
corrosion inhibitor. 
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Table 100. Components with properties included in the ethanol fuel (Aylward & Findlay, 
1994; Schmitz, 2003; Sekab, 2003; Lif, pers. comm.) 
 
Component Composition 

of fuel 
Density Amount Lower heat 

valuea 
Heat contentc

 [%] [kg/l] [kg/ha] [MJ/kg] [MJ/ha] 

Ethanol 84.337 0.785 1747.7 26.8 46854

Water 5.863 1.000 121.5 -2.442b -297

Beraid 3540 7  145.1 24.0 3482

MTBE 2.3 0.740 47.7 35.3 1681

Isobutanol 0.5 0.798 10.4 33.0 342

Sum equivalent to ethanol fuel 100  2072.3  52062
a Lower heat value: ethanol, water and isobutanol (Aylward & Findlay, 1994); MTBE (Schmitz, 2003);  
   and Beraid (Lif, pers. comm.). 
b For water: heat of vaporization (Aylward & Findlay, 1994) (negative sign because of endothermic 
   reaction in opposite to the exothermic combustion reactions). 
c Calculated as amount [kg/ha] * lower heat value [MJ/kg]. 
 
 
Table 101. Emissions from engines running on straight rapeseed oil in relation to diesel oil 
(MK3) after Thuneke (1999) 
 
Emissions Emission value in relation to MK3 

[(g/MJengine) / (g/MJengine)] 
CO 1.00 

HC 0.55 

NOx 1.05 

Particulates 0.70 
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Table 102. Emissions when driving on the fuels, European 13 mode, ECE R49 (Bernesson, 
1993; SMP, 1993; Haupt et al., 1999; Aakko et al., 2000) 
 
Type of fuel CO HC NOx Particles Fuel 

consumption Efficiencyd 

 [mg/MJengine] [mg/MJengine] [mg/MJengine] [mg/MJengine] [mg/MJengine] [MJengine/MJfuel]

   EN590, (Eur. Diesel = MK3)a 147 47.2 1639 20.83 64444 0.363 

   MK1a 164 58.3 1417 15.83  0.353 

   RMEa 122 22.2 1847   8.33  0.349 

   Rapeseed oilc 147 26.0 1721 14.58  0.324 

   Ethanol fuelb 735 89.2   938 - 100517 0.396 
Emissions recalculated to 
mg/MJfuel

e [mg/MJfuel] [mg/MJfuel] [mg/MJfuel] [mg/MJfuel] [mg/MJfuel]  

   EN590, (Eur. Diesel = MK3)   53.4 17.12 594 7.55 23364  

   MK1   57.9 20.61 500 5.59   

   RME   42.6   7.75 644 2.91   

   Rapeseed oil   47.8   8.43 558 4.73   

   Ethanol fuel 291.1 35.33 372 2.2f 39805  
a Aakko et al. (2000). 
b Haupt et al. (1999). 
c Emissions from rapeseed oil calculated from MK3 emissions, see Table 101. 
d The relationship between efficiencies for the fuels were assumed to be as in SMP (1993). From these  
   values, the efficiencies for MK1 and RME were calculated from the efficiency for MK3 measured by  
   Aakko et al. (2000). The efficiency for rapeseed oil was calculated from 12% higher volumetric  
   consumption of rapeseed oil compared to diesel fuel oil MK3 reported by Bernesson (1993). Calculations  
   described in footnotes to Table 99. 
e Emissions [mg/MJfuel] are calculated from emissions [mg/MJengine] by multiplying by the engine  
   efficiency. 
f Uppenberg et al. (2001). 
 
 
The quantity of harvested energy [MJ/ha] (Table 103) was calculated as: lower heat value for 
each fuel [MJ/kg] (Table 99) * quantity yield of each fuel [kg/ha] (Tables 106 and 108). 
Emission values [g/ha] Table 103 were calculated as: Quantity fuel energy in [MJ/ha] Table 
103 * (emission values [mg/MJfuel] (Table 102) /1000). How the emissions of CO2 and SOx 
were obtained is accounted for in Section 3.4.4.2. The emissions (Table 103) were calculated 
in a corresponding way as described above. The area emissions [g/ha] (Table 103) are also 
accounted for in Tables A3, A5, A7, A9, A11, A13, A17, A19 and A21, Appendices 1-2. 
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Table 103. Harvest of fuels and emissions during consumption, on an area basis, for the fuel 
systems studied 
 
Fuel system Quantity CO2 CO HC NOx SOx Particles

 [kg/ha] [MJ/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 

Small-scale rapeseed oil 756 28948 0 1383 244 16161 119 137

Medium-scale rapeseed oil 834 31928 0 1525 269 17825 132 151

Large-scale rapeseed oil 1089 41719 0 1993 352 23291 172 197

Small-scale RME 727 27993 108300 1193 217 18026 115 81

Medium-scale RME 802 30875 119449 1316 239 19882 127 90

Large-scale RME 1048 40343 156080 1719 313 25979 165 117

Small-scale ethanol fuel 2072 52062 433447 15156 1839 19344 0 115

Medium-scale ethanol fuel 2072 52062 433447 15156 1839 19344 0 115

Large-scale ethanol fuel 2072 52062 433447 15156 1839 19344 0 115
 
 
In the scenario analysis (Section 3.11.2) catalysts were used to reduce the CO-, HC- and NOx- 
emissions. For rapeseed oil and RME the CO-, HC- and NOx-emissions were assumed to be 
reduced by 81%, 77.5% and 6% respectively as measured by Aakko et al. (2000) with a 
catalyst provided by Johnson Matthey on a Volvo DH10A engine when MK3, MK1 and RME 
fuels were used. For ethanol fuel the CO-, HC- and NOx-emissions were assumed to be 
reduced by 93%, 45% and 0% respectively as measured by Haupt et al. (1999) with a catalyst 
provided by Scania on a Scania DSE1101 engine when ethanol fuel (ET7) fuel was used. See 
also Section 3.4.4.2 and 3.7.1.2. 
 
 

3.10 Allocation 
 
When the environmental load for production of e.g. RME was studied there was a need to 
allocate environmental burdens between RME and its by-products meal and glycerine (Tables 
106-107). Correspondingly, for ethanol fuel production, the environmental load was shared 
between the ethanol fuel and the distiller’s waste (Tables 108-109). Allocation means that the 
environmental impacts in the LCA are spread out over the products produced (Lindfors et al., 
1995; Wenzel et al., 1997; Lindahl et al., 2001; Rydh et al., 2002). That can be done by 
different methods. It may be done according to the product’s energy content (physical 
allocation), economic value (economic allocation) or with an expanded system (to avoid 
allocation) where the products replace products (from the expanded system) whose 
environmental effects are subtracted from the system studied. With the expanded system, the 
system was expanded in a way so the meal or distiller’s waste replaced imported (overseas) 
soymeal and the glycerine replaced glycerine produced from fossil products. The above-
described systems were also compared with systems that were not allocated (no allocation). 
 
For RME during the physical, economic and no allocations it was difficult to consider that 
carbon atoms, with biomass origin, might replace fossil carbon atoms in replaced glycerine 
(see Tables A5-A6, A9-A10 and A13-A14, Appendix 1). Therefore this had to be considered, 
on a discussion basis. This process is normally not considered by these three allocation 
methods. However, with an expanded system, the replacement of fossil glycerine with 
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glycerine from the transesterification of biomass origin was also included in the system. For 
the ethanol fuel it was no problem to find out which carbon atoms had fossil origin. There, it 
was those originating from the ignition improver and the denaturants and they were all in the 
fuel. The replaced soymeal was of biomass-origin and assumed to give the same emissions as 
rapemeal when consumed and therefore not to have any influence on the systems studied. 
During the allocation procedures distiller’s waste was handled in the same way as rapemeal. 
 
In the scenario analysis with straw harvested, the straw was also involved in the allocation 
procedures described above (excl. expanded system) (Tables 106-109). 
 
 

3.10.1 Physical and economic allocation 
 
During physical and economic allocation the calculations were made in the same way (Tables 
106-109). First, the production values (MJ/ha in energy terms or SEK/ha in economic terms) 
were calculated for each product by multiplying harvest [kg/ha] and the lower heat value 
[MJ/kg] or the price [SEK/kg]. Second, shares of total values were calculated for each product 
(Tables 106-109). Third, the calculated share values were distributed to each part-production 
process in the production chain (see description for rapeseed oil fuels and ethanol fuel in 
Section 3.10.1.2, see also Tables A3-A14 and A17-A22, Appendices 1 and 2), depending on 
the products emerging after the each of the part-production processes. Fourth, the calculated 
share-values [%] were multiplied by the emissions [g/ha] or energy requirements [MJ/ha] for 
each part-production process (Tables A3-A14 and A17-A22, Appendices 1 and 2). Fifth, the 
values obtained were added and the allocated emission [g/ha] or energy requirement values 
[MJ/ha] were obtained (Tables A3-A14 and A17-A22, Appendices 1 and 2). 
 
Before physical allocation [MJ] could be performed, the lower heat values of all products 
included had to be known (see below and Table 104). For the meal, the lower heat value 
depends on the oil extraction efficiency and must be calculated for each production size and 
therefore a model for calculating the lower heat value of the meal was developed. For 
calculating this heat value the content of water and oil in the meal first had to be calculated. 
The heat value of oil and water-free meal also had to be calculated. Below follows a 
description of how these values were calculated. 
 
The prices used for the products in the economic allocation were assumed to be valid at the 
farm in all three production scales. For medium- and large-scale plants, the prices 
corresponded to the products being transported back to the farm and used there. The 
allocation according to economic terms was calculated from the price of rapeseed oil (5.32 
SEK/kg), rapemeal (1.45 SEK/kg) and feed fat (3.80 SEK/kg) (Herland, pers. comm.) and raw 
glycerine (4.44 SEK/kg) (Eriksson, Alf, pers. comm.). From the prices of the rapemeal and 
the feed fat, the prices for rape expeller with different contents of oil were calculated and used 
in the allocation (Equations 47-49 and Table 105). The same model was used to calculate the 
oil and water content in the expeller as was used for the physical allocation. Straw prices were 
used in a scenario analysis with harvested straw (Tables 105, 107 and 109). 
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3.10.1.1 Equations and factors, physical and economic allocation 
 
Calculation of the lower heat value in rapemeal: 
 
The lower heat value for meal with different composition after oil extraction in plants of 
different sizes was calculated using Equations 25-46 below. 
 
Oseed: Share of oil in seed, in this study assumed to be 45%. 
Wseed: Share of water in seed, in this study assumed to be 8%. 
Mseed: Share of oil and water-free part of seed, in this study assumed to be 47%. 
Wlost: Share of water in seed lost as steam during extraction, in this study assumed to  

be 2%. 
Osedi: Share of oil in seed lost as oil in sediment, 1% for small-scale extraction, 0%  

for other sizes. 
Msedi: Share as oil-free part in sediment, 0.6% for small-scale extraction, 0% for other  
 sizes. 
Sedi: The total share of sediment is 1.6% for small-plants and 0% for other sizes. 
Exteff: Extraction efficiency = Share of oil in seed gained as oil: 68% for small-scale,  

75% for medium-scale and 98% for large-scale extraction. 
 
Share of seed extracted as oil: 

seedeffextseed OExtO ∗=                    (25) 
 
Share of oil left in seed: 

)OO(OO sediextseedseedmeal +−=                   (26) 
 
Total share of meal from seed: 

)MOWO(1M sedisedilostextseedtotmeal +++−=                  (27) 
 
Share as oil-free substance in meal: 

)OMW(1OMM seedsedilostmealtotmealmeal ++−=−=                  (28) 
 
Share of water of oil-free substance in meal and sediment: 

)OW(1
WW

MM
WW

W
seedlost

lostseed

sedimeal

lostseed
SoilfreeM +−

−
=

+
−

=+                  (29) 

 
Share as water in meal: 

mealSoilfreeMinmeal MWW ∗= +                    (30) 
 
Share of water in meal: 

totmeal

inmeal
meal M

W
W =                    (31) 

 
Share as water in sediment: 

sediSoilfreeMinsedi MWW ∗= +                    (32) 
 



 117

Share as oil and water-free substance in meal: 
inmealmealWoilfreeO WMM −=+                   (33) 

 
Share as oil and water-free substance in sediment: 

insedisediWeOsedioilfre WMM −=+                   (34) 
 
Share of oil and water-free substance in water-free meal: 

)W1(M
WM

M
mealtotmeal

inmealmeal
WoilfreeinO −∗

−
=+                   (35) 

 
Share of oil in water-free substance in meal: 

)W1(M
O

O
mealtotmeal

meal
WfreemealO −∗

=+                   (36) 

 
Share of oil in meal: 

)W1(OO mealWfreemealOinmeal −∗= +                   (37) 
 
Share of oil and water-free substance in meal: 

)W1(MM mealWoilfreeinOWfreeinmealO −∗= ++                   (38) 
 
Composition of seed: 

%) (100 1MWOSeed seedseedseed =++=                   (39) 
 
Composition of oil in seed: 

sedimealextseedseed OOOO ++=                   (40) 
 
Composition of water in seed: 

lostinsediinmealseed WWWW ++=                   (41) 
 
Composition of oil and water-free part of seed: 

WeOsedioilfreWoilfreeOseed MMM ++ +=                   (42) 
 
Composition of meal: 

mealinmealWoilfreeOmealmealtotmeal OWMOMM ++=+= +                  (43) 
 
Composition of water-free substance in meal (used for calculation of lower heat value): 

%) (100 1OM WfreemealOWoilfreeinO =+ ++                   (44) 
 
Composition of meal (used for economic calculations): 

%) (100 1WMO mealWfreeinmealOinmeal =++ +                  (45) 
 
Lower heat value of meal [MJ/kg]: 

)W23.21()HOHM(H mealioilWfreemealOWfreeimealOWoilfreeinOimeal ∗−∗+∗= +++                (46) 
 
Lower heat value of oil: Hioil = 38.3 MJ/kg (SMP, 1994). 
Lower heat value of oil and water-free meal: Himeal0+Wfree = 17.26 MJ/kg (calculated). 
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17.26 is an estimated lower heat value for oil and water-free meal substance [MJ/kg] from a 
meal sample from Sjösa farm. This sample had a lower heat value of 22.52 MJ/kg water-free 
substance that contained 25% of oil (Praks, 1993a; Bernesson, 1993). The oil had a lower heat 
value of 38.3 MJ/kg (SMP, 1994). The lower heat value for oil and water-free substance of 
meal can be calculated as: (22.52 - (0.25 * 38.3)) / 0.75 = 17.26 MJ/kg. The value 21.23 is 
given in Mörtstedt & Hellsten (1982) in an equation for calculating the lower heat value for 
wood according to Widell: Hi = 18.73 - 21.23 * H2O MJ/kg, where 18.73 was changed to the 
above-mentioned value calculated for meal after its oil content was measured. Measured 
lower heat value for meal that contained 10.9% of water and 25% of oil in water-free 
substance was 19.8 MJ/kg. The corresponding calculated value was 20.21 MJ/kg. The bias 
from the true value was (20.21 / 19.80) = 1.021 = 2.1%. 
 
 
Calculation of lower heat value in straw (scenario analysis, straw harvested): 
 
For straw from rape and wheat, the lower heat values (Kaltschmitt & Reinhardt, 1997) are 
17.0 and 17.5 MJ/kg dry matter respectively. The lower heat values for straw with 15% water 
(wet basis) (Table 104) was calculated as: (1 – straw water content) * straw dry matter lower 
heat value [MJ/kg] – straw water content * (44 MJ/kmol enthalpy of vaporisation of water / 
18.016 kg/kmol water) (Aylward & Findlay, 1994). 
 
 
Calculation of meal price: 
 
The price for meal with different composition after oil extraction in plants of different sizes 
was calculated using Equations 47-49 below. 
 
Price of rapemeal with: 
oil content: Op = 3.7% and 
water content: Wp = 10.5% 
is: PM3.7W10.5 = 1.45 SEK/kg (Herland, pers. comm.). 
Price of fodder fat: PFF = 3.80 SEK/kg 
 
Price of water-free meal: 

p

5.10W7.3M
Mwaterfree w1

P
P

−
=                    (47) 

 
Price of oil-free and water-free meal: 

)WO(1
)PO(P

P
pp

FFp5.10W7.3M
ilfreeMwaterando −−

∗−
=                   (48) 

 
Some physical factors were also required for the economic calculations: 
 
Price of rapemeal: 

ilfreeMwaterandoWfreeinmealOmealFFinmealmeal PM0WPOP ∗+∗+∗= +                 (49) 
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Calculation of straw price (scenario analysis, straw harvested): 
 
The price for straw on the field was 0.070 SEK/kg (Nilsson, 1999) (Table 105). This straw 
was assumed to be wheat. The price for rape straw (Table 105) was then calculated as: price 
for wheat straw [SEK/kg] * (lower heat value for rape straw (15% water) (Table 104) / lower 
heat value for wheat straw (15% water)) (Table 104). 
 
 
Calculation of lower heat value in distiller’s waste: 
 
The lower heat value in distiller’s waste was calculated from the lower heat value for dried 
distiller’s waste (Belab, 2002) (see Equations 50–51). Below follows a description of the 
calculations. 
 
Lower heat value of dry substance from distiller’s waste: Hidsdw = 19.755 MJ/kg 
   (Belab, 2002). 
Share of water in dried distiller’s waste: Wddw = 9%. 
Share of water in wet distiller’s waste: Wwdw = 90.9%. 
The molar enthalpy of vaporisation (Aylward & Findlay, 1994): Hvapwater = 44 kJ/mol 
   is valid for the standard state pressure of 105 Pa (or 1 bar) and a temperature of 25°C 
   (or 298.15 K). 
The molecular weight of water (calculated after Aylward & Findlay, 1994): 
   Mwater = 18.016 g/mol. 
Lower heat value of dried distiller’s waste [MJ/kg]: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗−∗−=

water

vapwater
ddwidsdwddwiddw M

H
WHW1H                  (50) 

 
which gives Hiddw = 17.76 MJ/kg. 
 
Lower heat value of wet distiller’s waste [MJ/kg]: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗−∗−=

water

vapwater
wdwidsdwwdwiwdw M

H
WHW1H                  (51) 

 
which gives Hiwdw = -0.422 MJ/kg. The negative sign is not relevant for the calculation. 
Because wet distiller’s waste is not inferior to dried distiller’s waste when used as feed, as in 
this study, this justifies the values for dried distiller’s waste also being used for small- and 
medium-scale plants for the physical allocation (Tables 104 and 108). 
 
 
Calculation of the price for dried distiller’s waste: 
 
The price for dried distiller’s waste (with 10% water) is 1.00 SEK/kg (Werling, pers. comm.) 
and when this is recalculated to distiller’s waste with 9% water as in this study, the following 
is valid: 1.00 SEK/kg * (0.91 / 0.90) = 1.01 SEK/kg (Tables 105 and 109). The price for wet 
distiller’s waste is 0.0415 SEK/kg (SBI-Trading, 2003) (Tables 105 and 109). 
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3.10.1.2 General, physical and economic allocation 
 
In the study of rapeseed oil fuels, the share-values of the total value (see description of the 
calculation process in Section 3.10.1 above; Tables 106-107 and Tables A3-A14, Appendix 1) 
was calculated for rapeseed oil or RME in the production steps: cultivation of rapeseed; 
transport of seed to extraction (fuel + machinery); electricity for oil extraction; total 
machinery for oil extraction; buildings for oil extraction; and hexane extraction. Multiplied by 
share-values for rapeseed oil or RME from Tables 106 or 107 during the addition in Tables 
A3-A14, Appendix 1. 
For RME-production a part-value for RME in the RME + glycerine production chain (Tables 
106-107) was calculated for: methanol production; transport of methanol (fuel + machinery); 
production of catalyst; electricity transesterification; total machinery transesterification; and 
buildings transesterification. Multiplied by share-values for RME from Tables 106 or 107 
during the addition in Tables A5-A6, A9-A10 and A13-A14, Appendix 1. 
No allocation was made for production steps where only rapeseed oil or RME participated: 
emissions when driving on the rapeseed oil or RME; and transport of rapeseed oil or RME 
(fuel + machinery). Multiplied by 1 (one) during the addition in Tables A3-A14, Appendix 1. 
Part-processes not containing rapeseed oil or RME were excluded from the allocation: 
transport of meal (fuel + machinery) and transport of glycerine (fuel + machinery). Multiplied 
by 0 (zero) during the addition in Tables A3-A14, Appendix 1. 
 
In the study of ethanol fuel production, the share-values of the total value (see description of 
the calculation process in Section 3.10.1 above; Tables 108-109 and Tables A17-A22, 
Appendix 2) were calculated for ethanol fuel in the production steps: cultivation of wheat; 
transport of wheat to ethanol fuel production (fuel + machinery); electricity fermentation; 
steam (heat) fermentation; total machinery for ethanol fuel production; buildings for ethanol 
fuel production; production of chemicals for ethanol production; transport of chemicals for 
ethanol production (fuel + machinery); and handling of waste water. Multiplied by share-
values for ethanol fuel from Tables 108 or 109 during the addition in Tables A17-A22, 
Appendix 2. 
No allocation was made for production steps where only ethanol fuel participated: electricity 
distillation; steam (heat) distillation; production of ignition improver and corrosion inhibitor; 
production of denaturants; transport of chemicals for ethanol fuel production (fuel + 
machinery); transport of ethanol fuel (fuel + machinery); and emissions when driving on the 
ethanol fuel. Multiplied by 1 (one) during the addition in Tables A17-A22, Appendix 2. 
Part-processes not containing ethanol fuel were excluded from the allocation: electricity 
handling (drying or pumping) of distiller’s waste; steam (heat) handling (drying) of distiller’s 
waste; and transport of distiller’s waste (fuel + machinery). Multiplied by 0 (zero) during the 
addition in Tables A17-A22, Appendix 2. 
 
 



 121

Table 104. Data for physical allocation according to lower heat value 
 
Product Lower heat value [MJ/kg]    Original source 

Rapeseed oil 38.3    SMP, 1994 

RME 38.5    SMP, 1993 

Glycerine 17.1    Kaltschmitt & Reinhardt, 1997 

Meal, small-scale 20.06    calculated after: Bernesson, 1993 

Meal, medium-scale 19.34    calculated after: Bernesson, 1993 

Meal, large-scale 15.29    calculated after: Bernesson, 1993 

Straw winter rapea 14.08    calculated after: Kaltschmitt & Reinhardt, 1997 

Ethanol fuel 25.12
   calculated after: Aylward & Findlay, 1994; 
   Schmitz, 2003; Solomons, 1996; Lif, pers. comm.; 
   and Sekab, 2003 

Distiller’s waste (91% dry matter) 17.76    calculated after: Belab, 2002; 
   Aylward & Findlay, 1994 

Distiller’s waste (9.1% dry matter) -0.42    calculated after: Belab, 2002; 
   Aylward & Findlay, 1994 

Carbon dioxide 0.00    because it is an end product from biological 
   processes and combustion 

Straw winter wheata 14.51    calculated after: Kaltschmitt & Reinhardt, 1997 
a Only used in the scenario analysis. 
 
 
Table 105. Data for economic allocation according to Swedish crowns [SEK] 
 
Product Price 

[SEK/kg]    Original source 

Rapeseed oil 5.32    Herland, pers. comm. 

RME 6.33    Lindkvist, pers. comm.: 5610 SEK/m3 direct from manufacturer 
Glycerine (raw 
   and water-free) 4.44    calculated after: Eriksson, Alf, pers. comm. 

Meal, small-scale 1.85    calculated after: Herland, pers. comm. 

Meal, medium-scale 1.78    calculated after: Herland, pers. comm. 

Meal, large-scale 1.39    calculated after: Herland, pers. comm. 

Straw winter rapea 0.068    calculated after: Nilsson, 1999 and Kaltschmitt & Reinhardt, 1997 

Ethanol fuel 6.30    Elfving, pers. comm. 
Distiller’s waste 
   (91% dry matter) 1.01    calculated after: Werling, pers. comm. 

Distiller’s waste 
   (9.1% dry matter) 0.0415    SBI-Trading, 2003 

Carbon dioxide 0.00    Gebro, pers. comm. 

Straw winter wheata 0.070    Nilsson, 1999 
a Only used in the scenario analysis. 
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Table 106. Critical values for physical allocation, oil extraction and transesterification 
 
Type of product   Ordinary production  Scenario analysisc 

 Product Heat value Production Share Production Share  Production Share 

 [kg/ha] [MJ/kg] [MJ/ha]a [%] [MJ/ha]b [%]  [MJ/ha] [%] 

Small-scale production:          

    Rapeseed oil 756 38.30 28948 47.0    28948 27.1

    Meal 1625 20.06 32595 53.0    32595 30.5

    Strawc 3211 14.08      45223 42.4

    Total extraction   61543 100.0    106766 100.0

    RME 727 38.50 27993 45.2 27993 95.4  27993 26.1

    Glycerine 80 17.10 1362 2.2 1362 4.6  1362 1.3

    Meal 1625 20.06 32595 52.6    32595 30.4

    Strawc 3211 14.08      45223 42.2

    Total transesterification   61950 100.0 29355 100.0  107173 100.0

Medium-scale production:          

    Rapeseed oil 834 38.30 31928 51.0    31928 29.6

    Meal 1587 19.34 30694 49.0    30694 28.5

    Strawc 3211 14.08      45223 41.9

    Total extraction   62621 100.0    107844 100.0

    RME 802 38.50 30875 49.0 30875 95.4  30875 28.5

    Glycerine 88 17.10 1502 2.4 1502 4.6  1502 1.4

    Meal 1587 19.34 30694 48.7    30694 28.3

    Strawc 3211 14.08      45223 41.8

    Total transesterification   63071 100.0 32377 100.0  108293 100.0

Large-scale production:          

    Rapeseed oil 1089 38.30 41719 67.2    41719 38.9

    Meal 1331 15.29 20359 32.8    20359 19.0

    Strawc 3211 14.08      45223 42.1

    Total extraction   62078 100.0    107300 100.0

    RME 1048 38.50 40343 64.4 40343 95.4  40343 37.4

    Glycerine 115 17.10 1963 3.1 1963 4.6  1963 1.8

    Meal 1331 15.29 20359 32.5    20359 18.9

    Strawc 3211 14.08      45223 41.9

    Total transesterification   62665 100.0 42306 100.0  107888 100.0
a Allocation of rapeseed oil and meal or RME, glycerine and meal. 
b Allocation of RME and glycerine. 
c Only used in the scenario analysis, straw harvested. 
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Table 107. Critical values for economic allocation, oil extraction and transesterification 
 
Type of product   Ordinary production  Scenario analysisc 

 Product Price Production Share Production Share  Production Share 

 [kg/ha] [SEK/kg] [SEK/ha]a [%] [SEK/ha]b [%]  [SEK/ha] [%] 

Small-scale production:          

    Rapeseed oil 756 5.32 4021 57.2    4021 55.5

    Meal 1625 1.85 3009 42.8    3009 41.5

    Strawc 3211 0.068      218 3.0

    Total extraction   7030 100.0    7248 100.0

    RME 727 6.33 4604 57.8 4604 92.9  4604 56.2

    Glycerine 80 4.44 354 4.4 354 7.1  354 4.3

    Meal 1625 1.85 3009 37.8    3009 36.8

    Strawc 3211 0.068      218 2.7

    Total transesterification   7967 100.0 4958 100.0  8185 100.0

Medium-scale production:          

    Rapeseed oil 834 5.32 4435 61.1    4435 59.3

    Meal 1587 1.78 2828 38.9    2828 37.8

    Strawc 3211 0.068      218 2.9

    Total extraction   7262 100.0     7481 100.0

    RME 802 6.33 5078 61.2 5078 92.9  5078 59.6

    Glycerine 88 4.44 390 4.7 390 7.1  390 4.6

    Meal 1587 1.78 2828 34.1    2828 33.2

    Strawc 3211 0.068      218 2.6

    Total transesterification   8295 100.0 5468 100.0  8514 100.0

Large-scale production:          

    Rapeseed oil 1089 5.32 5795 75.7    5795 73.6

    Meal 1331 1.39 1856 24.3    1856 23.6

    Strawc 3211 0.068      218 2.8

    Total extraction   7651 100.0    7869 100.0

    RME 1048 6.33 6635 73.7 6635 92.9  6635 72.0

    Glycerine 115 4.44 510 5.7 510 7.1  510 5.5

    Meal 1331 1.39 1856 20.6    1856 20.1

    Strawc 3211 0.068      218 2.4

    Total transesterification   9001 100.0 7145 100.0  9219 100.0
a Allocation of rapeseed oil and meal or RME, glycerine and meal. 
b Allocation of RME and glycerine. 
c Only used in the scenario analysis, straw harvested. 
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Table 108. Critical values for physical allocation, ethanol fuel production 
 
Type of product   Ordinary system  Scenario analysisb 

 Product Heat valuea Production Share  Production Share 

 [kg/ha] [MJ/kg] [MJ/ha] [%]  [MJ/ha] [%] 

Small-scale production:        

    Ethanol fuel 2072 25.12 52062 60.8  52062 32.9

    Distiller’s waste (9.0% water) 1892 17.76 33605 39.2  33605 21.2

    Strawb 5015 14.51    72761 45.9

    Total   85666 100.0  158427 100.0

Medium-scale production:        

    Ethanol fuel 2072 25.12 52062 60.8  52062 32.9

    Distiller’s waste (9.0% water) 1892 17.76 33605 39.2  33605 21.2

    Strawb 5015 14.51    72761 45.9

    Total   85666 100.0  158427 100.0

Large-scale production:        

    Ethanol fuel 2072 25.12 52062 60.8  52062 32.9

    Distiller’s waste (9.0% water) 1892 17.76 33605 39.2  33605 21.2

    Strawb 5015 14.51    72761 45.9

    Total   85666 100.0  158427 100.0
a Lower heat value ethanol fuel: calculated after Aylward & Findlay (1994); Schmitz (2003); Solomons (1996);  
   Lif (pers. comm.) and Sekab (2003); distiller’s waste calculated after Belab (2002); Aylward & Findlay (1994). 
b Only used in the scenario analysis, straw harvested. 
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Table 109. Critical values for economic allocation, ethanol fuel production 
 
Type of product   Ordinary system  Scenario analysisb 

 Product Pricea Production Share  Production Share 

 [kg/ha] [SEK/kg] [SEK/ha] [%]  [SEK/ha] [%] 

Small-scale production:        

    Ethanol fuel 2072 6.30 13056 94.3  13056 92.0

    Distiller’s waste (90.9% water) 18925 0.0415 785 5.7  785 5.5

    Strawb 5015 0.070    351 2.5

    Total   13841 100.0  14192 100.0

Medium-scale production:        

    Ethanol fuel 2072 6.30 13056 94.3  13056 92.0

    Distiller’s waste (90.9% water) 18925 0.0415 785 5.7  785 5.5

    Strawb 5015 0.070    351 2.5

    Total   13841 100.0  14192 100.0

Large-scale production:        

    Ethanol fuel 2072 6.30 13056 87.2  13056 85.2

    Distiller’s waste (9.0% water) 1892 1.01 1913 12.8  1913 12.5

    Strawb 5015 0.070    351 2.3

    Total   14969 100.0  15320 100.0
a Prices: ethanol fuel (Elfving, pers. comm.); distiller’s waste (9.0% water) calculated after Werling (pers.  
   comm.); distiller’s waste (90.9% water) (SBI-Trading, 2003). 
b Only used in the scenario analysis, straw harvested. 
 
 

3.10.2 Allocation with expanded system 
 
In the third allocation method, the system was expanded in such a way that the rapemeal 
replaced imported soymeal and rape expeller with high oil content replaced soymeal mixed 
with soyoil until the original protein and oil contents were reached. During production of 
ethanol fuel the distiller’s waste produced was assumed to replace soymeal mixed with soyoil 
in the same way as rapemeal. The soymeal or soymeal mixed with soyoil was assumed to be 
transported from a harbour by an open-sided lorry to the farm for consumption (110 km). The 
glycerine from the transesterification was assumed to replace glycerine produced from fossil 
propane gas. The emissions and energy requirement for the production of soymeal, soyoil and 
fossil glycerine (Jungk et al., 2000) were subtracted from the emissions and energy required 
to produce the rapeseed oil fuels or ethanol fuel during the allocation procedure with 
expanded system. 
 
 
Model for allocation with expanded system, rapemeal replacing soymeal and soyoil: 
 
The question was: How much soymeal was required to be replaced by the protein in the 
rapemeal? There follow some protein data for rapeseed: The amount of soymeal and soyoil to 
be replaced by the rapemeal was calculated using Equations 52-61 below. 
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Pdmseed: Share as raw protein of dry matter in rapeseed, assumed to be 23% after data in  
Norén et al. (1994). 

Hseed: Harvest of seed: 2470 kg/ha with 9% water. 
 
Harvest of oil: 

effseedseedoil ExtOHH ∗∗=                    (52) 
 
Harvest of meal: 

))MOWOExt(1(HMHH sedisedilostseedeffseedtotmealseedmeal +++∗−∗=∗=                (53) 
 
Protein in oil and water-free part of rapemeal: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

seedseed

seed

dmseed
rfreeoilandwate

MO
M
P

P                   (54) 

 
If 45% of seed incl. water is oil, then the protein content is, Poilandwaterfree = 45.02%. 
 
The harvest of raw protein in meal will then be (516.7 kg/ha for small-scale extraction and 
522.7 kg/ha for medium- and large-scale extraction): 

rfreeoilandwateWoilfreeinOmealmealprotmeal PM)W1(HH ∗∗−∗= +                  (55) 
 
The total harvest of protein in rapeseed is (522.7 kg/ha): 

rfreeoilandwateseedseedseedprotseed P))OW(1(HH ∗+−∗=                  (56) 
 
Typical composition of solvent extracted soymeal (ASA, 2002) is: 44% protein = Psoymeal; 1% 
fat = Fsoymeal; 7% fibre; 6% ash; and 12% moisture = Wsoymeal. Then the amount of soymeal to 
be replaced by the protein in rapemeal is: 

soymealprotmeallacesoybeanrep P/HM =                   (57) 
 
(1174 kg small-scale extraction; 1188 kg medium-scale extraction; and 1188 kg large-scale 
extraction). 
 
To get the right energy content in the soymeal compared to the rapemeal, it must contain a 
higher amount of oil (soyoil) than the solvent extracted. This is here calculated as a supply of 
soyoil to the soymeal until it contains the right amount of fat. The amount of rapemeal oil that 
requires to be used for replacing soyoil when soymeal and soyoil are mixed to get an 
equivalent feed to be replaced can be calculated as: 
 
Amount of oil in soymeal [kg/ha]: 

lacesoybeanrepsoymealealweightsoym MFO ∗=                   (58) 
 
Amount of oil in rapemeal [kg/ha]: 

mealinmealmealweightrape HOO ∗=                   (59) 
 
Amount of oil in rapemeal that replaces soyoil added to soymeal to get a product equivalent to 
the replacing rapemeal (with a high oil content from small- and medium-scale extraction) 
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[kg/ha rapeseed] could then be calculated. In this study the soymeal and soyoil were assumed 
to be mixed before transportation to the farm: 

ealweightsoymmealweightrapereplace OOO −=                   (60) 
 
(319.2 kg small-scale extraction; 266.0 kg medium-scale extraction; and 10.4 kg large-scale 
extraction). 
 
Weight of soymeal mixed with soyoil replaced by rapemeal [kg / ha rapeseed]: 

replacelacesoybeanrepOMtotreplace OMM +=+                   (61) 
 
This product containing soymeal and soyoil was assumed to be transported to the farm before 
being replaced by rapemeal (1494 kg small-scale extraction; 1454 kg medium-scale 
extraction; and 1198 kg large-scale extraction). 
 
Table 110 shows emissions and energy requirement during production of soymeal and soyoil 
that are replaced by rapemeal in an expanded system. Emissions and energy requirement 
when replaced soymeal and soyoil were produced [g/ha] or [MJ/ha] (Table 110; see also 
Tables A3-A14, Appendix 1) were calculated as: amount of soymeal to be replaced by the 
protein in rapemeal (Msoybeanreplace) [kg/ha] * emissions or energy requirement for production 
of soymeal (Table 110) [g/kg] or [MJ/kg] + amount of oil in rapemeal that replaced soyoil 
(Oreplace) [kg/ha] * emissions or energy requirement for production of soyoil (Table 110) 
[g/kg] or [MJ/kg]. 
 
Emissions and energy requirements for production of fuel and machinery for transport (Tables 
57, 59, 61, 63, 76 and 78) were calculated in the same way as for other transport in this study. 
Their emissions and energy requirement were subtracted from the total emissions for 
production of the rapeseed oil fuels as the emissions for production of soymeal (Tables A3-
A14, Appendix 1). 
 
 
Table 110. Emissions from production of overseas soymeal and soyoil replaced by rapeseed 
oil (Jungk et al., 2000) 
 
Product / Emissions CO2 CO HC CH4 NOx SOx NH3 N2O HCl Particles Input 

energy
Soymeal [g/kg] and [MJ/kg] 307.5 0.76 0.165 0.75 2.76 2.68 0.119 0.120 0.0191 0.215 6.26

Soyoil [g/kg] and [MJ/kg] 1325.0 3.29 0.713 3.24 11.90 11.56 0.514 0.515 0.0822 0.924 26.97
Production of soymeal and soyoil 
      replaced by rapemeal:    

   Small-scale [g/ha] or [MJ/ha] 784112 1949 422 1918 7044 6837 304 305 48.6 547 15957

   Medium-scale [g/ha] or [MJ/ha] 717706 1784 386 1756 6447 6258 278 279 44.5 501 14606

   Large-scale [g/ha] or [MJ/ha] 378981 942 204 927 3404 3304 147 147 23.5 264 7711
Production of soymeal and soyoil 
      replaced by distiller’s waste:    

   Small-scale [g/ha] or [MJ/ha] 875545 2177 471 2142 7865 7635 339 341 54.3 611 17818

   Medium-scale [g/ha] or [MJ/ha] 875545 2177 471 2142 7865 7635 339 341 54.3 611 17818

   Large-scale [g/ha] or [MJ/ha] 875545 2177 471 2142 7865 7635 339 341 54.3 611 17818
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Model for allocation with expanded system, distiller’s waste replacing soymeal and 
soyoil: 
 
The question was: How much soymeal was required to be replaced by the protein in the 
distiller’s waste? There follow some protein data for distiller’s waste. Soyoil was assumed to 
be added until the feed had the same energy content (here based on lower heat value) as in the 
replacing distiller’s waste feed. The amount of soymeal and soyoil to be replaced by the 
distiller’s waste were calculated using Equations 62-68 below. 
 
Pdmdw: Share as raw protein of dry matter in distiller’s waste, assumed to be 35% after 

data in SBI-Trading (2003). 
Hdw: Harvest of distiller’s waste: 1892 kg/ha with 9.0% water (Wddw). 
Hiddw: Lower heat value of distiller’s waste with 9.0% water: 17.76 MJ/kg 

   (see Equation 50 above). 
 
Amount of raw protein in distiller’s waste: 

dmdwddwdwdw P)W1(HP ∗−∗=                   (62) 
 
gives 602 kg/ha raw protein in distiller’s waste. 
 
Amount of soymeal to be replaced by the protein in the distiller’s waste: 

soymeal

dw
wsoymealrpd P

P
M =                    (63) 

 
gives 1368 kg soymeal/ha to be replaced by the protein in distiller’s waste. 
 
Lower heat value of soymeal if assumed to be possible to calculate as for rapemeal [MJ/kg]: 
((Share of oil and water-free substance in water-free soymeal * 17.26) + (share of oil in water-
free substance in soymeal * 38.3)) - (21.23 * share of water in soymeal) (see above, Equation 
46; composition soymeal: see above): 

soymeal
soymeal

soymealioilsoymealsoymealWfree0imeal
isoymeal W23.21

)W1(
FH)FW1(H

H ∗−
−

∗+−−∗
= +                (64) 

 
gives: Hisoymeal = 14.95 MJ/kg. 
 
Amount of energy in soymeal, if based on the lower heat value, that contained the same 
amount of raw protein as the distiller’s waste that replaced soymeal to get an equivalent feed: 

isoymealwsoymealrpdsoymeal HME ∗=                   (65) 
 
gives: 20459 MJ. 
 
Energy in distiller’s waste from 1 ha: 

iddwdwdw HHE ∗=                    (66) 
 
gives: 33605 MJ/ha. 
 
Requirement of additional energy as soyoil: 

soymealdwad EEE −=                    (67) 
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gives: 13146 MJ/ha, which is equivalent to a specific amount of soyoil: 

ioil

ad
soyoildw H

E
M =                    (68) 

 
that gives: 343.2 kg soyoil/ha to add to the soymeal to get a feed with the same energy content 
(based on lower heat value) as in the replacing distiller’s waste. 
 
The amount of replacing distiller’s waste was assumed to be the same independent of whether 
it was dried or not. Therefore the same amount of soymeal and soyoil was replaced by the 
distiller’s waste in all three production plant sizes in this study. 
 
Table 110 shows emissions and energy requirement during production of soymeal and soyoil 
that are replaced by distiller’s waste in an expanded system. Emissions or energy requirement 
when replaced soymeal and soyoil were produced [g/ha] (Table 110; see also Tables A17-
A22, Appendix 2) were calculated as: amount of soymeal to be replaced by the protein in 
distiller’s waste (Msoymealrpdw) [kg/ha] * emissions or energy requirement for production of 
soymeal (Table 110) [g/kg] or [MJ/kg] + amount of oil in distiller’s waste that replaced soyoil 
(Msoyoildw) [kg/ha] * emissions or energy requirement for production of soyoil (Table 110) 
[g/kg] or [MJ/kg]. 
 
Emissions and energy requirements for production of fuel and machinery for transport (Tables 
58, 60, 62, 64, 77 and 79) were calculated in the same way as for other transport in this study. 
Their emissions were subtracted from the total emissions for production of the ethanol fuel as 
the emissions for production of soymeal (Tables A17-A22, Appendix 2). 
 
 
Replacement of fossil glycerine: 
 
Table 111 presents emissions and energy requirement during production of fossil glycerine 
replaced by rapeseed glycerine in an expanded system with transesterification of rapeseed oil. 
The CO2-emissions in Table 111 also include the carbon atoms in the glycerine produced. 
Emissions or energy requirement when the replaced fossil glycerine is produced [g/ha] or 
[MJ/ha] (Table 111) is calculated as: amount of fossil glycerine (the same amount as rapeseed 
glycerine, see Table 106) to be replaced by rapeseed glycerine [kg/ha] * emissions or energy 
requirement for production fossil glycerine [g/kg] or [MJ/kg] (Table 111). The calculated 
emission or energy requirement values were subtracted from the total emissions for 
production of the rape methyl ester (Tables A5-A6, A9-A10 and A13-A14, Appendix 1). No 
transport was needed for the fossil glycerine because it was assumed to be available on the 
site to which the rapeseed glycerine was assumed to be transported. 
 
With the system expansion when expanded system allocation was performed, it was 
considered that carbon atoms, with biomass origin, replaced fossil carbon atoms in replaced 
fossil glycerine in the GWP-emissions. This reduction in the CO2-emissions could be 
calculated as: 3.87 g CO2/MJfuel (see Section 3.4.4.2 for explanation) / engine efficiency 
(Table 102) = 11.1 g CO2/MJengine; or on an area basis [g CO2/ha] (Tables A5-A6, A9-A10 
and A13-A14, Appendix 1): 3.87 g CO2/MJfuel * area quantity of RME [kg/ha] (Table 103) * 
lower heat value RME [MJ/kg] (Table 99). 
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Table 111. Emissions from production of fossil glycerine (Jungk et al., 2000) 
 
Product / Emissions CO2 CO HC CH4 NOx SOx NH3 N2O HCl Particles Input 

energy
Fossil glycerine [g/kg] or [MJ/kg] 5291 3.31 2.50 9.45 10.82 11.35 0.0039 0.196 0.382 0.692 126.6
Production of fossil glycerine 
      replaced by rape glycerine:     

   Small-scale [g/ha] or [MJ/ha] 421420 264 199 752 862 904 0.311 15.6 30.4 55.1 10083

   Medium-scale [g/ha] or [MJ/ha] 464801 291 220 830 950 997 0.343 17.2 33.5 60.8 11121

   Large-scale [g/ha] or [MJ/ha] 607340 380 287 1084 1242 1303 0.448 22.5 43.8 79.4 14532
 
 

3.10.3 Functional unit after allocation 
 
The functional unit was handled in the same way independent of the studied method of 
allocation (Tables A3-A14 and A17-A22, Appendices 1-2). Values with energy on the engine 
shaft [MJengine] as the functional unit were obtained by dividing the sums obtained (Tables 
A3-A14 and A17-A22) by the total fuel harvest [MJ/ha] (Tables 106 and 108) and the engine 
efficiency [MJengine/MJfuel] (Table 102). Values with energy in the produced fuel delivered to 
the final consumer [MJfuel] as the functional unit were obtained by: first subtracting the sums 
obtained (Tables A3-A14 and A17-A22) from the emissions when driving on the produced 
fuel; and second by dividing the results by the total fuel harvest [MJ/ha] (Tables 106 and 
108). 
 
 

3.11 Sensitivity analyses 
 
The three types of sensitivity analyses (traditional sensitivity analysis where only one 
parameter was studied at a time; scenario analysis where different production scenarios were 
studied; and Monte Carlo simulation where the uncertainty for some result parameters was 
studied) were studied on small-scale production of rapeseed oil, rape methyl ester and ethanol 
fuel production. Physical allocation and no allocation were applied on the investigated 
systems for sensitivity and scenario analysis. For description of used functional unit see 
Section 3.2. 
 
 

3.11.1 Sensitivity analysis 
 
First, a traditional sensitivity analysis was conducted to find out how sensitive the model was 
to changes in some important input parameters (see Section 4.8). One parameter at a time was 
changed (±20%) and the influence on the results was studied. Parameters that in the basic 
scenario had an influence on any of the GWP-, AP-, EP- or POCP-emissions or energy 
requirement of more than about one per cent were studied. The chosen parameters for 
rapeseed oil and RME were: seed harvest; use of fertiliser; soil emissions; use of pesticides; 
use of tractive power; use of machinery for cultivation; use of oil for seed drying; use of 
electricity for oil extraction; use of electricity for transesterification (only RME); emissions 
during production of methanol (only RME); and emissions when driving on the produced 
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rapeseed oil or RME fuel. The chosen parameters for ethanol fuel production were: seed 
harvest; use of fertiliser; soil emissions; use of pesticides; use of tractive power; use of 
machinery for cultivation; use of oil for seed drying; use of electricity for ethanol production; 
use of steam for ethanol production; emissions during production of chemicals, enzymes etc.; 
emissions during production of ignition improver; emissions during production of 
denaturants; emissions during handling of waste water; and emissions when driving on the 
ethanol fuel produced. The purpose of the sensitivity analysis was to analyse to what extent 
uncertainty in input data affected the results. 
 
For testing whether the difference between the studied plant scales had changed, the ratio 
between large- and small-scale production of rapeseed oil, RME or ethanol fuel was 
calculated for each test case. The ratios show the change in comparison to the denominator. 
These ratios were recalculated (expressed) as percentage change: ((ratio – 1) *100) to make 
the figures easier to handle in a table. The values obtained were compared with the original 
case to detect changes in the conclusions. 
 
The sensitivity analysis for the economic calculations (see Section 4.10) was also made as 
described above. The chosen parameters for rapeseed oil and RME were: seed harvest; labour 
price; fertiliser price; electricity price; meal price; methanol price (only RME); glycerine price 
(only RME); transport price; and price for machinery and buildings. The chosen parameters 
for ethanol fuel production were: seed harvest; labour price; fertiliser price; electricity price; 
steam price; chemicals price; ignition improver price; denaturants price; transport price; price 
for machinery and buildings; and price for distiller’s waste. 
 
 

3.11.2 Scenario analysis 
 
Second, in a scenario analysis the effects of some changes in production strategies were 
analysed (see Section 4.9). The following scenarios for rapeseed oil and RME were studied: 

• Straw harvested, also studied with economic allocation to show the influence of the 
large difference in the evaluation of the straw between physical and economic 
allocation. The straw was assumed to leave the system studied dried on the field. 
Therefore no machine chains for straw harvesting or straw combustion required to be 
evaluated. For physical allocation the lower heat value for straw with 15% (wet basis) 
water was calculated (Section 3.10). For the economic allocation the price for the 
straw on the field was also estimated (Section 3.10). The results are not valid for 
expanded system because no choice of straw harvesting, combustion and replaced 
systems was made. A part of the environmental load for the cultivation was allocated 
away with the physical and economic allocations (see Section 3.10, Tables 106-107); 

• Ploughless tillage (for description see Section 3.4.4.2); 
• Use of Salix, which is a biofuel, as a raw material for the methanol production instead 

of natural gas (this makes the RME a 100% biofuel) (for description see Section 3.5.2 
and Table 30) (only RME); 

• Use of electricity mainly produced from fossil fuels (fossil fuel electricity) (for 
description see Section 3.6.1 and Table 49) instead of Swedish electricity for primary 
electric applications as oil extraction etc., or secondary electric applications as 
production of machinery and buildings or for all electric applications both primary and 
secondary; 
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• Use of catalysts for reduction of the CO-, HC- and NOx-emissions from diesel engines 
used in cultivation operations, in transport or when the produced fuels were used, or in 
all these three applications (see also Section 3.4.4.2, 3.7.1.2 and 3.9); 

• Use of the rapeseed oil and RME fuels produced for cultivation and transport (see also 
Section 3.4.4.2, 3.7.1.2 and 3.9); 

• Use of plants at locations where all transport distances were doubled or halved; 
• Machinery and building mass coefficient changed to 2/3 or 1 (for description see 

Section 3.8.2); 
• Improved oil extraction efficiencies for the small- and medium-scale plants, from 68 

to 73%, and from 75 to 80%, respectively. The oil extraction efficiency was not 
changed for large-scale plants; 

• Use of the same oil extraction efficiency (with hexane) for small-scale extraction as 
for large-scale extraction (98%); and 

• Small-scale extraction as large-scale extraction, which means the last described 
scenario with also the same use of electricity in the small-scale plant as in the large-
scale plant. 

Differences from the basic scenario were registered. The purpose of the scenario analyses was 
to analyse to what extent some alternative realistic scenarios affected the results. 
 
The following scenarios for ethanol fuel production were studied: 

• Straw harvested, also studied with economic allocation to show the influence of the 
large difference in the evaluation of the straw between physical and economic 
allocation. The straw was assumed to leave the system studied dried on the field. 
Therefore no machine chains for straw harvesting or straw combustion required to be 
evaluated. For physical allocation the lower heat value for straw with 15% (wet basis) 
water was calculated (Section 3.10). For the economic allocation the price for the 
straw on the field was also estimated (Section 3.10). The results are not valid for 
expanded system because no choice of straw harvesting, combustion and replaced 
systems was made. A part of the environmental load for the cultivation was allocated 
away with the physical and economic allocations (see Section 3.10, Tables 108-109); 

• Ploughless tillage (for description see Section 3.4.4.2); 
• Steam produced from Salix wood chips instead of spruce wood chips (for description 

see Section 3.5.3 and Tables 34-35); 
• Use of ignition improver and corrosion inhibitor of bio-origin as raw material instead 

of raw material with fossil origin (for description see Section 3.5.3 and Table 44); 
• Use of denaturants of bio-origin as a raw material instead of raw material with fossil 

origin (for description see Section 3.5.3 and Table 44); 
• Use of ignition improver, corrosion inhibitor and denaturants of bio-origin as raw 

material instead of raw material with fossil origin (this makes the ethanol fuel a 100% 
biofuel) (for description see Section 3.5.3 and Table 44); 

• Use of electricity mainly produced from fossil fuels (fossil fuel electricity) (for 
description see Section 3.6.1 and Table 49) instead of Swedish electricity for primary 
electric applications as extraction etc., or secondary electric applications as production 
of machinery and buildings or for all electric applications both primary and secondary; 

• Use of catalysts for reduction of the CO-, HC- and NOx-emissions from diesel engines 
used in cultivation operations, in transport or when the produced fuels were used, or in 
all these three applications (see also Section 3.4.4.2, 3.7.1.2 and 3.9); 

• Use of the ethanol fuel produced for cultivation and transport (see also Section 3.4.4.2, 
3.7.1.2 and 3.9); 
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• Use of the ethanol fuel produced for cultivation and transport if the ethanol fuel was 
produced with ignition improver and denaturants of bio-origin (this makes the ethanol 
fuel a 100% biofuel) (for description see Section 3.5.3) (see also Section 3.4.4.2, 
3.7.1.2 and 3.9); 

• Use of plants at locations where all transport distances were doubled or halved; 
• Machinery and building mass coefficient changed to 2/3 or 1 (for description see 

Section 3.8.2); 
• Small- and medium-scale production with large-scale energy efficiencies for 

electricity and steam use (see Section 3.5.3, Table 33); 
• Small- and medium-scale production as large-scale production, higher efficiencies and 

drying of distillers waste which also gives more efficient transport of distiller’s waste 
on return after wheat transport (see Section 3.5.3, Table 33). 

Differences from the basic scenario were registered. The purpose with this scenario analysis 
was the same as for the rapeseed oil and RME scenario analyses. 
 
For testing whether the difference between the plant scales studied had changed, the ratio 
between large- and small-scale production of rapeseed oil, RME or ethanol fuel was 
calculated for each test case. The ratios show the change in comparison to the denominator. 
These ratios were recalculated (expressed) as percentage change: ((ratio – 1) *100) to make 
the figures easier to handle in a table. The obtained values were compared with the original 
case to detect changes in the conclusions. 
 
 

3.11.3 Monte Carlo simulation of error propagation 
 
Third, an uncertainty analysis was made with Monte Carlo simulation (Vose, 1996) of error 
propagation to estimate the uncertainties when each fuel was produced alone, compared with 
other production scales or the other fuels studied here (see Section 4.11). The purpose of the 
Monte Carlo simulation of error propagation was to estimate uncertainty values for the results 
from the LCA-study. Furthermore, the purpose was to investigate whether it was possible, in a 
scientific way, to find out if there were differences between production scales and between 
fuels studied. 
 
There follows an explanation of how the uncertainties were calculated. First, an explanation is 
given of how variances (squared uncertainties) of independent values add up during error 
propagation in simple systems (Equations 69-77). This is followed by an explanation of how 
Monte Carlo simulation could be used to add up variances in more complicated systems like 
LCAs (Figure 5 and Equations 78-83). 
 
For a linear combination, the final value, y, is calculated from the values a, b, c, etc. by: 
 

K+∗+∗+∗+= ckbkakky cba                   (69) 
 
where k, ka, kb, kc, etc. are constants (Miller & Miller, 1993; Bevington, 1969; Young, 1962). 
They have the uncertainty values ua, ub, uc, etc. which are equivalent to the standard 
deviations (i.e. a measure for the average error) σa, σb, σc, etc. calculated from a combination 
of observable quantities. Variance (defined as the square of the standard deviation or here 
uncertainty value) has the important property that the variance of a sum or difference of 
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independent quantities is equal to the sum of their variances. The uncertainty value, uy for the 
final value could be calculated as: 
 

( ) ( ) ( ) K+∗+∗+∗= 2
cc

2
bb

2
aay ukukuku                  (70) 

 
where uy is equivalent to the standard deviation σy, of the linear combination. 
 
For a multiplicative expression of the following type, where the final value ‘y’ is calculated 
from the values a, b, c and d by (Miller & Miller, 1993; Bevington, 1969; Young, 1962): 
 

dc
baky

∗
∗

∗=                     (71) 

 
where k is a constant and a, b, c and d are independent quantities. For this expression there is 
a relationship between the squares of the relative uncertainty values (or for measured values 
the relative standard deviations): 
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which could be rewritten as an expression for the final uncertainty value: 
 

2
d

2
c

2
b

2
a

y d
u

c
u

b
u

a
u

yu ⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛∗≈                  (73) 

 
If linear combinations and multiplicative expressions are combined as in: 
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its uncertainty value (or for measured values the relative standard deviations) has to be solved 
step by step as (a, b, c, and d are independent): 
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A general formula could be written as (a, b, c, etc. are independent): 
 

)cb,y(a,y K=                    (76) 
 
which gives a general expression for the uncertainty value for the final value y (Miller & 
Miller, 1993; Bevington, 1969; Young, 1962): 
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This behaviour is similar to Pythagoras’ theorem, which tells us that the squares of the lengths 
of orthogonal sides add up (Dupire, 1998). However, the method of error propagation has 
some drawbacks (Vose, 1996): 

• It assumes all variables in the model are uncorrelated. 
• The result is approximate for nonlinear functions such as divisions, exponents, power 

functions, etc. 
 
If error propagation (according to Equations 69-77 above) is applied on such a complicated 
system as an LCA-study, the result will be impossibly complicated. Therefore, the error 
propagation was calculated as a quantitative risk analysis with Monte Carlo simulation (Vose, 
1996) instead. This technique involves the random sampling (with a random number 
generator) of each probability distribution within the model to produce hundreds or even 
thousands of scenarios (also called iterations or trials). Each probability distribution is 
sampled in a manner that reproduces the distribution’s shape. The distribution of the values 
calculated for the model outcome therefore reflects the probability of the values that could 
occur. Monte Carlo simulation offers some important advantages over the error propagation 
analysis described above (Vose, 1996): 

• The distributions of the model’s variables do not need to be approximated in any way. 
• Correlations and other inter-dependencies can be modelled. 
• The level of mathematics required to perform a Monte Carlo simulation is quite basic. 
• The computer does all work required in determining the outcome distribution. 
• Software is commercially available to automate the tasks involved in the simulation. 
• Greater levels of precision can be achieved by simply increasing the number of 

iterations that are calculated. 
• Complex mathematics can be included (e.g. power functions, logs, IF statements, etc.) 

with no extra difficulty. 
• Monte Carlo simulation is widely recognised as a valid technique so its results are 

more likely to be accepted. 
• The behaviour of the model can be investigated with great ease. 
• Changes in the model can be made very quickly and the results compared with 

previous models. 
 
The core principle of Monte Carlo method is the central limit theorem (CLT), which 
establishes how the empirical average of random samples converges to the true expectation 
(Montgomery, 1991; Vose, 1996; Dupire, 1998). It says that the mean x  of a set of n 
variables (where n is large), drawn independently from the same distribution f(x) will be 
approximately normally distributed: 
 

)nσ/µ,(Normalx =                    (78) 
 
where µ  and σ  are the mean and standard deviation of the f(x) distribution from which the n 
samples were drawn. The theorem, described above, is probably the most important for risk 
analysis modelling. 
 
Examples where quantitative risk analysis with Monte Carlo simulation is used in LCA are 
given by Wenzel et al. (1997), Emblemsvåg (2003), General Motors Corporation et al. (2001) 
and L-B-Systemtechnik (2002). Fuels from agricultural crops are included in General Motors 
Corporation et al. (2001) and L-B-Systemtechnik (2002). 
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For the simulations RISKSIM.XLA (RiskSim) by Middleton (1995) was used in Excel 7. 
RiskSim is an add-in for Excel that provides: statistical random generator function (e.g. 
normal distribution); ability to set the seed for random number generation; automatic repeated 
sampling for simulation; frequency distribution of simulation results; histogram and 
cumulative distribution charts. 
 
During the simulations the number of iterations was chosen to be 1000 to get good enough 
repeatability, frequency distribution and cumulative distribution. The random number start 
seed was chosen to 0.5 in all simulations. The factors to be studied in the Monte Carlo 
simulation were chosen from the criteria that they should have an influence of at least approx. 
2% on any of the environmental factors studied (physical allocation) in any of the scales 
studied for each fuel. The studied factors were then: 

1) For cultivation (assumed to be dependent between production scales): seed harvest; 
fertiliser production; soil emissions; use of tractive power; and seed drying; 

2) For production of rapeseed oil and RME (assumed to be independent between 
production scales): requirement of electricity in oil extraction; oil extraction losses  
(1 – oil extraction efficiency); requirement of electricity in transesterification (only 
RME); and production of methanol (only RME); (with expanded system replaced 
soybean meal mixed with soyoil and replaced fossil glycerine (only RME) were also 
included); 

3) For production of ethanol fuel (assumed to be independent between production 
scales): requirement of electricity; requirement of steam; boiler losses (1 – boiler 
efficiency); production of Beraid (ignition improver); production of MTBE 
(denaturant); and production of isobutanol (denaturant); (with expanded system 
replaced soybean meal mixed with soyoil was also included); 

4) Use of fuels produced in engines (assumed to be dependent between production 
scales). CO2-emissions were not included in the randomisation because these 
emissions depend on the use of methanol during production of RME and the use of 
ignition improver and denaturants during production of ethanol fuel. The CO2-
emissions therefore do not depend on how the fuel is used in the engine. 

The soil emissions were assumed to be dependent between fuels. All other factors for the 
cultivation were assumed to be independent between fuels. All studied factors were assumed 
to be normally distributed. The coefficients of variation were assumed to be 10% for each 
studied environmental factor. GWP-, AP-, EP- and POCP-emissions and energy requirement 
were studied with physical allocation. During comparison of fuels allocation with expanded 
system was also studied. For ethanol fuel production in a scenario where cultivation and use 
of the produced fuel were excluded during comparison of small- and large-scale plants, 
systems with input coefficients of variation of 5, 10 and 15% were studied. 
 
The results from the Monte Carlo simulations (separate fuels, comparison of production scales 
and comparison of fuels) were assumed to be normally distributed or sufficiently normally 
distributed for the following calculations. The value of the standard deviation (s), obtained 
from the Monte Carlo simulation was considered to be the uncertainty value ‘u’. 
 
The average values (emissions and energy requirement) from the Monte Carlo simulations 
( 1x  and 2x ) were checked against their original values from the LCA calculations ( 1µ  and 

2µ ). Bigger differences than a few per cent for absolute values and approx. 10% for 
comparisons could indicate that the Monte Carlo simulation does not work as expected if the 
difference is not very small. 
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Uncertainty values for differences between scales and fuels were calculated using separate 
Monte Carlo simulations. The comparisons of production scales and fuels were made with 
one-tailed z-tests (Equation 79) calculated as student’s t-tests (Montgomery, 1991; Miller & 
Miller, 1993) with an infinite number of degrees of freedom (in Excel 1 000 000 number 
degrees of freedom chosen because almost infinite). The t-test calculations were made in 
Excel 7 (Equation 80). Before the t-test, the standard deviation for the comparison was 
calculated as described above. 
 
During the comparison (production scales and fuels) of LCA-values the z-values (Equation 
79) could be calculated as: 
 

s
µµz 21 −

=                     (79) 

 
Since the student’s t-test in Excel could not handle negative values, these were calculated as 
absolute values: 
 

s
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=                     (80) 

 
where 1µ  is the first value in the comparison, 2µ  is the second value in the comparison and s 
is the standard deviation from the comparison with degrees of freedom as described above. A 
normal distribution with variable r and the standard deviation σ  (σ  = 1 during standard 
conditions) is described by Equation 81 (Montgomery, 1991; Miller & Miller, 1993): 
 

∞<<∞∗
∗∗

= ∗
−

r-         e
π2σ

1f(r) 2

2

σ2
r

                 (81) 

 
The variable r could be described as: 
 

( ) µµµr 21 −−=                    (82) 
 
where the mean µ  = 0 during standard conditions. 
 
The integral from z to infinity ∞  over the equation f(r) (Equation 81) gives the probability P 
(Equation 83 and Figure 5) that case 1 is less than case 2 with the conditions given in the 
model: 
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∫
∞

=<                   (83) 
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Figure 5. Illustration of how the probability P is calculated from the normal distribution. 
 
 

4 RESULTS AND DISCUSSION 
 

4.1 Cultivation 
 
The cultivation of the rapeseed and wheat consumes a major proportion of the energy 
resources to produce rapeseed oil or ethanol fuels and gives correspondingly high 
environmental impacts from emissions. The energy consumed during the cultivation, 11.8 GJ 
(Table 112), corresponds to 65-90% (Tables 114-115, 117-118 and 120-121) of the energy 
consumed in producing the rapeseed oil or RME fuels and 13.1 GJ (Table 113) corresponding 
to 43-44% (Tables 116, 119 and 122) of the energy to produce ethanol fuel. The 
corresponding figures for emissions during production of rapeseed oil and RME were 87–
99.4% for GWP and 31–39% for AP, EP and POCP; and during production of ethanol fuel 
63-64% for GWP, 32-34% for AP and EP and 6-7% for POCP. This shows that the 
cultivation represents the main part of the energy consumption and emissions during the 
production of rapeseed oil fuels and ethanol fuel. The figures in Tables 112-122 were 
calculated using physical allocation. Data with no allocation, economic allocation and 
allocation with expanded system are presented in Tables A1-A22, Appendices 1-2, as are the 
raw emission data. When the energy content in the seed was calculated using the assumptions 
and the equations to calculate the energy content in the meal (Equations 25-46 with 0% oil 
extraction efficiency and no losses as sediment and steam) in Section 3.10.1.1, the energy 
content in the rapeseed produced was 63.9 GJ. This resulted in an energy ratio (lower heating 
value in rapeseed / requirement of process energy) of 5.4. When the energy content in the 
wheat was calculated after Praks (1993b)a the energy content in the wheat produced was 85.4 
GJ. This resulted in an energy ratio (lower heating value in wheat / requirement of process 
energy) of 6.5. 
a The lower heat value for wheat by Praks (1993b) was given to 17.23 MJ/kg dry matter. The lower heat value 
for a product with 14% water (as in this study) could then be calculated as: (1 - share of water) * lower heat 
value (dry matter) - share of water * (molar enthalpy of vaporisation / molecular weight): (1 – 0.14) * 17.23 – 
0.14 * (44 [kJ/mole water] / 18.016 [g/mole water]) = 14.48 MJ/kg wheat with 14% water. Heat of evaporation 
for water is given by Aylward & Findlay (1994). The energy content in the wheat could then be calculated: 5900 
kg wheat/ha * 0.01448 GJ/kg wheat = 85.4 GJ/ha. 
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Table 112. Environmental impacts from air-emissions and energy consumption when winter 
rapeseed was cultivated 
 
Production factor GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Seed 0.32 0.32 0.32 0.32 0.32

Production of fertilisers 55.03 15.50 6.73 59.54 59.45

Soil emissions 33.78 73.08 81.33 0 0

Production of pesticides 0.23 0.16 0.040 0.12 1.69

Tractive power 7.34 10.36 11.14 31.03 20.71

Heat for seed drying 3.02 0.41 0.31 8.05 8.49

Electricity for drying and cleaning of the seed 0.034 0.015 0.007 0.10 1.46

Machinery inputs (Swedish electricity) 0.17 0.075 0.038 0.52 7.52

Transport of fertiliser 0.057 0.071 0.08 0.32 0.16

Machinery inputs, transport of fertiliser, (Sw. el.) 0.0044 0.0019 0.00095 0.013 0.188

Total emissions cultivation of rapeseed fuel 100 100 100 100 100

   in g (CO2; SO2; PO4
3-; C2H4)-eq/ha or MJ/ha 2400000 14400 2400 194 11800

 
 
Table 113. Environmental impacts from air-emissions and energy consumption when winter 
wheat was cultivated 
 
Production factor GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Seed 3.73 3.73 3.73 3.73 3.73

Production of fertilisers 47.80 15.80 6.38 48.88 43.69

Soil emissions 31.48 67.64 76.51 0 0

Production of pesticides 0.36 0.25 0.064 0.15 2.23

Tractive power 8.04 11.28 12.32 28.21 18.69

Heat for seed drying 8.18 1.09 0.85 17.93 18.93

Electricity for drying and cleaning of the seed 0.111 0.048 0.024 0.27 3.93

Machinery inputs (Swedish electricity) 0.24 0.103 0.053 0.59 8.54

Transport of fertiliser 0.052 0.064 0.07 0.23 0.12

Machinery inputs, transport of fertiliser, (Sw. el.) 0.0039 0.0017 0.00087 0.010 0.140

Total emissions cultivation of wheat 100 100 100 100 100

   in g (CO2; SO2; PO4
3-; C2H4)-eq/ha or MJ/ha 2210000 13300 2180 217 13100

 
 
During the cultivation of rapeseed and wheat, production of fertilisers was responsible for 
59% and 44% of the energy consumption respectively and 55-60% and 48-49% of the GWP 
and POCP respectively (Tables 112-113). Production of fertilisers, together with emissions of 
NH3 and N2O from the soil, was responsible for more than 88% and 79-83% of the GWP, AP 
and EP during cultivation of rapeseed and wheat respectively. The dominating position for the 
fertilisers, for energy consumption and emissions during the cultivation indicates that there 
may be a reason to find new ways to fertilise the crops or more fertiliser-efficient methods of 
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cultivation. The cultivation must also be carried out in a way that gives less emission of 
ammonia and nitrous oxide. 
 
Fuel for tractive power, during cultivation of rapeseed and wheat, was responsible for approx. 
20% of the energy consumption, approx. 30% of the POCP and 7-12% of the GWP, AP and 
EP (Tables 112-113). The GWP could be reduced if the fuels produced were used for 
powering (see scenario analysis, Section 4.9) and the AP, EP and POCP especially could be 
reduced if the tractors were equipped with catalysts (see scenario analysis, Section 4.9). Oil 
for drying of rapeseed and wheat was responsible for approx. 8-9% and 18-19% of the energy 
consumption respectively, approx. 8% and approx. 18% of the POCP respectively, and 
approx. 3% and approx. 8% of the GWP respectively (Tables 112-113). The GWP could be 
reduced if biofuels were used for the drying. Energy consumption and emissions from other 
parameters during the rapeseed and wheat productions were small or negligible. 
 
When the energy consumption and the emissions during the cultivation are independent of 
how the seed, meal, oil, RME, glycerine, wheat, distiller’s waste or ethanol are prepared after 
the cultivation, the absolute values from cultivation are not influenced by whether the oil etc. 
or ethanol etc. was extracted/produced on a small- or large-scale etc. 
 
 

4.2 LCA of the fuel production 
 
During the extraction of rapeseed oil, the energy demand for the oil extraction was 8%- 
(large-and medium-scale extraction) 14% (small-scale extraction) (Tables 114, 117 and 120) 
of the total energy requirement (physical allocation). Larger oil presses were more energy 
efficient than smaller. When driving on the rapeseed oil fuels produced, AP-, EP- and POCP-
emissions were about twice as high as from the cultivation. GWP-emissions were negligible 
when driving on rapeseed oil and approx. 9% of total GWP-emissions when driving on the 
RME produced, depending on the use of methanol of fossil origin for the transesterification. If 
the methanol had its origin in biomass (e.g. Salix) these GWP-emissions would be negligible 
even for RME-fuel (studied in the scenario analysis, Section 4.9). 
 
The oil extraction efficiency was also higher for larger plants (Table 27), which gives more 
oil to spread the energy consumption and emissions over and during the transesterification a 
higher demand for methanol and energy. During the transesterification the demand for energy 
(electricity) was approx. 11% of the total energy requirement (Table 115, 118 and 121). 
Correspondingly the energy bound in the methanol and methanol manufacturing was 12-13% 
of the total energy demand. 
 
During production (fermentation and distillation) of ethanol fuel, the total requirement of 
electricity and steam heat energy was 12.5%- (large-scale ethanol production) 16% (small-
scale ethanol production) (Tables 116, 119 and 122) of the total energy requirement (physical 
allocation). Larger production was more energy-efficient than smaller (see also Table 33). 
The energy in the ignition improver and denaturants used corresponded to about 38% of the 
energy used (Tables 116, 119 and 122). However, the use of energy to produce the chemicals 
for the ethanol production just corresponded to 0.4% of the energy used (Tables 116, 119 and 
122). When driving on the ethanol fuel produced, AP- and EP-emissions were almost twice as 
high as from the cultivation, but the POCP-emissions were about ten times as high as from the 
cultivation. GWP-emissions were about 22% of the total when driving on the ethanol fuel 
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produced, depending on the use of fossil ignition improver and fossil denaturants. If the 
ignition improver and denaturants had their origin in biomass (e.g. Salix) these GWP-
emissions would be about 2% of the total (studied in the scenario analysis, Section 4.9). The 
energy requirement during the cultivation was 42-44% of the total during the production of 
ethanol fuel. 
 
For medium- and large-scale plants for production of rapeseed oil or RME, emissions and 
energy consumption for transport also appeared (Tables 114-115, 117-118 and 120-121), but 
were small, for medium-scale plants approx. 0.5% of the energy requirement and for large-
scale plants 2-3% of the energy requirement. For medium- and large-scale plants for 
production of ethanol fuel, emissions and energy consumption for transport (Tables 116, 119 
and 122) were also small, for medium-scale plants approx. 0.8% of the energy requirement 
and for large-scale plants 3-4% of the energy requirement. This depended on large load 
weights and the fact that transport of the materials 110 km (for large-scale plants), as in this 
example, was not long enough to give these emissions and energy consumption a greater 
influence. 
 
Emissions that have their origin in buildings or machines were negligible, usually for GWP 
and POCP hundredths of one per cent of the total or less and for AP and EP thousandths of 
one per cent or less, if their origin was in Swedish electricity (Tables 114-122). The energy 
consumption was usually a tenth of one per cent of the total up to 1-2% for small-scale 
ethanol fuel production and small-scale transesterification. These factors could therefore be 
neglected. An exception was energy consumption for manufacturing of agricultural machines 
(Tables 112-113), which was a few per cent of the total energy for consumption. 
 
Parameter, not discussed above were small (less than or around 1% of total of GWP, AP, EP, 
POCP or energy requirement). 
 
 

4.2.1 Small-scale rapeseed oil 
 
This system was the most simple of the systems studied (Figure 3 and Tables 114-122, A3-
A14 and A17-A22). There was no need for transportation of seed to extraction and no need 
for transportation of oil and meal back to the farm (Table 114). There was also no need for a 
catalyst and methanol for transesterification (Table 114). The absolute emission values were 
lowest because of the lowest consumption of resources (Tables A3-A14, Appendix 1). 
Because of lower oil extraction efficiency, and therefore lower oil yield to spread the 
emissions over, the emissions on engine work output were not the best (Table 133). 
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Table 114. Environmental impacts from air-emissions and energy consumption during small-
scale production of rapeseed oil, physical allocation 
 
Production factor GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Cultivation of rapeseed 99.36 37.19 35.07 37.22 85.35

Electricity, small-scale oil extraction 0.37 0.060 0.029 0.42 13.75

Total machinery, oil extraction, Swedish el. 0.018 0.0030 0.0014 0.021 0.68

Building material, Swedish el. 0.0059 0.00095 0.00045 0.0066 0.22

Emissions when driving on the rapeseed oil 0.24 62.74 64.90 62.34 0

Total; cultivation, - driving 100 100 100 100 100

   in g (CO2;SO2;PO4
3-;C2H4)-eq/MJengine or MJ/MJengine 121.2 1.94 0.343 0.0261 0.692

 
 

4.2.2 Small-scale RME 
 
This system was the most simple of the transesterification systems studied (Figure 3 and 
Tables 115, 118 and 121). There was no need for transportation of seed to extraction and no 
need for transportation of oil and meal back to the farm (Table 115). Catalyst and methanol 
were required for the transesterification (Table 115). The absolute emission values were the 
lowest for the transesterification plant sizes, because of the lowest consumption of resources 
(Tables A5-A6, A9-A10 and A13-A14, Appendix 1). Because of lower oil extraction 
efficiency, and therefore lower oil yield to spread the emissions over, the emissions on engine 
work output were not the best (Table 133). 
 
 



 143

Table 115. Environmental impacts from air-emissions and energy consumption during small-
scale production of RME, physical allocation 
 
Production factor GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Cultivation of rapeseed 87.81 33.68 31.65 38.69 64.47

Electricity, small-scale oil extraction 0.33 0.055 0.026 0.43 10.39

Total machinery, oil extraction, Swedish el. 0.016 0.0027 0.0013 0.021 0.52

Building material, Swedish el. 0.0052 0.00086 0.00041 0.0068 0.16

Methanol, natural gas, best case 2.31 0.23 0.24 0.93 12.05

Transport of methanol 0.055 0.024 0.024 0.084 0.11

Transport of methanol, machinery, Swedish el. 0.00029 0.000049 0.000023 0.00039 0.0093

Catalyst, KOH 0.16 0.068 0.032 0.015 0.70

Electricity, transesterification 0.34 0.057 0.027 0.45 10.79

Machinery, transesterification, Swedish el. 0.020 0.0033 0.0016 0.026 0.63

Building material, transesterification, Swedish el. 0.0050 0.00084 0.00040 0.0066 0.16

Transport of glycerine n.r.a n.r.a n.r.a n.r.a n.r.a

Transport of glycerine, machinery, Swedish el. n.r.a n.r.a n.r.a n.r.a n.r.a

Emissions when driving on the RME, fossil methanol 8.94 65.88 68.00 59.33 0

Total; cultivation, - driving 100 100 100 100 100

   in g (CO2;SO2;PO4
3-;C2H4)-eq/MJengine or MJ/MJengine 126.8 1.98 0.351 0.0232 0.846

a Not relevant because of physical allocation. 
 
 

4.2.3 Small-scale ethanol 
 
This system was the most simple of the ethanol fuel production systems studied (Figure 4 and 
Tables 116, 119 and 122). There was no need for transportation of wheat to the ethanol 
production plant and no need for transportation of the ethanol fuel and distiller’s waste (wet) 
back to the farm (Table 116). Chemicals were needed for both the ethanol production and to 
mix with the ethanol to make the ethanol fuel (Table 116). Electricity and steam heat was 
used less efficiently (Table 33). The by-product wet distiller’s waste was allocated away with 
the physical allocation method (Section 3.10.1 and Tables A17-A22, Appendix 2). 
 
 



 144

Table 116. Environmental impacts from air-emissions and energy consumption during small-
scale production of ethanol fuel, physical allocation 
 
Production factor GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Cultivation of wheat 63.92 33.99 32.31 6.39 42.71

Electricity, small-scale ethanol fermentation 0.27 0.062 0.030 0.067 6.43

Steam (heat), small-scale ethanol fermentation 0.28 0.51 0.44 0.99 0.28

Electricity, small-scale ethanol distillation 0.27 0.061 0.030 0.066 6.33

Steam (heat), small-scale ethanol distillation 2.66 4.97 4.26 9.57 2.71

Electricity, handling of distiller’s waste n.r.a n.r.a n.r.a n.r.a n.r.a

Steam (heat), handling of distiller’s waste n.r.a n.r.a n.r.a n.r.a n.r.a

Total machinery, ethanol production, Swedish el. 0.068 0.016 0.0076 0.017 1.62

Building material, Swedish el. 0.012 0.0028 0.0014 0.0030 0.29

Handling of waste water, Swedish el. 0.058 0.013 0.0065 0.014 1.38

Production of chemicals for ethanol production 0.22 0.13 0.047 0.0058 0.39

Transport of chemicals for ethanol production 0.011 0.0066 0.0068 0.0032 0.017
Transport of chemicals for ethanol production, 
   machinery, Swedish el. 0.000051 0.000012 0.0000057 0.000013 0.0012

Production of ignition improver and 
   corrosion inhibitor 7.08 2.98 1.64 13.30 26.72

Production of denaturant 2.97 0.39 0.32 4.40 10.94

Transport of chemicals for ethanol fuel production 0.114 0.068 0.070 0.033 0.18
Transport of chemicals for ethanol fuel production, 
   machinery, Swedish el. 0.00053 0.00012 0.000059 0.00013 0.013

Emissions when driving on ethanol fuel 22.07 56.79 60.83 65.14 0

Total; cultivation, - driving 100 100 100 100 100

   in g (CO2;SO2;PO4
3-;C2H4)-eq/MJengine or MJ/MJengine 101.9 1.16 0.199 0.100 0.907

a Not relevant because of physical allocation. 
 
 

4.2.4 Medium-scale rapeseed oil 
 
This system had a requirement of a shorter transport of the seed to the extraction plant and of 
transportation of the oil and meal back to the farm (Table 117). There was no need for a 
catalyst and methanol for transesterification (Table 117). The absolute emission values were 
intermediate because of the intermediate consumption of resources (Tables A3-A4, A7-A8 
and A11-A12, Appendix 1). Intermediate oil extraction efficiency gave intermediate oil yield 
(Table 28). The emissions on engine work output were the best with physical allocation 
(Table 133) for rapeseed oil fuel. 
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Table 117. Environmental impacts from air-emissions and energy consumption during 
medium-scale production of rapeseed oil, physical allocation 
 
Production factor GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Cultivation of rapeseed 99.43 36.78 34.67 36.84 90.51

Transport seed to extraction, fuel 0.050 0.023 0.023 0.077 0.13

Transport seed to extraction, machinery 0.0056 0.00090 0.00043 0.0062 0.22

Electricity, medium-scale oil extraction 0.22 0.035 0.017 0.24 8.58

Total machinery, oil extraction, Swedish el. 0.0083 0.0013 0.00064 0.0092 0.33

Building material, Swedish el. 0.0034 0.00055 0.00026 0.0038 0.13

Transport meal from extraction, fuel n.r.a n.r.a n.r.a n.r.a n.r.a

Transport meal from extraction, machinery n.r.a n.r.a n.r.a n.r.a n.r.a

Transport oil from extraction, fuel 0.037 0.016 0.016 0.048 0.10

Transport oil from extraction, machinery 0.00020 0.000032 0.000015 0.00022 0.0077

Emissions when driving on the rapeseed oil 0.25 63.14 65.27 62.78 0

Total; cultivation, - driving 100 100 100 100 100

   in g (CO2;SO2;PO4
3-;C2H4)-eq/MJengine or MJ/MJengine 119.0 1.93 0.341 0.0259 0.641

a Not relevant because of physical allocation. 
 
 

4.2.5 Medium-scale RME 
 
This system had a requirement of a shorter transport of the seed to the extraction plant and of 
transportation of the RME and meal back to the farm (Table 118). Catalyst and methanol were 
required for the transesterification (Table 118). The absolute emission values were 
intermediate because of the intermediate consumption of resources (Tables A5-A6, A9-A10 
and A13-A14, Appendix 1). Intermediate oil extraction efficiency gave intermediate oil yield 
(Table 28). The emissions on engine work output, for RME, were the best with physical 
allocation (Table 133). 
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Table 118. Environmental impacts from air-emissions and energy consumption during 
medium-scale production of RME, physical allocation 
 
Production factor GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Cultivation of rapeseed 87.70 33.28 31.26 38.31 67.58

Transport seed to extraction, fuel 0.044 0.021 0.021 0.080 0.095

Transport seed to extraction, machinery 0.0050 0.00082 0.00039 0.0065 0.16

Electricity, medium-scale oil extraction 0.19 0.032 0.015 0.25 6.41

Total machinery, oil extraction, Swedish el. 0.0073 0.0012 0.00057 0.0096 0.24

Building material, Swedish el. 0.0030 0.00050 0.00024 0.0039 0.10

Methanol, natural gas, best case 2.35 0.23 0.24 0.94 12.86

Transport of methanol 0.056 0.024 0.024 0.085 0.12

Transport of methanol, machinery, Swedish el. 0.00030 0.000049 0.000023 0.00039 0.010

Catalyst, KOH 0.17 0.068 0.032 0.015 0.75

Electricity, transesterification 0.34 0.056 0.026 0.44 11.25

Machinery, transesterification, Swedish el. 0.0070 0.0011 0.00055 0.0091 0.23

Building material, transesterification, Swedish el. 0.0029 0.00048 0.00023 0.0038 0.10

Transport meal from extraction, fuel n.r.a n.r.a n.r.a n.r.a n.r.a

Transport meal from extraction, machinery n.r.a n.r.a n.r.a n.r.a n.r.a

Transport RME from transesterification, fuel 0.033 0.014 0.014 0.050 0.072

Transport RME from transesterification, machinery 0.00017 0.000029 0.000014 0.00023 0.0058

Transport of glycerine n.r.a n.r.a n.r.a n.r.a n.r.a

Transport of glycerine, machinery, Swedish el. n.r.a n.r.a n.r.a n.r.a n.r.a

Emissions when driving on the RME, fossil methanol 9.09 66.27 68.37 59.80 0

Total; cultivation, - driving 100 100 100 100 100

   in g (CO2;SO2;PO4
3-;C2H4)-eq/MJengine or MJ/MJengine 124.7 1.97 0.349 0.0230 0.793

a Not relevant because of physical allocation. 
 
 

4.2.6 Medium-scale ethanol 
 
This system had a requirement of a shorter transport of the wheat to the ethanol fuel 
production plant and of transportation of the ethanol fuel and distiller’s waste (wet) back to 
the farm (Table 119). Chemicals were required both for the ethanol production and to mix 
with the ethanol to make the ethanol fuel (Table 119). Electricity and steam heat was used 
with intermediate efficiency (Table 33). The by-product distiller’s waste was allocated away 
with the physical allocation method (Section 3.10.1 and Tables A17-A22, Appendix 2). 
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Table 119. Environmental impacts from air-emissions and energy consumption during 
medium-scale production of ethanol fuel, physical allocation 
 
Production factor GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Cultivation of wheat 64.25 33.66 31.75 6.88 43.80

Electricity, medium-scale ethanol fermentation 0.24 0.055 0.027 0.064 5.91

Steam (heat), medium-scale ethanol fermentation 0.22 0.59 0.59 0.34 0.24

Electricity, medium-scale ethanol distillation 0.24 0.054 0.026 0.063 5.81

Steam (heat), medium-scale ethanol distillation 2.15 5.73 5.66 3.26 2.27

Electricity, handling of distiller’s waste n.r.a n.r.a n.r.a n.r.a n.r.a

Steam (heat), handling of distiller’s waste n.r.a n.r.a n.r.a n.r.a n.r.a

Total machinery, ethanol production, Swedish el. 0.024 0.0054 0.0026 0.0063 0.58

Building material, Swedish el. 0.0072 0.0016 0.00079 0.0019 0.18

Handling of waste water, Swedish el. 0.057 0.013 0.0062 0.015 1.38

Production of chemicals for ethanol production 0.22 0.13 0.047 0.0062 0.40

Transport of chemicals for ethanol production 0.0096 0.0056 0.0058 0.0029 0.015
Transport of chemicals for ethanol production, 
   machinery, Swedish el. 0.000044 0.000010 0.0000049 0.000012 0.0011

Production of ignition improver and 
   corrosion inhibitor 7.12 2.95 1.61 14.33 27.40

Production of denaturant 2.99 0.38 0.32 4.74 11.22

Transport of chemicals for ethanol fuel production 0.112 0.066 0.068 0.034 0.18
Transport of chemicals for ethanol fuel production, 
   machinery, Swedish el. 0.00059 0.00013 0.000065 0.00016 0.014

Transport of wheat to ethanol production 0.11 0.070 0.072 0.044 0.18
Transport of wheat to ethanol production, machinery, 
   Swedish el. 0.014 0.0031 0.0015 0.0037 0.34

Transport of distiller’s waste from ethanol production n.r.a n.r.a n.r.a n.r.a n.r.a

Transport of distiller’s waste from ethanol production, 
   machinery, Swedish el. n.r.a n.r.a n.r.a n.r.a n.r.a

Transport of produced ethanol 0.055 0.032 0.033 0.017 0.087

Transport of produced ethanol, machinery, Swedish el. 0.00029 0.000065 0.000032 0.000076 0.0070
Emissions when driving on the ethanol fuel, fossil 
   chemicals added 22.18 56.25 59.78 70.19 0

Total; cultivation, - driving 100 100 100 100 100

   in g (CO2;SO2;PO4
3-;C2H4)-eq/MJengine or MJ/MJengine 101.4 1.17 0.203 0.0927 0.884

a Not relevant because of physical allocation. 
 
 

4.2.7 Large-scale rapeseed oil 
 
This system had a requirement of a longer transport of the seed to the extraction plant and of 
transportation of the oil and meal back to the farm (Table 120). Hexane was required for the 
second solvent step in the oil extraction. There was no need for catalyst and methanol for 
transesterification (Table 120). The absolute emission values were higher because of the 
higher consumption of resources in a more complicated system (Tables A3-A4, A7-A8 and 
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A11-A12, Appendix 1). The best oil extraction efficiency gave the highest oil yield (Table 
28). The emissions on engine work output were the best with no allocation and with economic 
allocation (Tables 136 and 137). 
 
 
Table 120. Environmental impacts from air-emissions and energy consumption during large-
scale production of rapeseed oil, physical allocation 
 
Production factor GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Cultivation of rapeseed 98.27 36.80 34.70 36.46 87.47

Transport seed to extraction, fuel 0.63 0.27 0.27 0.80 1.59

Transport seed to extraction, machinery 0.0026 0.00043 0.00020 0.0029 0.10

Electricity, large-scale oil extraction 0.21 0.034 0.016 0.23 8.10

Total machinery, oil extraction, Swedish el. 0.0043 0.00070 0.00033 0.0048 0.16

Building material, Swedish el. 0.0018 0.00029 0.00014 0.0020 0.068

Hexane 0.057 0.024 0.0085 0.17 0.95

Transport meal from extraction, fuel n.r.a n.r.a n.r.a n.r.a n.r.a

Transport meal from extraction, machinery n.r.a n.r.a n.r.a n.r.a n.r.a

Transport oil from extraction, fuel 0.57 0.24 0.25 0.73 1.44

Transport oil from extraction, machinery 0.0030 0.00049 0.00024 0.0034 0.12

Emissions when driving on the rapeseed oil 0.24 62.62 64.76 61.59 0

Total; cultivation, - driving 100 100 100 100 100

   in g (CO2;SO2;PO4
3-;C2H4)-eq/MJengine or MJ/MJengine 121.5 1.94 0.343 0.0264 0.669

a Not relevant because of physical allocation. 
 
 

4.2.8 Large-scale RME 
 
This system had a requirement of a longer transport of the seed to the extraction plant and of 
transportation of the RME and meal back to the farm (Table 121). Hexane was required for 
the second solvent step in the oil extraction. Catalyst and methanol were required for the 
transesterification (Table 121). The absolute emission values were higher because of the 
higher consumption of resources in a more complicated system (Tables A5-A6, A9-A10 and 
A13-A14, Appendix 1). The best oil extraction efficiency gave the highest oil yield (Table 
28). The emissions on engine work output, for RME, were the best with no allocation and 
with economic allocation (Tables 136 and 137). 
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Table 121. Environmental impacts from air-emissions and energy consumption during large-
scale production of RME, physical allocation 
 
Production factor GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Cultivation of rapeseed 86.87 33.27 31.26 37.84 66.25

Transport seed to extraction, fuel 0.56 0.25 0.25 0.83 1.21

Transport seed to extraction, machinery 0.0023 0.00039 0.00018 0.0030 0.076

Electricity, large-scale oil extraction 0.19 0.031 0.015 0.24 6.13

Total machinery, oil extraction, Swedish el. 0.0038 0.00063 0.00030 0.0049 0.12

Building material, Swedish el. 0.0016 0.00026 0.00012 0.0020 0.051

Hexane 0.050 0.022 0.0077 0.18 0.72

Methanol, natural gas, best case 2.32 0.23 0.24 0.92 12.53

Transport of methanol 0.055 0.024 0.024 0.083 0.12

Transport of methanol, machinery, Swedish el. 0.00029 0.000049 0.000023 0.00038 0.010

Catalyst, KOH 0.16 0.068 0.032 0.015 0.73

Electricity, transesterification 0.33 0.054 0.026 0.42 10.71

Machinery, transesterification, Swedish el. 0.0034 0.00057 0.00027 0.0045 0.11

Building material, transesterification, Swedish el. 0.0014 0.00024 0.00011 0.0019 0.047

Transport meal from extraction, fuel n.r.a n.r.a n.r.a n.r.a n.r.a

Transport meal from extraction, machinery n.r.a n.r.a n.r.a n.r.a n.r.a

Transport RME from transesterification, fuel 0.51 0.22 0.22 0.76 1.09

Transport RME from transesterification, machinery 0.0027 0.00045 0.00021 0.0035 0.089

Transport of glycerine n.r.a n.r.a n.r.a n.r.a n.r.a

Transport of glycerine, machinery, Swedish el. n.r.a n.r.a n.r.a n.r.a n.r.a

Emissions when driving on the RME, fossil methanol 8.95 65.83 67.93 58.68 0

Total; cultivation, - driving 100 100 100 100 100

   in g (CO2;SO2;PO4
3-;C2H4)-eq/MJengine or MJ/MJengine 126.7 1.98 0.351 0.0235 0.814

a Not relevant because of physical allocation. 
 
 

4.2.9 Large-scale ethanol 
 
This system had a requirement of a longer transport of the wheat to the ethanol fuel 
production plant and of transportation of the ethanol fuel and dried distiller’s waste back to 
the farm (Table 122). Chemicals were required for both the ethanol production and to mix 
with the ethanol to make the ethanol fuel (Table 122). Electricity and steam heat was used 
more efficiently in a more sophisticated system with less loss (Table 33). The by-product 
distiller’s waste was allocated away with the physical allocation method (Section 3.10.1 and 
Tables A17-A22, Appendix 2). 
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Table 122. Environmental impacts from air-emissions and energy consumption during large-
scale production of ethanol fuel, physical allocation 
 
Production factor GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Cultivation of wheat 63.18 33.90 31.98 6.91 43.46

Electricity, large-scale ethanol fermentation 0.21 0.049 0.024 0.057 5.20

Steam (heat), large-scale ethanol fermentation 0.21 0.43 0.42 0.26 0.20

Electricity, large-scale ethanol distillation 0.21 0.048 0.023 0.056 5.12

Steam (heat), large-scale ethanol distillation 2.06 4.16 4.06 2.48 1.97

Electricity, drying of distiller’s waste n.r.a n.r.a n.r.a n.r.a n.r.a

Steam (heat), drying of distiller’s waste n.r.a n.r.a n.r.a n.r.a n.r.a

Total machinery, ethanol fuel production, Swedish el. 0.012 0.0028 0.0014 0.0033 0.30

Building material, Swedish el. 0.0037 0.00085 0.00041 0.0010 0.09

Handling of waste water, Swedish el. 0.055 0.013 0.0061 0.015 1.34

Production of chemicals for ethanol production 0.21 0.13 0.047 0.0063 0.40

Transport of chemicals for ethanol production 0.0089 0.0054 0.0055 0.0027 0.014
Transport of chemicals for ethanol production, 
   machinery, Swedish el. 0.000047 0.000011 0.0000053 0.000013 0.0011

Production of ignition improver and 
   corrosion inhibitor 7.00 2.97 1.62 14.38 27.19

Production of denaturant 2.94 0.39 0.32 4.76 11.14

Transport of chemicals for ethanol fuel production 0.083 0.050 0.051 0.026 0.13
Transport of chemicals for ethanol fuel production, 
   machinery, Swedish el. 0.00044 0.00010 0.000049 0.00012 0.011

Transport of wheat to ethanol production 1.15 0.70 0.72 0.36 1.85
Transport of wheat to ethanol production, machinery, 
   Swedish el. 0.0050 0.0012 0.00056 0.0014 0.12

Transport of distiller’s waste from ethanol production n.r.a n.r.a n.r.a n.r.a n.r.a

Transport of distiller’s waste from ethanol production, 
   machinery, Swedish el. n.r.a n.r.a n.r.a n.r.a n.r.a

Transport of produced ethanol fuel 0.84 0.51 0.52 0.26 1.35
Transport of produced ethanol fuel , machinery, 
   Swedish el. 0.0045 0.0010 0.00050 0.0012 0.11

Emissions when driving on the ethanol fuel, fossil 
   chemicals added 21.81 56.64 60.20 70.43 0.00

Total; cultivation, - driving 100 100 100 100 100

   in g (CO2;SO2;PO4
3-;C2H4)-eq/MJengine or MJ/MJengine 103.1 1.16 0.201 0.0924 0.891

a Not relevant because of physical allocation. 
 
 

4.3 Economic calculations 
 
The economic calculations were performed for all three plant sizes for the three fuels studied. 
For the rapeseed and wheat cultivation, scenarios with EU area compensation and with a 
larger farm unit were also studied. For comparison, a scenario was also studied in which 
rapeseed with 9% water (wet basis) (amount seed (9% water as the trade water content in 
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rapeseed) [kg/ha] = amount seed (8% water as in this report) [kg/ha] * ((1 – 0.08) / (1 – 
0.09))) was purchased for 2.00 SEK/kg and wheat with 0.97 SEK/kg with 14% water (wet 
basis) (Agriwise, 2003). The corresponding area yields were 2470 kg rapeseed/ha (8% water 
wet basis) = 2497 kg rapeseed/ha with 9% water wet basis and 5900 kg wheat/ha (14% water 
wet basis). 
 
For all type of plants and fuels, the cultivation of the rapeseed (Table 19) or wheat (Table 20) 
was the dominating cost (Tables 123–131), for small- and medium-scale plants followed by 
labour and/or depreciation and interest for machines and buildings and for ethanol fuel 
production costs for ignition improver (Beraid). For large-scale oil extraction and 
transesterification plants, transport costs, depreciation and interest for machines and buildings 
and labour costs were about the same size, followed the cultivation costs. For large-scale 
ethanol fuel production, the cultivation costs were followed by costs for ignition improver 
(Beraid), depreciation and interest for machines and buildings and energy costs (electricity 
and heat as steam). For large-scale oil extraction and transesterification plants the receipts 
from the by-product (meal) covered the least share of the costs because of the higher oil 
extraction efficiency, which gives a meal with a lower heating value. Because of that the meal 
also had a lower economic value (see Table 105), but the higher yield of rapeseed oil or RME 
and the by-product glycerine was more than enough to make up for this (Tables 123-124, 126-
127 and 129-130). About the same share of the costs was covered by by-products during 
rapeseed oil or RME production. The distiller’s waste from the ethanol fuel production 
contributed a much lower economic value (Tables 125, 128 and 131) compared with the value 
for the meal and glycerine during production of rapeseed oil and RME, especially for small- 
and medium-scale plants where the distiller’s waste was not dried. 
 
If the rapeseed or wheat was produced on a larger farm (Tables 123–131) the production cost 
was reduced by 15% and 16% respectively (20% and 21% respectively if the EU area 
compensation was included). If the rapeseed and wheat were purchased for 2.00 SEK/kg and 
0.97 SEK/kg respectively, the seed cost was reduced by 45% and 44% respectively in 
comparison to costs for growing on a smaller farm excluding EU area compensation. The EU 
area compensation reduced the production costs for rapeseed and wheat by 26-30% and 23-
27% respectively. 
 
If the rapeseed oil was extracted in a medium-scale plant instead of a small-scale plant 
(Tables 123 and 126), the production cost [SEK/ha] (excl. receipts from meal) was reduced by 
5-6% (by 6-8% if EU area compensation was included and by 8% if the seed was purchased 
for 2.00 SEK/kg). If the rapeseed oil was extracted in a large-scale plant instead of a small-
scale plant (Tables 123 and 129), the production cost (excl. receipts from meal) was reduced 
by 8-9% (by 11-12% if EU area compensation was included and by 13% if the seed was 
purchased for 2.00 SEK/kg). 
 
If the RME was produced in a medium-scale plant instead of a small-scale plant (Tables 124 
and 127), the production cost [SEK/ha] (excl. receipts from meal and glycerine) was reduced 
by 13-14% (by 15-17% if EU area compensation was included and by 18% if the seed was 
purchased for 2.00 SEK/kg). If the RME was produced in a large-scale plant (Tables 124 and 
130), instead of a small-scale plant, the production cost (excl. receipts from meal and 
glycerine) was reduced by 20-23% (by 25-28% if EU area compensation was included and by 
29% if the seed was purchased for 2.00 SEK/kg). 
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If the ethanol fuel was produced in a medium-scale plant instead of a small-scale plant 
(Tables 125 and 128), the production cost [SEK/ha] (excl. receipts from distiller’s waste) was 
reduced by 23-25% (by 25-27% if EU area compensation was included and by 28% if the 
wheat was purchased for 0.97 SEK/kg). If the ethanol fuel was produced in a large-scale plant 
instead of a small-scale plant (Tables 125 and 131), the production cost (excl. receipts from 
distiller’s waste) was reduced by 36-38% (by 39-42% if EU area compensation was included 
and by 43% if the wheat was purchased for 0.97 SEK/kg). The cost reduction for producing 
ethanol fuel in larger plants was much greater than the cost reduction for producing rapeseed 
oil or RME in larger plants. 
 
 

4.3.1 Small-scale extraction 
 
The costs were dominated by the cultivation (73-83% of sum of costs (incl. labour)) followed 
by labour (6-10% of sum of costs (incl. labour) and depreciation and interest for machines and 
buildings (6-9% of sum of costs (incl. labour)) (Table 123). The receipts from selling the meal 
covered 27-44% of the sum of costs (incl. labour). 
 
 
Table 123. Economic calculation, small-scale extraction of rapeseed oil 
 
Operation Small farm [SEK/ha] Large farm [SEK/ha]  Purchased 

 Total EU area Total EU area  seed 

 production comp. incl. production comp. incl.  [SEK/ha] 

Cultivation of rapeseed 9092 6754 7740 5402  4994

Electricity, small-scale oil extraction 177 177 177 177  177

Machinery, maintenance  278 278 278 278  278

Building, maintenance  105 105 105 105  105

Machinery, depreciation and interest 489 489 489 489  489

Building, depreciation and interest 127 127 127 127  127

Various costs e.g. insurance etc. 5% of above 59 59 59 59  59

Sum costs (excl. labour) 10327 7989 8975 6637  6229

Labour 654 654 654 654  654

Sum costs (incl. labour) 10981 8643 9629 7291  6883

Receipts from meal 3009 3009 3009 3009  3009

Total 7971 5633 6619 4281  3873
 
 

4.3.2 Small-scale transesterification 
 
The costs were dominated by the cultivation (51-66% of sum of costs (incl. labour)) followed 
by labour (15-21% of sum of costs (incl. labour)) and depreciation and interest for machines 
and buildings (9-12% of sum of costs (incl. labour)) (Table 124). The receipts from selling the 
meal and glycerine covered 24-35% of the sum of costs (incl. labour). 
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Table 124. Economic calculation, small-scale transesterification of rapeseed oil 
 
Operation Small farm [SEK/ha] Large farm [SEK/ha]  Purchased 

 Total EU area Total EU area  seed 

 production comp. incl. production comp. incl.  [SEK/ha] 

Cultivation of rapeseed 9092 6754 7740 5402  4994

Electricity, small-scale oil extraction 177 177 177 177  177

Electricity, small-scale oil transesterification 87 87 87 87  87

Methanol 287 287 287 287  287

Catalyst 74 74 74 74  74

Transport, methanol 8 8 8 8  8

Transport, glycerine 7 7 7 7  7

Machinery, extraction, maintenance  278 278 278 278  278

Machinery, transesterification, maintenance  308 308 308 308  308

Building, extraction, maintenance  75 75 75 75  75

Building, transesterification, maintenance  75 75 75 75  75

Machinery, extraction, depreciation and interest 489 489 489 489  489
Machinery, transesterification, depreciation 
   and interest 542 542 542 542  542

Building, extraction, depreciation and interest 91 91 91 91  91
Building, transesterification, depreciation 
   and interest 91 91 91 91  91

Various costs e.g. insurance etc. 5% of above 129 129 129 129  129

Sum costs (excl. labour) 11810 9472 10458 8120  7712

Labour, extraction 654 654 654 654  654

Labour, transesterification 1350 1350 1350 1350  1350

Sum costs (incl. labour) 13814 11476 12461 10123  9715

Receipts from meal 3009 3009 3009 3009  3009

Receipts from glycerine 354 354 354 354  354

Total 10451 8113 9098 6760  6352
 
 

4.3.3 Small-scale ethanol 
 
The costs were dominated by the cultivation (25-37% of sum of costs (incl. labour)) followed 
by depreciation and interest for machines and buildings (16-19% of sum of costs (incl. 
labour)) and labour (14-17% of sum of costs (incl. labour)) (Table 125). The receipts from 
selling the distiller’s waste covered approx. 3% of the sum of costs (incl. labour). 
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Table 125. Economic calculation, small-scale ethanol fuel production 
 
Operation Small farm [SEK/ha] Large farm [SEK/ha]  Purchased 

 Total EU area Total EU area  seed 

 production comp. incl. production comp. incl.  [SEK/ha] 

Cultivation of wheat 10226 7888 8588 6250  5723
Electricity ethanol production (fermentation 
   and distillation) 296 296 296 296  296

Steam from wood chips 526 526 526 526  526

Phosphoric acid (75%) 15 15 15 15  15

Sulphuric acid (93%) 50 50 50 50  50

Sodium hydroxide (50%) 12 12 12 12  12

Calcium chloride (30%) 25 25 25 25  25

Other chemicals 8 8 8 8  8

Scum reduction agent 26 26 26 26  26

Enzymes 291 291 291 291  291

Yeast 0 0 0 0  0

Transport, production chemicals 4 4 4 4  4

Beraid 3627 3627 3627 3627  3627

MTBE 431 431 431 431  431

Isobutanol 155 155 155 155  155

Morpholine 6 6 6 6  6

Transport, fuel chemicals 28 28 28 28  28
Machinery, ethanol fuel production, 
   maintenance 2223 2223 2223 2223  2223

Building, ethanol fuel production, maintenance 450 450 450 450  450
Machinery, ethanol fuel production,  
   depreciation and interest 3920 3920 3920 3920  3920

Building, ethanol fuel production, depreciation 
   and interest 543 543 543 543  543

Handling of waste water and fresh water 79 79 79 79  79

Various costs e.g. insurance etc. 5% of above 636 636 636 636  636

Sum costs (excl. labour) 23576 21238 21939 19601  19073

Labour 3870 3870 3870 3870  3870

Sum costs (incl. labour) 27446 25108 25809 23471  22943

Receipts from distiller’s waste 785 785 785 785  785

Total 26661 24323 25023 22685  22158
 
 

4.3.4 Medium-scale extraction 
 
The costs were dominated by the cultivation (79-87% of sum of costs (incl. labour)) followed 
by labour (6-10% of sum of costs (incl. labour)) and depreciation and interest for machines 
and buildings (2-4% of sum of costs (incl. labour)) (Table 126). The receipts from selling the 
meal covered 27-45% of the sum of costs (incl. labour). 
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Table 126. Economic calculation, medium-scale extraction of rapeseed oil 
 
Operation Small farm [SEK/ha] Large farm [SEK/ha]  Purchased 

 Total EU area Total EU area  seed 

 production comp. incl. production comp. incl.  [SEK/ha] 

Cultivation of rapeseed 9092 6754 7740 5402  4994

Electricity, medium-scale oil extraction 104 104 104 104  104

Transport, seed 67 67 67 67  67

Transport, meal 36 36 36 36  36

Transport, oil 29 29 29 29  29

Machinery, maintenance  110 110 110 110  110

Building, maintenance  53 53 53 53  53

Machinery, depreciation and interest 194 194 194 194  194

Building, depreciation and interest 64 64 64 64  64

Various costs e.g. insurance etc. 5% of above 33 33 33 33  33

Sum costs (excl. labour) 9781 7443 8429 6091  5683

Labour 648 648 648 648  648

Sum costs (incl. labour) 10429 8091 9077 6739  6331

Receipts from meal 2828 2828 2828 2828  2828

Total 7602 5264 6249 3911  3504
 
 

4.3.5 Medium-scale transesterification 
 
The costs were dominated by the cultivation (63-75% of sum of costs (incl. labour)) followed 
by labour (11-16% of sum of costs (incl. labour)) and depreciation and interest for machines 
and buildings (5-7% of sum of costs (incl. labour)) (Table 127). The receipts from selling the 
meal and glycerine covered 27-40% of the sum of costs (incl. labour). 
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Table 127. Economic calculation, medium-scale transesterification of rapeseed oil 
 
Operation Small farm [SEK/ha] Large farm [SEK/ha]  Purchased 

 Total EU area Total EU area  seed 

 production comp. incl. production comp. incl.  [SEK/ha] 

Cultivation of rapeseed 9092 6754 7740 5402  4994

Electricity, medium-scale oil extraction 104 104 104 104  104

Electricity, medium-scale oil transesterification 93 93 93 93  93

Methanol 275 275 275 275  275

Catalyst 81 81 81 81  81

Transport, methanol 9 9 9 9  9

Transport, glycerine 8 8 8 8  8

Transport, seed 67 67 67 67  67

Transport, meal 36 36 36 36  36

Transport, RME 28 28 28 28  28

Machinery, extraction, maintenance  110 110 110 110  110

Machinery, transesterification, maintenance  148 148 148 148  148

Building, extraction, maintenance  38 38 38 38  38

Building, transesterification, maintenance  38 38 38 38  38

Machinery, extraction, depreciation and interest 194 194 194 194  194
Machinery, transesterification, depreciation 
   and interest 261 261 261 261  261

Building, extraction, depreciation and interest 46 46 46 46  46
Building, transesterification, depreciation 
   and interest 46 46 46 46  46

Various costs e.g. insurance etc. 5% of above 79 79 79 79  79

Sum costs (excl. labour) 10753 8415 9401 7063  6655

Labour, extraction 648 648 648 648  648

Labour, transesterification 648 648 648 648  648

Sum costs (incl. labour) 12049 9711 10697 8359  7951

Receipts from meal 2828 2828 2828 2828  2828

Receipts from glycerine 390 390 390 390  390

Total 8832 6494 7479 5141  4734
 
 

4.3.6 Medium-scale ethanol 
 
The costs were dominated by the cultivation (35-49% of sum of costs (incl. labour)) followed 
by ignition improver (Beraid) (14-18% of sum of costs (incl. labour)) and depreciation and 
interest for machines and buildings (10-12% of sum of costs (incl. labour)) (Table 128). The 
receipts from selling the distiller’s waste covered 4-5% of the sum of costs (incl. labour). 
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Table 128. Economic calculation, medium-scale ethanol fuel production 
 
Operation Small farm [SEK/ha] Large farm [SEK/ha]  Purchased 

 Total EU area Total EU area  seed 

 production comp. incl. production comp. incl.  [SEK/ha] 

Cultivation of wheat 10226 7888 8588 6250  5723
Electricity ethanol production (fermentation 
   and distillation) 264 264 264 264  264

Steam from wood chips 431 431 431 431  431

Phosphoric acid (75%) 5 5 5 5  5

Sulphuric acid (93%) 38 38 38 38  38

Sodium hydroxide (50%) 6 6 6 6  6

Calcium chloride (30%) 18 18 18 18  18

Other chemicals 4 4 4 4  4

Scum reduction agent 13 13 13 13  13

Enzymes 257 257 257 257  257

Yeast 0 0 0 0  0

Transport, production chemicals 4 4 4 4  4

Beraid 2901 2901 2901 2901  2901

MTBE 431 431 431 431  431

Isobutanol 104 104 104 104  104

Morpholine 6 6 6 6  6

Transport, fuel chemicals 27 27 27 27  27

Transport, wheat 210 210 210 210  210

Transport, distiller’s waste 650 650 650 650  650

Transport, ethanol fuel 71 71 71 71  71
Machinery, ethanol fuel production, 
   maintenance 980 980 980 980  980

Building, ethanol fuel production, maintenance 229 229 229 229  229
Machinery, ethanol fuel production,  
   depreciation and interest 1729 1729 1729 1729  1729

Building, fuel production, depreciation 
   and interest 276 276 276 276  276

Handling of waste water and fresh water 77 77 77 77  77

Various costs e.g. insurance etc. 5% of above 437 437 437 437  437

Sum costs (excl. labour) 19392 17054 17755 15417  14890

Labour 1651 1651 1651 1651  1651

Sum costs (incl. labour) 21044 18706 19406 17068  16541

Receipts from distiller’s waste 785 785 785 785  785

Total 20258 17920 18621 16283  15755
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4.3.7 Large-scale extraction 
 
The costs were dominated by the cultivation (84-90% of sum of costs (incl. labour)) followed 
by transport (3-5% of sum of costs (incl. labour)) and labour (2-4% of sum of costs (incl. 
labour)) (Table 129). The receipts from selling the meal covered 18-31% of the sum of costs 
(incl. labour). 
 
 
Table 129. Economic calculation, large-scale extraction of rapeseed oil 
 
Operation Small farm [SEK/ha] Large farm [SEK/ha]  Purchased 

 Total EU area Total EU area  seed 

 production comp. incl. production comp. incl.  [SEK/ha] 

Cultivation of rapeseed 9092 6754 7740 5402  4994

Electricity, large-scale oil extraction 92 92 92 92  92

Hexane 14 14 14 14  14

Transport, seed 152 152 152 152  152

Transport, meal 59 59 59 59  59

Transport, oil 102 102 102 102  102

Machinery, maintenance  80 80 80 80  80

Building, maintenance  40 40 40 40  40

Machinery, depreciation and interest 142 142 142 142  142

Building, depreciation and interest 48 48 48 48  48

Various costs e.g. insurance etc. 5% of above 36 36 36 36  36

Sum costs (excl. labour) 9856 7518 8504 6166  5758

Labour 216 216 216 216  216

Sum costs (incl. labour) 10072 7734 8720 6382  5974

Receipts from meal 1856 1856 1856 1856  1856

Total 8216 5878 6864 4526  4118
 
 

4.3.8 Large-scale transesterification 
 
The costs were dominated by the cultivation (72-83% of sum of costs (incl. labour)) followed 
by depreciation and interest for machines and buildings (3-5% of sum of costs (incl. labour)) 
and transport (3-5% of sum of costs (incl. labour)) (Table 130). The receipts from selling the 
meal and glycerine covered 22-34% of the sum of costs (incl. labour). 
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Table 130. Economic calculation, large-scale transesterification of rapeseed oil 
 
Operation Small farm [SEK/ha] Large farm [SEK/ha]  Purchased 

 Total EU area Total EU area  seed 

 production comp. incl. production comp. incl.  [SEK/ha] 

Cultivation of rapeseed 9092 6754 7740 5402  4994

Electricity, large-scale oil extraction 92 92 92 92  92

Electricity, large-scale oil transesterification 109 109 109 109  109

Hexane 14 14 14 14  14

Methanol 288 288 288 288  288

Catalyst 106 106 106 106  106

Transport, methanol 11 11 11 11  11

Transport, glycerine 11 11 11 11  11

Transport, seed 152 152 152 152  152

Transport, meal 59 59 59 59  59

Transport, RME 98 98 98 98  98

Machinery, extraction, maintenance  80 80 80 80  80

Machinery, transesterification, maintenance  80 80 80 80  80

Building, extraction, maintenance  28 28 28 28  28

Building, transesterification, maintenance  28 28 28 28  28

Machinery, extraction, depreciation and interest 142 142 142 142  142
Machinery, transesterification, depreciation and 
interest 142 142 142 142  142

Building, extraction, depreciation and interest 33 33 33 33  33
Building, transesterification, depreciation and 
interest 33 33 33 33  33

Various costs e.g. insurance etc. 5% of above 75 75 75 75  75

Sum costs (excl. labour) 10673 8335 9321 6983  6575

Labour, extraction 216 216 216 216  216

Labour, transesterification 101 101 101 101  101

Sum costs (incl. labour) 10990 8652 9638 7300  6892

Receipts from meal 1856 1856 1856 1856  1856

Receipts from glycerine 510 510 510 510  510

Total 8624 6286 7272 4934  4526
 
 

4.3.9 Large-scale ethanol 
 
The costs were dominated by the cultivation (44-58% of sum of costs (incl. labour)) followed 
by ignition improver (Beraid) (12-17% of sum of costs (incl. labour)) and depreciation and 
interest for machines and buildings (7-10% of sum of costs (incl. labour)) (Table 131). The 
receipts from selling the distiller’s waste covered 11-15% of the sum of costs (incl. labour). 
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Table 131. Economic calculation, large-scale ethanol fuel production 
 
Operation Small farm [SEK/ha] Large farm [SEK/ha]  Purchased 

 Total EU area Total EU area  seed 

 production comp. incl. production comp. incl.  [SEK/ha] 

Cultivation of wheat 10226 7888 8588 6250  5723
Electricity ethanol production (fermentation 
   and distillation) 212 212 212 212  212

Steam from wood chips ethanol production 
   excl. drying of distiller’s waste 376 376 376 376  376

Electricity drying of distiller’s waste 222 222 222 222  222
Steam from wood chips drying of distiller’s 
   waste 375 375 375 375  375

Phosphoric acid (75%) 4 4 4 4  4

Sulphuric acid (93%) 25 25 25 25  25

Sodium hydroxide (50%) 3 3 3 3  3

Calcium chloride (30%) 17 17 17 17  17

Other chemicals 3 3 3 3  3

Scum reduction agent 7 7 7 7  7

Enzymes 223 223 223 223  223

Yeast 0 0 0 0  0

Transport, production chemicals 4 4 4 4  4

Beraid 2176 2176 2176 2176  2176

MTBE 231 231 231 231  231

Isobutanol 65 65 65 65  65

Morpholine 4 4 4 4  4

Transport, fuel chemicals 19 19 19 19  19

Transport, wheat 411 411 411 411  411

Transport, distiller’s waste 84 84 84 84  84

Transport, ethanol fuel 194 194 194 194  194
Machinery, ethanol fuel production, 
   maintenance 611 611 611 611  611

Building, ethanol fuel production, maintenance 166 166 166 166  166
Machinery, ethanol fuel production, 
   depreciation and interest 1078 1078 1078 1078  1078

Building, ethanol fuel production, depreciation 
   and interest 200 200 200 200  200

Handling of waste water and fresh water 69 69 69 69  69

Various costs e.g. insurance etc. 5% of above 339 339 339 339  339

Sum costs (excl. labour) 17340 15002 15703 13365  12838

Labour 310 310 310 310  310

Sum costs (incl. labour) 17650 15312 16013 13675  13147

Receipts from distiller’s waste 1913 1913 1913 1913  1913

Total 15737 13399 14099 11761  11234
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4.4 Comparison between production scales 
 

4.4.1 Rapeseed oil and RME 
 
When different sizes of oil extraction and transesterification plants were compared, with 
physical allocation, the medium-scale plants had the lowest total emissions and energy 
requirement, but the differences were small (requirement of three digits to distinguish the 
differences) (Tables 133-134). For medium-scale plants: GWP-emissions were approx. 1.6-
2% lower than for small- and large-scale plants; AP- and EP-emissions approx. 0.5-0.8% 
lower; POCP-emissions approx. 0.7-1.9% lower; and energy requirement approx. 3-7% lower 
(Tables 133 and 134; and Tables A4, A6, A8, A10, A12 and A14, Appendix 1). The 
differences between the small-scale plants and large-scale plants were even smaller and not 
unequivocal between different emission categories (GWP-, AP- and EP-emissions approx. 
0.1-0.2%; POCP-emissions approx. 1%; and energy requirement approx. 3-4%, Tables 133 
and 134; and Tables A4, A6, A8, A10, A12 and A14, Appendix 1). Absolute differences are 
accounted for in Table 175 (Section 4.11.1) with probabilities for the differences in Table 
179. 
 
The difference in oil extraction efficiency was rather great between plants of different sizes, 
from 68% at a small-scale plant to 98% at a large-scale plant (Tables 27 and 28). This made 
the oil harvest increase from 756 kg/ha to 1089 kg/ha (an increase of 44%). At a large-scale 
plant there was so much more oil to use as fuel and to spread out the emissions on from 
cultivation and production. This is a determining factor in large-scale plants in many cases 
getting better results than smaller plants, even if their energy requirement and emissions are 
greater on an area basis. 
 
Large- and medium- scale extraction plants consumed about the same amount of electricity 
per weight unit of seed (Table 27) for the extraction. But the large-scale plant had an 
extraction efficiency of 98% instead of 75%. This meant that the large-scale plant consumed 
0.49 MJ/kg oil and the medium-scale plant 0.64 MJ/kg oil. This energy has been assumed to 
be Swedish electricity (Table 49). Here the large-scale plant would get an increasing 
advantage over the smaller plant if the electricity had been produced with technology or 
energy sources that gave more emissions e.g. fossil fuel electricity (for description: see 
Section 3.6.1) (Table 49). The small plant had an energy demand of 1.17 MJ/kg oil (Table 
27). The energy demand for extraction was approx. 14% of the total energy requirement for 
small-scale extraction plants (Table 114) and 8-9% for medium- and large-scale extraction 
plants (Tables 117 and 120). This was large enough to influence the conclusions, but if the 
electricity consumed was Swedish electricity the emissions would be small. Emissions are 
proportional to the energy demand and GWP- and POCP-emissions were some tenths of one 
per cent and AP- and EP-emissions some hundredths of one per cent of the total (Tables 114, 
117 and 120). With electricity produced from environmentally inferior energy sources, the 
emissions would be higher and have an influence on the conclusions in favour of larger 
plants. 
 
Only large-scale oil extraction plants use hexane to extract the last oil from the meal. Some 
hexane is lost which gives HC-emissions that influence the POCP-emissions. Lost hexane 
also creates emissions and requirement of energy when produced. The hexane contributed to 
some hundredths of one per cent of the GWP-, AP- and EP-emissions and some tenths of one 
per cent of the POCP-emissions (Table 120). It contributed to almost 1% of the energy 
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demand. For GWP-emissions this was lower than the absolute difference between small- and 
large-scale oil extractions and much lower than the absolute difference between small- and 
large-scale oil extraction for AP-, EP- and POCP-emissions and for energy requirements 
(Tables 114, 117, 120 and 134; and Tables A3-A4, A7-A8 and A11-A12, Appendix 1). The 
contribution from hexane was much lower than that from the transport together. 
 
 

4.4.2 Ethanol fuel 
 
The ethanol plants of different sizes were assumed to use the same process to ferment the 
ethanol but the larger plants used the process energy more efficiently. The distiller’s waste 
was only dried in the largest plant. This drying was very energy-demanding but was allocated 
away during the physical and economic allocations. 
 
When different sizes of ethanol fuel production plants were compared, with physical 
allocation, the differences were small and not unequivocal between emission categories and 
energy requirement (Tables 133 and 135). AP- and EP-emissions were lowest for small-scale 
plants (0.3-1.7% lower than for other scales) which depended on lower NOx-emissions during 
the steam production compared to medium- and large-scale plants (Tables 34, 116, 119, 122, 
133 and 135; and Tables A17-A22, Appendix 2). GWP-emissions and energy requirements 
lowest for medium-scale plants (0.5-1.7% and 0.8-2.5% respectively lower than for other 
scales), which depended on the lower requirement of transport compared to large-scale plants 
and a more efficient use of electricity and steam (heat) compared to small-scale plants (Tables 
33, 116, 119, 122, 133 and 135; and Tables A17-A22, Appendix 2). POCP-emissions were 
lowest for large-scale plants (0.3-7.5% lower than for other scales) which mainly depended on 
low emissions of HC during production of steam (heat) in comparison to smaller plants 
(Tables 34, 116, 119, 122, 133 and 135; and Tables A17-A22, Appendix 2). Because of the 
lack of unequivocal results above, it may be hard to find an optimal plant size for the ethanol 
fuel production plants. Absolute differences are accounted for in Table 175 (Section 4.11.1) 
with probabilities for the differences in Table 179. The need for electricity and steam for 
drying of distiller’s waste were the main reasons for higher GWP-, AP- and EP-emissions and 
energy requirement for large-scale plants during no allocation and allocation with expanded 
system (Tables 33, 136 and 138; and Tables A17-A22, Appendix 2). 
 
The energy demand for electricity was 10-13% of the total, the GWP-, AP- and POCP-
emissions a few tenths of one per cent, and EP-emissions a few hundredths of one per cent of 
the total (Tables 116, 119 and 122). With electricity produced from environmentally inferior 
energy sources, the emissions would be higher and have an influence on the results in favour 
of larger plants. The energy demand for heat (steam) was 2-3% of the total, the GWP-, AP- 
and EP-emissions were 2-6%, and POCP-emissions were 3-11% of the total (Tables 116, 119 
and 122). 
 
The manufacturing of ignition improver (Beraid) and denaturants was very dominant, but in 
absolute terms the same independent of the plant size. The energy demand was 38-39% of the 
total, the GWP-emissions approx. 10%, AP- and EP-emissions 2-3%, and POCP-emissions 
18-19% of the total (Tables 116, 119 and 122). However, the chemicals used during the 
ethanol production were of minor importance. The requirement of these was also assumed to 
be independent of plant size. The energy demand, GWP- and AP-emissions were some tenths 
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of one per cent of the total, EP-emissions hundredths of one per cent and POCP-emissions 
thousandths of one per cent of the total (Tables 116, 119 and 122). 
 
Handling of waste water and production of clean water for the process were also of minor 
importance for the energy demand and the emissions during the ethanol fuel production. The 
energy demand was just above 1% of the total, GWP-, AP- and POCP-emissions were 
hundredths of one per cent of the total and EP-emissions thousandths of one per cent of the 
total (Tables 116, 119 and 122). 
 
 

4.4.3 General 
 
For larger plants the transport distances for the products were longer, which generated 
sufficient emissions and energy demand so the largest plants were not the best on emissions. 
The rapeseed, wheat, meal, distiller’s waste, rapeseed oil, RME and/or ethanol fuel were 
transported 7 km for medium-sized plants and 110 km for large-sized plants. These stuffs 
were not transported for small-scale plants. For medium-scale oil extraction and RME plants, 
transport energy requirement, GWP- and POCP-emissions were some tenths of one per cent 
of the total and AP- and EP-emissions were some hundredths of one per cent of the total 
(Tables 117-118). For medium-scale ethanol plants, transport energy requirement was almost 
1% of the total and GWP-, AP-, EP- and POCP-emissions were some tenths of one per cent of 
the total (Table 119). For large-scale oil extraction and RME plants, transport energy 
requirement was about 3% of the total, GWP- and POCP-emissions were about 1-2% of the 
total and AP- and EP-emissions were about 0.5% of the total (Tables 120-121). For large-
scale ethanol plants, transport energy requirement was about 3-4% of the total, GWP- AP- 
and EP-emissions were about 1-2% of the total and POCP-emissions were 0.6-0.7% of the 
total (Table 122). During physical allocation, transport for large-scale plants had higher 
emissions (all four types) than the difference to small-scale plants (Tables 114-122 and 134-
135). This implies that transport of seed, wheat, meal, distiller’s waste, rapeseed oil, RME and 
ethanol fuel had a vital (decisive) importance for the conclusions about which type of plant 
was the best environmentally. Longer transport distances than 110 km would be even worse. 
There was only one exception, POCP-emissions for ethanol plants (Tables 116, 119, 122 and 
135). However, energy requirement for the transport was lower than the difference to small-
scale plants for oil extraction and RME plants (Tables 114-115, 117-118, 120-121 and 134), 
but not for ethanol plants (Tables 116, 119, 122 and 135). 
 
Differences in energy requirement and emissions for machinery manufacturing and 
production of buildings were large. The larger the plant, the better it made use of the material 
in its machines and buildings. But compared with total energy requirement and total 
emissions this energy requirement and emissions was very small (Tables 114-122). The 
energy requirement for machinery and buildings together, depending on plant size, was from 
some tenths of one per cent to approx. 1.9% of the total, GWP- and POCP-emissions were 
some thousandths to some hundredths of one per cent and AP- and EP-emissions were some 
ten thousandths to some hundredths of one per cent of the total (Tables 114-122). Ethanol 
plants had the biggest requirement of machinery and buildings (Tables 91-92 and Tables A3-
A14 and A17-A22, Appendices 1-2). All these together meant that emissions from machinery 
and buildings were negligible even for small plants and that it was not important, for the 
results, that the amount of material in machines and buildings was not well known. 
 



 164

The most significant statements above pointed out, for oil extraction and transesterification, 
that better oil extraction efficiency with higher oil yield and demand for long transport 
to/from larger plants were the two most important factors for the results. However they were 
contradictory and this indicated the existence of an optimal plant size. This was supported by 
the fact that medium-sized plants, with physical allocation, had the lowest energy requirement 
and emissions (Table 133). For ethanol plants, the more efficient use of energy (electricity 
and steam heat) for larger plants and the longer transport for larger plants indicated an 
optimum in the same way. However, no unequivocal optimum could be found for the ethanol 
plants with physical allocation (Table 133). With no allocation (Table 136) and allocation 
with expanded system (Table 138) energy requirement and GWP-, AP-, and EP-emissions 
were biggest for large-scale plants due to the distiller’s waste also being dried in an energy-
consuming process (Table 33 and Tables A17-A22, Appendix 2). 
 
Larger plants have a demand for transport with lower emissions. GWP-emissions were 
influenced in a positive way for large-scale plants when the fuels for the transport vehicles 
were changed to fuels with biomass origin. AP-, EP- and especially POCP-emissions can be 
reduced with vehicles equipped by catalysts. Transport could be more energy-efficient if 
trains replaced lorries. 
 
 

4.5 Comparison between fuels 
 
When straight rapeseed oil and RME were compared as fuels, during physical allocation, 
rapeseed oil had a lower energy requirement (18-19%, Tables 133-134) and lower GWP-, AP- 
and EP-emissions (2-5%, Tables 133-134). Only the POCP-emissions were higher (12-13%, 
Tables 133-134). The reason for these lower emissions etc. for rapeseed oil fuel was that for 
RME fuel, resources (electricity and methanol etc.) were added for the transesterification that 
generated emissions and had a requirement for energy. The reasons for the higher POCP-
emissions are explained below. 
 
When driving on (use of) the fuel produced, GWP-emissions were 40 times larger when 
driving on RME compared with rapeseed oil fuel, due to fossil natural gas being used as a raw 
material when the methanol for the transesterification was produced (see Section 3.4.4.2 for 
explanation and Tables A3-A14, Appendix 1). This was in spite of the fact that RME gave 
approx. 3.9% more engine work, on an area basis, compared to rapeseed oil (Table 132) 
mainly depending on higher efficiency in the engine (Table 102). AP- and EP-emissions were 
higher when driving on RME due to higher NOx-emissions, whereas POCP-emissions were 
lower due to lower HC-emissions (Tables 102 and 133). It was possible to reduce the GWP-
emissions to the same level or lower (more efficient in engine) than for rapeseed oil if the raw 
material for the methanol was produced from biomass, e.g. Salix. Absolute differences are 
accounted for in Table 181 (Section 4.11.2) with probabilities for the differences in Table 
185. 
 
The requirement of energy during the transesterification was not dependent on the size of the 
plant. It was about 0.6 MJ/kg RME for all the plant sizes (Section 3.5.2). However, this means 
that compared to the oil extraction with physical allocation, it was somewhat higher for small-
scale plants, and almost twice as high for medium- and large-scale plants due to the higher oil 
yields in large-scale plants (Tables 115, 118 and 121). The energy demand was about 10% of 
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the total, the GWP- and POCP-emissions a few tenths of one per cent, and AP- and EP-
emissions a few hundredths of one per cent of the total (Tables 115, 118 and 121). 
 
The demand for methanol gave a requirement for energy of 12-13% of the total, GWP-
emissions 2.3-2.4% of the total and AP-, EP- and POCP-emissions a few tenths of one per 
cent of the total (Tables 115, 118 and 121). GWP-emissions could be reduced to the same 
level as with straight rapeseed oil fuel with methanol from biomass e.g. Salix (see scenario 
analysis, Section 4.9). But because methanol from biomass is more complicated to produce 
and e.g. the Salix requires it being cultivated, most emissions would increase: HC and CO by 
a factor of 7-8 and NOx by a factor of 3-4 (Table 30). The energy requirement for producing 
the methanol would increase by a factor of 3-4 (Table 30). The demand for catalyst gave a 
requirement for energy and GWP-emissions of a few tenths of one per cent of the total and 
AP-, EP- and POCP-emissions a few hundredths of one per cent of the total (Tables 115, 118 
and 121). 
 
When it was considered that carbon atoms of biomass origin replaced fossil carbon atoms in 
the replaced fossil glycerine, the GWP decreased by 11.1 g CO2-eq/MJengine for all three RME 
plant sizes studied (Table 133 and Tables A6, A10 and A14, Appendix 1). 
 
The most significant statements above point out that the methanol was the most important 
factor for emissions and energy requirement during the transesterification. The influence from 
the manufacturing of catalyst was negligible. 
 
When ethanol fuel was compared with rapeseed oil and RME during physical allocation, the 
energy requirement was higher (7-38%), the GWP-emissions lower (15-20%), the AP- and 
EP-emissions lower (39-43%) and the POCP-emissions much higher (250-330%) (Table 133, 
see also normalised values in Figure 6, Section 6). The reasons for the higher requirement of 
energy were mainly the high energy input for manufacturing of ignition improver (Beraid) 
and denaturants but also the higher requirement of process energy as heat (steam) (Tables 
114-122 and Tables A3-A14 and A17-A22, Appendices 1-2). The lower GWP-emissions 
depended mainly on the fact that the ethanol fuel gave a higher yield (52000 MJ/ha compared 
to 28000-42000 MJ/ha, Table 132) compared to rapeseed oil and RME, which gave more 
energy in the harvested product [MJ/ha] to spread out the emissions over. However, this effect 
was somewhat counteracted by the fact that the production of ignition improver and 
denaturants gave high emissions. The lower AP- and EP-emissions depended on lower NOx-
emissions when the fuel produced was used (Table 102) compared to rapeseed oil and RME 
and higher yields (see above for explanation). The higher POCP-emissions depended on 
higher HC-emissions when the fuel produced was used (Table 102) compared to rapeseed oil 
and RME. Absolute differences are accounted for in Table 181 (Section 4.11.2) with 
probabilities for the differences in Table 185. 
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Table 132. Energy produced from the different plants 
 
Type of plant Fuel Work 

 [kg/ha] [MJ/ha] [MJengine/ha] 

Small-scale rapeseed oil   756 28948   9392 

Small-scale RME   727 27993   9759 

Small-scale ethanol fuel 2072 52062 20617 

Medium-scale rapeseed oil 834 31928 10358 

Medium-scale RME 802 30875 10763 

Medium-scale ethanol fuel 2072 52062 20617 

Large-scale rapeseed oil 1089 41719 13535 

Large-scale RME 1048 40343 14064 

Large-scale ethanol fuel 2072 52062 20617 
 
 
Table 133. Comparison of small-, medium- and large-scale production of rapeseed oil, RME 
and ethanol fuel with physical allocation 
 
Type of plant GWP AP EP POCP Input energy

 [g/MJengine] [g/MJengine] [g/MJengine] [g/MJengine] [MJ/MJengine]

Small-scale extraction, rapeseed oil 121 1.94 0.343 0.0261 0.692 

Small-scale transesterification, RME (fossil methanol) 127 1.98 0.351 0.0232 0.846 

Small-scale ethanol fuel 102 1.16 0.199 0.0999 0.907 

Medium-scale extraction, rapeseed oil 119 1.93 0.341 0.0259 0.641 

Medium-scale transesterification, RME (fossil methanol) 125 1.97 0.349 0.0230 0.793 

Medium-scale ethanol fuel 101 1.17 0.203 0.0927 0.884 

Large-scale extraction, rapeseed oil 122 1.94 0.343 0.0264 0.669 

Large-scale transesterification, RME (fossil methanol) 127 1.98 0.351 0.0235 0.814 

Large-scale ethanol fuel 103 1.16 0.201 0.0924 0.891 
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Table 134. Comparison of small-, medium- and large-scale production of rapeseed oil and 
RME with physical allocation, relationship in per cent between different parameters 
 
Type of plants compared GWP AP EP POCP Input energy 

 [%] [%] [%] [%] [%] 

Medium- / small-scale rapeseed oil -1.79 -0.63 -0.58   -0.70   -7.33 

Large- / small-scale rapeseed oil +0.24 +0.19 +0.21   +1.21   -3.26 

Large- / medium-scale rapeseed oil +2.07 +0.83 +0.80   +1.92   +4.38 

Medium- / small-scale RME -1.65 -0.59 -0.54   -0.78   -6.30 

Large- / small-scale RME -0.07 +0.07 +0.10   +1.10   -3.79 

Large- / medium-scale RME +1.61 +0.67 +0.64   +1.89   +2.67 

Small-scale rapeseed oil / RME -4.41 -2.05 -2.39 +12.45 -18.29 

Medium-scale rapeseed oil / RME -4.55 -2.08 -2.43 +12.54 -19.19 

Large-scale rapeseed oil / RME -4.12 -1.93 -2.28 +12.57 -17.84 
 
 
Table 135. Comparison of small-, medium- and large-scale production of ethanol fuel with 
physical allocation, relationship in per cent between different parameters 
 
Type of plants compared GWP AP EP POCP Input energy 

 [%] [%] [%] [%] [%] 

Medium- / small-scale ethanol   -0.51   +0.97   +1.76   -7.20 -2.49 

Large- / small-scale ethanol   +1.18   +0.28   +1.04   -7.51 -1.73 

Large- / medium-scale ethanol   +1.70   -0.69   -0.71   -0.34 +0.77 

Medium- / small-scale ethanola   -3.63 +10.55 +25.61 -25.28 -4.34 

Large- / small-scale ethanola   +8.42   +3.01 +15.14 -26.39 -3.03 

Large- / medium-scale ethanola +12.51   -6.82   -8.34   -1.48 +1.37 
a Cultivation and use of fuel excluded from calculations. 
 
 

4.6 Influence of allocation method 
 
The alternative allocation methods to physical allocation (above), studied here were: no 
allocation, economic allocation and allocation with expanded system. 
 
The beginning of Section 3.10.1 describes generally how the physical and economic 
allocations were performed step by step. The beginning of Section 3.10.1.2 describes in detail 
how the physical and economic allocations were performed for rapeseed oil, RME and 
ethanol fuels (see also Tables 114-122 and Tables A3-A14 and A17-A22, Appendices 1-2). 
Section 3.10.2 describes in detail how allocation with expanded system was performed (see 
also Tables A3-A14 and A17-A22, Appendices 1-2). 
 
With no allocation, both energy requirement and emissions were lowest for large-scale plants 
when rapeseed oil or RME was produced (Table 136). However, when ethanol fuel was 
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produced, the GWP-, AP- and EP-emissions were lowest from small-scale plants and the 
POCP-emissions and energy requirements were lowest from medium-scale plants. 
 
No allocation gave, for emissions and energy requirement, the same results as physical 
allocation but with greater differences when small-scale plants were compared with medium-
scale plants both for rapeseed oil fuel and RME. However, when small-scale plants were 
compared with large-scale plants and when medium-scale plants were compared with large-
scale plants, no allocation gave different results with much greater differences for impacts 
from emissions and energy requirement, to the advantage of large-scale plants (Tables 133 
and 136). This explains the divergence from the physical allocation. When rapeseed oil 
production was compared with RME production, no allocation gave the same results with 
about the same differences as physical allocation (Table 136). 
 
For AP-, EP- and POCP-emissions and energy requirement, no allocation gave the same 
results as physical allocation when small-scale plants were compared with medium-scale 
plants for production of ethanol fuel. For GWP-, AP-, EP- and POCP-emissions, no allocation 
also gave the same results as physical allocation when small-scale plants were compared with 
large-scale plants for production of ethanol fuel. However, when small-scale plants were 
compared with large-scale plants, energy requirements gave different results, and when 
medium-scale plants were compared with large-scale plants AP-, EP- and POCP-emissions 
with no allocation gave different results in comparison to physical allocation (Tables 133 and 
136). This explains the divergence from the physical allocation. When ethanol fuel production 
was compared to rapeseed oil and RME production, no allocation gave the same results for 
GWP-, AP-, EP-, and POCP-emissions with about the same differences as physical allocation 
(Table 136). However, the results for the energy requirement were contradictory during the 
above comparison. 
 
 
Table 136. Comparison of small-, medium- and large-scale production of rapeseed oil, RME 
and ethanol fuel with no allocation 
 
Type of plant GWP AP EP POCP Input energy

 [g/MJengine] [g/MJengine] [g/MJengine] [g/MJengine] [MJ/MJengine]

Small-scale extraction, rapeseed oil 257 2.75 0.478 0.0372 1.47 

Small-scale transesterification, RME (fossil methanol) 263 2.79 0.486 0.0343 1.63 

Small-scale ethanol fuel 145 1.42 0.242 0.1048 1.22 

Medium-scale extraction, rapeseed oil 233 2.61 0.454 0.0352 1.26 

Medium-scale transesterification, RME (fossil methanol) 239 2.65 0.463 0.0324 1.42 

Medium-scale ethanol fuel 145 1.43 0.246 0.0974 1.21 

Large-scale extraction, rapeseed oil 181 2.30 0.403 0.0314 1.00 

Large-scale transesterification, RME (fossil methanol) 189 2.35 0.413 0.0287 1.17 

Large-scale ethanol fuel 150 1.48 0.255 0.0999 1.35 
 
 
With economic allocation, both energy requirement and emissions were lowest for large-scale 
plants independent of whether rapeseed oil, RME or ethanol fuel was produced (Table 137). 
For rapeseed oil and RME this was the same result as with no allocation (Tables 136 and 
137). 
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For emissions and energy requirement, economic allocation gave the same results as physical 
allocation but with slightly larger differences when small-scale plants were compared with 
medium-scale plants for production of rapeseed oil, RME and ethanol fuels (Tables 133 and 
137). However, when small-scale plants were compared with large-scale plants and when 
medium-scale plants were compared with large-scale plants, economic allocation gave 
different results with about the same differences for impacts from emissions and energy 
requirements in favour of large-scale plants (Tables 133 and 137). This explained the 
divergence from physical allocation. When rapeseed oil production was compared to RME 
production, economic allocation gave the same results with about the same differences as 
physical allocation (Tables 133 and 137) i.e. lower GWP-, AP- and EP-emissions and lower 
energy requirements for production of rapeseed oil. When production of ethanol fuel was 
compared with rapeseed oil and RME production, the results were the same as for physical 
allocation (Tables 133 and 137) i.e. lower GWP-, AP- and EP- emissions but higher POCP-
emissions and energy requirements. 
 
 
Table 137. Comparison of small-, medium- and large-scale production of rapeseed oil, RME 
and ethanol fuel with economic allocation 
 
Type of plant GWP AP EP POCP Input energy

 [g/MJengine] [g/MJengine] [g/MJengine] [g/MJengine] [MJ/MJengine]

Small-scale extraction, rapeseed oil 147 2.10 0.369 0.0282 0.84 

Small-scale transesterification, RME (fossil methanol) 158 2.17 0.382 0.0257 1.02 

Small-scale ethanol fuel 138 1.38 0.235 0.1041 1.17 

Medium-scale extraction, rapeseed oil 143 2.07 0.364 0.0278 0.77 

Medium-scale transesterification, RME (fossil methanol) 152 2.13 0.376 0.0253 0.94 

Medium-scale ethanol fuel 138 1.39 0.239 0.0965 1.14 

Large-scale extraction, rapeseed oil 137 2.04 0.359 0.0277 0.75 

Large-scale transesterification, RME (fossil methanol) 143 2.08 0.367 0.0248 0.90 

Large-scale ethanol fuel 132 1.34 0.230 0.0955 1.10 
 
 
For all plant sizes, allocation with expanded system gave the lowest energy requirement and 
POCP-emissions if RME was produced and the lowest emissions for GWP-, AP- and EP-
emissions if ethanol fuel was produced (Table 138). 
 
When rapeseed oil and RME production was compared, the GWP-, and AP-emissions and the 
energy requirements were least for RME production (Table 138). This is the opposite result in 
comparison to physical allocation (Table 133) (see also the Monte Carlo simulation in Section 
4.11.2) and was due to a high environmental load being replaced when the glycerine produced 
replaced glycerine produced from fossil raw material (see Tables A5-A6, A9-A10 and A13-
A14, Appendices 1-2). POCP-emissions were also lower for RME production (Table 138) but 
this result agreed with the result from the physical allocation (Table 133). However, the EP-
emissions were slightly lower for the rapeseed oil production (Table 138) and this result also 
agreed with the physical allocation (Table 133). 
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For GWP-emissions when rapeseed oil or RME was produced, the results were the same as 
for no allocation and economic allocation, that large-scale plants had the lowest 
environmental impact (Tables 136, 137 and 138). For the same type of emissions when 
ethanol fuel was produced, small-scale plants gave the lowest emissions, the same result as 
with no allocation (Tables 136 and 138). For AP-emissions, allocation with expanded system 
gave a diverging result from all other allocation methods, that small-scale plants gave the 
lowest environmental impact when rapeseed oil fuel or RME was produced (Tables 133 and 
136-138). For EP-emissions allocation with expanded system gave the same result as physical 
allocation, that medium-scale plants gave the lowest environmental impact when rapeseed oil 
fuel or RME was produced (Tables 133 and 138). AP- and EP-emissions were lowest for 
small-scale production of ethanol fuel, which is the same result as for physical and no 
allocation (Tables 133, 136 and 138). POCP-emissions and energy requirement were lowest 
for small-scale plants when rapeseed oil or RME fuel was produced, a diverging result from 
all other allocation methods (Tables 133 and 136-138). POCP-emissions and energy 
requirement were lowest for medium-scale plants when ethanol fuel was produced, the same 
result as for no allocation and for energy requirement also physical allocation (Tables 133, 
136 and 138). 
 
Negative values meant that the total emissions or energy requirement for the studied systems 
decreased instead of the normal increase. This was possible because the emissions and energy 
requirement subtracted from replaced by-products were greater than total emissions and 
energy requirement from the system studied. 
 
Normalised results from allocation with expanded system are accounted for in Figure 7, 
Section 6. 
 
 
Table 138. Comparison of small-, medium- and large-scale production of rapeseed oil, RME 
and ethanol fuel with allocation according to expanded system (soybean) 
 
Type of plant GWP AP EP POCP Input energy

 [g/MJengine] [g/MJengine] [g/MJengine] [g/MJengine] [MJ/MJengine]

Small-scale extraction, rapeseed oil 158 1.43 0.368   0.0091 -0.246 

Small-scale transesterification, RME (fossil methanol) 110 1.36 0.369 -0.0025 -1.052 

Small-scale ethanol fuel   94 0.74 0.186   0.0905   0.345 

Medium-scale extraction, rapeseed oil 151 1.51 0.363   0.0119 -0.167 

Medium-scale transesterification, RME (fossil methanol) 103 1.44 0.364   0.0002 -0.982 

Medium-scale ethanol fuel   94 0.76 0.190   0.0831   0.338 

Large-scale extraction, rapeseed oil 147 1.85 0.365   0.0219   0.418 

Large-scale transesterification, RME (fossil methanol) 100 1.77 0.366   0.0098 -0.423 

Large-scale ethanol fuel   99 0.81 0.199   0.0856   0.477 
 
 
During production of ethanol fuel, the GWP-, AP- and EP-emissions were lower for all 
production scales and allocation methods studied in comparison to rapeseed oil and RME 
fuels (Tables 133, 136, 137 and 138). During production of ethanol fuel the POCP-emissions 
and energy requirements were higher for nearly all production scales and allocation methods 
studied in comparison to rapeseed oil and RME fuels (Tables 133, 136, 137 and 138). The 
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exception was energy requirements for small- and medium-scale plants with no allocation. 
The reason for higher POCP-emissions during ethanol fuel production was high HC-
emissions during use of the ethanol fuel, during production of ignition improver and 
denaturants and during production of process heat (Tables 116, 119 and 122 and Tables A17-
A22, Appendix 2). The reason for higher energy requirements during ethanol fuel production 
was a high requirement of process energy during production of ignition improver and 
denaturants and a high requirement of process heat (steam) during ethanol production (Tables 
116, 119 and 122 and A17-A22, Appendix 2). 
 
Compared with physical allocation (Table 133) the differences with allocation with expanded 
system (Table 138) were usually greater between the rapeseed oil, RME and ethanol fuels. 
The differences between plant sizes were also greater with allocation with expanded system. 
 
The stability over time varied between the allocation methods studied. No allocation and 
physical allocation always gave the same outputs with the same well-defined inputs, 
independent of time. However the results from the two methods do not have to be same. The 
results from economic allocation depend on the prices of the products. Because the prices 
vary from day to day, the results also vary. Therefore the results from an economic allocation 
correspond to the price level of the products on a specific day. 
 
When it was considered that carbon atoms of biomass origin replaced fossil carbon atoms in 
replaced fossil glycerine during RME production, the GWP-emissions decreased by 11.1 g 
CO2-eq/MJengine for all three plant sizes studied in systems with physical, economic and no 
allocation (see Tables 133, 136 and 137 and Tables A6, A10 and A14, Appendix 1). With 
expanded systems to avoid allocation (Table 138) this replacement is already considered with 
the system expansion. If the replaced glycerine had been of biomass origin instead, the above 
described consideration would have been unnecessary. 
 
In this example during allocation with expanded system, rapeseed oil in rapemeal replaces 
soyoil in feed, rapemeal replaced soymeal and glycerine replaced fossil glycerine. In the same 
way during the ethanol fuel production, distiller’s waste replaced soymeal and soyoil in 
soymeal feed during allocation with expanded system. One problem was that the soybean 
could be cultivated in many places around the world with very varying transport distances and 
cultivation conditions. How much fertiliser was used during cultivation? Was the soybean 
cultivated in Europe or America (very large differences in requirement of transportation 
energy and emissions)? Was the replaced glycerine of fossil or bio origin? If the glycerine 
emissions from the expanded system were high (as in this study), RME production would be 
favoured by reduced emissions. If rapeseed oil in rapemeal after small- and medium-scale 
extraction (as in this study) replaced soyoil in feed, after transcontinental transport with high 
environmental load, small-scale extraction (with lower extraction efficiency) would be 
favoured by reduced emissions. This explains why allocation with expanded system found 
RME and small-scale oil extraction to be more favourable (Table 138) compared to the other 
allocation methods for many of the environmental impacts studied. 
 
One reason, that no allocation, physical allocation and economic allocation did not give the 
same results was that the differences were small between the different plant sizes 
(requirement of three digits in the physical allocation to separate them, Tables 133, 136, 137 
and 138). Therefore rather small differences between the methods were enough to produce 
different results. It was hard to separate the different plant sizes. When straight rapeseed oil 
fuel and RME were compared, the differences were greater and all these three methods gave 
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the same results (Tables 133, 136, 137 and 138). For ethanol production the same was valid in 
most cases in spite of a somewhat different fuel processing system. 
 
Another reason behind no allocation not giving the same results as physical allocation and 
economic allocation was that the allocation distributed the emissions and energy requirement 
fairly between the products (Tables 106-109). The emissions and energy requirements for 
main inputs (e.g. cultivation of rapeseed/wheat, electricity for extraction/transesterification/ 
ethanol production, hexane/methanol/ignition improver emissions etc.) were distributed: 
between rapeseed oil and meal; between RME, glycerine and meal; or between ethanol fuel 
and distiller’s waste. For example, if the oil extraction efficiency was high and/or the value of 
the oil (physical or economic) was high, the oil part-value of the allocation would be high. 
Less value would be excluded from the allocation addition as meal-value or glycerine-value 
and the difference would be less compared with no allocation. This means that the distance 
between the allocated case and the non-allocated case would be less with higher oil extraction 
efficiency, here equivalent to larger oil extraction plants. This corresponds well with the 
results in Tables 133, 136 and 137 where the values from large-scale plants changed least 
between allocation methods. The above-described effect was not valid for physical allocation 
of ethanol fuel production because the same amount of ethanol and distiller’s waste (Table 
108) was produced independent of the size of the production plant. The fact that rapeseed oil 
and RME were given a higher economic value (shares of meal, glycerine and RME in Table 
107) compared to their physical value (shares of meal, glycerine and RME in Table 106) 
indicated that economic allocation should give values closer to no allocation compared with 
physical allocation. Even this fact corresponds well with the results in Tables 133, 136 and 
137. For ethanol fuel production, the dried distiller’s waste from large plants was more 
(economically) valuable than wet distiller’s waste from small- and medium-scale plants 
(Table 109). The result was more emission and energy requirement values allocated away 
with the distiller’s waste and lower emissions and energy requirements for the main product 
for large-scale plants. The differences between no allocation and economic allocation were 
greatest for large-scale plants as shown in Tables 136 and 137. 
 
The inputs for transesterification (e.g. methanol, catalyst, electricity etc.) were distributed 
between RME and glycerine. The energy ratio between RME and glycerine was independent 
of the plant size (Tables 106 and 107) but the economic value (7.1%) was somewhat higher 
than the energy (physical) value (4.6%) of glycerine. This indicated that a higher glycerine 
value would be excluded at economic allocation than at physical allocation. This meant here 
that physical allocation was closer to the case with no allocation than economic allocation, the 
opposite to the main allocation (RME, meal and glycerine) with the main process inputs 
above. The main allocation (for explanation see beginning of Section 3.10.1.2) with the main 
process inputs had a much greater contribution than the transesterification allocation (for 
explanation see beginning of Section 3.10.1.2) with the transesterification inputs, (Tables 114-
122 and Tables A6, A10 and A14, Appendix 1) and therefore the contribution from the 
transesterification inputs did not come through. 
 
The discussion about the physical and economic allocation above explains why the 
differences in the results between the two methods arose. 
 
Allocation with an expanded system may be the fairest method if the system is viewed from a 
horizon to study impact on emissions from a specific change in the total fuel production to 
end use system. However, the great drawback with this method is that a change (or changes) 
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in the assumptions in the production of the replaced products may have a very large influence 
on the conclusions. 
 
It may be that physical allocation is the most suitable allocation method when a technical 
system is studied, as in this study, because of more stable results and well-defined input and 
output values. Allocation with an expanded system maybe the most suitable allocation method 
when the systems are studied from a more society orientated overall view. 
 
 

4.7 Economic calculations, comparison between scales and fuels 
 
Usually fuels are sold on a volume basis [SEK/litrefuel], an easy measure to understand when 
comparing fuels (Table 140). The price for diesel oil MK1 (petrol station) was 6.464 
SEK/litre (8.08 SEK/litre including value-added tax) (OKQ8, 2003) in January 2003. One 
problem when comparing diesel fuels on a volume basis is that their energy contents are 
different and also their efficiency when used in an engine, therefore it is most fair to make 
comparisons on energy output from engine (Table 142) [SEK/MJengine]. Therefore that 
measure was used below. A comparison could also be made on a mass basis (Table 139) or on 
energy content in fuel (Table 141), but these comparisons still have some of the drawbacks 
from the first method and were therefore not used. However, these measures would work if 
just one fuel was being studied. 
 
 
Table 139. Production costs for the fuels produced in different plant sizes, based on mass 
 
Type of plant Small farm [SEK/kgfuel] Large farm [SEK/kgfuel]  Purchased 

 Total EU area Total EU area  seed 

 production comp. incl. production comp. incl.  [SEK/kgfuel] 

Small-scale rapeseed oil 10.55   7.45   8.76   5.66    5.12 

Small-scale RME 14.37 11.16 12.51   9.30    8.74 

Small-scale ethanol fuel 12.87 11.74 12.07 10.95  10.69 

Medium-scale rapeseed oil   9.12   6.31   7.50   4.69    4.20 

Medium-scale RME 11.01   8.10   9.33   6.41    5.90 

Medium-scale ethanol fuel   9.78   8.65   8.99   7.86    7.60 

Large-scale rapeseed oil   7.54   5.40   6.30   4.16    3.78 

Large-scale RME   8.23   6.00   6.94   4.71    4.32 

Large-scale ethanol fuel   7.59   6.47   6.80   5.68    5.42 
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Table 140. Production costs for the fuels produced in different plant sizes, based on volume 
 
Type of plant Small farm [SEK/litrefuel] Large farm [SEK/litrefuel]  Purchased 

 Total EU area Total EU area  seed 

 production comp. incl. production comp. incl.  [SEK/litrefuel]

Small-scale rapeseed oil   9.71 6.86   8.07 5.22  4.72 

Small-scale RME 12.73 9.89 11.09 8.24  7.74 

Small-scale ethanol fuel 10.68 9.74 10.02 9.09  8.87 

Medium-scale rapeseed oil   8.40 5.82   6.90 4.32  3.87 

Medium-scale RME   9.76 7.17   8.26 5.68  5.23 

Medium-scale ethanol fuel   8.11 7.18   7.46 6.52  6.31 

Large-scale rapeseed oil   6.95 4.97   5.80 3.83  3.48 

Large-scale RME   7.29 5.32   6.15 4.17  3.83 

Large-scale ethanol fuel   6.30 5.37   5.65 4.71  4.50 
 
 
Table 141. Production costs for the fuels produced in different plant sizes, based on fuel 
energy 
 
Type of plant Small farm [SEK/MJfuel] Large farm [SEK/MJfuel]  Purchased 

 Total EU area Total EU area  seed 

 production comp. incl. production comp. incl.  [SEK/MJfuel] 

Small-scale rapeseed oil 0.275 0.195 0.229 0.148  0.134 

Small-scale RME 0.373 0.290 0.325 0.242  0.227 

Small-scale ethanol fuel 0.512 0.467 0.481 0.436  0.426 

Medium-scale rapeseed oil 0.238 0.165 0.196 0.123  0.110 

Medium-scale RME 0.286 0.210 0.242 0.167  0.153 

Medium-scale ethanol fuel 0.389 0.344 0.358 0.313  0.303 

Large-scale rapeseed oil 0.197 0.141 0.165 0.108  0.099 

Large-scale RME 0.214 0.156 0.180 0.122  0.112 

Large-scale ethanol fuel 0.302 0.257 0.271 0.226  0.216 
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Table 142. Production costs for the fuels produced in different plant sizes, based on engine 
output energy 
 
Type of plant Small farm [SEK/MJengine] Large farm [SEK/MJengine]  Purchased 

 Total EU area Total EU area  seed 

 production comp. incl. production comp. incl.  [SEK/MJengine]

Small-scale rapeseed oil 0.849 0.600 0.705 0.456  0.412 

Small-scale RME 1.071 0.831 0.932 0.693  0.651 

Small-scale ethanol fuel 1.293 1.180 1.214 1.100  1.075 

Medium-scale rapeseed oil 0.734 0.508 0.603 0.378  0.338 

Medium-scale RME 0.821 0.603 0.695 0.478  0.440 

Medium-scale ethanol fuel 0.983 0.869 0.903 0.790  0.764 

Large-scale rapeseed oil 0.607 0.434 0.507 0.334  0.304 

Large-scale RME 0.613 0.447 0.517 0.351  0.322 

Large-scale ethanol fuel 0.763 0.650 0.684 0.570  0.545 
 
 
When the rapeseed oil was extracted in a medium-scale plant instead of a small-scale plant 
(Table 142), the fuel production cost based on engine energy output (incl. receipts from meal) 
was reduced by approx. 14% (by 15-17% if EU area compensation was included and by 18% 
if the seed was purchased for 2.00 SEK/kg). When the rapeseed oil was extracted in a large-
scale plant instead of a small-scale plant the fuel production cost (incl. receipts from meal) 
was reduced by approx. 28% (by 27-28% if EU area compensation was included and by 26% 
if the seed was purchased for 2.00 SEK/kg). 
 
When the RME was produced in a medium-scale plant instead of a small-scale plant (Table 
142) the fuel production cost based on engine energy output (incl. receipts from meal and 
glycerine) was reduced by 23-25% (by 27-31% if EU area compensation was included and by 
32% if the seed was purchased for 2.00 SEK/kg). If the RME was produced on a large-scale 
plant instead of a small-scale plant the fuel production cost (incl. receipts from meal and 
glycerine) was reduced by 43-45% (by 46-49% if EU area compensation was included and by 
approx. 51% if the seed was purchased for 2.00 SEK/kg). 
 
When the ethanol fuel was produced in a medium-scale plant instead of a small-scale plant 
(Table 142) the fuel production cost based on engine energy output (incl. receipts from 
distiller’s waste) was reduced by 24-26% (by 26-28% if EU area compensation was included 
and by 29% if the wheat was purchased for 0.97 SEK/kg). If the ethanol fuel was produced in 
a large-scale plant instead of a small-scale plant the fuel production cost (incl. receipts from 
distiller’s waste) was reduced by 41-44% (by 45-48% if EU area compensation was included 
and by approx. 49% if the wheat was purchased for 0.97 SEK/kg). 
 
When RME was produced instead of rapeseed oil (Table 142) the fuel production cost based 
on engine energy output (incl. receipts from meal and glycerine) was increased by 26-32; 12-
15; and 1-2% for small-; medium-; and large-scale plants respectively (by 39-52; 19-26; and 
3-5% for small-; medium-; and large-scale plants respectively if EU area compensation was 
included and by 58; 30; and 6% for small-; medium-; and large-scale plants respectively if the 
seed was purchased for 2.00 SEK/kg). 
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When ethanol fuel was produced instead of rapeseed oil (Table 142) the fuel production cost 
based on engine energy output (incl. receipts from distiller’s waste and meal) was increased 
by 52-72; 34-50; and 26-35% for small-; medium-; and large-scale plants respectively (by 97-
140; 71-110; and 50-71% for small-; medium-; and large-scale plants respectively if EU area 
compensation was included and by 160; 130; and 79% for small-; medium-; and large-scale 
plants respectively if the rapeseed was purchased for 2.00 SEK/kg and the wheat was 
purchased for 0.97 SEK/kg). 
 
For larger farms the results for the above cases were similar (Table 142). When rapeseed oil 
produced from seed grown on a large farm was compared with seed grown on a smaller farm, 
the fuel production cost based on engine energy output (incl. receipts from meal) was reduced 
by 16-18% (reduced by 23-26% with EU area compensation included). When RME produced 
on seed grown on a large farm was compared with seed grown on a smaller farm the fuel 
production cost based on engine energy output (incl. receipts from meal and glycerine) was 
reduced by 13-16% (reduced by 17-22% with EU area compensation included). When ethanol 
fuel produced on wheat grown on a large farm was compared with wheat grown on a smaller 
farm the fuel production cost based on engine energy output (incl. receipts from distiller’s 
waste) was reduced by 6-10% (reduced by 7-12% with EU area compensation included). 
 
The reason behind the costs being lower with larger production systems is that labour in 
particular can be used more efficiently. Larger extraction plants also have higher oil 
extraction efficiency and therefore produce a higher yield of the more valuable rapeseed oil. 
For ethanol production plants in particular, larger plants utilise the energy (electricity and 
heat) more efficiently than smaller plants. Machines and buildings are also used more 
efficiently in a larger plant. The higher costs for transport to larger plants are not high enough 
to come through. 
 
The more complicated transesterification process made the RME produced more expensive 
than rapeseed oil, especially for smaller plants. For large plants the difference was small or 
negligible (Table 142). The even more complicated ethanol production process made ethanol 
fuel produced more expensive than rapeseed oil and RME, especially for smaller plants 
(Table 142). The ethanol fuel also became more expensive due to the requirement for 
expensive ignition improver and denaturants (Tables 125, 128 and 131). 
 
The cost for diesel oil MK1 was 6.46 SEK/litre (OKQ8, 2003: excl. value added tax) 
equivalent to 0.520 SEK/MJengine (density 0.813 kg/l; lower heating value 43.3 MJ/kg (SMP, 
1993); engine efficiency 0.353 calculated after Aakko et al. (2000) and SMP (1993)). These 
prices would make it profitable to produce rapeseed oil and RME in large-scale plants if the 
EU area compensation is on the level of today (Table 142). If the seed is produced on a large 
farm it would also be profitable to produce rapeseed oil and RME in a medium-scale plant 
with the EU area compensation (Table 142). Rapeseed oil could be produced profitably in a 
small plant if the seed were grown on a large farm and if there was EU area compensation 
(Table 142). If the seed is purchased for 2.00 SEK/kg, rapeseed oil could be produced 
profitably in all the plant sizes studied and RME in the medium- and large-scale plants (Table 
142). Ethanol as ethanol fuel could not be produced profitably in any of the cases studied, but 
is not far from being produced profitably if the wheat were grown on a large farm with EU 
area compensation and after that processed in a large-scale plant (Table 142). The same is 
also valid for wheat purchased for 0.97 SEK/kg. 
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If the cost for the diesel oil MK1 was what farmers had to pay for it in 2002 and 2003 
(Henemo, 2002 and 2003): 5.70 SEK/litre (0.458 SEK/MJengine), rapeseed oil and RME could 
only be produced profitably, with EU area compensation, in large-scale plants (Table 142). If 
the seed was grown on a large farm with EU area compensation, rapeseed oil could also be 
produced profitably in small- and medium-scale plants (Table 142). If the seed was purchased 
for 2.00 SEK/kg, rapeseed oil could be produced profitably in all the plant sizes studied and 
RME in the medium- and large-scale plants as with the higher MK1 price above (Table 142). 
Ethanol fuel could not be produced profitably in any of the cases studied (Table 142). 
 
RME was assumed to make 5.61 SEK/litre (Lindkvist, pers. comm.) equivalent to 0.472 
SEK/MJengine (density 0.886 kg/l; lower heating value 38.5 MJ/kg (SMP, 1993); engine 
efficiency 0.349 calculated after Aakko et al. (2000) and SMP (1993)). At that price, RME 
could be produced profitably in large-scale plants if the seed were grown with the EU area 
compensation of today (Table 142). If the seed were purchased for 2.00 SEK/kg, RME could 
be produced profitably in medium- and large-scale plants (Table 142). 
 
Ethanol fuel was assumed to make 6.30 SEK/litre (Elfving, pers. comm.) equivalent to 0.763 
SEK/MJengine (density 0.830 kg/l; (Sekab, 2003) lower heating value 25.1 MJ/kg (calculated 
after Aylward & Findlay, 1994; Schmitz, 2003; Solomons, 1996; Lif, pers. comm.; and 
Sekab, 2003); engine efficiency 0.396 calculated after Haupt et al. (1999)). At that price, 
ethanol fuel could be produced profitably in large-scale plants in all the cases studied (Table 
142). 
 
The above results show that production of rapeseed oil and RME may be a way for farmers to 
make rapeseed production more profitable (get a higher price for the seed than 2.00 SEK/kg) 
and get better paid for the cultivation work. For ethanol fuel production this would be harder 
because the requirement of larger plants to become profitable. 
 
 

4.8 Sensitivity analysis 
 
This section deals with traditional sensitivity analysis, which is presented for each of the fuels 
studied at a time in Tables 143-145 with physical allocation and in Tables 146-148 with no 
allocation. For description of the conditions for the sensitivity analysis see Section 3.11.1. 
When the factors were changed, all factors except for seed harvest had practically the same 
change in impact categories and energy requirements, but with the opposite sign, when they 
were changed by +20% or –20% and therefore only the change +20% is accounted for in 
Tables 143-148. For example for RME production, the GWP-emissions changed by e.g. 
+15.7% when the use of fertiliser increased by 20% and changed by –15.7% when the use of 
fertiliser decreased by 20%. 
 
It was shown that all impact categories studied and the energy requirements were quite 
sensitive to changes in seed harvest, emissions (AP, EP and POCP) when the rapeseed oil, 
RME or ethanol fuel produced was used, and use of fertilisers (Tables 143-145). Changes in 
soil emissions and tractive power also had an influence, but to a much smaller extent. For 
ethanol fuel production, production of ignition improver, steam (heat) production and seed 
drying also had some influence (Table 145). The effects of the other changes were negligible. 
With no allocation the results were similar (Tables 146-148) but with a somewhat lower 
influence for the factor ‘use of fuels produced’ (rapeseed oil, RME and ethanol fuel). After 
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the allocation the values that were shared with the meal, glycerine or distiller’s waste were 
lower (Tables 143-145 in comparison to Tables 146-148). The values that were not shared 
with the meal, glycerine or distiller’s waste (values connected to the transesterification or 
ethanol processing and emissions when the rapeseed oil, RME or ethanol fuel produced was 
used) were higher. 
 
 
Table 143. Changes in impact categories and energy requirements when some production 
factors were changed in a sensitivity analysis for small-scale production of rapeseed oil, 
physical allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Seed harvest, +20% -16.1 -6.2 -5.8 -5.7 -12.9

Seed harvest, -20% +24.2 +9.3 +8.8 +8.6 +19.4

Use of fertiliser, +20% +17.7 +6.6 +6.2 +4.5 +10.2

Soil emissions, +20% +6.7 +5.5 +5.7 0 0

Use of pesticides, +20% +0.045 +0.012 +0.0028 +0.0087 +0.29

Use of tractive power, +20% +1.5 +0.77 +0.78 +2.3 +3.5

Use of machinery for cultivation, +20% +0.035 +0.0056 +0.0027 +0.039 +1.3

Use of oil for seed drying, +20% +0.60 +0.030 +0.022 +0.60 +1.5

Use of electricity for oil extraction, +20% +0.074 +0.012 +0.0057 +0.083 +2.7

Emissions when driving on the rapeseed oil, +20% +0.049 +12.4 +13.0 +12.5 0
 
 
Table 144. Changes in impact categories and energy requirements when some production 
factors were changed in a sensitivity analysis for small-scale production of RME, physical 
allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Seed harvest, +20% -14.2 -5.6 -5.3 -5.9 -9.9

Seed harvest, -20% +21.4 +8.4 +7.9 +8.9 +14.8

Use of fertiliser, +20% +15.7 +6.0 +5.6 +4.6 +7.7

Soil emissions, +20% +6.0 +4.9 +5.2 0 0

Use of pesticides, +20% +0.040 +0.011 +0.0025 +0.0090 +0.22

Use of tractive power, +20% +1.3 +0.70 +0.71 +2.4 +2.7

Use of machinery for cultivation, +20% +0.031 +0.0051 +0.0024 +0.040 +0.98

Use of oil for seed drying, +20% +0.53 +0.028 +0.020 +0.62 +1.1

Use of electricity for oil extraction, +20% +0.066 +0.011 +0.0052 +0.086 +2.1

Use of electricity for transesterification, +20% +0.068 +0.011 +0.0054 +0.090 +2.2

Emissions during production of methanol, +20% +0.46 +0.046 +0.047 +0.19 +2.4

Emissions when driving on the RME, +20% +0.039 +13.1 +13.6 +11.9 0
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Table 145. Changes in impact categories and energy requirements when some production 
factors were changed in a sensitivity analysis for small-scale production of ethanol fuel, 
physical allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Seed harvest, +20% -10.1 -5.8 -5.5 -0.89 -5.7

Seed harvest, -20% +15.3 +8.8 +8.4 +1.4 +8.7

Use of fertiliser, +20% +10.5 +5.9 +5.6 +0.65 +3.9

Soil emissions, +20% +4.2 +4.8 +5.1 0 0

Use of pesticides, +20% +0.048 +0.018 +0.0043 +0.0020 +0.20

Use of tractive power, +20% +1.1 +0.80 +0.83 +0.37 +1.7

Use of machinery for cultivation, +20% +0.032 +0.0073 +0.0036 +0.0079 +0.76

Use of oil for seed drying, +20% +1.1 +0.077 +0.057 +0.24 +1.7

Use of electricity for ethanol production, +20% +0.11 +0.025 +0.012 +0.026 +2.6

Use of steam for ethanol production, +20% +0.59 +1.1 +0.94 +2.1 +0.60
Emissions during production of chemicals, 
   enzymes etc., +20% +0.043 +0.027 +0.0095 +0.0012 +0.079

Emissions during production of ignition 
   improver, +20% +1.4 +0.60 +0.33 +2.7 +5.3

Emissions during production of denaturants, +20% +0.59 +0.077 +0.065 +0.88 +2.2

Emissions during handling of waste water, +20% +0.012 +0.0027 +0.0013 +0.0029 +0.28

Emissions when driving on the ethanol fuel, +20% +0.29 +11.4 +12.2 +13.0 0
 
 
Table 146. Changes in impact categories and energy requirements when some production 
factors were changed in a sensitivity analysis for small-scale production of rapeseed oil, no 
allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Seed harvest, +20% -16.1 -9.3 -8.9 -8.5 -12.9

Seed harvest, -20% +24.2 +13.9 +13.4 +12.8 +19.4

Use of fertiliser, +20% +17.7 +9.9 +9.5 +6.7 +10.2

Soil emissions, +20% +6.7 +8.2 +8.7 0 0

Use of pesticides, +20% +0.045 +0.018 +0.0043 +0.013 +0.29

Use of tractive power, +20% +1.5 +1.2 +1.2 +3.5 +3.5

Use of machinery for cultivation, +20% +0.035 +0.0084 +0.0041 +0.058 +1.3

Use of oil for seed drying, +20% +0.60 +0.046 +0.033 +0.90 +1.5

Use of electricity for oil extraction, +20% +0.074 +0.018 +0.0088 +0.12 +2.7

Emissions when driving on the rapeseed oil, +20% +0.023 +8.7 +9.3 +8.8 0
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Table 147. Changes in impact categories and energy requirements when some production 
factors were changed in a sensitivity analysis for small-scale production of RME, no 
allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Seed harvest, +20% -15.2 -8.8 -8.4 -8.9 -11.2

Seed harvest, -20% +22.8 +13.2 +12.7 +13.4 +16.9

Use of fertiliser, +20% +16.7 +9.4 +8.9 +7.0 +8.9

Soil emissions, +20% +6.4 +7.8 +8.3 0 0

Use of pesticides, +20% +0.042 +0.017 +0.0040 +0.014 +0.25

Use of tractive power, +20% +1.4 +1.1 +1.1 +3.6 +3.1

Use of machinery for cultivation, +20% +0.033 +0.0080 +0.0039 +0.061 +1.1

Use of oil for seed drying, +20% +0.57 +0.043 +0.031 +0.94 +1.3

Use of electricity for oil extraction, +20% +0.070 +0.017 +0.0083 +0.13 +2.4

Use of electricity for transesterification, +20% +0.035 +0.0084 +0.0041 +0.064 +1.2

Emissions during production of methanol, +20% +0.23 +0.034 +0.036 +0.13 +1.3

Emissions when driving on the RME, +20% +0.019 +9.3 +9.8 +8.0 0
 
 
Table 148. Changes in impact categories and energy requirements when some production 
factors were changed in a sensitivity analysis for small-scale production of ethanol fuel, no 
allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Seed harvest, +20% -11.7 -7.7 -7.5 -1.4 -7.0

Seed harvest, -20% +17.8 +11.8 +11.4 +2.1 +10.7

Use of fertiliser, +20% +12.2 +7.9 +7.6 +1.0 +4.8

Soil emissions, +20% +4.8 +6.4 +7.0 0 0

Use of pesticides, +20% +0.055 +0.024 +0.0059 +0.0032 +0.24

Use of tractive power, +20% +1.2 +1.1 +1.1 +0.59 +2.0

Use of machinery for cultivation, +20% +0.037 +0.0098 +0.0048 +0.012 +0.93

Use of oil for seed drying, +20% +1.3 +0.10 +0.077 +0.37 +2.1

Use of electricity for ethanol production, +20% +0.10 +0.027 +0.013 +0.034 +2.5

Use of steam for ethanol production, +20% +0.44 +0.95 +0.82 +2.1 +0.47
Emissions during production of chemicals, 
   enzymes etc., +20% +0.050 +0.036 +0.013 +0.0018 +0.096

Emissions during production of ignition 
   improver, +20% +1.0 +0.49 +0.27 +2.5 +4.0

Emissions during production of denaturants, +20% +0.42 +0.063 +0.053 +0.84 +1.6

Emissions during handling of waste water, +20% +0.013 +0.0036 +0.0018 +0.0045 +0.34

Emissions when driving on the ethanol fuel, +20% +0.20 +9.3 +10.0 +12.4 0
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The influence of increasing and decreasing the seed yield by 20%, increasing and decreasing 
some other factors by 20%, and increasing and decreasing the emissions when using the fuels 
produced by 20% on the difference between small- and large-scales was studied in Tables 
149-154 (for calculations see Section 3.11.1). A negative sign in the tables indicates that the 
large-scale plant has lower emissions/energy requirements. A positive sign indicates the 
opposite. It was demonstrated that the changes in the input parameters had a small or 
negligible influence on the difference between the two production scales. The sign was only 
changed for RME production, in comparison to the original, during physical allocation, for 
GWP- and AP-emissions, which showed a negligible difference between large- and small-
scale RME production (difference just 0.07% for the original case), and for the most 
important factors, seed harvest and use of fertilisers with soil emissions (Table 150). The sign 
was not changed in any case for production of rapeseed oil or ethanol fuel (Tables 149 and 
151). A changed sign indicates that the conditions regarding which production scale gives the 
lowest emissions have changed because of the changed conditions for the production factors. 
The most sensitive factors for changes were seed harvest, use of fertilisers and soil emissions 
(Tables 149-151). Changes in emissions (AP, EP and POCP) when the fuels produced were 
used and use of electricity also had an influence, but to a smaller extent. For ethanol fuel 
production, production of ignition improver and steam (heat) production also had some 
influence (Table 151). The effects of the other changes were negligible. 
 
 
Table 149. Original differences between small- and large-scale systems, and the differences 
when some production factors were changed, rapeseed oil, physical allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Original (no change) (from Table 134) +0.24 +0.19 +0.21 +1.21 -3.26
Seed harvest, +20% +0.45 +0.26 +0.28 +1.34 -3.60

Seed harvest, -20% +0.02 +0.10 +0.13 +1.05 -2.90

Use of fertiliser, +20% +0.07 +0.13 +0.15 +1.12 -3.04

Use of fertiliser, -20% +0.48 +0.27 +0.28 +1.31 -3.53

Soil emissions, +20% +0.17 +0.14 +0.15 +1.21 -3.26

Soil emissions, -20% +0.32 +0.25 +0.28 +1.21 -3.26

Use of pesticides, +20% +0.24 +0.19 +0.21 +1.21 -3.26

Use of pesticides, -20% +0.24 +0.19 +0.21 +1.21 -3.27

Use of tractive power, +20% +0.22 +0.18 +0.20 +1.16 -3.18

Use of tractive power, -20% +0.26 +0.20 +0.22 +1.26 -3.35

Use of machinery for cultivation, +20% +0.24 +0.19 +0.21 +1.21 -3.23

Use of machinery for cultivation, -20% +0.24 +0.19 +0.21 +1.21 -3.29

Use of oil for seed drying, +20% +0.23 +0.19 +0.21 +1.20 -3.23

Use of oil for seed drying, -20% +0.25 +0.19 +0.21 +1.22 -3.30

Use of electricity for oil extraction, +20% +0.21 +0.19 +0.21 +1.17 -4.32

Use of electricity for oil extraction, -20% +0.27 +0.20 +0.22 +1.25 -2.14

Emissions when driving on the rapeseed oil, +20% +0.24 +0.17 +0.19 +1.08 -3.26

Emissions when driving on the rapeseed oil, -20% +0.24 +0.22 +0.24 +1.38 -3.26
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Table 150. Original differences between small- and large-scale systems, and the differences 
when some production factors were changed, RME, physical allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Original (no change) (from Table 134) -0.07 +0.07 +0.10 +1.10 -3.79
Seed harvest, +20% +0.11 +0.15 +0.17 +1.25 -3.95

Seed harvest, -20% -0.26 -0.02 +0.01 +0.91 -3.61

Use of fertiliser, +20% -0.22 +0.01 +0.04 +1.00 -3.60

Use of fertiliser, -20% +0.13 +0.15 +0.17 +1.21 -4.01

Soil emissions, +20% -0.13 +0.02 +0.04 +1.10 -3.79

Soil emissions, -20% 0.00 +0.14 +0.17 +1.10 -3.79

Use of pesticides, +20% -0.07 +0.07 +0.10 +1.10 -3.78

Use of pesticides, -20% -0.07 +0.07 +0.10 +1.10 -3.80

Use of tractive power, +20% -0.08 +0.07 +0.09 +1.05 -3.72

Use of tractive power, -20% -0.06 +0.08 +0.11 +1.16 -3.86

Use of machinery for cultivation, +20% -0.07 +0.07 +0.10 +1.10 -3.77

Use of machinery for cultivation, -20% -0.07 +0.07 +0.10 +1.10 -3.82

Use of oil for seed drying, +20% -0.08 +0.07 +0.10 +1.09 -3.76

Use of oil for seed drying, -20% -0.06 +0.07 +0.10 +1.11 -3.82

Use of electricity for oil extraction, +20% -0.10 +0.07 +0.10 +1.06 -4.59

Use of electricity for oil extraction, -20% -0.04 +0.08 +0.10 +1.14 -2.96

Use of electricity for transesterification, +20% -0.07 +0.07 +0.10 +1.10 -3.80

Use of electricity for transesterification, -20% -0.07 +0.07 +0.10 +1.11 -3.78

Emissions during production of methanol, +20% -0.07 +0.07 +0.10 +1.10 -3.70

Emissions during production of methanol, -20% -0.07 +0.07 +0.10 +1.10 -3.88

Emissions when driving on the RME, +20% -0.07 +0.07 +0.09 +0.98 -3.79

Emissions when driving on the RME, -20% -0.07 +0.09 +0.12 +1.25 -3.79
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Table 151. Original differences between small- and large-scale systems, and the differences 
when some production factors were changed for ethanol fuel production, physical allocation, 
[g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Original (no change) (from Table 135) +1.18 +0.28 +1.04 -7.51 -1.73
Seed harvest, +20% +1.32 +0.30 +1.10 -7.58 -1.57

Seed harvest, -20% +1.01 +0.25 +0.96 -7.42 -1.95

Use of fertiliser, +20% +1.07 +0.26 +0.98 -7.46 -1.67

Use of fertiliser, -20% +1.32 +0.29 +1.10 -7.56 -1.80

Soil emissions, +20% +1.13 +0.26 +0.99 -7.51 -1.73

Soil emissions, -20% +1.23 +0.29 +1.09 -7.51 -1.73

Use of pesticides, +20% +1.18 +0.28 +1.04 -7.51 -1.73

Use of pesticides, -20% +1.18 +0.28 +1.04 -7.51 -1.74

Use of tractive power, +20% +1.17 +0.28 +1.03 -7.48 -1.71

Use of tractive power, -20% +1.19 +0.28 +1.05 -7.54 -1.76

Use of machinery for cultivation, +20% +1.18 +0.28 +1.04 -7.51 -1.72

Use of machinery for cultivation, -20% +1.18 +0.28 +1.04 -7.51 -1.75

Use of oil for seed drying, +20% +1.17 +0.28 +1.04 -7.49 -1.70

Use of oil for seed drying, -20% +1.19 +0.28 +1.04 -7.53 -1.76

Use of electricity for ethanol production, +20% +1.16 +0.27 +1.04 -7.52 -2.19

Use of electricity for ethanol production, -20% +1.20 +0.28 +1.04 -7.51 -1.25

Use of steam for ethanol production, +20% +1.05 +0.10 +0.99 -8.93 -1.89

Use of steam for ethanol production, -20% +1.32 +0.46 +1.08 -6.03 -1.57
Emissions during production of chemicals, 
   enzymes etc., +20% +1.18 +0.28 +1.04 -7.51 -1.73

Emissions during production of chemicals, 
   enzymes etc., -20% +1.18 +0.28 +1.04 -7.51 -1.73

Emissions during production of ignition 
   improver, +20% +1.16 +0.28 +1.04 -7.32 -1.65

Emissions during production of ignition 
   improver, -20% +1.20 +0.28 +1.04 -7.72 -1.83

Emissions during production of denaturants, +20% +1.17 +0.28 +1.04 -7.45 -1.70

Emissions during production of denaturants, -20% +1.19 +0.28 +1.04 -7.58 -1.77

Emissions during handling of waste water, +20% +1.18 +0.28 +1.04 -7.51 -1.74

Emissions during handling of waste water, -20% +1.18 +0.28 +1.04 -7.51 -1.73

Emissions when driving on the ethanol fuel, +20% +1.18 +0.25 +0.93 -6.65 -1.73

Emissions when driving on the ethanol fuel, -20% +1.18 +0.31 +1.18 -8.64 -1.73
 
 
With no allocation, the results were similar (Tables 152-154) to those with physical allocation 
but with a somewhat higher influence from the changed factors. A great difference was that 
the original (no change) level was on much higher level, a few per cent to tens of per cent 
instead of tenths of one per cent to a few per cent. The influence of each production factor 
was accounted for by the difference from the original (no change) level. The most sensitive 
factors for changes were seed harvest, use of fertilisers, soil emissions and changes in 
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emissions (AP, EP and POCP) when the fuels produced were used (Tables 152-154). Use of 
electricity and tractive power also had an influence, but to a much smaller extent. For ethanol 
fuel production, production of steam (heat) and ignition improver also had some influence 
(Table 154). The effects of the other changes were negligible. The changes from physical 
allocation were small. 
 
 
Table 152. Original differences between small- and large-scale systems, and the differences 
when some production factors were changed, rapeseed oil, no allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Original (no change) (calculated after Table 136) -29.74 -16.50 -15.78 -15.51 -32.14
Seed harvest, +20% -29.58 -15.06 -14.33 -14.10 -32.35

Seed harvest, -20% -29.91 -18.23 -17.53 -17.23 -31.91

Use of fertiliser, +20% -29.88 -17.77 -17.06 -16.45 -32.00

Use of fertiliser, -20% -29.56 -14.95 -14.23 -14.43 -32.31

Soil emissions, +20% -29.80 -17.57 -16.97 -15.51 -32.14

Soil emissions, -20% -29.68 -15.25 -14.36 -15.51 -32.14

Use of pesticides, +20% -29.74 -16.50 -15.78 -15.51 -32.14

Use of pesticides, -20% -29.74 -16.50 -15.78 -15.51 -32.14

Use of tractive power, +20% -29.76 -16.66 -15.96 -16.01 -32.09

Use of tractive power, -20% -29.73 -16.34 -15.60 -14.97 -32.20

Use of machinery for cultivation, +20% -29.74 -16.50 -15.78 -15.52 -32.12

Use of machinery for cultivation, -20% -29.74 -16.50 -15.78 -15.50 -32.16

Use of oil for seed drying, +20% -29.75 -16.51 -15.79 -15.64 -32.12

Use of oil for seed drying, -20% -29.74 -16.49 -15.78 -15.37 -32.16

Use of electricity for oil extraction, +20% -29.77 -16.51 -15.78 -15.57 -32.89

Use of electricity for oil extraction, -20% -29.72 -16.49 -15.78 -15.45 -31.35

Emissions when driving on the rapeseed oil, +20% -29.74 -15.17 -14.44 -14.26 -32.14

Emissions when driving on the rapeseed oil, -20% -29.75 -18.08 -17.40 -17.00 -32.14
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Table 153. Original differences between small- and large-scale systems, and the differences 
when some production factors were changed, RME, no allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Original (no change) (calculated after Table 136) -28.08 -15.67 -14.95 -16.24 -28.48
Seed harvest, +20% -27.62 -14.23 -13.50 -14.83 -28.16

Seed harvest, -20% -28.55 -17.42 -16.71 -17.94 -28.85

Use of fertiliser, +20% -28.44 -16.96 -16.23 -17.18 -28.66

Use of fertiliser, -20% -27.57 -14.12 -13.41 -15.17 -28.27

Soil emissions, +20% -28.23 -16.75 -16.14 -16.24 -28.48

Soil emissions, -20% -27.90 -14.42 -13.54 -16.24 -28.48

Use of pesticides, +20% -28.08 -15.68 -14.95 -16.24 -28.49

Use of pesticides, -20% -28.07 -15.67 -14.95 -16.24 -28.48

Use of tractive power, +20% -28.11 -15.84 -15.12 -16.74 -28.55

Use of tractive power, -20% -28.04 -15.51 -14.77 -15.70 -28.42

Use of machinery for cultivation, +20% -28.08 -15.68 -14.95 -16.25 -28.51

Use of machinery for cultivation, -20% -28.07 -15.67 -14.95 -16.23 -28.46

Use of oil for seed drying, +20% -28.09 -15.68 -14.95 -16.38 -28.51

Use of oil for seed drying, -20% -28.06 -15.67 -14.94 -16.11 -28.46

Use of electricity for oil extraction, +20% -28.10 -15.68 -14.95 -16.30 -29.22

Use of electricity for oil extraction, -20% -28.05 -15.67 -14.94 -16.18 -27.71

Use of electricity for transesterification, +20% -28.07 -15.67 -14.95 -16.23 -28.20

Use of electricity for transesterification, -20% -28.08 -15.67 -14.95 -16.25 -28.77

Emissions during production of methanol, +20% -28.01 -15.67 -14.94 -16.22 -28.12

Emissions during production of methanol, -20% -28.14 -15.68 -14.95 -16.26 -28.86

Emissions when driving on the RME, +20% -28.07 -14.35 -13.61 -15.03 -28.48

Emissions when driving on the RME, -20% -28.08 -17.27 -16.57 -17.66 -28.48
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Table 154. Original differences between small- and large-scale systems, and the differences 
when some production factors were changed for ethanol fuel production, no allocation, 
[g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Original (no change) (calculated after Table 136) +3.74 +4.86 +5.47 -4.63 +10.83
Seed harvest, +20% +4.24 +5.27 +5.91 -4.70 +11.99

Seed harvest, -20% +3.15 +4.34 +4.91 -4.54 +9.36

Use of fertiliser, +20% +3.33 +4.50 +5.08 -4.59 +10.34

Use of fertiliser, -20% +4.26 +5.28 +5.91 -4.68 +11.38

Soil emissions, +20% +3.56 +4.57 +5.11 -4.63 +10.83

Soil emissions, -20% +3.93 +5.19 +5.88 -4.63 +10.83

Use of pesticides, +20% +3.73 +4.86 +5.47 -4.63 +10.81

Use of pesticides, -20% +3.74 +4.86 +5.47 -4.63 +10.86

Use of tractive power, +20% +3.69 +4.81 +5.41 -4.61 +10.62

Use of tractive power, -20% +3.78 +4.91 +5.53 -4.66 +11.06

Use of machinery for cultivation, +20% +3.73 +4.86 +5.47 -4.63 +10.73

Use of machinery for cultivation, -20% +3.74 +4.86 +5.47 -4.63 +10.94

Use of oil for seed drying, +20% +3.69 +4.85 +5.46 -4.62 +10.61

Use of oil for seed drying, -20% +3.78 +4.86 +5.47 -4.65 +11.06

Use of electricity for ethanol production, +20% +3.79 +4.88 +5.47 -4.61 +12.10

Use of electricity for ethanol production, -20% +3.68 +4.84 +5.46 -4.66 +9.50

Use of steam for ethanol production, +20% +3.96 +5.45 +6.18 -5.63 +10.98

Use of steam for ethanol production, -20% +3.50 +4.26 +4.75 -3.60 +10.68
Emissions during production of chemicals, 
   enzymes etc., +20% +3.73 +4.86 +5.47 -4.63 +10.82

Emissions during production of chemicals, 
   enzymes etc., -20% +3.74 +4.86 +5.47 -4.63 +10.84

Emissions during production of ignition 
   improver, +20% +3.70 +4.84 +5.45 -4.52 +10.42

Emissions during production of ignition 
   improver, -20% +3.77 +4.88 +5.48 -4.76 +11.29

Emissions during production of denaturants, +20% +3.72 +4.86 +5.46 -4.60 +10.66

Emissions during production of denaturants, -20% +3.75 +4.86 +5.47 -4.67 +11.01

Emissions during handling of waste water, +20% +3.73 +4.86 +5.47 -4.63 +10.78

Emissions during handling of waste water, -20% +3.74 +4.86 +5.47 -4.63 +10.88

Emissions when driving on the ethanol fuel, +20% +3.73 +4.45 +4.97 -4.12 +10.83

Emissions when driving on the ethanol fuel, -20% +3.74 +5.36 +6.08 -5.29 +10.83
 
 
The above sensitivity analysis shows that changes in the following factors have the greatest 
potential to change the final result: changes in seed harvest; use of the fuels produced  
(rapeseed oil, RME and ethanol fuel); and use of fertilisers. There probably exists a great 
potential to reduce all kind of emissions if fertilisers could be produced in a more 
environmentally friendly way. 
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4.9 Scenario analysis 
 
The effects of some changes in production strategies were analysed. For description of the 
scenarios studied see Section 3.11.2. 
 
The most important changes in the results were observed: when the straw was harvested 
(Tables 155-157) for all fuels; when catalysts were used (Tables 155-157); for RME 
production when the methanol was produced from Salix instead of from natural gas (Table 
156); for ethanol fuel production when the ignition improver and denaturants produced were 
of bio-origin instead of fossil origin (Table 157); and when electricity mainly produced from 
fossil fuels (fossil fuel electricity) (for description see Section 3.6.1) was used instead of 
Swedish electricity (Tables 155-157). Use of the fuels produced for cultivation and transport 
also gave important changes in the results (Tables 155-157). 
 
When the straw was harvested, approx. 42%; 42%; and 46% (Tables 106 and 108) of the 
environmental load for the cultivation was allocated away with the straw for rapeseed oil, 
RME and ethanol fuel respectively. This reduced the environmental load by 15-42%; 13-37%; 
and 3-29% for rapeseed oil, RME and ethanol fuel respectively (Tables 155-157). When the 
allocation was made according to monetary units (economic allocation) instead of physical 
(energy), values were 2.8-3.0%; 2.4-2.7%; and 2.3-2.5% (Tables 107 and 109) of the 
environmental load for the cultivation allocated away with the straw for rapeseed oil, RME 
and ethanol fuel respectively. This reduced the environmental load by 1-3%; 1-2%; and 0.2-
2% for rapeseed oil, RME and ethanol fuel respectively (Tables 155-157). 
 
When catalysts were used in all operations the POCP-emissions were reduced by 44-54%, 
AP- and EP-emissions by 0.2-4%, and GWP-emissions was almost unaffected depending on 
the fuel studied (Tables 155-157). Methanol produced from Salix increased the energy 
requirement by almost 32% and reduced the GWP-emissions by 9% (Table 156) during RME 
production. Ignition improver of bio-origin increased the energy requirement by 70% and 
reduced the GWP-emissions by 15% (Table 157) during ethanol fuel production. With fossil 
fuel electricity (for all applications together), the GWP-emissions increased by 12-18% and 
the energy requirement by 11-14% depending on the fuel studied (Tables 155-157). When the 
rapeseed oil produced was used for cultivation and transport in the system studied, GWP-
emissions decreased by 5% and POCP-emissions by 8% (Table 155). However, the categories 
AP- and EP-emissions increased by almost 3%, and the energy requirement by 6%. When the 
RME produced was used for cultivation and transport in the system studied, GWP-emissions 
decreased by 4% and POCP-emissions by almost 10% (Table 156). However, the categories 
AP- and EP-emissions increased by about 2%, and the energy requirement by almost 5%. 
When the ethanol fuel produced was used for cultivation and transport in the system studied, 
GWP-emissions decreased by 3% and AP- and EP-emissions by approx. 0.5% (Table 157). 
However, the POCP-emissions and the energy requirement increased by approx. 1%. When 
ignition improver and denaturants of bio-origin (bio-optimization) were used to produce the 
ethanol fuel used for cultivation and transport in the system studied, GWP-emissions 
decreased by 28%. However, the AP-, EP- and POCP-emissions and the energy requirement 
increased by 28, 6, 110 and 104% respectively (Table 157). Other factors studied had only a 
minor influence on impact categories and energy requirement. 
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Table 155. Influence of using alternative production scenarios in small-scale production of 
rapeseed oil, physical allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Straw harvested -42.1 -15.8 -14.9 -15.8 -36.2

Straw harvested (economic allocation) -3.0 -1.3 -1.2 -1.3 -2.6

Ploughless tillage -0.52 -0.57 -0.58 -0.87 -1.4

Fossil fuel electricity: extraction etc. +8.1 +0.62 +0.29 +0.81 +7.2

Fossil fuel electricity: machinery +4.2 +0.33 +0.15 +0.44 +4.1

Fossil fuel electricity: all +12.3 +0.95 +0.44 +1.3 +11.3

Catalyst used in cultivation operations -0.012 -0.22 -0.23 -4.5 0

Catalyst used in transport 0 0 0 0 0

Catalyst used in use of fuel produced -0.20 -3.7 -3.9 -49.1 0

Catalyst used in all operations -0.21 -3.9 -4.1 -53.6 0
Produced rapeseed oil fuel used for cultivation 
   and transport -5.0 +2.7 +2.7 -8.2 +6.1

All transport distances doubled 0 0 0 0 0

All transport distances halved 0 0 0 0 0

Machinery and building mass coefficient = 2/3 (area) +0.019 +0.0031 +0.0015 +0.022 +0.72

Machinery and building mass coefficient = 1 (volume) -0.011 -0.0018 -0.00088 -0.013 -0.42

Improved oil extraction efficiencies +0.18 +0.061 +0.055 +0.088 +1.2
Small-scale extraction efficiency as in large-scale 
   extraction -0.70 -0.29 -0.29 -0.14 +5.2

Small-scale extraction as large-scale extraction -0.95 -0.32 -0.31 -0.31 -5.4
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Table 156. Influence of using alternative production scenarios in small-scale production of 
RME, physical allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Straw harvested -37.1 -14.2 -13.4 -16.3 -27.2

Straw harvested (economic allocation) -2.4 -1.0 -0.99 -1.2 -1.8

Ploughless tillage -0.46 -0.51 -0.53 -0.90 -1.0

Methanol produced from Salix -9.0 +0.64 +0.62 +5.7 +31.5

Fossil fuel electricity: extraction etc. +13.9 +1.1 +0.51 +1.7 +10.6

Fossil fuel electricity: machinery +4.3 +0.34 +0.16 +0.52 +3.5

Fossil fuel electricity: all +18.2 +1.4 +0.66 +2.2 +14.1

Catalyst used in cultivation operations -0.011 -0.20 -0.21 -4.7 0

Catalyst used in transport -0.000089 -0.0013 -0.0014 -0.025 0

Catalyst used in use of fuel produced -0.16 -3.9 -4.1 -46.7 0

Catalyst used in all operations -0.17 -4.1 -4.3 -51.4 0

Produced RME fuel used for cultivation and transport -4.1 +2.0 +2.0 -9.8 +4.7

All transport distances doubled +0.056 +0.024 +0.024 +0.085 +0.12

All transport distances halved -0.028 -0.012 -0.012 -0.042 -0.062

Machinery and building mass coefficient = 2/3 (area) +0.036 +0.0059 +0.0028 +0.047 +1.1

Machinery and building mass coefficient = 1 (volume) -0.021 -0.0034 -0.0016 -0.027 -0.65

Improved oil extraction efficiencies +0.11 +0.038 +0.034 +0.070 +0.79
Small-scale extraction efficiency as in large-scale 
   extraction -0.87 -0.36 -0.35 -0.27 +3.5

Small-scale extraction as large-scale extraction -1.1 -0.39 -0.36 -0.44 -4.4
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Table 157. Influence of using alternative production scenarios in small-scale production of 
ethanol fuel, physical allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Straw harvested -29.4 -15.6 -14.8 -2.9 -19.6

Straw harvested (economic allocation) -1.8 -1.1 -1.1 -0.24 -1.3

Ploughless tillage -0.38 -0.58 -0.61 -0.14 -0.64

Steam produced by Salix +0.19 +1.2 -0.10 -0.54 +0.54

Ignition improver of bio-origin -14.6 +24.3 +4.3 +80.8 +69.8

Denaturants of bio-origin -7.2 +2.0 +0.85 +26.7 +28.6

Ignition improver and denaturants of bio-origin -21.8 +26.3 +5.2 +107.5 +98.4

Fossil fuel electricity: ethanol production etc. +13.3 +1.5 +0.69 +0.30 +7.6

Fossil fuel electricity: machinery +5.1 +0.56 +0.26 +0.12 +3.1

Fossil fuel electricity: all +18.4 +2.0 +0.95 +0.41 +10.7

Catalyst used in cultivation operations -0.0093 -0.22 -0.24 -0.73 0

Catalyst used in transport -0.00020 -0.0041 -0.0044 -0.011 0

Catalyst used in use of fuel produced -1.3 0 0 -43.4 0

Catalyst used in all operations -1.4 -0.23 -0.25 -44.2 0

Fuel produced used for cultivation and transports -3.0 -0.44 -0.51 +0.98 +1.3
Fuel produced used for cultivation and transports 
   with bio-optimization -28.2 +28.0 +6.2 +110.5 +103.7

All transport distances doubled +0.13 +0.075 +0.077 +0.036 +0.21

All transport distances halved -0.063 -0.038 -0.039 -0.018 -0.10

Machinery and building mass coefficient = 2/3 (area) +0.057 +0.013 +0.0064 +0.014 +1.4

Machinery and building mass coefficient = 1 (volume) -0.033 -0.0076 -0.0037 -0.0082 -0.80
Small-scale production with large-scale 
   energy efficiency -0.73 -0.90 -0.19 -8.1 -3.0

Small-scale production as large-scale production -0.93 -1.6 -1.4 -3.0 -3.0
 
 
With no allocation (Tables 158-160) the results were similar to physical allocation for most 
factors (Tables 155-157). However, the influence was much greater for the following factors 
during production of rapeseed oil and RME (Tables 158-159): Small-scale extraction 
efficiency as in large-scale extraction and small-scale extraction as large-scale extraction. The 
same, but on a somewhat lower degree, was also valid for the case with improved oil 
extraction efficiency. The reason for this was that the rapeseed oil and RME yields would be 
larger because of the higher oil extraction level and therefore there would be more rapeseed 
oil and RME to spread the emissions and energy requirement over. With no allocation, the 
emission values and energy requirement values decreased correspondingly (Tables 158-159). 
With physical allocation the emissions values and energy requirement were also distributed 
on the meal and the effect of the higher extraction efficiency was therefore much lower 
(Tables 155-156). When the straw was harvested the environmental load was not influenced 
by no allocation, because with no allocation no environmental load was allocated away and 
therefore the results could not be influenced (Tables 158-159). 
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Table 158. Influence of using alternative production scenarios in small-scale production of 
rapeseed oil, no allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Straw harvested 0 0 0 0 0

Ploughless tillage -0.52 -0.85 -0.89 -1.3 -1.4

Fossil fuel electricity: extraction etc. +8.1 +0.93 +0.44 +1.2 +7.2

Fossil fuel electricity: machinery +4.2 +0.49 +0.23 +0.65 +4.1

Fossil fuel electricity: all +12.3 +1.4 +0.67 +1.9 +11.3

Catalyst used in cultivation operations -0.012 -0.33 -0.35 -6.7 0

Catalyst used in transport 0 0 0 0 0

Catalyst used in use of fuel produced -0.093 -2.6 -2.8 -34.5 0

Catalyst used in all operations -0.11 -3.0 -3.1 -41.2 0
Produced rapeseed oil fuel used for cultivation 
   and transport -5.0 +4.1 +4.2 -12.3 +5.9

All transport distances doubled 0 0 0 0 0

All transport distances halved 0 0 0 0 0

Machinery and building mass coefficient = 2/3 (area) +0.019 +0.0047 +0.0023 +0.032 +0.72
Machinery and building mass coefficient = 1 
   (volume) -0.011 -0.0027 -0.0013 -0.019 -0.42

Improved oil extraction efficiencies -6.8 -3.8 -3.7 -3.8 -5.9
Small-scale extraction efficiency as in large-scale 
   extraction -30.5 -17.1 -16.4 -17.0 -26.4

Small-scale extraction as large-scale extraction -30.6 -17.1 -16.4 -17.2 -33.8
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Table 159. Influence of using alternative production scenarios in small-scale production of 
RME, no allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Straw harvested 0 0 0 0 0

Ploughless tillage -0.49 -0.81 -0.84 -1.4 -1.2

Methanol produced from Salix -4.4 +0.48 +0.47 +4.0 +17.1

Fossil fuel electricity: extraction etc. +11.1 +1.3 +0.60 +1.8 +9.0

Fossil fuel electricity: machinery +4.3 +0.50 +0.23 +0.73 +3.8

Fossil fuel electricity: all +15.3 +1.8 +0.84 +2.6 +12.8

Catalyst used in cultivation operations -0.012 -0.31 -0.33 -7.0 0

Catalyst used in transport -0.000088 -0.0019 -0.0021 -0.034 0

Catalyst used in use of fuel produced -0.075 -2.8 -2.9 -31.6 0

Catalyst used in all operations -0.087 -3.1 -3.3 -38.7 0

Produced RME fuel used for cultivation and transport -4.8 +3.9 +4.0 -12.9 +5.2

All transport distances doubled +0.055 +0.035 +0.036 +0.12 +0.13

All transport distances halved -0.028 -0.018 -0.018 -0.059 -0.066

Machinery and building mass coefficient = 2/3 (area) +0.028 +0.0067 +0.0033 +0.051 +0.94
Machinery and building mass coefficient = 1 
   (volume) -0.016 -0.0039 -0.0019 -0.030 -0.55

Improved oil extraction efficiencies -6.4 -3.6 -3.5 -4.0 -5.1
Small-scale extraction efficiency as in large-scale 
   extraction -28.7 -16.2 -15.5 -17.8 -23.0

Small-scale extraction as large-scale extraction -28.9 -16.2 -15.5 -18.0 -29.4
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Table 160. Influence of using alternative production scenarios in small-scale production of 
ethanol fuel, no allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Straw harvested 0 0 0 0 0

Ploughless tillage -0.44 -0.78 -0.83 -0.22 -0.79

Steam produced by Salix +0.15 +1.0 -0.089 -0.55 +0.43

Ignition improver of bio-origin -10.3 +19.9 +3.6 +77.1 +51.9

Denaturants of bio-origin -5.1 +1.6 +0.70 +25.5 +21.3

Ignition improver and denaturants of bio-origin -15.4 +21.5 +4.3 +102.5 +73.2

Fossil fuel electricity: ethanol production etc. +13.1 +1.7 +0.79 +0.39 +7.9

Fossil fuel electricity: machinery +5.9 +0.75 +0.36 +0.18 +3.8

Fossil fuel electricity: all +19.0 +2.4 +1.1 +0.57 +11.7

Catalyst used in cultivation operations -0.011 -0.30 -0.33 -1.1 0

Catalyst used in transport -0.00015 -0.0036 -0.0039 -0.011 0

Catalyst used in use of fuel produced -0.95 0 0 -41.4 0

Catalyst used in all operations -0.96 -0.31 -0.33 -42.6 0

Fuel produced used for cultivation and transports -3.4 -0.59 -0.68 +1.5 +1.5
Fuel produced used for cultivation and transports 
   with bio-optimization -22.8 +23.7 +5.7 +107.3 +79.6

All transport distances doubled +0.094 +0.065 +0.067 +0.036 +0.16

All transport distances halved -0.047 -0.032 -0.034 -0.018 -0.082

Machinery and building mass coefficient = 2/3 (area) +0.066 +0.018 +0.0087 +0.022 +1.7
Machinery and building mass coefficient = 1 
   (volume) -0.039 -0.010 -0.0051 -0.013 -0.97

Small-scale production with large-scale 
   energy efficiency +1.6 +3.3 +3.8 -5.5 +9.8

Small-scale production as large-scale production -0.71 -1.4 -1.2 -3.1 -2.8
 
 
The influence of the alternative scenarios on the differences between small- and large-scales 
is shown in Tables 161-163 with physical allocation and in Tables 164-166 with no allocation 
(calculations explained in Section 3.11.2). A negative sign in the tables indicates that the 
large-scale plant has lower emissions/energy requirements. A positive sign indicates the 
opposite. Most of the studied scenarios had small effects on the difference. 
 
For the rapeseed oil, RME and ethanol fuels (Tables 161-163): Small-scale extraction as 
large-scale extraction (rapeseed oil and RME); small-scale extraction efficiency as large-scale 
extraction (rapeseed oil and RME); small-scale production as large-scale production (ethanol 
fuel); small-scale production with large-scale energy efficiency (ethanol fuel); improved oil 
extraction efficiencies (rapeseed oil and RME); transport distances doubled or halved and 
choice of electricity (fossil) were the most important factors followed by: use of catalysts; fuel 
produced used for cultivation and transport with bio-optimization (ethanol fuel); produced 
rapeseed oil, RME or ethanol fuel used for cultivation and transports; use of ignition improver 
and/or denaturants of bio-origin (ethanol fuel); use of Salix methanol (RME); straw harvested; 
and steam produced by Salix (ethanol fuel). 
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The sign was only changed in some places, for the above-discussed factors, in comparison to 
the original. For GWP-, AP- and EP-emissions that showed a negligible difference between 
large- and small-scale production (rapeseed oil: difference 0.19-0.24% for the original case; 
RME: difference 0.07-0.10% for the original case; and ethanol fuel: difference 0.28-1.18% for 
the original case). Exceptions large enough to change the sign were (Tables 161-163): Small-
scale extraction as large-scale extraction for input energy (rapeseed oil and RME (also GWP)) 
depending on longer transport for large plants; small-scale production as large-scale 
production and small-scale production with large-scale energy efficiency for input energy 
(ethanol fuel) depending on longer transport for large plants; all transport distances doubled 
(ethanol fuel) for input energy (for explanation see below); and small-scale production with 
large-scale energy efficiency for POCP-emissions (ethanol fuel) depending on higher HC-
emissions for steam (heat) production in small plants (Table 34). The sign was also changed 
for straw harvested (RME: GWP); steam produced by Salix (ethanol fuel: AP); fossil fuel 
electricity (rapeseed oil: GWP and AP; RME: AP and EP; ethanol fuel: GWP and AP); fuel 
produced used for cultivation and transport (rapeseed oil: GWP; ethanol fuel: GWP); 
transport distances doubled (RME: GWP); transport distances halved (rapeseed oil: GWP, AP 
and EP; RME: AP and EP; ethanol fuel: AP); and small-scale extraction as in large-scale 
extraction (RME: GWP). A changed sign indicates that the conditions regarding which 
production scale gives the lowest emissions have changed because of the changed conditions 
for the production factors. The changed sign for doubled/halved transport distances depended 
on longer transport for large plants, favouring small-scale plants if doubled, the opposite if 
halved. The changed sign for emissions when Swedish electricity was replaced by fossil fuel 
electricity (for description see Section 3.6.1) was due to small plants having a higher 
requirement of electricity and therefore not being favoured when the electricity is produced in 
a less environmentally friendly way. 
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Table 161. Original differences between small- and large-scale systems in the basic scenario 
and the differences when some alternative scenarios were analysed for rapeseed oil 
production, physical allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Original (no change) (from Table 134) +0.24 +0.19 +0.21 +1.21 -3.26
Straw harvested +1.40 +0.48 +0.49 +1.69 -4.33

Ploughless tillage +0.25 +0.20 +0.22 +1.23 -3.30

Fossil fuel electricity: extraction etc. -2.53 -0.04 +0.11 +0.91 -5.21

Fossil fuel electricity: machinery -0.05 +0.17 +0.20 +1.17 -3.41

Fossil fuel electricity: all -2.70 -0.06 +0.10 +0.88 -5.27

Catalyst used in cultivation operations +0.24 +0.19 +0.22 +1.31 -3.26

Catalyst used in transport +0.24 +0.16 +0.18 +0.76 -3.26

Catalyst used in use of fuel produced +0.24 +0.20 +0.22 +2.38 -3.26

Catalyst used in all operations +0.24 +0.17 +0.19 +1.72 -3.26
Produced rapeseed oil fuel used for cultivation 
   and transport -0.32 +0.53 +0.55 +0.34 -2.53

All transport distances doubled +1.46 +0.71 +0.73 +2.76 -0.12

All transport distances halved -0.37 -0.07 -0.05 +0.43 -4.83

Machinery and building mass coefficient = 2/3 (area) +0.22 +0.19 +0.21 +1.18 -4.06
Machinery and building mass coefficient = 1 
   (volume) +0.26 +0.20 +0.21 +1.23 -2.65

Improved oil extraction efficiencies +0.06 +0.13 +0.16 +1.12 -4.38
Small-scale extraction efficiency as in large-scale 
   extraction +0.94 +0.49 +0.50 +1.35 -8.00

Small-scale extraction as large-scale extraction +1.20 +0.51 +0.52 +1.53 +2.22
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Table 162. Original differences between small- and large-scale systems in the basic scenario 
and the differences when some alternative scenarios were analysed for RME production, 
physical allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Original (no change) (from Table 134) -0.07 +0.07 +0.10 +1.10 -3.79
Straw harvested +0.94 +0.38 +0.39 +1.67 -4.51

Ploughless tillage -0.07 +0.08 +0.11 +1.12 -3.82

Methanol produced from Salix -0.08 +0.07 +0.10 +1.04 -2.90

Fossil fuel electricity: extraction etc. -2.37 -0.13 +0.01 +0.80 -4.62

Fossil fuel electricity: machinery -0.73 +0.02 +0.08 +1.01 -4.21

Fossil fuel electricity: all -2.87 -0.18 -0.02 +0.72 -4.97

Catalyst used in cultivation operations -0.07 +0.08 +0.10 +1.21 -3.79

Catalyst used in transport -0.07 +0.05 +0.07 +0.64 -3.79

Catalyst used in use of fuel produced -0.07 +0.08 +0.11 +2.06 -3.79

Catalyst used in all operations -0.07 +0.05 +0.08 +1.42 -3.79

Produced RME fuel used for cultivation and transport -0.55 +0.39 +0.42 +0.13 -3.34

All transport distances doubled +1.00 +0.54 +0.57 +2.71 -1.42

All transport distances halved -0.61 -0.16 -0.13 +0.29 -4.98

Machinery and building mass coefficient = 2/3 (area) -0.11 +0.07 +0.10 +1.05 -5.02
Machinery and building mass coefficient = 1 
   (volume) -0.04 +0.08 +0.10 +1.14 -2.84

Improved oil extraction efficiencies -0.18 +0.04 +0.07 +1.03 -4.55
Small-scale extraction efficiency as in large-scale 
   extraction +0.80 +0.44 +0.45 +1.37 -7.05

Small-scale extraction as large-scale extraction +1.03 +0.46 +0.47 +1.55 +0.66
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Table 163. Original differences between small- and large-scale systems in the basic scenario 
and the differences when some alternative scenarios were analysed for ethanol fuel 
production, physical allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Original (no change) (from Table 135) +1.18 +0.28 +1.04 -7.51 -1.73
Straw harvested +1.67 +0.33 +1.22 -7.74 -2.15

Ploughless tillage +1.18 +0.28 +1.04 -7.52 -1.74

Steam produced by Salix +1.12 -0.53 +1.26 -7.40 -1.88

Ignition improver of bio-origin +1.38 +0.22 +1.00 -4.16 -1.04

Denaturants of bio-origin +1.27 +0.27 +1.03 -5.93 -1.36

Ignition improver and denaturants of bio-origin +1.51 +0.22 +0.99 -3.62 -0.89

Fossil fuel electricity: ethanol production etc. -0.51 +0.09 +0.94 -7.52 -2.09

Fossil fuel electricity: machinery +0.04 +0.15 +0.98 -7.53 -2.37

Fossil fuel electricity: all -1.45 -0.04 +0.88 -7.54 -2.67

Catalyst used in cultivation operations +1.18 +0.28 +1.04 -7.57 -1.73

Catalyst used in transport +1.18 +0.21 +0.97 -7.68 -1.73

Catalyst used in use of fuel produced +1.20 +0.28 +1.04 -13.28 -1.73

Catalyst used in all operations +1.19 +0.21 +0.97 -13.75 -1.73

Fuel produced used for cultivation and transports +0.11 +0.21 +0.96 -7.18 -1.31
Fuel produced used for cultivation and transports 
   with bio-optimization -0.19 +0.38 +0.96 -2.96 -0.21

All transport distances doubled +3.17 +1.47 +2.27 -6.94 +1.58

All transport distances halved +0.18 -0.32 +0.42 -7.80 -3.39

Machinery and building mass coefficient = 2/3 (area) +1.11 +0.26 +1.03 -7.53 -3.23
Machinery and building mass coefficient = 1 
   (volume) +1.23 +0.29 +1.04 -7.50 -0.59

Small-scale production with large-scale 
   energy efficiency +1.93 +1.19 +1.23 +0.59 +1.29

Small-scale production as large-scale production +2.13 +1.90 +2.42 -4.61 +1.29
 
 
In Tables 164-166 the scenario analysis was handled in the same way as in Tables 161-163 
with the difference that the data were not allocated. A great difference was that the original 
(no change) level was on a much higher level, a few per cent to tens of per cent instead of 
tenths of one per cent to a few per cent. The influence of each production factor was 
accounted for by the difference from the original (no change) level. The influence of the 
categories studied was in most cases as above (Tables 161-163) with physical allocation (for 
explanation see above). For rapeseed oil and RME (Tables 164 and 165) the influence was 
greater for: Small-scale extraction as large-scale extraction; and small-scale extraction 
efficiency as in large-scale extraction. For ethanol fuel (Table 166) the influence was greater 
for: small-scale production with large-scale energy efficiency; and small-scale production as 
large-scale production. The reasons for these are that with that studied changes to small-scale 
plants, they become much more similar to the large-scale plants, and none of those changes 
were allocated away to any by-products and hidden. The result is that the differences between 
large-scale plants and small-scale plants become much smaller (Tables 164-166). For straw 
harvested, with no allocation, the differences between production scales was not influenced, 
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because the original values were not changed since no environmental load could be allocated 
away to the straw. 
 
A change in sign in Tables 164-166 shows that the statement regarding which production size 
gives the least emissions or has the least energy requirement or vice versa has changed in 
comparison to the original case. Such as change was only seen for: small-scale extraction 
efficiency as in large-scale extraction (rapeseed oil and RME); small-scale extraction as in 
large-scale extraction (rapeseed oil and RME); and small-scale production with large-scale 
energy efficiency (ethanol fuel). 
 
 
Table 164. Original differences between small- and large-scale systems in the basic scenario 
and the differences when some alternative scenarios were analysed for rapeseed oil 
production, no allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Original (no change) (calculated after Table 136) -29.74 -16.50 -15.78 -15.51 -32.14
Straw harvested -29.74 -16.50 -15.78 -15.51 -32.14

Ploughless tillage -29.74 -16.38 -15.65 -15.31 -32.16

Fossil fuel electricity: extraction etc. -31.70 -16.86 -15.95 -15.98 -33.51

Fossil fuel electricity: machinery -29.95 -16.59 -15.82 -15.64 -32.25

Fossil fuel electricity: all -31.82 -16.95 -16.00 -16.10 -33.56

Catalyst used in cultivation operations -29.74 -16.45 -15.73 -14.43 -32.14

Catalyst used in transport -29.75 -16.53 -15.81 -16.00 -32.14

Catalyst used in use of fuel produced -29.77 -16.95 -16.23 -23.67 -32.14

Catalyst used in all operations -29.77 -16.93 -16.22 -23.71 -32.14
Produced rapeseed oil fuel used for cultivation 
   and transport -30.15 -16.68 -16.00 -14.65 -31.50

All transport distances doubled -28.83 -15.92 -15.18 -13.79 -29.79

All transport distances halved -30.20 -16.79 -16.08 -16.37 -33.32

Machinery and building mass coefficient = 2/3 (area) -29.76 -16.51 -15.78 -15.54 -32.70
Machinery and building mass coefficient = 1 
   (volume) -29.73 -16.50 -15.78 -15.49 -31.71

Improved oil extraction efficiencies -24.61 -13.19 -12.58 -12.16 -27.88
Small-scale extraction efficiency as in large-scale 
   extraction +1.03 +0.67 +0.69 +1.82 -7.79

Small-scale extraction as large-scale extraction +1.29 +0.70 +0.71 +2.04 +2.46
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Table 165. Original differences between small- and large-scale systems in the base scenario 
and the differences when some alternative scenarios were analysed for RME production, no 
allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Original (no change) (calculated after Table 136) -28.08 -15.67 -14.95 -16.24 -28.48
Straw harvested -28.08 -15.67 -14.95 -16.24 -28.48

Ploughless tillage -28.06 -15.55 -14.81 -16.04 -28.46

Methanol produced from Salix -29.36 -15.60 -14.88 -15.61 -24.33

Fossil fuel electricity: extraction etc. -29.10 -15.96 -15.09 -16.62 -28.90

Fossil fuel electricity: machinery -28.47 -15.78 -15.00 -16.40 -28.82

Fossil fuel electricity: all -29.42 -16.07 -15.14 -16.77 -29.20

Catalyst used in cultivation operations -28.07 -15.63 -14.89 -15.16 -28.48

Catalyst used in transport -28.08 -15.70 -14.98 -16.75 -28.48

Catalyst used in use of fuel produced -28.10 -16.12 -15.40 -23.76 -28.48

Catalyst used in all operations -28.10 -16.11 -15.38 -23.81 -28.48

Produced RME fuel used for cultivation and transport -28.35 -15.86 -15.16 -15.54 -28.15

All transport distances doubled -27.21 -15.12 -14.38 -14.45 -26.44

All transport distances halved -28.51 -15.95 -15.23 -17.14 -29.51

Machinery and building mass coefficient = 2/3 (area) -28.10 -15.68 -14.95 -16.29 -29.26
Machinery and building mass coefficient = 1 
   (volume) -28.06 -15.67 -14.94 -16.21 -27.88

Improved oil extraction efficiencies -23.13 -12.50 -11.89 -12.77 -24.61
Small-scale extraction efficiency as in large-scale 
   extraction +0.92 +0.61 +0.64 +1.86 -7.15

Small-scale extraction as large-scale extraction +1.15 +0.65 +0.66 +2.09 +1.23
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Table 166. Original differences between small- and large-scale systems in the base scenario 
and the differences when some alternative scenarios were analysed for ethanol fuel 
production, no allocation, [g/MJengine] 
 
Changed production factors GWP 

[%] 
AP 
[%] 

EP 
[%] 

POCP 
[%] 

Input energy
[%] 

Original (no change) (calculated after Table 136) +3.74 +4.86 +5.47 -4.63 +10.83
Straw harvested +3.74 +4.86 +5.47 -4.63 +10.83

Ploughless tillage +3.75 +4.90 +5.51 -4.64 +10.92

Steam produced by Salix +3.79 +4.46 +5.77 -4.90 +10.97

Ignition improver of bio-origin +4.16 +4.05 +5.28 -2.62 +7.11

Denaturants of bio-origin +3.93 +4.78 +5.43 -3.69 +8.92

Ignition improver and denaturants of bio-origin +4.41 +4.00 +5.24 -2.29 +6.22

Fossil fuel electricity: ethanol production etc. +9.51 +5.66 +5.85 -4.39 +14.82

Fossil fuel electricity: machinery +2.26 +4.66 +5.37 -4.67 +9.58

Fossil fuel electricity: all +7.91 +5.45 +5.75 -4.43 +13.52

Catalyst used in cultivation operations +3.74 +4.87 +5.49 -4.69 +10.83

Catalyst used in transport +3.73 +4.77 +5.37 -4.88 +10.83

Catalyst used in use of fuel produced +3.77 +4.86 +5.47 -7.91 +10.83

Catalyst used in all operations +3.77 +4.79 +5.39 -8.50 +10.83

Fuel produced used for cultivation and transports +2.60 +4.80 +5.40 -4.18 +11.20
Fuel produced used for cultivation and transports 
   with bio-optimization +2.90 +4.14 +5.15 -1.28 +6.94

All transport distances doubled +6.00 +6.43 +7.10 -3.77 +14.77

All transport distances halved +2.60 +4.07 +4.65 -5.07 +8.86

Machinery and building mass coefficient = 2/3 (area) +3.66 +4.84 +5.46 -4.66 +8.79
Machinery and building mass coefficient = 1 
   (volume) +3.79 +4.88 +5.47 -4.62 +12.36

Small-scale production with large-scale 
   energy efficiency +2.12 +1.50 +1.57 +0.87 +0.95

Small-scale production as large-scale production +4.48 +6.33 +6.73 -1.60 +13.99
 
 
The magnitude of the influence on emissions and energy requirement was about the same for 
the allocation methods in Tables 161-163 and in Tables 164-166. The production factors in 
the scenario analysis were influenced by factors that were influenced by the allocation and 
factors that were not. For example electricity for extraction was allocated both for RME, 
glycerine and meal, but electricity for transesterification was allocated only for RME and 
glycerine. Because of that it is more complicated to explain which values will increase and 
which will decrease. Some of the mentioned measures in the scenario analysis have the 
potential to influence which production size has the lowest emissions or energy requirement, 
principally depending on the small differences between the production sizes. 
 
The above scenario analysis shows that: Catalysts were the most effective way to reduce AP-, 
EP- and POCP-emissions; using the fuel produced for cultivation and transport was a good 
way to reduce GWP-emissions. Methanol from biomass (RME) gave a considerably increased 
energy demand, reduced GWP-emissions and somewhat higher POCP-emissions. Ignition 
improver and denaturants of bio-origin (ethanol fuel) gave a considerably increased energy 
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demand, reduced GWP-emissions, increased AP-emissions and considerably increased 
POCP-emissions. When Swedish electricity was replaced by fossil fuel electricity (for 
description see Section 3.6.1), the GWP-emissions and energy requirement increased 
considerably. The amount of straw harvested reduces the environmental load depending on 
the chosen allocation method, and because of that the proportion of the environmental load 
that it is possible to allocate away from the environmental heavy cultivation step. 
 
 

4.10 Sensitivity analysis of economic calculations 
 
This section deals with traditional sensitivity analysis for the economic calculations that are 
accounted for in Tables 167-169. When the factors were changed, all factors except for seed 
harvest had practically the same change in impact, but with the opposite sign, when they were 
changed by +20% or –20% and therefore only the change +20% was accounted for in Tables 
167-169. For the small farm when RME was produced (Table 168), for example the 
production cost was +6.69% when the labour price increased by 20% and changed to –6.69% 
when the labour price decreased by 20%. In Tables 167-169 the sign is negative for prices that 
represent an income, e.g. meal price, distiller’s waste price and glycerine price. 
 
It was shown that the production costs were quite sensitive to changes in seed harvest, meal 
price (rapeseed oil and RME), labour price, price for machinery and buildings (investment 
costs), ignition improver price (ethanol fuel) and price for fertilisers (Tables 167-169). The 
effects of the other changes were small or negligible. As some sort of scenario analysis, 
production of the seed on a larger farm, production with the EU area compensation included 
and purchased seed were also studied. Because of lower labour costs on a larger farm for the 
seed production, the influence on the labour costs were decreased for that case. The relative 
costs for the other production factors increased correspondingly. With the EU area 
compensation included, the production factors become more sensitive to changes in the price 
for the production factors. Because of lower costs for the seed production, that made it easier 
for changes in prices to make an impact. The same was valid for the purchased seed, except 
for labour, because a large part of the labour belonged to the seed production. 
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Table 167. Changes in production cost when some production factors were changed in a 
sensitivity analysis for small-scale production of rapeseed oil, [SEK/MJengine] 
 
Changed production factors Small farm [%] Large farm [%] Purchased 

 Total EU area Total EU area seed 

 production comp. incl. production comp. incl. [%] 

Seed harvest, +20% -20.55 -22.16 -21.44 -24.05 not relevant

Seed harvest, -20% +30.82 +33.23 +32.16 +36.07 not relevant

Labour price, +20% +5.38 +7.62 +4.30 +6.64 +3.38

Fertiliser price, +20% +4.46 +6.32 +5.38 +8.31 not relevant

Electricity price, +20% +0.51 +0.72 +0.61 +0.95 +0.96

Meal price, +20% -7.55 -10.68 -9.09 -14.06 -15.54

Transport price, +20% 0 0 0 0 0

Machinery and buildings price, +20% +2.63 +3.72 +3.17 +4.90 +5.41
 
 
Table 168. Changes in production cost when some production factors were changed in a 
sensitivity analysis for small-scale production of RME, [SEK/MJengine] 
 
Changed production factors Small farm [%] Large farm [%] Purchased 

 Total EU area Total EU area seed 

 production comp. incl. production comp. incl. [%] 

Seed harvest, +20% -19.41 -20.21 -19.90 -21.01 not relevant

Seed harvest, -20% +29.12 +30.31 +29.85 +31.52 not relevant

Labour price, +20% +6.69 +8.62 +6.09 +8.20 +6.31

Fertiliser price, +20% +3.40 +4.39 +3.91 +5.26 not relevant

Electricity price, +20% +0.56 +0.72 +0.65 +0.87 +0.87

Meal price, +20% -5.76 -7.42 -6.62 -8.90 -9.47

Methanol price, +20% +0.58 +0.74 +0.66 +0.89 +0.95

Glycerine price, +20% -0.68 -0.87 -0.78 -1.05 -1.11

Transport price, +20% +0.031 +0.039 +0.035 +0.047 +0.050

Machinery and buildings price, +20% +3.91 +5.04 +4.50 +6.05 +6.44
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Table 169. Changes in production cost when some production factors were changed in a 
sensitivity analysis for small-scale production of ethanol fuel, [SEK/MJengine] 
 
Changed production factors Small farm [%] Large farm [%] Purchased 

 Total EU area Total EU area seed 

 production comp. incl. production comp. incl. [%] 

Seed harvest, +20% -12.36 -11.95 -12.45 -12.02 not relevant

Seed harvest, -20% +18.54 +17.92 +18.68 +18.03 not relevant

Fertiliser price, +20% +1.16 +1.27 +1.23 +1.36 not relevant

Electricity price, +20% +0.30 +0.33 +0.28 +0.31 +0.32

Steam price, +20% +0.41 +0.45 +0.44 +0.49 +0.50

Chemicals price, +20% +0.34 +0.37 +0.36 +0.39 +0.40

Ignition improver price, +20% +2.86 +3.13 +3.04 +3.36 +3.44

Denaturants price, +20% +0.46 +0.51 +0.49 +0.54 +0.56

Transport price, +20% +0.025 +0.028 +0.027 +0.030 +0.030

Machinery and buildings price, +20% +5.62 +6.16 +5.99 +6.61 +6.76

Distiller’s waste price, +20% -0.59 -0.65 -0.63 -0.69 -0.71

Labour price, +20% +4.13 +4.52 +3.78 +4.17 +3.49
 
 
The influence of increasing and decreasing the seed yield by 20% and increasing and 
decreasing the price for some production factors by 20%, on the difference between small- 
and large-scales was also studied (Tables 170-172) (for description of calculations see Section 
3.11.1). The influence of each production factor was accounted for by the difference from the 
original (no change) level. It was demonstrated that the changes in the input parameters had a 
small or negligible influence on the difference between the two production scales. For RME 
and ethanol fuel production, the production costs were approx. 40-50% lower for large-scale 
plants in all the cases with all the price changes. For rapeseed oil production the production 
costs were approx. 20-30% lower for large-scale plants in all the cases with all the price 
changes. For production of RME and ethanol fuel, the difference in production cost in favour 
of large plants became greater with seed production on larger farms and with production with 
EU area compensation. That was because lower seed production costs made the lower RME 
production costs on a larger plant come through more. For the purchased seed (2.00 SEK/kg 
rapeseed and 0.97 SEK/kg wheat) the same is valid but on a somewhat higher degree, which 
makes the large plant even more favoured. However, for rapeseed oil plants the above-
described effects are the opposite due to the production plant being more simple and therefore 
e.g. the higher transport costs for a larger plant coming through more (Tables 123-131). 
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Table 170. Original differences between small- and large-scale systems, and the differences 
when some production factors were changed during production of rapeseed oil, 
[SEK/MJengine] 
 
Changed production factors Small farm [%] Large farm [%] Purchased 

 Total  EU area Total  EU area seed 

 production comp. incl. production comp. incl. [%] 
Original (no change) 
   (calculated after Table 142) -28.48 -27.60 -28.04 -26.64 -26.22

Seed harvest, +20% -27.00 -25.40 -26.21 -23.58 not relevant

Seed harvest, -20% -29.83 -29.52 -29.68 -29.21 not relevant

Labour price, +20% -29.31 -28.81 -29.03 -28.22 -27.88

Labour price, -20% -27.55 -26.18 -26.97 -24.84 -24.45

Fertiliser price, +20% -28.57 -27.77 -28.18 -26.95 not relevant

Fertiliser price, -20% -28.38 -27.39 -27.90 -26.28 not relevant

Electricity price, +20% -28.65 -27.83 -28.25 -26.97 -26.58

Electricity price, -20% -28.31 -27.35 -27.84 -26.31 -25.86

Meal price, +20% -26.13 -24.05 -25.13 -21.64 -20.52

Meal price, -20% -30.50 -30.45 -30.47 -30.41 -30.39

Transport price, +20% -27.91 -26.79 -27.36 -25.58 -25.05

Transport price, -20% -29.05 -28.40 -28.73 -27.71 -27.40

Machinery and buildings price, +20% -29.76 -29.42 -29.59 -29.06 -28.91

Machinery and buildings price, -20% -27.13 -25.63 -26.39 -23.97 -23.23
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Table 171. Original differences between small- and large-scale systems, and the differences 
when some production factors were changed during production of RME, [SEK/MJengine] 
 
Changed production factors Small farm [%] Large farm [%] Purchased 

 Total  EU area Total  EU area seed 

 production comp. incl. production comp. incl. [%] 
Original (no change) 
   (calculated after Table 142) -42.74 -46.23 -44.54 -49.36 -50.56

Seed harvest, +20% -42.25 -45.75 -44.06 -48.96 not relevant

Seed harvest, -20% -43.20 -46.67 -44.99 -49.71 not relevant

Labour price, +20% -44.08 -47.65 -46.16 -51.14 -52.84

Labour price, -20% -41.21 -44.55 -42.70 -47.26 -47.97

Fertiliser price, +20% -42.34 -45.58 -44.02 -48.42 not relevant

Fertiliser price, -20% -43.16 -46.95 -45.11 -50.40 not relevant

Electricity price, +20% -42.76 -46.23 -44.55 -49.33 -50.53

Electricity price, -20% -42.72 -46.23 -44.53 -49.38 -50.59

Meal price, +20% -41.85 -45.35 -43.64 -48.59 -49.86

Meal price, -20% -43.53 -46.99 -45.33 -50.00 -51.13

Methanol price, +20% -42.67 -46.12 -44.45 -49.19 -50.37

Methanol price, -20% -42.81 -46.35 -44.63 -49.53 -50.75

Glycerine price, +20% -43.03 -46.64 -44.89 -49.88 -51.13

Glycerine price, -20% -42.45 -45.83 -44.20 -48.84 -50.00

Transport price, +20% -42.29 -45.66 -44.03 -48.67 -49.83

Transport price, -20% -43.18 -46.81 -45.05 -50.05 -51.29

Machinery and buildings price, +20% -44.13 -47.84 -46.06 -51.09 -52.33

Machinery and buildings price, -20% -41.23 -44.45 -42.88 -47.39 -48.55
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Table 172. Original differences between small- and large-scale systems, and the differences 
when some production factors were changed during production of ethanol fuel, 
[SEK/MJengine] 
 
Changed production factors Small farm [%] Large farm [%] Purchased 

 Total  EU area Total  EU area seed 

 production comp. incl. production comp. incl. [%] 
Original (no change) 
   (calculated after Table 142) -40.97 -44.91 -43.66 -48.16 -49.30

Seed harvest, +20% -40.41 -44.08 -43.10 -47.30 not relevant

Seed harvest, -20% -41.60 -45.84 -44.28 -49.11 not relevant

Fertiliser price, +20% -40.51 -44.35 -43.12 -47.51 not relevant

Fertiliser price, -20% -41.46 -45.49 -44.20 -48.82 not relevant

Electricity price, +20% -40.75 -44.65 -43.42 -47.88 -49.02

Electricity price, -20% -41.20 -45.18 -43.89 -48.43 -49.58

Steam price, +20% -40.63 -44.52 -43.28 -47.71 -48.84

Steam price, -20% -41.32 -45.31 -44.04 -48.60 -49.76

Chemicals price, +20% -40.95 -44.87 -43.62 -48.10 -49.24

Chemicals price, -20% -41.00 -44.95 -43.69 -48.21 -49.36

Ignition improver price, +20% -40.95 -44.76 -43.55 -47.89 -48.99

Ignition improver price, -20% -41.00 -45.07 -43.77 -48.44 -49.63

Denaturants price, +20% -41.01 -44.94 -43.68 -48.16 -49.30

Denaturants price, -20% -40.94 -44.89 -43.63 -48.15 -49.30

Transport price, +20% -40.43 -44.31 -43.07 -47.51 -48.64

Transport price, -20% -41.52 -45.51 -44.24 -48.80 -49.96

Machinery and buildings price, +20% -42.58 -46.44 -45.21 -49.58 -50.69

Machinery and buildings price, -20% -39.17 -43.19 -41.90 -46.52 -47.71

Distiller’s waste price, +20% -42.07 -46.14 -44.84 -49.49 -50.68

Distiller’s waste price, -20% -39.89 -43.70 -42.49 -46.84 -47.94

Labour price, +20% -41.92 -45.77 -44.81 -49.24 -50.74

Labour price, -20% -39.95 -43.98 -42.41 -46.97 -47.76
 
 

4.11 Monte Carlo simulation of error propagation 
 
The results from the Monte Carlo simulation of error propagation are described below. The 
methodology is described in Section 3.11.3. First the values from the LCA are accounted for 
(Tables 133, 138, 175 and 181), followed by equivalent average values from the Monte Carlo 
simulation (Tables 173, 176 and 182), uncertainty values (Tables 174, 177 and 183), z-values 
for calculation of probability values from the normal distribution (Tables 178 and 184) and 
finally probability values (Tables 179 and 185). The probability values give the probability 
that case 1 is less than case 2 for the given assumptions in the LCA model and the Monte 
Carlo simulation. Plant sizes are compared in Tables 175-180 and fuels are compared in 
Tables 181-185. 
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Table 174 shows uncertainty values as standard deviation values from the Monte Carlo 
simulation for rapeseed oil, RME and ethanol fuel production. The LCA values for these 
values are accounted for in Table 133. For each fuel and type of emission or energy 
requirement the differences between the plant sizes were very small. Between rapeseed oil 
and RME production the differences were also small, but the differences to production of 
ethanol fuel were greater. Differences between types of emissions and energy requirement 
were greater depending on different results from the LCA (Table 133). The average emission 
and energy requirement values from the Monte Carlo simulation (Table 173) corresponding to 
the LCA-values diverged by less than one percent in all cases, indicating that the results from 
the Monte Carlo simulation were reliable. 
 
 
Table 173. Average values for emissions and energy requirement from the Monte Carlo 
simulation 
 
Type of plant GWP AP EP POCP Input energy

 [g/MJengine] [g/MJengine] [g/MJengine] [g/MJengine] [MJ/MJengine]

Rapeseed oil production:      

   Small-scale 122 1.94 0.342 0.0261 0.695

   Medium-scale 120 1.93 0.340 0.0259 0.643

   Large-scale 122 1.94 0.343 0.0264 0.671

RME production:     

   Small-scale 128 1.98 0.351 0.0233 0.850

   Medium-scale 126 1.97 0.349 0.0231 0.795

   Large-scale 128 1.98 0.352 0.0235 0.817

Ethanol fuel production:     

   Small-scale 103 1.16 0.200 0.1001 0.910

   Medium-scale 102 1.17 0.204 0.0929 0.889

   Large-scale 104 1.16 0.202 0.0923 0.895
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Table 174. Uncertainty values as standard deviation values from the Monte Carlo simulation 
 
Type of plant GWP AP EP POCP Input energy

 [g/MJengine] [g/MJengine] [g/MJengine] [g/MJengine] [MJ/MJengine]

Rapeseed oil production:      

   Small-scale 16.78 0.1641 0.02910 0.001989 0.06997

   Medium-scale 16.50 0.1629 0.02889 0.001979 0.06813

   Large-scale 16.64 0.1635 0.02900 0.001984 0.06798

RME production:     

   Small-scale 15.71 0.1593 0.02843 0.001633 0.06602

   Medium-scale 15.44 0.1581 0.02825 0.001622 0.06442

   Large-scale 15.54 0.1586 0.02832 0.001626 0.06387

Ethanol fuel production:     

   Small-scale 8.78 0.0888 0.01568 0.006494 0.04365

   Medium-scale 8.80 0.0894 0.01579 0.006399 0.04267

   Large-scale 8.79 0.0873 0.01546 0.006479 0.04242
 
 

4.11.1 Comparison between production scales 
 
Differences from comparisons of plant sizes are accounted for in Table 175. These values are 
very small in comparison to the original LCA values (Table 133). The differences were about 
the same size independent of the fuel studied. One exception was the POCP-emissions during 
production of ethanol fuel, which differed between plant sizes. This could be explained by 
high HC-emissions during small-scale production of heat (steam) (Table 34). The reasons for 
the differences between production scales are further discussed in Section 4.4: Comparison 
between production scales. 
 
The average emissions and energy requirement values from the Monte Carlo simulation 
(Table 176) corresponding to the LCA-values (Table 175) diverged by part of or a few 
percent in most cases, up to at most 9%, for small-scale – large-scale RME production for 
GWP-emissions. The cases that diverged the most were somewhat less reliable, but were 
assumed to be sufficiently reliable as the basis for the probability calculation in Table 179. In 
those probabilities, only the first digit may be reliable. The difference between the two values 
compared was very small (less than 0.1% of the original values). 
 
The uncertainty values for the comparisons of plant sizes (Table 177) differed greatly (3 - 
almost 600% of the total). The uncertainty values were least for rapeseed oil plants and 
highest for ethanol fuel plants. This depended on a higher share of the factors studied 
originating from the cultivation (Tables 114-122), which is dependent (does not contribute to 
the uncertainty) on plant sizes for rapeseed oil and RME production. 
 
The probability values in Table 179 were directly calculated from the z-values (Table 178) 
with a normal distribution table. When it was assumed that a difference existed between the 
values compared if: P < 0.05 or P > 0.95, then differences existed between: 
Small-scale and medium-scale production of rapeseed oil and RME for all factors studied; 
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Small-scale and medium-scale production of ethanol fuel for EP- and POCP-emissions; 
Small-scale and large-scale production of rapeseed oil for AP-, EP- and POCP-emissions and 
energy requirement; 
Small-scale and large-scale production of RME for POCP-emissions; 
Small-scale and large-scale production of ethanol fuel for GWP- and POCP-emissions; 
Medium-scale and large-scale production of rapeseed oil for all studied factors; 
Medium-scale and large-scale production of RME for GWP-, AP-, EP- and POCP-emissions; 
Medium-scale and large-scale production of ethanol fuel for GWP-emissions. 
 
 
Table 175. Differences during comparison of plant sizes 
 
Type of plants compared GWP AP EP POCP Input energy

 [g/MJengine] [g/MJengine] [g/MJengine] [g/MJengine] [MJ/MJengine]

Rapeseed oil production:      

   Small-scale - medium-scale 2.17 0.0122 0.00198 0.00018 0.0507

   Small-scale - large-scale -0.29 -0.0037 -0.00073 -0.00032 0.0226

   Medium-scale - large-scale -2.46 -0.0159 -0.00271 -0.00050 -0.0281

RME production:     

   Small-scale - medium-scale 2.09 0.0117 0.00190 0.00018 0.0533

   Small-scale - large-scale 0.09 -0.0015 -0.00035 -0.00026 0.0321

   Medium-scale- large-scale -2.01 -0.0132 -0.00225 -0.00044 -0.0212

Ethanol fuel production:     

   Small-scale - medium-scale 0.52 -0.0112 -0.00350 0.00719 0.0225

   Small-scale - large-scale -1.20 -0.0032 -0.00207 0.00751 0.0157

   Medium-scale - large-scale -1.72 0.0080 0.00143 0.00032 -0.0068
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Table 176. Average values for differences during comparison of plant sizes using Monte 
Carlo simulation 
 
Type of plants compared GWP AP EP POCP Input energy

 [g/MJengine] [g/MJengine] [g/MJengine] [g/MJengine] [MJ/MJengine]

Rapeseed oil production:      

   Small-scale - medium-scale 2.18 0.0122 0.00199 0.00019 0.0516

   Small-scale - large-scale -0.28 -0.0037 -0.00072 -0.00031 0.0234

   Medium-scale - large-scale -2.46 -0.0159 -0.00271 -0.00050 -0.0282

RME production:     

   Small-scale - medium-scale 2.10 0.0119 0.00192 0.00018 0.0546

   Small-scale - large-scale 0.10 -0.0014 -0.00035 -0.00025 0.0329

   Medium-scale - large-scale -2.01 -0.0133 -0.00227 -0.00044 -0.0216

Ethanol fuel production:     

   Small-scale - medium-scale 0.52 -0.0110 -0.00345 0.00719 0.0218

   Small-scale - large-scale -1.21 -0.0031 -0.00204 0.00749 0.0152

   Medium-scale - large-scale -1.73 0.0079 0.00141 0.00030 -0.0066
 
 
Table 177. Uncertainty values as standard deviation values from the Monte Carlo simulation 
during comparison of plant sizes 
 
Type of plants compared GWP AP EP POCP Input energy

 [g/MJengine] [g/MJengine] [g/MJengine] [g/MJengine] [MJ/MJengine]

Rapeseed oil production:      

   Small-scale - medium-scale 0.329 0.0021 0.00035 0.000028 0.0124

   Small-scale - large-scale 0.200 0.0012 0.00020 0.000021 0.0121

   Medium-scale - large-scale 0.173 0.0011 0.00019 0.000015 0.0079

RME production:     

   Small-scale - medium-scale 0.311 0.0025 0.00041 0.000029 0.0204

   Small-scale - large-scale 0.230 0.0023 0.00037 0.000026 0.0207

   Medium-scale - large-scale 0.161 0.0021 0.00034 0.000020 0.0180

Ethanol fuel production:     

   Small-scale - medium-scale 0.504 0.0104 0.00170 0.002010 0.0316

   Small-scale - large-scale 0.484 0.0090 0.00145 0.001976 0.0317

   Medium-scale - large-scale 0.443 0.0095 0.00165 0.001731 0.0311
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Table 178. Z-values calculated from the Monte Carlo simulation for comparison of plant sizes 
 
Type of plants compared GWP AP EP POCP Input energy

 [g/MJengine] [g/MJengine] [g/MJengine] [g/MJengine] [MJ/MJengine]

Rapeseed oil production:      

   Small-scale - medium-scale 6.59 5.80 5.58 6.47 4.09

   Small-scale - large-scale -1.45 -3.13 -3.68 -14.82 1.86

   Medium-scale - large-scale -14.22 -14.44 -14.50 -33.03 -3.55

RME production:     

   Small-scale - medium-scale 6.73 4.78 4.67 6.17 2.62

   Small-scale - large-scale 0.39 -0.64 -0.94 -9.84 1.55

   Medium-scale - large-scale -12.47 -6.22 -6.56 -22.35 -1.18

Ethanol fuel production:     

   Small-scale - medium-scale 1.03 -1.08 -2.06 3.58 0.71

   Small-scale - large-scale -2.48 -0.36 -1.43 3.80 0.50

   Medium-scale - large-scale -3.88 0.84 0.87 0.18 -0.22
 
 
Table 179. Probability values calculated from the Monte Carlo simulation for comparison of 
plant sizes 
 
Type of plants compared GWP AP EP POCP Input energy

 [g/MJengine] [g/MJengine] [g/MJengine] [g/MJengine] [MJ/MJengine]

Rapeseed oil production:      

   P(small-scale < medium-scale) 2*10-11 3*10-9 1*10-8 5*10-11 0.00002

   P(small-scale < large-scale) 0.93 0.9991 0.99988 1-5*10-50 0.03

   P(medium-scale < large-scale) 1-4*10-46 1-2*10-47 1-6*10-48 1-2*10-239 0.9998

RME production:     

   P(small-scale < medium-scale) 8*10-12 9*10-7 2*10-6 3*10-10 0.004

   P(small-scale < large-scale) 0.35 0.74 0.83 1-4*10-23 0.06

   P(medium-scale < large-scale) 1-6*10-36 1-3*10-10 1-3*10-11 1-7*10-111 0.88

Ethanol fuel production:     

   P(small-scale < medium-scale) 0.15 0.86 0.98 0.0002 0.24

   P(small-scale < large-scale) 0.994 0.64 0.92 0.00007 0.31

   P(medium-scale < large-scale) 0.99995 0.20 0.19 0.43 0.59
 
 
In Table 180, small-scale and large-scale ethanol fuel production are compared when different 
uncertainties for the input data were assumed. In this example only the ethanol plants were 
included, while cultivation and use of the fuel were excluded. Only the independent parts of 
the process were left then (see Section 3.11.3 for explanation). When the input coefficients of 
variation were halved (to 5%) the output uncertainty values were approximately halved (Table 
180). When the input coefficients of variation were increased by 50% (to 15%) the output 
uncertainty values were approximately increased by 50%, perhaps somewhat less (Table 180). 
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The probability follows with most observed differences for the lowest input coefficients of 
variation (observed differences when P < 0.05 or P > 0.95). More complicated systems (with 
dependent variables) will behave in the same manner but with some of the effects from the 
change of the input variances hidden by the dependence between the variables. 
 
 
Table 180. Comparison of small-scale and large-scale ethanol fuel plants at different 
uncertainty levels (excl. cultivation and use) 
 
Type of plants compared GWP AP EP POCP Input energy

 [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [MJ/MJfuel]

Small-scale - large-scale -0.48 -0.0013 -0.00082 0.0030 0.0062

   Uncertainty valuesa:     

       Input coefficients of variation: 5% 0.21 0.0019 0.00027 0.00042 0.0072

       Input coefficients of variation: 10% 0.41 0.0038 0.00056 0.00082 0.0130

       Input coefficients of variation: 15% 0.60 0.0055 0.00081 0.00120 0.0216

   Probability that: small-scale < large-scaleb     

       Input coefficients of variation: 5% 0.987 0.75 0.9986 1.0*10-12 0.19

       Input coefficients of variation: 10% 0.88 0.63 0.929 0.00014 0.32

       Input coefficients of variation: 15% 0.79 0.59 0.84 0.0068 0.39
a Uncertainty value from Monte Carlo simulation equivalent to the standard deviation. 
b Probability values calculated using assumptions of normal distribution. 
 
 

4.11.2 Comparison between fuels 
 
Differences from comparisons of fuels are accounted for in Table 181. These values are small 
in comparison to the original LCA values with physical allocation (Table 133) and with some 
exceptions also for allocation with expanded system (Table 138). In the following paragraphs, 
first the values for physical allocation are discussed and after that the values for allocation 
with expanded system are treated. The differences were considerably smaller when RME was 
compared with rapeseed oil in comparison to RME – ethanol fuel and rapeseed oil – ethanol 
fuel (for expanded system also valid for AP-, EP- and POCP-emissions). The exception was 
the requirement of energy, where the difference was smallest for the comparison of RME and 
ethanol fuel. The reasons for the differences between fuels are further discussed in Section 
4.5: Comparison between fuels. 
 
The average emissions and energy requirement values from the Monte Carlo simulation 
(Table 182) corresponding to the LCA-values (Table 181) diverged by part of or a few 
percent in most cases up to at most 12% for large-scale RME – large-scale rapeseed oil 
production for AP-emissions. The cases that diverged the most were probably somewhat less 
reliable, but were assumed to be sufficiently reliable as the basis for the probability 
calculations in Table 185. In that table, probabilities may only be reliable to the first digit. The 
difference between the two values compared was very small (approx. 2% of the original 
values). With expanded system the deviations were in most cases of the same size as for 
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physical allocation, but with one exception: the EP-emissions for all three scales when RME 
was compared with rapeseed oil were 230-270% lower than the original (with opposite sign). 
The explanation for this was that the differences for these cases between the two fuels 
compared were negligible (less than 0.3% of the original values, see Tables 138 and 181), 
which made these difference values very small in comparison to the uncertainty values 
(Tables 183). Because of that, the values from the Monte Carlo simulations are not 
necessarily unreliable even for these cases. 
 
The uncertainty values for the comparisons of plant sizes (Table 183) differed greatly (8 – 
more than 500% of the total). The uncertainty values were of the same size for all three fuel 
production comparisons. However, the relative uncertainties were much higher for the 
comparison of RME and rapeseed oil depending on much lower absolute values (Table 181). 
For the expanded system the uncertainty values were of the same size as with physical 
allocation with exceptions for the EP-emissions for all three scales when RME was compared 
with rapeseed oil and GWP-emissions when large-scale RME was compared with large-scale 
ethanol fuel, which were much larger (2700-3300% of the total, see above for explanation). 
 
The probability values in Table 185 can be calculated directly from the z-values (Table 184) 
with a normal distribution table. When it was assumed that a difference existed between the 
compared values if: P < 0.05 or P > 0.95, then differences existed between (physical 
allocation): 
RME and rapeseed oil production for GWP-emissions and energy requirement; 
RME and ethanol fuel production for AP-, EP- and POCP-emissions; 
Rapeseed oil and ethanol fuel production for AP-, EP- and POCP-emissions and energy 
requirement. 
The behaviour was the same for all three production scales studied. 
 
With expanded system, with the same assumptions, differences existed between: 
RME and rapeseed oil production for GWP-and POCP-emissions and energy requirement; 
RME and ethanol fuel production for AP-, EP- and POCP-emissions and energy requirement; 
Rapeseed oil and ethanol fuel production for AP-, EP- and POCP-emissions. 
The behaviour was almost the same for all three production scales studied. Between rapeseed 
oil and ethanol fuel production, differences existed for GWP-emissions for large plants and 
almost also for small- and medium-scale plants. The deviation for GWP-emissions when 
rapeseed oil and ethanol were compared could be explained by P-values almost equal to 0.05 
for all three production sizes (one smaller than, two bigger than). Differences for energy need 
between rapeseed oil and ethanol fuel productions existed between small- and medium-scale 
plants but not for large-scale plants. 
 
The reason for the differences between RME and rapeseed oil production was the requirement 
of inputs to transesterify the rapeseed and to produce the methanol during the RME 
production, which required energy with resultant GWP-emissions. However, these inputs 
gave small emissions of AP-, EP- and POCP-emission in comparison to the use of the 
rapeseed oil and RME produced (Tables 114-115, 117-118 and 120-121 and Tables A3-A14, 
Appendix 1), which contributed to a large part of the uncertainty in the Monte Carlo 
simulation. Therefore no differences could be observed. 
 
The reason for the differences between RME and ethanol fuel production was that the 
differences between these two fuels were large enough to be observed. The same was also 
valid between rapeseed oil and ethanol fuel production. 
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The differences between the two allocation methods were rather large. The results regarding 
which fuel gave least environmental load were in some cases the opposite for the two 
allocation methods when rapeseed oil and RME productions were compared (GWP- and AP-
emissions and energy requirement for all production scales studied) (Table 181) (for 
explanation see Section 4.6). However, there were rather large similarities in the pattern 
(which were ‘significant’ and which were not ‘significant’) between the allocation methods 
when studying whether P < 0.05 or P > 0.95 during comparisons of the fuels (Table 185). 
 
 
Table 181. Differences during comparison of fuels 
 
Type of fuels compared GWP AP EP POCP Input energy

 [g/MJengine] [g/MJengine] [g/MJengine] [g/MJengine] [MJ/MJengine]

Physical allocation:      

   Small-scale production:      

      RME - rapeseed oil 5.60 0.0406 0.0084 -0.0029 0.155

      RME - ethanol fuel 24.88 0.8242 0.1517 -0.0767 -0.061

      Rapeseed oil - ethanol fuel 19.28 0.7836 0.1433 -0.0738 -0.215

   Medium-scale production:     

      RME - rapeseed oil 5.67 0.0411 0.0085 -0.0029 0.152

      RME - ethanol fuel 23.30 0.8012 0.1463 -0.0697 -0.091

      Rapeseed oil - ethanol fuel 17.63 0.7602 0.1378 -0.0668 -0.243

   Large-scale production:     

      RME - rapeseed oil 5.22 0.0383 0.0080 -0.0030 0.145

      RME - ethanol fuel 23.58 0.8224 0.1500 -0.0689 -0.077

      Rapeseed oil - ethanol fuel 18.37 0.7841 0.1419 -0.0660 -0.222

Expanded system:  

   Small-scale production:  

      RME - rapeseed oil -47.54 -0.069 0.0007 -0.0116 -0.806

      RME - ethanol fuel 16.39 0.617 0.1833 -0.0930 -1.397

      Rapeseed oil - ethanol fuel 63.93 0.686 0.1826 -0.0813 -0.592

   Medium-scale production:  

      RME - rapeseed oil -47.30 -0.072 0.0009 -0.0117 -0.815

      RME - ethanol fuel 9.19 0.680 0.1738 -0.0829 -1.321

      Rapeseed oil - ethanol fuel 56.49 0.752 0.1729 -0.0712 -0.505

   Large-scale production:  

      RME - rapeseed oil -47.21 -0.086 0.0008 -0.0121 -0.841

      RME - ethanol fuel 0.59 0.958 0.1672 -0.0758 -0.900

      Rapeseed oil - ethanol fuel 47.80 1.043 0.1665 -0.0637 -0.059
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Table 182. Average values for differences during comparison of fuels using Monte Carlo 
simulation 
 
Type of fuels compared GWP AP EP POCP Input energy

 [g/MJengine] [g/MJengine] [g/MJengine] [g/MJengine] [MJ/MJengine]

Physical allocation:      

   Small-scale production:      

      RME - rapeseed oil 5.47 0.0361 0.0076 -0.0029 0.155

      RME - ethanol fuel 24.92 0.8249 0.1518 -0.0768 -0.062

      Rapeseed oil - ethanol fuel 19.30 0.7837 0.1433 -0.0738 -0.216

   Medium-scale production:     

      RME - rapeseed oil 5.55 0.0366 0.0077 -0.0029 0.152

      RME - ethanol fuel 23.34 0.8021 0.1465 -0.0698 -0.090

      Rapeseed oil - ethanol fuel 17.63 0.7602 0.1378 -0.0668 -0.243

   Large-scale production:     

      RME - rapeseed oil 5.09 0.0338 0.0072 -0.0030 0.145

      RME - ethanol fuel 23.59 0.8256 0.1505 -0.0689 -0.075

      Rapeseed oil - ethanol fuel 18.39 0.7844 0.1420 -0.0660 -0.221

Expanded system:  

   Small-scale production:  

      RME - rapeseed oil -47.52 -0.079 -0.0012 -0.0117 -0.804

      RME - ethanol fuel 18.34 0.613 0.1833 -0.0933 -1.388

      Rapeseed oil - ethanol fuel 65.31 0.688 0.1837 -0.0817 -0.585

   Medium-scale production:  

      RME - rapeseed oil -47.25 -0.084 -0.0011 -0.0119 -0.813

      RME - ethanol fuel 10.61 0.681 0.1736 -0.0832 -1.316

      Rapeseed oil - ethanol fuel 57.60 0.759 0.1739 -0.0714 -0.503

   Large-scale production:  

      RME - rapeseed oil -47.59 -0.095 -0.0010 -0.0122 -0.849

      RME - ethanol fuel 0.85 0.955 0.1665 -0.0761 -0.908

      Rapeseed oil - ethanol fuel 48.39 1.048 0.1670 -0.0639 -0.059
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Table 183. Uncertainty values as standard deviation values from the Monte Carlo simulation 
during comparison of fuels 
 
Type of fuels compared GWP AP EP POCP Input energy

 [g/MJengine] [g/MJengine] [g/MJengine] [g/MJengine] [MJ/MJengine]

Physical allocation:      

   Small-scale production:      

      RME - rapeseed oil 1.26 0.1791 0.0327 0.00213 0.0132

      RME - ethanol fuel 17.01 0.1782 0.0317 0.00670 0.0767

      Rapeseed oil - ethanol fuel 18.22 0.1787 0.0315 0.00685 0.0794

   Medium-scale production:     

      RME - rapeseed oil 1.24 0.1791 0.0327 0.00213 0.0125

      RME - ethanol fuel 16.78 0.1771 0.0315 0.00665 0.0753

      Rapeseed oil - ethanol fuel 17.96 0.1775 0.0313 0.00663 0.0781

   Large-scale production:     

      RME - rapeseed oil 1.30 0.1792 0.0327 0.00213 0.0123

      RME - ethanol fuel 16.92 0.1827 0.0325 0.00676 0.0744

      Rapeseed oil - ethanol fuel 18.06 0.1778 0.0313 0.00674 0.0771

Expanded system:  

   Small-scale production:  

      RME - rapeseed oil 6.16 0.1801 0.0327 0.00252 0.1334

      RME - ethanol fuel 38.36 0.3160 0.0489 0.00824 0.3013

      Rapeseed oil - ethanol fuel 39.08 0.3240 0.0500 0.00833 0.2846

   Medium-scale production:  

      RME - rapeseed oil 6.48 0.1813 0.0328 0.00259 0.1419

      RME - ethanol fuel 35.19 0.2909 0.0458 0.00795 0.2782

      Rapeseed oil - ethanol fuel 35.54 0.2986 0.0466 0.00796 0.2403

   Large-scale production:  

      RME - rapeseed oil 6.54 0.1795 0.0327 0.00247 0.1436

      RME - ethanol fuel 28.05 0.2413 0.0400 0.00750 0.2147

      Rapeseed oil - ethanol fuel 28.43 0.2424 0.0399 0.00750 0.1617
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Table 184. Z-values calculated from the Monte Carlo simulation for comparison of fuels 
 
Type of fuels compared GWP AP EP POCP Input energy

 [g/MJengine] [g/MJengine] [g/MJengine] [g/MJengine] [MJ/MJengine]

Physical allocation:      

   Small-scale production:      

      RME - rapeseed oil 4.46 0.23 0.26 -1.36 11.71

      RME - ethanol fuel 1.46 4.62 4.78 -11.45 -0.79

      Rapeseed oil - ethanol fuel 1.06 4.38 4.55 -10.77 -2.71

   Medium-scale production:     

      RME - rapeseed oil 4.58 0.23 0.26 -1.36 12.22

      RME - ethanol fuel 1.39 4.52 4.64 -10.48 -1.21

      Rapeseed oil - ethanol fuel 0.98 4.28 4.40 -10.07 -3.12

   Large-scale production:     

      RME - rapeseed oil 4.02 0.21 0.24 -1.39 11.85

      RME - ethanol fuel 1.39 4.50 4.61 -10.19 -1.03

      Rapeseed oil - ethanol fuel 1.02 4.41 4.53 -9.80 -2.88

Expanded system:  

   Small-scale production:  

      RME - rapeseed oil -7.71 -0.38 0.02 -4.61 -6.04

      RME - ethanol fuel 0.43 1.95 3.74 -11.28 -4.64

      Rapeseed oil - ethanol fuel 1.64 2.12 3.65 -9.76 -2.08

   Medium-scale production:  

      RME - rapeseed oil -7.30 -0.40 0.03 -4.54 -5.74

      RME - ethanol fuel 0.26 2.34 3.80 -10.43 -4.75

      Rapeseed oil - ethanol fuel 1.59 2.52 3.71 -8.95 -2.10

   Large-scale production:  

      RME - rapeseed oil -7.21 -0.48 0.02 -4.91 -5.86

      RME - ethanol fuel 0.02 3.97 4.18 -10.11 -4.19

      Rapeseed oil - ethanol fuel 1.68 4.30 4.17 -8.49 -0.36
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Table 185. Probability values calculated from the Monte Carlo simulation for comparison of 
fuels 
 
Type of fuels compared GWP AP EP POCP Input energy

 [g/MJengine] [g/MJengine] [g/MJengine] [g/MJengine] [MJ/MJengine]

Physical allocation:      

   Small-scale production:      

      P(RME < rapeseed oil) 4*10-6 0.41 0.40 0.91 5*10-32

      P(RME < ethanol fuel) 0.07 2*10-6 9*10-7 1-1*10-30 0.79

      P(rapeseed oil < ethanol fuel) 0.15 6*10-6 3*10-6 1-2*10-27 0.997

   Medium-scale production:     

      P(RME < rapeseed oil) 2*10-6 0.41 0.40 0.91 1*10-34

      P(RME < ethanol fuel) 0.08 3*10-6 2*10-6 1-5*10-26 0.89

      P(rapeseed oil < ethanol fuel) 0.16 9*10-6 5*10-6 1-4*10-24 0.9991

   Large-scale production:     

      P(RME < rapeseed oil) 3*10-5 0.42 0.40 0.92 1*10-32

      P(RME < ethanol fuel) 0.08 3*10-6 2*10-6 1-1*10-24 0.85

      P(rapeseed oil < ethanol fuel) 0.15 5*10-6 3*10-6 1-6*10-23 0.998

Expanded system:  

   Small-scale production:  

      P(RME < rapeseed oil) 1-6*10-15 0.65 0.49 1-2*10-6 1-8*10-10

      P(RME < ethanol fuel) 0.33 0.03 9*10-5 1-8*10-30 1-2*10-6

      P(rapeseed oil < ethanol fuel) 0.051 0.02 1*10-4 1-8*10-23 0.98

   Medium-scale production:  

      P(RME < rapeseed oil) 1-1*10-13 0.66 0.49 1-3*10-6 1-5*10-9

      P(RME < ethanol fuel) 0.40 0.010 7*10-5 1-9*10-26 1-1*10-6

      P(rapeseed oil < ethanol fuel) 0.056 0.006 1*10-4 1-2*10-19 0.98

   Large-scale production:  

      P(RME < rapeseed oil) 1-3*10-13 0.68 0.49 1-5*10-7 1-2*10-9

      P(RME < ethanol fuel) 0.49 4*10-5 1*10-5 1-2*10-24 1-1*10-5

      P(rapeseed oil < ethanol fuel) 0.046 8*10-6 2*10-5 1-1*10-17 0.64
 
 

4.12 Comparison to results from other studies 
 

4.12.1 Rapeseed oil and RME 
 
Two main LCAs on RME have been performed in Sweden. The first of these was by 
Ragnarsson (1994) and the second by Blinge et al. (1997) and Blinge (1998) (Table 186). 
Blinge et al. (1997) give two variants, the second with lower emissions of CO, HC, NOx and 
particle emissions depending on the fuel produced fuel being used in vehicles with better 
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equipment to reduce these emissions (Table 186). The values in Uppenberg et al. (2001) are 
in principle the values from Blinge et al. (1997). 
 
 
Table 186. Literature study, large-scale production of RME (engine emissions included) 
 
Study/ 
   Emissions CO2

c CO HC CH4 NOx SOx NH3 N2O HCl Particles Input 
energy 

 [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [MJ/MJfuel]

This study 17.98 0.049 0.015 0.010 0.702 0.028 0.091 0.087 0.00054 0.0059 0.28

Blinge et al., 1997b 8.98 0.031 0.042 0.031 0.914 0.017 0.066  0.0132 0.29

Blinge et al., 1997a and      

Blinge, 1998, production 9.00 0.020 0.031 0.031 0.081 0.018 0.067  0.0020 0.30

Uppenberg et al., 2001 9.00 0.031 0.042 0.031 0.911 0.018 0.067  0.0130 0.30

Ragnarsson, 1994 29.90 0.135 0.034 0.054 1.100 0.010 0.005 0.064  0.0240 0.47
a Heavy vehicles without particle filter. Emissions measured after ECE R49. That value Blinge et al. (1997) 
   recommends. 
b Engine efficiency 40%. Diesel oil fuel for transports. Products allocated. 
c If, for this study, it is considered that carbon atoms of biomass origin replace fossil carbon atoms in  
   replaced fossil glycerine, the CO2-emissions would be 14.11 g/MJfuel. 
 
 
The main reason that the emissions are higher in Ragnarsson (1994) is that the seed harvest 
was assumed to be lower (less RME to spread out the emissions on) in that report (1847 kg/ha 
for Ragnarsson (1994); 2647 kg/ha for Blinge et al. (1997) and Blinge (1998); and 2470 kg/ha 
in this study, all with a water content (wet basis) of 8%). A lower harvest gives higher 
emission values after division by the functional unit (e.g. 1.0 MJ energy in the produced fuel). 
Other explanations for differences between the studies are differences in system boundaries 
etc. e.g. more details were included in this study. In both LCAs physical allocation (with 1 MJ 
of energy in the RME fuel was delivered to the final consumer chosen as functional unit, i.e. 
1.0 MJfuel) used. In this study physical allocation was also the main type of allocation. 
 
There is also a German LCA where production of rapeseed oil and RME in small- and large-
scale plants have been compared (Gärtner & Reinhardt, 2001; Reinhardt & Gärtner, 2002; 
Jungk et al., 2000). That study was similar to the present study but it was conducted under 
German or Central European conditions (Table 187). 
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Table 187. Comparison with a German study, large-scale production, expanded system 
 
 Energy CO2- SO2- PO4

3-- C2H4- N2O 

 requirement equivalents equivalents equivalents equivalents  

 [GJ/ha] [kg/ha] [kg/ha] [kg/ha] [kg/ha] [kg/ha]

Rapeseed production:   

  This study 11.78 2405 14.41 2.40 0.19 5.47

  Reinhardt & Gärtner (2002) 10.43 2228 16.76 2.85 0.13 5.05

Total, large-scale rapeseed oil:   

  This study 5.66 1992 25.08 4.95 0.30 5.33

  Reinhardt & Gärtner (2002) 9.81 2166 39.52 7.19 2.66 5.09

Total, large-scale RME:   

  This study -5.95 1406 24.86 5.15 0.14 5.31

  Reinhardt & Gärtner (2002) -5.30 1522 16.15 3.76 0.99 5.60
 
 
The values obtained by Gärtner & Reinhardt (2001) and Reinhardt & Gärtner (2002) for the 
rapeseed production are very similar to the values from this study (Table 187). Energy 
requirement, CO2- (GWP-) and C2H4- (POCP-) equivalents are somewhat lower than in this 
study and SO2- (AP-) and PO4

3-- (EP-) equivalents somewhat higher. Total energy 
requirement and emissions are calculated using an expanded system where the by-product 
rapemeal is used as an animal feed in substitution of soymeal imported from the USA. 
Glycerine from the transesterification replaces conventional petroleum based glycerine. The 
rapeseed-fuel life cycles are credited for this use. In the present study, allocation with 
expanded system was studied as an alternative allocation method, see Section 4.6. The 
differences between the German study and this study (Table 187) are probably due to the fact 
that Gärtner & Reinhardt (2001), Reinhardt & Gärtner (2002) and Jungk et al. (2000) carried 
out their study under somewhat different assumptions (e.g. German conditions). 
 
Gärtner & Reinhardt (2001) and Reinhardt & Gärtner (2002) found that RME had 
significantly better environmental advantages over straight rapeseed oil fuel. The same results 
were obtained with expanded system in this study (Tables 138 and 187) but all the other 
allocation methods gave the opposite result (Tables 133, 136 and 137). Advantages for RME 
in these studies depend on replaced high environmental load for replaced glycerine of 
petroleum origin and lower emissions (except for NOx) and better efficiency when the RME 
produced was used in engines in comparison to straight rapeseed oil (Table 102) (calculations 
after Aakko et al. (2000); Thuneke (1999); SMP (1993); SMP (1994); Bernesson (1993)). 
Gärtner & Reinhardt (2001) and Reinhardt & Gärtner (2002) also found that large-scale plants 
had a lower energy requirement and emissions of GWP in this study for expanded system 
confirmed this result for GWP-emissions but not for energy requirements (Table 138). Small-
scale plants gave somewhat lower AP- and EP-emissions and lower POCP-emissions (mainly 
from hexane extraction), in this study confirmed for AP- and POCP-emissions but not for EP-
emissions (Table 138). In this study the differences were very small between plant sizes for 
EP-emissions. 
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4.12.2 Ethanol fuel 
 
Two main LCAs on ethanol fuel have been performed in Sweden. The first of these was by 
Almemark (1996) and the second by Blinge et al. (1997) and Blinge (1998) (Table 188). The 
values in Uppenberg et al. (2001) are in principle the values from Almemark (1996). 
 
 
Table 188. Literature study, large-scale production of ethanol fuel (engine emissions 
included) 
 
Study/ 
   Emissions CO2

c CO HC CH4 NOx SOx NH3 N2O HCl Particles Input
energy

 [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [g/MJfuel] [MJ/MJfuel]

This study 23.67 0.31 0.060 0.0073 0.46 0.027 0.059 0.055 0.0010 0.0074 0.35

   excl. Beraid etc.a 12.04 0.31 0.043 0.0077 0.45 0.021 0.063 0.059 0.0011 0.0060 0.23

Uppenberg et al., 2001 7.70 0.028 0.0256 0.0057 0.528 0.0067 0.033  0.0612 0.52

Almemark, 1996b 7.73 0.02165 0.00876 0.00567 0.6106 0.0067 0.033  0.06138 0.52

Almemark, 1996c 43.30 0.02215 0.00979 0.0067 0.670 0.17  0.01698 0.82

Blinge et al., 1997d and      

Blinge, 1998, production 6.61 0.018 0.024 0 0.49 0.0013 0.057  0.0033 1.11
a Ignition improver, denaturant and corrosion inhibitor with transport excluded; allocation made with ethanol  
   produced (as E95 with 6.5 weight% water: Sekab, 2003) 46557 MJ/ha; no CO2-emissions during ethanol 
   combustion assumed. 
b Project Agroetanol, conventional continuous ethanol production process. 
c Alternative process that gives more valuable feedstuffs that can be utilized separately. 
d Heavy vehicles without particle filter. Emissions measured after ECE R49. That value is recommended by  
   Blinge et al., 1997. 
 
 
The main reason for the higher GWP-emissions and energy requirement in the second process 
by Almemark (1996) (Table 188) is that this process was not designed to get as much ethanol 
as possible but instead as much valuable feedstuffs as possible. In both Blinge et al. (1997) 
and Almemark (1996) physical allocation (with 1 MJ of energy in the ethanol delivered to the 
final consumer as functional unit, i.e. 1.0 MJethanol) was used. In this study physical allocation 
(with 1 MJ of energy delivered on the engine shaft the functional unit, i.e. 1.0 MJengine that is 
easy to recalculate to the functional unit of 1 MJ of energy in the ethanol fuel delivered to the 
final consumer, i.e. 1.0 MJfuel) was also the main type of allocation. 
 
 

4.13 Comparison to fossil fuel 
 
The production and use of the rapeseed oil, RME and ethanol fuels may also be compared 
with the production and use of fossil MK1 diesel fuel (Swedish environmental class 1 diesel 
fuel oil). Table 189 accounts for MK1 fuel produced (Table 13) and used under Swedish 
conditions according to IVL recommendations (Uppenberg et al., 2001) after a study made by 
Blinge et al. (1997). Engine emission values were from Aakko et al. (2000), as were the 
emission values for RME used in this study (Table 102). Engine efficiency when running on 
MK1 fuel (Table 102) was calculated from the efficiency when running on MK3 fuel (Aakko 
et al., 2000) with assumptions of the same relationship between engine efficiencies when 
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running on MK1 fuel and MK3 fuel as in SMP (1993). Sulphur dioxide emissions were 
calculated from the sulphur content in MK1 (10 ppm according to Aakko et al., 2000). 
Carbon dioxide emissions (73 g/MJfuel) were given in Uppenberg et al. (2001) for use of MK1 
fuel in heavy diesel engines. 
 
 
Table 189. Environmental impact from production and use of MK1 diesel oil fuel (calculated 
after Uppenberg et al., 2001; Aakko et al., 2000; SMP, 1993) 
 
Production factor/ GWP AP EP POCP Input energy

    Type of environmental impact [g/MJengine] [g/MJengine] [g/MJengine] [g/MJengine] [MJ/MJengine]

Total environmental load MK1 217 1.11 0.194 0.0675 0.170 

 
 
Rapeseed oil fuels (physical allocation) reduced GWP-emissions by 42-45% compared to 
MK1 fuel (Tables 189 and 133). POCP-emissions were reduced by 61-66%. However, AP-
emissions were increased by 74-79% and EP-emissions by 75-81% compared to MK1 fuel 
(Tables 189 and 133). The energy requirements for production of rapeseed oil fuels were 3.8-
5.0 times higher than for fossil MK1 fuel (Tables 189 and 133). 
 
Ethanol fuel (physical allocation) reduced GWP-emissions by 52-53% compared to MK1 fuel 
(Tables 189 and 133). However, AP-emissions were increased by 4-5%, EP-emissions by 2-
4% and POCP-emissions by 37-48% compared to MK1 fuel (Tables 189 and 133). The 
energy requirements for production of ethanol fuel were 5.2-5.3 times higher than for fossil 
MK1 fuel (Tables 189 and 133). 
 
Other allocation methods gave similar results with some variations (Tables 133, 136, 137 and 
138). With no allocation, during production of rapeseed oil and RME, the GWP-emissions 
could be increased for small- and medium-scale plants depending on a smaller amount of fuel 
over which to spread out the greater unallocated emissions. 
 
Gärtner & Reinhardt (2001) and Reinhardt & Gärtner (2002) found that compared to diesel oil 
fuel the rapeseed oil fuels had a lower requirement of fossil energy and lower emissions of 
greenhouse gases. Other emissions were higher. 
 
 

5 GENERAL DISCUSSION 
 
The results of this study demonstrate that the differences in environmental impacts and energy 
requirements (with physical allocation) between small-, medium- and large-scale systems for 
the production and use of rapeseed oil, RME and ethanol fuel were small or even negligible in 
most cases. However in spite of their size, these differences were in many cases significant 
according to the Monte Carlo simulation, especially for rapeseed oil and RME. This was 
because the differences were swallowed up in comparison to the dominating cultivation 
emissions etc. that did not directly contribute to differences between production scales. The 
differences between rapeseed oil and RME were somewhat bigger, and for GWP-emissions 
and energy requirement they were significant according to the Monte Carlo simulation. 
During production and use of ethanol fuel the GWP-, AP- and EP-emissions were lower than 
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during production of rapeseed oil or RME. However, the POCP-emissions and energy 
requirement were higher. According to the results from the Monte Carlo simulation, these 
differences were close to significance or significant. 
 
The dominating production step regarding environmental impact and energy requirement was 
the cultivation, and as this step was identical for all production scales, the total difference 
might also be small. Furthermore, in the large-scale system, the more efficient use of 
machinery and buildings, for rapeseed oil and RME production the higher oil extraction 
efficiency and for ethanol fuel production the more efficient use of energy were, to a certain 
degree, outweighed by the longer transport distances. All these factors were, however, very 
small in comparison to cultivation. 
 
The straw from rapeseed or wheat cultivation was not considered in this study because it is 
seldom or never harvested as a fuel in Sweden today. The main reasons for this are 
combustion problems and difficulties in harvesting the straw with sufficiently low moisture 
contents due to poor weather conditions during the harvest season. Therefore, the straw is 
used in the crop rotation to increase the humus content in the soil instead. Because of a lower 
yield per hectare from rape straw, it is more expensive to harvest than wheat straw and 
therefore more seldom harvested. 
 
The results show that the choice of allocation method has a great effect on the absolute levels 
of the environmental load figures calculated. The figures calculated without allocation were in 
many cases twice as high during production of rapeseed oil and RME, and 1.5 times as high 
during production of ethanol fuel, as the figures calculated using physical calculation. The 
differences between physical and economic allocation were also quite large. This indicates 
that when different biofuels or production strategies are to be compared against each other, it 
is very important that the results are calculated using the same allocation strategies and 
system limitations. 
 
The great effect on the results caused by allocation strategy used may be seen as a weakness 
of the LCA method but is more a result of the environmental load problem having many 
different aspects and seldom simple answers. This study focused mostly on physical 
allocation because of well-defined inputs, the value of which does not change over time. 
Physical allocation is also recommended before economic allocation in ISO 14041 (ISO, 
1998). A drawback with physical and economic allocations is, however, that they often do not 
consider the environmental impact when different by-products replace other products in later 
processes. In such cases, it is often better to use the expanded system allocation procedure. 
For example, from the expanded system calculations in this study it was shown that in a 
situation where there is a requirement of glycerine and a meal with a high fat and protein 
content, RME can be produced at the same time as energy is saved and the POCP-emissions 
reduced. Thus, allocation with an expanded system may be the fairest method if the system is 
studied on a higher system level and the impact from a specific change in the total fuel 
production to end-use system is of interest. However the drawback with this method is that a 
change in the assumptions in the production of the replaced products may have very 
significant effects on the results. 
 
In systems with physical, economic or no allocation, straight rapeseed oil fuel gives lower 
emissions and has a lower energy requirement compared to RME. The reason is that when the 
rapeseed oil is used straight, there is no requirement of resources for the transesterification 
and production of methanol, etc. However, in systems with expanded system, RME gives 
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lower emissions and has a lower energy requirement compared to straight rapeseed fuel. The 
reason is that the by-product glycerine from the production of RME replaces glycerine of 
petroleum origin and a high environmental load. That environmental load is credited to the 
RME production process. The drawback with this procedure is that the result depends on how 
the by-product glycerine is used: does it replace glycerine of fossil or of biologic origin?; or is 
it used at all? The RME system is also favoured by lower emissions (except for NOx) and 
better efficiency when the RME produced is used in engines in comparison to straight 
rapeseed oil. 
 
For large-scale systems, the results from this work differed somewhat from previous LCA 
studies carried out by Ragnarsson (1994) (only RME), Almemark (1996) (only ethanol), 
Blinge et al. (1997), Blinge (1998) and Uppenberg et al. (2001). All these studies were based 
on data for Swedish conditions and physical allocation. The differences can, however, be 
explained by different assumptions and system delimitations. The results (rapeseed oil and 
RME) by Gärtner & Reinhardt (2001) and Reinhardt & Gärtner (2002) for German conditions 
with expanded system allocation were similar to the results in this study. 
 
It is clear that the production and use of rapeseed oil and RME reduce the GWP- and POCP-
emissions in comparison to the production and use of diesel oil (MK1). Based on data from 
the studies by SMP (1993), Aakko et al. (2000) and Uppenberg et al. (2001), the GWP- and 
POCP-emissions for the production and use of MK1 are 217 g CO2-eq/MJengine and 68 mg 
C2H4-eq/MJengine, whereas the corresponding values in this study were 122 g CO2-eq/MJengine 
and 26 mg C2H4-eq/MJengine, respectively for rapeseed oil and 127 g CO2-eq/MJengine and 23 
mg C2H4-eq/MJengine, respectively for RME (large-scale system with physical allocation). 
However, the categories of AP and EP were increased by 75% and 77% respectively for 
rapeseed oil and by 79% and 81% respectively for RME, in comparison to MK1. The energy 
requirement for the production and use of rapeseed oil was 3.9 times higher than for MK1 
(Uppenberg et al., 2001) and for RME 4.8 times higher than for MK1 (Uppenberg et al., 
2001). The results from the scenario analysis in which the rapeseed oil and RME produced 
replaced MK1 confirmed these relationships. 
 
It is clear that the production and use of ethanol fuel in heavy diesel engines reduce the GWP 
in comparison to the production and use of diesel oil (MK1). However, the POCP is 
increased. When the same comparison with MK1 as above is conducted, the GWP and POCP 
for the production and use of the ethanol fuel in this study were 103 g CO2-eq/MJengine and 92 
mg C2H4-eq/MJengine, respectively (large-scale system with physical allocation). The 
differences for the categories of AP and EP were much smaller, they increased by 5% and 4% 
respectively, in comparison to MK1. The energy requirement for the production and use of 
ethanol fuel was 5.2 times higher than for MK1 (Uppenberg et al., 2001). The results from the 
scenario analysis in which the ethanol fuel produced replaced MK1 confirmed these 
relationships. 
 
When ethanol fuel production was compared with RME production (large-scale with physical 
allocation in this study) the GWP, AP and EP decreased by 19%, 41% and 43% respectively. 
However, the POCP and energy requirement increased by 294% and 9% respectively. 
According to the results from the Monte Carlo simulation, these differences were close to 
significance or significant. 
 
To decrease the environmental impact of rapeseed oil, RME and ethanol fuel production in 
general, several strategies may be useful, but the results presented clearly show that increased 



 225

seed harvest and decreased use of artificial fertilisers decrease the impact considerably. While 
the potential for increased seed harvest is constrained by biological factors and weather 
conditions, the potential for a decrease in the use of energy-demanding artificial fertilisers is 
much higher. Organic waste and sewage water can be used to fulfil the nutrient demands with 
a very limited energy cost at the same time as high costs for water sanitation plants are 
avoided. Since the rapeseed and wheat will not be used as food, the hygiene demands on the 
fertilisers can be decreased and waste products normally not allowed in agriculture can be 
used. These principles have been extensively studied in Salix production (Hansson et al., 
1999) and can also be applied in rapeseed or wheat cultivation. However, there is a risk that 
organic waste and sewage water may contain heavy metals, pesticide residuals or other 
undesired organic substances. 
 
To reduce the environmental load during production of ethanol fuel for diesel engines, 
something must be done about the ignition improver and denaturants. As shown in this study, 
the denaturants can be produced from biomass or eliminated from the fuel with e.g. another 
type of ignition system in the diesel engines (STU, 1986) or the amount required can be 
decreased by a higher compression ratio in the engines (STU, 1986). 
 
The results of the economic part of this study demonstrate that the differences in production 
costs between small-, medium- and large-scale systems for the production of rapeseed oil, 
RME, or ethanol fuel are significant. This is especially because of labour, but also machines 
being used more efficiently in larger plants. The differences between the plant sizes are so 
important that they have an impact even if the costs for production of the seed or wheat 
dominate. The differences in production costs between rapeseed oil and RME were significant 
for small plants in favour of rapeseed oil but small or negligible for large plants. For small-
scale plants the additional process cost for the transesterification has a greater impact. For 
large plants the extra costs for the transesterification are almost swamped in comparison to the 
seed production cost. The differences in production costs between rapeseed oil fuels and 
ethanol fuel were significant for all plant sizes in favour of rapeseed oil fuels. The reasons for 
that are the more complicated and expensive process for ethanol production, which has a 
much higher requirement of energy especially as heat and a requirement of expensive ignition 
improver. 
 
The production costs of rapeseed oil and RME could be reduced to almost the same size as 
between medium- and small-scale plants if they were produced on a larger farm. The 
influence on the costs of ethanol production is lower if the wheat is produced on a larger farm. 
The production cost would be reduced even more with EU area compensation as received by 
farmers in the EU today. However such compensation can be changed from one day to 
another and is therefore not trustworthy in the long run. The fuels could also be produced 
more cheaply if the seed or wheat were purchased on the market. Today, farmers do not get 
reimbursed for all their costs when rapeseed or wheat is grown in Central Sweden. A solution 
to get a greater profit could be for the farmers to join together and start a medium-scale plant 
and sell the RME or the rapeseed oil instead of the seed. However, the ethanol would 
probably be too expensive to produce in medium-scale plants. 
 
When the price paid for RME at the plant (Lindkvist, pers. comm.) is 5.61 SEK/litre (0.47 
SEK/MJengine) excluding value added tax, it is profitable to produce rapeseed oil and RME in 
large-scale plants with EU area compensation independent of the size of farm on which the 
seed is grown. If the farm is large, the production would also be profitable in medium-scale 
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plants. When the seed is purchased for 2.00 SEK/kg, rapeseed oil and RME can be produced 
profitably in medium- and large-scale plants. 
 
When the price paid for ethanol fuel at the plant (Elfving, pers. comm.) is 6.30 SEK/litre (0.76 
SEK/MJengine) excluding value added tax, it is only profitable to produce ethanol fuel in large-
scale plants with or without EU area compensation, independent of the size of farm on which 
the seed is grown. When the wheat is purchased for 0.97 SEK/kg, production of ethanol fuel 
is also very close to being profitable in medium-scale plants. 
 
 

6 CONCLUSIONS 
 
This study demonstrated that the differences in environmental impacts and energy 
requirements (with physical allocation) between small-, medium- and large-scale systems for 
the production of rapeseed oil, RME and ethanol for heavy diesel engines were small or even 
negligible (Figure 6). The dominating step was the cultivation, and as this step was the same 
for all scales, the differences between the scales were levelled out. Furthermore, in the large-
scale system, the more efficient use of machinery and buildings, the higher oil extraction 
efficiency in the production of rapeseed oil and RME, and the more efficient use of energy in 
the production of ethanol were, to a certain degree, outweighed by the longer transport 
distances. 
 

 
Figure 6. Normalised (small-scale rapeseed oil = 100) emission category and input energy 
values for production of the three fuels studied on three different scales with physical 
allocation and 1.0 MJ on the engine shaft (MJengine) as functional unit. 
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The results were largely dependent on the method used for allocation of the environmental 
burden between the rapeseed oil, RME and ethanol fuel and the by-products meal, distiller’s 
waste and/or glycerine (see Figures 6 and 7). This indicates that when different biofuel 
production strategies are to be compared, it is important that the calculations are based on the 
same allocation strategies. For example, when physical, economic and no allocation were 
used, rapeseed oil would be preferred, whereas RME would be preferred according to the 
calculations with the expanded system allocation method. 
 

 
Figure 7. Normalised (small-scale rapeseed oil = 100) emission category and input energy 
values for production of the three fuels studied on three different scales with allocation with 
expanded system and 1.0 MJ on the engine shaft (MJengine) as functional unit. 
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global warming potential (GWP) in comparison to diesel fuel. The photochemical ozone 
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creation potential (POCP) is reduced by rapeseed oil and RME but is increased by ethanol 
production and use in comparison to diesel oil. The acidification potential (AP), 
eutrophication potential (EP) and energy requirement (physical allocation) were increased in 
this comparison for all three fuels studied. 
 
The economic calculations in this study demonstrated that the production costs were 
significantly lower for large plants than for small plants for all fuels. Regarding the 
differences in production costs between the rapeseed oil and RME, the costs of production in 
small plants were lower for rapeseed oil, whereas the difference was small for large plants. 
The ethanol fuel was more expensive to produce than rapeseed oil and RME, independent of 
the plant size. 
 
Rapeseed oil and RME could be produced profitably on large-scale plants with EU area 
compensation independent of the size of the farm on which the seed/cereal is grown. If the 
farm is large, the production would also be profitable in medium-scale plants. Ethanol fuel 
could only be produced profitably in large-scale plants. 
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APPENDIX 1. PRODUCTION OF RAPESEED OIL AND RME 
 
 
Table A1. Emissions, cultivation of rapeseed 
 
Production factor CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 

Seed 2497 1.09 1.43 1.75 10.16 4.61 18.54 17.73 0.11 0.0002 0.58

Production of fertilisers 509509 103.23 269.80 498.43 970.40 1329.20 103.73 2709.90 33.63 0.055 147.06

Soil emissions       5600.80 2744.39    

Production of pesticides 4958 2.68 0.29 0.18 6.97 17.53 0.16 1.52 0.21  0.043

Tractive power 176145 186.58 131.78 4.64 2068.36 45.10  0   27.64

Heat for seed drying 72204 30.20 35.87 8.49 57.57 18.37  0.94   1.89
Electricity for drying and 
   cleaning of the seed 692 1.59 0.26 4.32 1.32 1.15 0.019 0.063 0  0.22

Machinery inputs 
   (Swedish electricity) 3567 8.19 1.32 22.29 6.82 5.91 0.10 0.32 0  1.14

Transport of fertiliser 1371 2.71 1.26 0.036 14.16 0.35  0   0.22
Machinery inputs, transport 
   of fertiliser, (Sw. el.) 89 0.20 0.033 0.56 0.17 0.15 0.0025 0.0081 0   0.028

Total emissions 771031 336.47 442.04 540.69 3135.94 1422.37 5723.35 5474.88 33.95 0.056 178.81

 
 
Table A2. Emissions categories and energy requirements, cultivation of rapeseed 
 
Production factor GWP AP EP POCP Input energy 

 [g CO2-
eq/ha] [%] [g SO2-

eq/ha] [%] [g PO4
3--

eq/ha] [%] [g C2H4-
eq/ha] [%] [MJ/ha] [%] 

Seed 7789 0.32 46.66 0.32 7.77 0.32 0.63 0.32 38.17 0.32

Production of fertilisers 1323309 55.03 2233.08 15.50 161.49 6.73 115.54 59.54 7005.96 59.45

Soil emissions 812340 33.78 10529.50 73.08 1950.90 81.33 0 0 0 0

Production of pesticides 5418 0.23 22.90 0.16 0.96 0.040 0.23 0.12 199.58 1.69

Tractive power 176624 7.34 1492.96 10.36 267.20 11.14 60.21 31.03 2440.88 20.71

Heat for seed drying 72739 3.02 58.67 0.41 7.44 0.31 15.61 8.05 1000.47 8.49
Electricity for drying and 
   cleaning of the seed 813 0.034 2.11 0.015 0.18 0.0074 0.20 0.10 171.82 1.46

Machinery inputs 
   (Swedish electricity) 4191 0.17 10.88 0.075 0.92 0.038 1.01 0.52 885.82 7.52

Transport of fertiliser 1377 0.057 10.26 0.071 1.83 0.076 0.61 0.32 19.00 0.16
Machinery inputs, transport 
   of fertiliser, (Sw. el.) 105 0.0044 0.27 0.0019 0.023 0.00095 0.025 0.013 22.14 0.19

Total emissions 2404705 100 14407.29 100 2398.71 100 194.06 100 11783.83 100
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Table A3. Emissions, small-scale production of rapeseed oil 
 
Production factor CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 

Cultivation of rapeseed * 771031 336.47 442.04 540.69 3135.94 1422.37 5723.35 5474.88 33.95 0.056 178.81
Emissions, electricity, 
   small-scale oil extraction * 7645 17.55 2.83 47.77 14.62 12.67 0.21 0.69 0 2.44

Total machinery, oil extraction, 
   Swedish el. * 380 0.87 0.14 2.37 0.73 0.63 0.011 0.034 0 0.12

Building material, Swedish el. * 121 0.28 0.045 0.75 0.23 0.20 0.0034 0.011 0 0.038
Emissions when driving on 
   the rapeseed oil ** 0 1382.64 243.92 0 16161.22 119.23  0 136.96

Total; cultivation, - driving 779177 1737.80 688.97 591.59 19312.74 1555.10 5723.57 5475.62 33.95 0.056 318.37
Total; cultivation, - driving 
   [g/MJengine] 

82.97 0.185 0.0734 0.0630 2.056 0.166 0.609 0.583 0.00362 0.0000059 0.0339

Total; cultivation, - driving 
   [g/MJfuel] 

26.92 0.0123 0.0154 0.0204 0.109 0.0496 0.198 0.189 0.00117 0.0000019 0.00627

Allocation (MJ) 366500 1549.70 453.26 278.27 17643.59 794.62 2692.19 2575.56 15.97 0.026 222.29

   cultivation, - driving [g/MJengine] 39.02 0.165 0.0483 0.0296 1.879 0.0846 0.287 0.274 0.00170 0.0000028 0.0237

   cultivation, - driving [g/MJfuel] 12.66 0.00577 0.00723 0.00961 0.0512 0.0233 0.0930 0.0890 0.000552 0.0000009 0.00295

Allocation (SEK) 445649 1585.77 498.47 338.36 17963.73 940.48 3273.59 3131.77 19.42 0.032 240.71

   cultivation, - driving [g/MJengine] 47.45 0.169 0.0531 0.0360 1.913 0.100 0.349 0.333 0.00207 0.0000034 0.0256

   cultivation, - driving [g/MJfuel] 15.39 0.00702 0.00879 0.0117 0.0623 0.0284 0.113 0.108 0.000671 0.0000011 0.00358

* Oil and meal included    

** Oil included    
Allocation (soymeal, 
   soyoil, fossil glycerine)    

Total; cultivation, - driving (0) 779177 1737.80 688.97 591.59 19312.74 1555.10 5723.57 5475.62 33.95 0.056 318.37
Production, soymeal with 
   eq. amount soyoil (1) 784112 1949.41 421.74 1918.48 7043.64 6837.31 303.73 304.97 48.64 547.03

Transport of soymeal with 
   eq. amount soyoil (2) 11427 11.63 6.89 0.30 107.02 2.93  0 1.08

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

22.65 0.0520 0.0084 0.14 0.043 0.038 0.00064 0.0021 0 0.0072

Total [(0) - [(1) + (2) + (3)]] -16385 -223.29 260.33 -1327.34 12162.04 -5285.17 5419.84 5170.64 -14.69 0.056 -229.75

   cultivation, - driving [g/MJengine] -1.745 -0.0238 0.0277 -0.1413 1.295 -0.563 0.577 0.551 -0.001564 0.0000059 -0.0245

   cultivation, - driving [g/MJfuel] -0.566 -0.0555 0.000567 -0.0459 -0.138 -0.187 0.187 0.179 -0.000507 0.0000019 -0.0127
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Table A4. Emissions categories and energy requirements, small-scale production of rapeseed 
oil 
 
Production factor GWP AP EP POCP Input energy 

 [g CO2-
eq/ha] [%] [g SO2-

eq/ha] [%] [g PO4
3--

eq/ha] [%] [g C2H4-
eq/ha] [%] [MJ/ha] [%] 

Cultivation of rapeseed * 2404705 99.49 14407.29 55.70 2398.71 53.44 194.06 55.57 11783.83 85.35
Emissions, electricity, 
   small-scale oil extraction * 8984 0.37 23.31 0.090 1.96 0.044 2.17 0.62 1898.72 13.75

Total machinery, oil extraction, 
   Swedish el. * 446 0.018 1.16 0.0045 0.098 0.0022 0.11 0.031 94.32 0.68

Building material, Swedish el. * 142 0.0059 0.37 0.0014 0.031 0.00069 0.034 0.010 29.96 0.22
Emissions when driving on 
   the rapeseed oil ** 2765 0.11 11432.09 44.20 2087.81 46.51 152.87 43.77 0

Total; cultivation, - driving 2417043 100 25864.22 100 4488.61 100 349.24 100 13806.83 100
Total; cultivation, - driving 
   [g/MJengine] 

257.36 2.754 0.4779 0.03719  1.470

Total; cultivation, - driving 
   [g/MJfuel] 

83.40 0.499 0.0829 0.00678  0.477

Allocation (MJ) 1138365 47.10 18220.50 70.45 3217.07 71.67 245.24 70.22 6494.29 47.04

   cultivation, - driving [g/MJengine] 121.21 1.940 0.3426 0.02611  0.692

   cultivation, - driving [g/MJfuel] 39.23 0.235 0.0390 0.00319  0.224

Allocation (SEK) 1383608 57.24 19686.52 76.11 3460.95 77.11 265.19 75.93 7896.79 57.19

   cultivation, - driving [g/MJengine] 147.33 2.096 0.3685 0.02824  0.841

   cultivation, - driving [g/MJfuel] 47.70 0.285 0.0474 0.00388  0.273

* Oil and meal included    

** Oil included    
Allocation (soymeal, 
   soyoil, fossil glycerine)    

Total; cultivation, - driving (0) 2417043 100 25864.22 100 4488.61 100 349.24 100 13806.83 100
Production, soymeal with 
   eq. amount soyoil (1) 922408 38.16 12381.68 47.87 1015.74 22.63 260.10 74.48 15957.27 115.58

Transport of soymeal with 
   eq. amount soyoil (2) 11457 0.47 77.84 0.30 13.83 0.31 3.22 0.92 158.35 1.15

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

26.61 0.0011 0.069 0.00027 0.0058 0.00013 0.0064 0.0018 5.62 0.041

Total [(0) - [(1) + (2) + (3)]] 1483151 61.36 13404.63 51.83 3459.04 77.06 85.91 24.60 -2314.41 -16.76

   cultivation, - driving [g/MJengine] 157.92 1.427 0.3683 0.00915  -0.2464

   cultivation, - driving [g/MJfuel] 51.14 0.0681 0.0474 -0.00231  -0.0800
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Table A5. Emissions, small-scale production of RME 
 
Production factor CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 

Cultivation of rapeseed * 771031 336.47 442.04 540.69 3135.94 1422.37 5723.35 5474.88 33.95 0.056 178.81
Emissions, electricity, small- 
   scale oil extraction * 7645 17.55 2.83 47.77 14.62 12.67 0.21 0.69 0 2.44

Total machinery, oil extraction, 
   Swedish el. * 380 0.87 0.14 2.37 0.73 0.63 0.011 0.034 0 0.12

Building material, Swedish el. * 121 0.28 0.045 0.75 0.23 0.20 0.0034 0.011 0 0.038
Methanol, natural gas, 
   best case ** 29782 8.21 4.66 3.80 65.97 0.61  0.48 0

Transport of methanol ** 718 0.73 0.43 0.019 6.74 0.18  0 0.068
Transport of methanol, 
   machinery, Swedish el. ** 3.2 0.0075 0.0012 0.020 0.0062 0.0054 0.000091 0.00029 0 0.0010

Catalyst, KOH ** 2130 0.65 0.025 0.0038 8.84 7.55   0.0027

Electricity, transesterification ** 3763 8.64 1.39 23.51 7.20 6.24 0.11 0.34 0 1.20
Machinery, transesterification, 
   Swedish el. ** 220 0.50 0.081 1.37 0.42 0.36 0.0062 0.020 0 0.070

Building material, transesterifi- 
   cation, Swedish el. ** 56 0.13 0.021 0.35 0.11 0.092 0.0016 0.0050 0 0.018

Transport of glycerine *** 687 0.70 0.41 0.018 6.45 0.18  0 0.065
Transport of glycerine, 
   machinery, Swedish el. *** 3.1 0.0071 0.0012 0.019 0.0059 0.0052 0.000087 0.00028 0 0.0010

Emissions when driving on the 
   RME, fossil meth **** 108300 1192.73 216.86 18026.43 114.70   81.32

Compensation for bio-carbon in 
   glycerine replacing fossil carbon -108300   

Total; cultivation, - driving 924839 1567.47 668.92 620.71 21273.69 1565.80 5723.69 5476.46 33.95 0.056 264.15
Total; cultivation, - driving 
   [g/MJengine] 

94.77 0.161 0.0685 0.0636 2.180 0.160 0.587 0.561 0.00348 0.0000057 0.0271

Total; cultivation, - driving 
   [g/MJfuel] 

29.17 0.0134 0.0161 0.0222 0.116 0.0518 0.204 0.196 0.00121 0.0000020 0.00653

Total; cultivation, - drivinga 816539   
Total; cultivation, - driving 
   [g/MJengine]a 83.67   

Total; cultivation, - driving 
   [g/MJfuel]a 25.30   

Allocation (MJ) 495353 1371.20 424.26 295.05 19535.63 777.87 2586.39 2475.05 15.34 0.025 164.59

   cultivation, - driving [g/MJengine] 50.76 0.141 0.0435 0.0302 2.002 0.0797 0.265 0.254 0.00157 0.0000026 0.0169

   cultivation, - driving [g/MJfuel] 13.83 0.00638 0.00741 0.01054 0.0539 0.0237 0.0924 0.0884 0.000548 0.0000009 0.00297

Allocation (MJ)a 387052   

   cultivation, - driving [g/MJengine]a 39.66   

   cultivation, - driving [g/MJfuel]a 9.96   

Allocation (SEK) 592624 1415.49 480.18 368.87 19930.53 958.43 3307.63 3165.02 19.62 0.032 187.41

   cultivation, - driving [g/MJengine] 60.73 0.145 0.0492 0.0378 2.042 0.098 0.339 0.324 0.00201 0.0000033 0.0192

   cultivation, - driving [g/MJfuel] 17.30 0.00796 0.00941 0.0132 0.0680 0.0301 0.118 0.113 0.000701 0.0000011 0.00379

Allocation (SEK)a 484324   

   cultivation, - driving [g/MJengine]a 49.63   

   cultivation, - driving [g/MJfuel]a 13.43   
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Production factor CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 
* RME, meal and glycerine 
   included    

** RME and glycerine included    

*** Glycerine included    

**** RME included    
Allocation (soymeal, 
   soyoil, fossil glycerine)    

Total; cultivation, - driving (0)a 816539 1567.47 668.92 620.71 21273.69 1565.80 5723.69 5476.46 33.95 0.056 264.15
Production, soymeal with 
   eq. amount soyoil (1) 784112 1949.41 421.74 1918.48 7043.64 6837.31 303.73 304.97 48.64 547.03

Transport of soymeal with 
   eq. amount soyoil (2) 11427 11.63 6.89 0.30 107.02 2.93  0 1.08

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

22.65 0.0520 0.0084 0.14 0.043 0.038 0.00064 0.0021 0 0.0072

Production of fossil glycerine (4) 421420 263.77 199.16 752.32 861.61 904.30 0.31 15.64 30.40 55.12

Total [(0) - [(1) + (2) + (3) + (4)]]a -400443 -657.39 41.12 -2050.54 13261.38 -6178.78 5419.65 5155.85 -45.09 0.056 -339.09

   cultivation, - driving [g/MJengine]a -41.03 -0.0674 0.00421 -0.2101 1.359 -0.633 0.555 0.528 -0.00462 0.0000057 -0.0347

   cultivation, - driving [g/MJfuel]a -18.17 -0.0661 -0.00628 -0.0733 -0.170 -0.225 0.194 0.184 -0.00161 0.0000020 -0.0150
a With compensation for bio-carbon in glycerine replacing fossil carbon. 
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Table A6. Emissions categories and energy requirements, small-scale production of RME 
 
Production factor GWP AP EP POCP Input energy 

 [g CO2-
eq/ha] [%] [g SO2-

eq/ha] [%] [g PO4
3--

eq/ha] [%] [g C2H4-
eq/ha] [%] [MJ/ha] [%] 

Cultivation of rapeseed * 2404705 93.81 14407.29 52.88 2398.71 50.58 194.06 58.00 11783.83 73.95
Emissions, electricity, small- 
   scale oil extraction * 8984 0.35 23.31 0.086 1.96 0.041 2.17 0.65 1898.72 11.91

Total machinery, oil extraction, 
   Swedish el. * 446 0.017 1.16 0.0043 0.098 0.0021 0.11 0.032 94.32 0.59

Building material, Swedish el. * 142 0.0055 0.37 0.0014 0.031 0.00065 0.034 0.010 29.96 0.19
Methanol, natural gas, 
   best case ** 30027 1.17 46.79 0.17 8.52 0.18 2.22 0.66 1043.93 6.55

Transport of methanol ** 719 0.028 4.90 0.018 0.87 0.018 0.20 0.060 9.94 0.062
Transport of methanol, 
   machinery, Swedish el. ** 3.8 0.00015 0.0099 0.000036 0.00083 0.000018 0.00092 0.00028 0.81 0.0051

Catalyst, KOH ** 2131 0.083 13.73 0.050 1.14 0.024 0.036 0.011 60.91 0.38

Electricity, transesterification ** 4422 0.17 11.48 0.042 0.97 0.020 1.07 0.32 934.59 5.86
Machinery, transesterification, 
   Swedish el. ** 258 0.010 0.67 0.0025 0.056 0.0012 0.062 0.019 54.58 0.34

Building material, transesterifi- 
   cation, Swedish el. ** 65 0.0025 0.17 0.00062 0.014 0.00030 0.016 0.0047 13.81 0.087

Transport of glycerine *** 689 0.027 4.69 0.017 0.83 0.018 0.19 0.057 9.53 0.060
Transport of glycerine, 
   machinery, Swedish el. *** 3.7 0.00014 0.0095 0.000035 0.00080 0.000017 0.00088 0.00026 0.77 0.0048

Emissions when driving on the 
   RME, fossil meth **** 110686 4.32 12733.20 46.73 2328.77 49.11 134.45 40.18 0

Compensation for bio-carbon in 
   glycerine replacing fossil carbon -108300   

Total; cultivation, - driving 2563284 100 27247.79 100 4741.98 100 334.61 100 15935.69 100
Total; cultivation, - driving 
   [g/MJengine] 

262.67 2.792 0.4859 0.03429  1.633

Total; cultivation, - driving 
   [g/MJfuel] 

87.61 0.519 0.0862 0.00715  0.569

Total; cultivation, - drivinga 2454983   
Total; cultivation, - driving 
   [g/MJengine]a 251.57   

Total; cultivation, - driving 
   [g/MJfuel]a 83.75   

Allocation (MJ) 1237495 48.28 19328.72 70.94 3424.65 72.22 226.62 67.73 8259.09 51.83

   cultivation, - driving [g/MJengine] 126.81 1.981 0.3509 0.02322  0.846

   cultivation, - driving [g/MJfuel] 40.25 0.236 0.0391 0.00329  0.295

Allocation (MJ)a 1129194   

   cultivation, - driving [g/MJengine]a 115.71   

   cultivation, - driving [g/MJfuel]a 36.38   

Allocation (SEK) 1540785 60.11 21145.41 77.60 3726.89 78.59 251.27 75.09 9946.08 62.41

   cultivation, - driving [g/MJengine] 157.89 2.167 0.3819 0.02575  1.019

   cultivation, - driving [g/MJfuel] 51.09 0.301 0.0499 0.00417  0.355

Allocation (SEK)a 1432485   

   cultivation, - driving [g/MJengine]a 146.79   

   cultivation, - driving [g/MJfuel]a 47.22   
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Production factor GWP AP EP POCP Input energy 

 [g CO2-
eq/ha] [%] [g SO2-

eq/ha] [%] [g PO4
3--

eq/ha] [%] [g C2H4-
eq/ha] [%] [MJ/ha] [%] 

* RME, meal and glycerine 
   included    

** RME and glycerine included    

*** Glycerine included    

**** RME included    
Allocation (soymeal, 
   soyoil, fossil glycerine)    

Total; cultivation, - driving (0)a 2454983 95.77 27247.79 100 4741.98 100 334.61 100 15935.69 100
Production, soymeal with 
   eq. amount soyoil (1) 922408 35.99 12381.68 45.44 1015.74 21.42 260.10 77.73 15957.27 100.14

Transport of soymeal with 
   eq. amount soyoil (2) 11457 0.45 77.84 0.29 13.83 0.29 3.22 0.96 158.35 0.99

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

26.61 0.0010 0.069 0.00025 0.0058 0.00012 0.0064 0.0019 5.62 0.035

Production of fossil glycerine (4) 443879 17.32 1534.76 5.63 111.42 2.35 95.48 28.54 10083.45 63.28

Total [(0) - [(1) + (2) + (3) + (4)]]a 1077213 42.02 13253.45 48.64 3600.99 75.94 -24.20 -7.23 -10269.00 -64.44

   cultivation, - driving [g/MJengine]a 110.39 1.358 0.3690 -0.00248  -1.052

   cultivation, - driving [g/MJfuel]a 34.53 0.0186 0.0454 -0.00567  -0.367
a With compensation for bio-carbon in glycerine replacing fossil carbon. 
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Table A7. Emissions, medium-scale production of rapeseed oil 
 
Production factor CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 

Cultivation of rapeseed * 771031 336.47 442.04 540.69 3135.94 1422.37 5723.35 5474.88 33.95 0.056 178.81

Transport seed to extraction, fuel * 1196 1.12 0.90 0.031 12.54 0.31  0 0.10
Transport seed to extraction, 
   machinery * 116 0.27 0.043 0.72 0.22 0.19 0.0032 0.010 0 0.037

Emissions, electricity, medium- 
   scale oil extraction * 4498 10.32 1.66 28.10 8.60 7.46 0.13 0.41 0 1.43

Total machinery, oil extraction, 
   Swedish el. * 171 0.39 0.063 1.07 0.33 0.28 0.0048 0.016 0 0.055

Building material, Swedish el. * 71 0.16 0.026 0.44 0.13 0.12 0.0020 0.0064 0 0.022
Transport meal from extraction, 
   fuel ** 622 0.51 0.44 0.016 6.81 0.16  0 0.055

Transport meal from extraction, 
   machinery **  55 0.13 0.020 0.34 0.10 0.091 0.0015 0.0050 0 0.017

Transport oil from extraction, 
   fuel *** 458 0.47 0.27 0.012 4.30 0.12  0 0.043

Transport oil from extraction, 
   machinery *** 2.1 0.0048 0.00077 0.013 0.0040 0.0034 0.000058 0.00019 0 0.00066

Emissions when driving on 
   the rapeseed oil *** 0 1524.97 269.03 0 17824.87 131.51   151.06

Total; cultivation, - driving 778220 1874.80 714.49 571.45 20993.85 1562.60 5723.48 5475.33 33.95 0.056 331.64
Total; cultivation, - driving 
   [g/MJengine] 

75.13 0.181 0.0690 0.0552 2.027 0.151 0.553 0.529 0.00328 0.0000054 0.0320

Total; cultivation, - driving 
   [g/MJfuel] 

24.37 0.0110 0.0140 0.0179 0.099 0.0448 0.179 0.171 0.00106 0.0000017 0.00566

Allocation (MJ) 396659 1703.24 496.05 291.18 19439.18 861.09 2918.14 2791.62 17.31 0.028 243.11

   cultivation, - driving [g/MJengine] 38.29 0.164 0.0479 0.0281 1.877 0.0831 0.282 0.270 0.00167 0.0000027 0.0235

   cultivation, - driving [g/MJfuel] 12.42 0.00558 0.00711 0.00912 0.0506 0.0229 0.0914 0.0874 0.000542 0.0000009 0.00288

Allocation (SEK) 474992 1738.40 540.88 348.75 19757.49 1005.31 3495.09 3343.55 20.73 0.034 261.30

   cultivation, - driving [g/MJengine] 45.86 0.168 0.0522 0.0337 1.907 0.097 0.337 0.323 0.00200 0.0000033 0.0252

   cultivation, - driving [g/MJfuel] 14.88 0.00668 0.00851 0.0109 0.0605 0.0274 0.109 0.105 0.000649 0.0000011 0.00345

* Oil and meal included    

** Meal included    

*** Oil included    
Allocation (soymeal, 
   soyoil, fossil glycerine)    

Total; cultivation, - driving (0) 778220 1874.80 714.49 571.45 20993.85 1562.60 5723.48 5475.33 33.95 0.056 331.64
Production, soymeal with 
   eq. amount soyoil (1) 717706 1784.30 386.01 1755.97 6447.08 6258.08 277.99 279.14 44.53 500.70

Transport of soymeal with 
   eq. amount soyoil (2) 11123 11.32 6.70 0.29 104.17 2.85  0 1.05

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

22.04 0.0506 0.0082 0.14 0.042 0.037 0.00062 0.0020 0 0.0070

Total [(0) - [(1) + (2) + (3)]] 49370 79.13 321.77 -1184.95 14442.56 -4698.36 5445.49 5196.18 -10.57 0.056 -170.13

   cultivation, - driving [g/MJengine] 4.766 0.0076 0.0311 -0.1144 1.394 -0.454 0.526 0.502 -0.001021 0.0000054 -0.0164

   cultivation, - driving [g/MJfuel] 1.546 -0.0453 0.00165 -0.0371 -0.106 -0.151 0.171 0.163 -0.000331 0.0000017 -0.0101
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Table A8. Emissions categories and energy requirements, medium-scale production of 
rapeseed oil 
 
Production factor GWP AP EP POCP Input energy 

 [g CO2-
eq/ha] [%] [g SO2-

eq/ha] [%] [g PO4
3--

eq/ha] [%] [g C2H4-
eq/ha] [%] [MJ/ha] [%] 

Cultivation of rapeseed * 2404705 99.54 14407.29 53.27 2398.71 50.97 194.06 53.20 11783.83 90.40

Transport seed to extraction, fuel * 1199 0.050 9.08 0.034 1.62 0.034 0.40 0.11 16.58 0.13
Transport seed to extraction, 
   machinery * 136 0.0056 0.35 0.0013 0.030 0.00063 0.033 0.0090 28.76 0.22

Emissions, electricity, medium- 
   scale oil extraction * 5285 0.22 13.72 0.051 1.16 0.025 1.27 0.35 1116.98 8.57

Total machinery, oil extraction, 
   Swedish el. * 201 0.0083 0.52 0.0019 0.044 0.00094 0.049 0.013 42.56 0.33

Building material, Swedish el. * 83 0.0034 0.22 0.00080 0.018 0.00039 0.020 0.0055 17.52 0.13
Transport meal from extraction, 
   fuel ** 624 0.026 4.93 0.018 0.88 0.019 0.20 0.054 8.62 0.066

Transport meal from extraction, 
   machinery **  64 0.0027 0.17 0.00062 0.014 0.00030 0.016 0.0043 13.61 0.10

Transport oil from extraction, 
   fuel *** 459 0.019 3.13 0.012 0.56 0.012 0.13 0.035 6.34 0.049

Transport oil from extraction, 
   machinery *** 2.4 0.00010 0.0063 0.000023 0.00053 0.000011 0.00059 0.00016 0.51 0.0039

Emissions when driving on 
   the rapeseed oil *** 3050 0.13 12608.92 46.62 2302.73 48.93 168.61 46.22 0

Total; cultivation, - driving 2415810 100 27048.32 100 4705.76 100 364.79 100 13035.32 100
Total; cultivation, - driving 
   [g/MJengine] 

233.23 2.611 0.4543 0.03522  1.258

Total; cultivation, - driving 
   [g/MJfuel] 

75.57 0.452 0.0753 0.00614  0.408

Allocation (MJ) 1233082 51.04 19969.86 73.83 3527.74 74.97 268.59 73.63 6638.14 50.92

   cultivation, - driving [g/MJengine] 119.04 1.928 0.3406 0.02593  0.641

   cultivation, - driving [g/MJfuel] 38.53 0.231 0.0384 0.00313  0.208

Allocation (SEK) 1476181 61.11 21424.57 79.21 3769.83 80.11 288.33 79.04 7949.22 60.98

   cultivation, - driving [g/MJengine] 142.51 2.068 0.3639 0.02784  0.767

   cultivation, - driving [g/MJfuel] 46.14 0.276 0.0460 0.00375  0.249

* Oil and meal included    

** Meal included    

*** Oil included    
Allocation (soymeal, 
   soyoil, fossil glycerine)    

Total; cultivation, - driving (0) 2415810 100 27048.32 100 4705.76 100 364.79 100 13035.32 100
Production, soymeal with 
   eq. amount soyoil (1) 844288 34.95 11332.84 41.90 929.71 19.76 238.07 65.26 14605.58 112.05

Transport of soymeal with 
   eq. amount soyoil (2) 11152 0.46 75.76 0.28 13.46 0.29 3.14 0.86 154.13 1.18

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

25.90 0.0011 0.067 0.00025 0.0057 0.00012 0.0062 0.0017 5.47 0.042

Total [(0) - [(1) + (2) + (3)]] 1560344 64.59 15639.65 57.82 3762.59 79.96 123.58 33.88 -1729.87 -13.27

   cultivation, - driving [g/MJengine] 150.64 1.510 0.3632 0.01193  -0.1670

   cultivation, - driving [g/MJfuel] 48.78 0.0949 0.0457 -0.00141  -0.0542
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Table A9. Emissions, medium-scale production of RME 
 
Production factor CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 

Cultivation of rapeseed * 771031 336.47 442.04 540.69 3135.94 1422.37 5723.35 5474.88 33.95 0.056 178.81

Transport seed to extraction, fuel * 1196 1.12 0.90 0.031 12.54 0.31   0 0.10
Transport seed to extraction, 
   machinery * 116 0.27 0.043 0.72 0.22 0.19 0.0032 0.010 0 0.037

Emissions, electricity, medium- 
   scale oil extraction * 4498 10.32 1.66 28.10 8.60 7.46 0.13 0.41 0 1.43

Total machinery, oil extraction, 
   Swedish el. * 171 0.39 0.063 1.07 0.33 0.28 0.0048 0.016 0 0.055

Building material, Swedish el. * 71 0.16 0.026 0.44 0.13 0.12 0.0020 0.0064 0 0.022
Methanol, natural gas, 
   best case ** 32848 9.05 5.13 4.19 72.76 0.68  0.53 0

Transport of methanol ** 791 0.81 0.47 0.021 7.43 0.20  0 0.075
Transport of methanol, 
   machinery, Swedish el. ** 3.6 0.0082 0.0013 0.022 0.0068 0.0059 0.00010 0.00032 0 0.0011

Catalyst, KOH ** 2349 0.72 0.028 0.0042 9.75 8.33   0.0030

Electricity, transesterification ** 4056 9.31 1.50 25.35 7.76 6.72 0.11 0.37 0 1.29
Machinery, transesterification, 
   Swedish el. ** 84 0.19 0.031 0.52 0.16 0.14 0.0023 0.0076 0 0.027

Building material, transesterifi- 
   cation, Swedish el. ** 35 0.081 0.013 0.22 0.067 0.058 0.00099 0.0032 0 0.011

Transport meal from extraction, 
   fuel *** 622 0.51 0.44 0.016 6.81 0.16  0 0.055

Transport meal from extraction, 
   machinery *** 55 0.13 0.020 0.34 0.10 0.091 0.0015 0.0050 0 0.017

Transport RME from transesteri- 
   fication, fuel **** 440 0.45 0.26 0.012 4.14 0.11  0 0.042

Transport RME from transesteri- 
   fication, machinery **** 2.0 0.0046 0.00074 0.012 0.0038 0.0033 0.000056 0.00018 0 0.00064

Transport of glycerine ***** 758 0.77 0.45 0.020 7.12 0.19  0 0.072
Transport of glycerine, 
    machinery, Swedish el. ***** 3.4 0.0079 0.0013 0.021 0.0066 0.0057 0.000096 0.00031 0 0.0011

Emissions when driving on the 
   RME, fossil meth **** 119449 1315.51 239.18 19882.09 126.51   89.69

Compensation for bio-carbon in 
   glycerine replacing fossil carbon -119449   

Total; cultivation, - driving 938580 1686.27 692.27 601.81 23155.97 1573.93 5723.60 5476.23 33.95 0.056 271.75
Total; cultivation, - driving 
   [g/MJengine] 

87.20 0.157 0.0643 0.0559 2.151 0.146 0.532 0.509 0.00315 0.0000052 0.0252

Total; cultivation, - driving 
   [g/MJfuel] 

26.53 0.0120 0.0147 0.0195 0.106 0.0469 0.185 0.177 0.00110 0.0000018 0.00590

Total; cultivation, - drivinga 819131   
Total; cultivation, - driving 
   [g/MJengine]a 76.10   

Total; cultivation, - driving 
   [g/MJfuel]a 22.66   

Allocation (MJ) 538599 1505.91 464.00 308.50 21525.43 842.39 2801.92 2681.19 16.62 0.027 179.42

   cultivation, - driving [g/MJengine] 50.04 0.140 0.0431 0.0287 2.000 0.0783 0.260 0.249 0.00154 0.0000025 0.0167

   cultivation, - driving [g/MJfuel] 13.58 0.00617 0.00728 0.00999 0.0532 0.0232 0.0908 0.0868 0.000538 0.0000009 0.00291

Allocation (MJ)a 419149   

   cultivation, - driving [g/MJengine]a 38.94   

   cultivation, - driving [g/MJfuel]a 9.71   



 246

Production factor CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 

Allocation (SEK) 632860 1548.16 518.34 377.75 21910.10 1017.38 3503.55 3352.38 20.78 0.034 201.51

   cultivation, - driving [g/MJengine] 58.80 0.144 0.0482 0.0351 2.036 0.0945 0.326 0.311 0.00193 0.0000032 0.0187

   cultivation, - driving [g/MJfuel] 16.63 0.00754 0.00904 0.0122 0.0657 0.0289 0.113 0.109 0.000673 0.0000011 0.00362

Allocation (SEK)a 513411   

   cultivation, - driving [g/MJengine]a 47.70   

   cultivation, - driving [g/MJfuel]a 12.76   
* RME, meal and glycerine 
   included    

** RME and glycerine included    

*** Meal included    

**** RME included    

***** Glycerine included    
Allocation (soymeal, soyoil, 
   fossil glycerine)    

Total; cultivation, - driving (0)a 819131 1686.27 692.27 601.81 23155.97 1573.93 5723.60 5476.23 33.95 0.056 271.75
Production, soymeal with 
   eq. amount soyoil (1) 717706 1784.30 386.01 1755.97 6447.08 6258.08 277.99 279.14 44.53 500.70

Transport of soymeal with 
   eq. amount soyoil (2) 11123 11.32 6.70 0.29 104.17 2.85  0 1.05

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

22.04 0.051 0.0082 0.14 0.042 0.037 0.00062 0.0020 0 0.0070

Production of fossil glycerine (4) 464801 290.92 219.67 829.77 950.30 997.39 0.34 17.25 33.53 60.79

Total [(0) - [(1) + (2) + (3) + (4)]]a -374520 -400.32 79.88 -1984.35 15654.37 -5684.42 5445.27 5179.84 -44.11 0.056 -290.80

   cultivation, - driving [g/MJengine]a -34.80 -0.0372 0.00742 -0.1844 1.454 -0.528 0.506 0.481 -0.00410 0.0000052 -0.0270

   cultivation, - driving [g/MJfuel]a -16.00 -0.0556 -0.00516 -0.0643 -0.137 -0.188 0.176 0.168 -0.00143 0.0000018 -0.0123
a With compensation for bio-carbon in glycerine replacing fossil carbon. 
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Table A10. Emissions categories and energy requirements, medium-scale production of RME 
 
Production factor GWP AP EP POCP Input energy 

 [g CO2-
eq/ha] [%] [g SO2-

eq/ha] [%] [g PO4
3--

eq/ha] [%] [g C2H4-
eq/ha] [%] [MJ/ha] [%] 

Cultivation of rapeseed * 2404705 93.32 14407.29 50.42 2398.71 48.12 194.06 55.67 11783.83 76.95

Transport seed to extraction, fuel * 1199 0.047 9.08 0.032 1.62 0.032 0.40 0.12 16.58 0.11
Transport seed to extraction, 
   machinery * 136 0.0053 0.35 0.0012 0.030 0.00060 0.033 0.0094 28.76 0.19

Emissions, electricity, medium- 
   scale oil extraction * 5285 0.21 13.72 0.048 1.16 0.023 1.27 0.37 1116.98 7.29

Total machinery, oil extraction, 
   Swedish el. * 201 0.0078 0.52 0.0018 0.044 0.00088 0.049 0.014 42.56 0.28

Building material, Swedish el. * 83 0.0032 0.22 0.00075 0.018 0.00036 0.020 0.0057 17.52 0.11
Methanol, natural gas, 
   best case ** 33118 1.29 51.61 0.18 9.40 0.19 2.45 0.70 1151.39 7.52

Transport of methanol ** 793 0.031 5.40 0.019 0.96 0.019 0.22 0.063 10.97 0.072
Transport of methanol, 
   machinery, Swedish el. ** 4.2 0.00016 0.011 0.000038 0.00092 0.000018 0.0010 0.00029 0.89 0.0058

Catalyst, KOH ** 2351 0.091 15.15 0.053 1.26 0.025 0.040 0.011 67.18 0.44

Electricity, transesterification ** 4767 0.18 12.37 0.043 1.04 0.021 1.15 0.33 1007.37 6.58
Machinery, transesterification, 
   Swedish el. ** 98 0.0038 0.26 0.00089 0.021 0.00043 0.024 0.0068 20.78 0.14

Building material, transesterifi- 
   cation, Swedish el. ** 41 0.0016 0.11 0.00038 0.0091 0.00018 0.0100 0.0029 8.76 0.057

Transport meal from extraction, 
   fuel *** 624 0.024 4.93 0.017 0.88 0.018 0.20 0.057 8.62 0.056

Transport meal from extraction, 
   machinery *** 64 0.0025 0.17 0.00058 0.014 0.00028 0.016 0.0045 13.61 0.089

Transport RME from transesteri- 
   fication, fuel **** 442 0.017 3.01 0.011 0.53 0.011 0.12 0.035 6.10 0.040

Transport RME from transesteri- 
   fication, machinery **** 2.3 0.000091 0.0061 0.000021 0.00051 0.000010 0.00056 0.00016 0.49 0.0032

Transport of glycerine ***** 760 0.030 5.18 0.018 0.92 0.018 0.21 0.061 10.51 0.069
Transport of glycerine, 
    machinery, Swedish el. ***** 4.0 0.00016 0.010 0.000037 0.00088 0.000018 0.00097 0.00028 0.85 0.0056

Emissions when driving on the 
   RME, fossil meth **** 122080 4.74 14043.98 49.15 2568.50 51.52 148.29 42.54 0

Compensation for bio-carbon in 
   glycerine replacing fossil carbon -119449   

Total; cultivation, - driving 2576760 100 28573.35 100 4985.12 100 348.57 100 15313.76 100
Total; cultivation, - driving 
   [g/MJengine] 

239.40 2.655 0.4632 0.03239  1.423

Total; cultivation, - driving 
   [g/MJfuel] 

79.50 0.471 0.0783 0.00649  0.496

Total; cultivation, - drivinga 2457311   
Total; cultivation, - driving 
   [g/MJengine]a 228.31   

Total; cultivation, - driving 
   [g/MJfuel]a 75.64   

Allocation (MJ) 1342337 52.09 21192.42 74.17 3756.78 75.36 248.00 71.15 8535.65 55.74

   cultivation, - driving [g/MJengine] 124.71 1.969 0.3490 0.02304  0.793

   cultivation, - driving [g/MJfuel] 39.52 0.232 0.0385 0.00323  0.276

Allocation (MJ)a 1222888   

   cultivation, - driving [g/MJengine]a 113.62   

   cultivation, - driving [g/MJfuel]a 35.65   
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Production factor GWP AP EP POCP Input energy 

 [g CO2-
eq/ha] [%] [g SO2-

eq/ha] [%] [g PO4
3--

eq/ha] [%] [g C2H4-
eq/ha] [%] [MJ/ha] [%] 

Allocation (SEK) 1636950 63.53 22959.42 80.35 4050.87 81.26 271.91 78.01 10073.54 65.78

   cultivation, - driving [g/MJengine] 152.09 2.133 0.3764 0.02526  0.936

   cultivation, - driving [g/MJfuel] 49.06 0.289 0.0480 0.00400  0.326

Allocation (SEK)a 1517501   

   cultivation, - driving [g/MJengine]a 140.99   

   cultivation, - driving [g/MJfuel]a 45.20   
* RME, meal and glycerine 
   included    

** RME and glycerine included    

*** Meal included    

**** RME included    

***** Glycerine included    
Allocation (soymeal, soyoil, 
   fossil glycerine)    

Total; cultivation, - driving (0)a 2457311 95.36 28573.35 100 4985.12 100 348.57 100 15313.76 100
Production, soymeal with 
   eq. amount soyoil (1) 844288 32.77 11332.84 39.66 929.71 18.65 238.07 68.30 14605.58 95.38

Transport of soymeal with 
   eq. amount soyoil (2) 11152 0.43 75.76 0.27 13.46 0.27 3.14 0.90 154.13 1.01

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

26 0.0010 0.067 0.00024 0.0057 0.00011 0.0062 0.0018 5.47 0.036

Production of fossil glycerine (4) 489572 19.00 1692.75 5.92 122.89 2.47 105.31 30.21 11121.45 72.62

Total [(0) - [(1) + (2) + (3) + (4)]]a 1112273 43.17 15471.93 54.15 3919.06 78.62 2.05 0.59 -10572.88 -69.04

   cultivation, - driving [g/MJengine]a 103.34 1.437 0.3641 0.000190  -0.982

   cultivation, - driving [g/MJfuel]a 32.07 0.0462 0.0437 -0.00474  -0.342
a With compensation for bio-carbon in glycerine replacing fossil carbon. 
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Table A11. Emissions, large-scale production of rapeseed oil 
 
Production factor CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 

Cultivation of rapeseed * 771031 336.47 442.04 540.69 3135.94 1422.37 5723.35 5474.88 33.95 0.056 178.81

Transport seed to extraction, fuel * 15487 15.19 9.07 0.41 146.33 3.97  0 1.47
Transport seed to extraction, 
   machinery * 55 0.13 0.020 0.34 0.10 0.091 0.0015 0.0050 0 0.017

Emissions, electricity, large- 
   scale oil extraction * 4393 10.08 1.62 27.45 8.40 7.28 0.12 0.40 0 1.40

Total machinery, oil extraction, 
   Swedish el. * 89 0.20 0.033 0.56 0.17 0.15 0.0025 0.0081 0 0.028

Building material, Swedish el. * 37 0.084 0.014 0.23 0.070 0.061 0.0010 0.0033 0 0.012

Emissions, hexane * 1341 0.84 2.19 1.62 4.54 6.18 0.0049 0.032 0.0089 0.21
Transport meal from extraction, 
   fuel ** 6776 6.33 3.82 0.18 64.75 1.74  0 0.65

Transport meal from extraction, 
   machinery **  20 0.046 0.0075 0.13 0.039 0.033 0.00057 0.0018 0 0.0064

Transport oil from extraction, 
   fuel *** 9401 9.60 5.59 0.25 88.27 2.41  0 0.89

Transport oil from extraction, 
   machinery *** 43 0.098 0.016 0.27 0.081 0.071 0.0012 0.0039 0 0.014

Emissions when driving on 
   the rapeseed oil *** 0 1992.63 351.53 23291.17 171.84   197.38

Total; cultivation, - driving 808673 2371.70 815.96 572.12 26739.87 1616.17 5723.48 5475.34 33.96 0.056 380.89
Total; cultivation, - driving 
   [g/MJengine] 

59.75 0.175 0.0603 0.0423 1.976 0.119 0.423 0.405 0.00251 0.0000041 0.0281

Total; cultivation, - driving 
   [g/MJfuel] 

19.38 0.00909 0.0111 0.0137 0.0827 0.0346 0.137 0.131 0.00081 0.0000013 0.00440

Allocation (MJ) 541994 2246.28 662.91 384.45 25594.28 1142.12 3846.43 3679.67 22.82 0.037 320.56

   cultivation, - driving [g/MJengine] 40.04 0.166 0.0490 0.0284 1.891 0.0844 0.284 0.272 0.00169 0.0000028 0.0237

   cultivation, - driving [g/MJfuel] 12.99 0.00608 0.00746 0.00922 0.0552 0.0233 0.0922 0.0882 0.000547 0.0000009 0.00295

Allocation (SEK) 609634 2277.26 701.75 433.22 25875.58 1265.04 4334.97 4147.03 25.72 0.042 336.10

   cultivation, - driving [g/MJengine] 45.04 0.168 0.0518 0.0320 1.912 0.093 0.320 0.306 0.00190 0.0000031 0.0248

   cultivation, - driving [g/MJfuel] 14.61 0.00682 0.00839 0.0104 0.0619 0.0262 0.104 0.099 0.000617 0.0000010 0.00332

* Oil and meal included    

** Meal included    

*** Oil included    
Allocation (soymeal, 
   soyoil, fossil glycerine)    

Total; cultivation, - driving (0) 808673 2371.70 815.96 572.12 26739.87 1616.17 5723.48 5475.34 33.96 0.056 380.89
Production, soymeal with 
   eq. amount soyoil (1) 378981 942.16 203.75 927.01 3404.19 3303.62 146.72 147.38 23.52 264.39

Transport of soymeal with 
   eq. amount soyoil (2) 9167 9.33 5.53 0.24 85.85 2.35  0 0.87

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

18.17 0.0417 0.0067 0.11 0.035 0.030 0.00051 0.0016 0 0.0058

Total [(0) - [(1) + (2) + (3)]] 420507 1420.18 606.68 -355.25 23249.79 -1689.82 5576.76 5327.95 10.44 0.056 115.63

   cultivation, - driving [g/MJengine] 31.07 0.1049 0.0448 -0.0262 1.718 -0.125 0.412 0.394 0.000771 0.0000041 0.0085

   cultivation, - driving [g/MJfuel] 10.08 -0.0137 0.00612 -0.0085 -0.00099 -0.045 0.134 0.128 0.000250 0.0000013 -0.0020
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Table A12. Emissions categories and energy requirements, large-scale production of 
rapeseed oil 
 
Production factor GWP AP EP POCP Input energy 

 [g CO2-
eq/ha] [%] [g SO2-

eq/ha] [%] [g PO4
3--

eq/ha] [%] [g C2H4-
eq/ha] [%] [MJ/ha] [%] 

Cultivation of rapeseed * 2404705 98.26 14407.29 46.29 2398.71 44.03 194.06 45.63 11783.83 87.27

Transport seed to extraction, fuel * 15527 0.63 106.40 0.34 18.90 0.35 4.24 1.00 214.61 1.59
Transport seed to extraction, 
   machinery * 64 0.0026 0.17 0.00054 0.014 0.00026 0.016 0.0036 13.59 0.10

Emissions, electricity, large- 
   scale oil extraction * 5162 0.21 13.40 0.043 1.13 0.021 1.25 0.29 1091.00 8.08

Total machinery, oil extraction, 
   Swedish el. * 105 0.0043 0.27 0.00087 0.023 0.00042 0.025 0.0060 22.18 0.16

Building material, Swedish el. * 43 0.0018 0.11 0.00036 0.0094 0.00017 0.010 0.0025 9.13 0.068

Emissions, hexane * 1390 0.057 9.37 0.030 0.59 0.011 0.92 0.22 128.56 0.95
Transport meal from extraction, 
   fuel ** 6793 0.28 47.06 0.15 8.36 0.15 1.78 0.42 93.89 0.70

Transport meal from extraction, 
   machinery **  24 0.00097 0.062 0.00020 0.0052 0.000095 0.0057 0.0013 5.01 0.037

Transport oil from extraction, 
   fuel *** 9426 0.39 64.19 0.21 11.40 0.21 2.62 0.62 130.27 0.96

Transport oil from extraction, 
   machinery *** 50 0.0020 0.13 0.00042 0.011 0.00020 0.012 0.0028 10.56 0.078

Emissions when driving on 
   the rapeseed oil *** 3985 0.16 16475.65 52.94 3008.91 55.23 220.32 51.81 0

Total; cultivation, - driving 2447274 100 31124.11 100 5448.07 100 425.26 100 13502.63 100
Total; cultivation, - driving 
   [g/MJengine] 

180.81 2.300 0.4025 0.03142  0.998

Total; cultivation, - driving 
   [g/MJfuel] 

58.57 0.351 0.0585 0.00491  0.324

Allocation (MJ) 1644510 67.20 26309.49 84.53 4646.25 85.28 357.71 84.12 9054.08 67.05

   cultivation, - driving [g/MJengine] 121.50 1.944 0.3433 0.02643  0.669

   cultivation, - driving [g/MJfuel] 39.32 0.236 0.0392 0.00329  0.217

Allocation (SEK) 1851672 75.66 27550.33 88.52 4852.76 89.07 374.82 88.14 10186.17 75.44

   cultivation, - driving [g/MJengine] 136.81 2.036 0.3585 0.02769  0.753

   cultivation, - driving [g/MJfuel] 44.29 0.265 0.0442 0.00370  0.244

* Oil and meal included    

** Meal included    

*** Oil included    
Allocation (soymeal, 
   soyoil, fossil glycerine)    

Total; cultivation, - driving (0) 2447274 100 31124.11 100 5448.07 100 425.26 100 13502.63 100
Production, soymeal with 
   eq. amount soyoil (1) 445812 18.22 5983.08 19.22 490.88 9.01 125.67 29.55 7711.09 57.11

Transport of soymeal with 
   eq. amount soyoil (2) 9191 0.38 62.44 0.20 11.09 0.20 2.59 0.61 127.03 0.94

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

21.35 0.0009 0.055 0.00018 0.0047 0.000086 0.0051 0.0012 4.51 0.033

Total [(0) - [(1) + (2) + (3)]] 1992250 81.41 25078.54 80.58 4946.09 90.79 296.99 69.84 5660.01 41.92

   cultivation, - driving [g/MJengine] 147.19 1.853 0.3654 0.02194  0.4182

   cultivation, - driving [g/MJfuel] 47.66 0.2062 0.0464 0.00184  0.1357
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Table A13. Emissions, large-scale production of RME 
 
Production factor CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 

Cultivation of rapeseed * 771031 336.47 442.04 540.69 3135.94 1422.37 5723.35 5474.88 33.95 0.056 178.81

Transport seed to extraction, fuel * 15487 15.19 9.07 0.41 146.33 3.97  0 1.47
Transport seed to extraction, 
   machinery * 55 0.13 0.020 0.34 0.10 0.091 0.0015 0.0050 0 0.017

Emissions, electricity, large- 
   scale oil extraction * 4393 10.08 1.62 27.45 8.40 7.28 0.12 0.40 0 1.40

Total machinery, oil extraction, 
   Swedish el. * 89 0.20 0.033 0.56 0.17 0.15 0.0025 0.0081 0 0.028

Building material, Swedish el. * 37 0.084 0.014 0.23 0.070 0.061 0.0010 0.0033 0 0.012

Emissions, hexane * 1341 0.84 2.19 1.62 4.54 6.18 0.0049 0.032 0.0089 0.21
Methanol, natural gas, 
   best case ** 42921 11.83 6.71 5.48 95.08 0.88  0.69 0

Transport of methanol ** 1034 1.06 0.62 0.027 9.71 0.26  0 0.098
Transport of methanol, 
   machinery, Swedish el. ** 4.7 0.011 0.0017 0.029 0.0089 0.0078 0.00013 0.00042 0 0.0015

Catalyst, KOH ** 3070 0.94 0.036 0.0055 12.73 10.88   0.0039

Electricity, transesterification ** 5177 11.88 1.91 32.35 9.90 8.58 0.15 0.47 0 1.65
Machinery, transesterification, 
   Swedish el. ** 54 0.13 0.020 0.34 0.10 0.090 0.0015 0.0049 0 0.017

Building material, transesterifi- 
   cation, Swedish el. ** 23 0.053 0.0085 0.14 0.044 0.038 0.00064 0.0021 0 0.0073

Transport meal from extraction, 
   fuel *** 6776 6.33 3.82 0.18 64.75 1.74  0 0.65

Transport meal from extraction, 
   machinery *** 20 0.046 0.0075 0.13 0.039 0.033 0.00057 0.0018 0 0.0064

Transport RME from transesteri- 
   fication, fuel **** 9043 9.24 5.38 0.24 84.91 2.32  0 0.86

Transport RME from transesteri- 
   fication, machinery **** 41 0.094 0.015 0.26 0.078 0.068 0.0011 0.0037 0 0.013

Transport of glycerine ***** 991 1.01 0.59 0.026 9.30 0.25  0 0.094
Transport of glycerine, 
    machinery, Swedish el. ***** 4.5 0.010 0.0017 0.028 0.0086 0.0074 0.00013 0.00041 0 0.0014

Emissions when driving on the 
   RME, fossil meth **** 156080 1718.93 312.53 25979.27 165.31   117.20

Compensation for bio-carbon in 
   glycerine replacing fossil carbon -156080   

Total; cultivation, - driving 1017673 2124.55 786.64 610.52 29561.50 1630.55 5723.63 5476.50 33.96 0.056 302.55
Total; cultivation, - driving 
   [g/MJengine] 

72.36 0.151 0.0559 0.0434 2.102 0.116 0.407 0.389 0.00241 0.0000040 0.0215

Total; cultivation, - driving 
   [g/MJfuel] 

21.36 0.0101 0.0118 0.0151 0.0888 0.0363 0.142 0.136 0.00084 0.0000014 0.00459

Total; cultivation, - drivinga 861593   
Total; cultivation, - driving 
   [g/MJengine]a 61.26   

Total; cultivation, - driving 
   [g/MJfuel]a 17.49   

Allocation (MJ) 725185 1986.65 619.72 404.88 28307.58 1114.59 3684.87 3526.09 21.86 0.036 236.90

   cultivation, - driving [g/MJengine] 51.56 0.141 0.0441 0.0288 2.013 0.0793 0.262 0.251 0.00155 0.0000025 0.0168

   cultivation, - driving [g/MJfuel] 14.11 0.00664 0.00761 0.0100 0.0577 0.0235 0.0913 0.0874 0.000542 0.0000009 0.00297

Allocation (MJ)a 569105   

   cultivation, - driving [g/MJengine]a 40.47   

   cultivation, - driving [g/MJfuel]a 10.24   
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Production factor CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 

Allocation (SEK) 797864 2019.89 661.97 457.26 28612.08 1248.52 4219.23 4037.25 25.04 0.041 253.85

   cultivation, - driving [g/MJengine] 56.73 0.144 0.0471 0.0325 2.034 0.0888 0.300 0.287 0.00178 0.0000029 0.0180

   cultivation, - driving [g/MJfuel] 15.91 0.00746 0.00866 0.0113 0.0653 0.0269 0.105 0.100 0.000621 0.0000010 0.00339

Allocation (SEK)a 641784   

   cultivation, - driving [g/MJengine]a 45.63   

   cultivation, - driving [g/MJfuel]a 12.04   
* RME, meal and glycerine 
   included    

** RME and glycerine included    

*** Meal included    

**** RME included    

***** Glycerine included    
Allocation (soymeal, soyoil, 
   fossil glycerine)    

Total; cultivation, - driving (0)a 861593 2124.55 786.64 610.52 29561.50 1630.55 5723.63 5476.50 33.96 0.056 302.55
Production, soymeal with 
   eq. amount soyoil (1) 378981 942.16 203.75 927.01 3404.19 3303.62 146.72 147.38 23.52 264.39

Transport of soymeal with 
   eq. amount soyoil (2) 9167 9.33 5.53 0.24 85.85 2.35  0 0.87

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

18.17 0.042 0.0067 0.11 0.035 0.030 0.00051 0.0016 0 0.0058

Production of fossil glycerine (4) 607340 380.14 287.03 1084.23 1241.73 1303.25 0.45 22.53 43.82 79.44

Total [(0) - [(1) + (2) + (3) + (4)]]a -133913 792.88 290.33 -1401.07 24829.70 -2978.70 5576.46 5306.58 -33.38 0.056 -42.15

   cultivation, - driving [g/MJengine]a -9.52 0.0564 0.02064 -0.0996 1.765 -0.212 0.397 0.377 -0.00237 0.0000040 -0.00300

   cultivation, - driving [g/MJfuel]a -7.19 -0.0230 -0.00055 -0.0347 -0.0285 -0.0779 0.138 0.132 -0.00083 0.0000014 -0.00395
a With compensation for bio-carbon in glycerine replacing fossil carbon. 
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Table A14. Emissions categories and energy requirements, large-scale production of RME 
 
Production factor GWP AP EP POCP Input energy 

 [g CO2-
eq/ha] [%] [g SO2-

eq/ha] [%] [g PO4
3--

eq/ha] [%] [g C2H4-
eq/ha] [%] [MJ/ha] [%] 

Cultivation of rapeseed * 2404705 90.50 14407.29 43.51 2398.71 41.27 194.06 48.04 11783.83 71.74

Transport seed to extraction, fuel * 15527 0.58 106.40 0.32 18.90 0.33 4.24 1.05 214.61 1.31
Transport seed to extraction, 
   machinery * 64 0.0024 0.17 0.00050 0.014 0.00024 0.016 0.0038 13.59 0.083

Emissions, electricity, large- 
   scale oil extraction * 5162 0.19 13.40 0.040 1.13 0.019 1.25 0.31 1091.00 6.64

Total machinery, oil extraction, 
   Swedish el. * 105 0.0039 0.27 0.00082 0.023 0.00039 0.025 0.0063 22.18 0.14

Building material, Swedish el. * 43 0.0016 0.11 0.00034 0.0094 0.00016 0.010 0.0026 9.13 0.056

Emissions, hexane * 1390 0.052 9.37 0.028 0.59 0.010 0.92 0.23 128.56 0.78
Methanol, natural gas, 
   best case ** 43274 1.63 67.44 0.20 12.28 0.21 3.20 0.79 1504.48 9.16

Transport of methanol ** 1037 0.039 7.06 0.021 1.25 0.022 0.29 0.071 14.33 0.087
Transport of methanol, 
   machinery, Swedish el. ** 5.5 0.00021 0.014 0.000043 0.0012 0.000021 0.0013 0.00033 1.16 0.0071

Catalyst, KOH ** 3072 0.12 19.79 0.060 1.65 0.028 0.052 0.013 87.79 0.53

Electricity, transesterification ** 6083 0.23 15.79 0.048 1.33 0.023 1.47 0.36 1285.69 7.83
Machinery, transesterification, 
   Swedish el. ** 64 0.0024 0.17 0.00050 0.014 0.00024 0.015 0.0038 13.53 0.082

Building material, transesterifi- 
   cation, Swedish el. ** 27 0.0010 0.070 0.00021 0.0059 0.00010 0.0065 0.0016 5.70 0.035

Transport meal from extraction, 
   fuel *** 6793 0.26 47.06 0.14 8.36 0.14 1.78 0.44 93.89 0.57

Transport meal from extraction, 
   machinery *** 24 0.00089 0.062 0.00019 0.0052 0.000089 0.0057 0.0014 5.01 0.031

Transport RME from transesteri- 
   fication, fuel **** 9067 0.34 61.75 0.19 10.97 0.19 2.52 0.62 125.32 0.76

Transport RME from transesteri- 
   fication, machinery **** 48.1 0.0018 0.12 0.00038 0.011 0.00018 0.012 0.0029 10.16 0.062

Transport of glycerine ***** 993 0.037 6.77 0.020 1.20 0.021 0.28 0.068 13.73 0.084
Transport of glycerine, 
    machinery, Swedish el. ***** 5.3 0.00020 0.014 0.000041 0.0012 0.000020 0.0013 0.00031 1.11 0.0068

Emissions when driving on the 
   RME, fossil meth **** 159518 6.00 18350.79 55.42 3356.17 57.74 193.77 47.97 0

Compensation for bio-carbon in 
   glycerine replacing fossil carbon -156080   

Total; cultivation, - driving 2657008 100 33113.91 100 5812.63 100 403.91 100 16424.80 100
Total; cultivation, - driving 
   [g/MJengine] 

188.92 2.355 0.4133 0.02872  1.168

Total; cultivation, - driving 
   [g/MJfuel] 

61.91 0.366 0.0609 0.00521  0.407

Total; cultivation, - drivinga 2500928   
Total; cultivation, - driving 
   [g/MJengine]a 177.83   

Total; cultivation, - driving 
   [g/MJfuel]a 58.04   

Allocation (MJ) 1782192 67.08 27876.70 84.18 4940.49 85.00 330.19 81.75 11451.56 69.72

   cultivation, - driving [g/MJengine] 126.72 1.982 0.3513 0.02348  0.814

   cultivation, - driving [g/MJfuel] 40.22 0.236 0.0393 0.00338  0.284

Allocation (MJ)a 1626112   

   cultivation, - driving [g/MJengine]a 115.62   

   cultivation, - driving [g/MJfuel]a 36.35   
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Production factor GWP AP EP POCP Input energy 

 [g CO2-
eq/ha] [%] [g SO2-

eq/ha] [%] [g PO4
3--

eq/ha] [%] [g C2H4-
eq/ha] [%] [MJ/ha] [%] 

Allocation (SEK) 2007447 75.55 29231.15 88.27 5165.96 88.87 348.78 86.35 12617.18 76.82

   cultivation, - driving [g/MJengine] 142.74 2.078 0.3673 0.02480  0.897

   cultivation, - driving [g/MJfuel] 45.81 0.270 0.0449 0.00384  0.313

Allocation (SEK)a 1851366   

   cultivation, - driving [g/MJengine]a 131.64   

   cultivation, - driving [g/MJfuel]a 41.94   
* RME, meal and glycerine 
   included    

** RME and glycerine included    

*** Meal included    

**** RME included    

***** Glycerine included    
Allocation (soymeal, soyoil, 
   fossil glycerine)    

Total; cultivation, - driving (0)a 2500928 94.13 33113.91 100 5812.63 100 403.91 100 16424.80 100
Production, soymeal with 
   eq. amount soyoil (1) 445812 16.78 5983.08 18.07 490.88 8.45 125.67 31.11 7711.09 46.95

Transport of soymeal with 
   eq. amount soyoil (2) 9191 0.35 62.44 0.19 11.09 0.19 2.59 0.64 127.03 0.77

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

21 0.00080 0.055 0.00017 0.0047 0.000080 0.0051 0.0013 4.51 0.027

Production of fossil glycerine (4) 639708 24.08 2211.86 6.68 160.57 2.76 137.61 34.07 14532.03 88.48

Total [(0) - [(1) + (2) + (3) + (4)]]a 1406196 52.92 24856.48 75.06 5150.09 88.60 138.04 34.18 -5949.85 -36.22

   cultivation, - driving [g/MJengine]a 99.99 1.767 0.3662 0.00982  -0.423

   cultivation, - driving [g/MJfuel]a 30.90 0.161 0.0445 -0.00138  -0.147
a With compensation for bio-carbon in glycerine replacing fossil carbon. 
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APPENDIX 2. PRODUCTION OF ETHANOL FUEL 
 
 
Table A15. Emissions, cultivation of wheat 
 
Production factor CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 

Seed 30685 15.02 18.35 18.89 120.06 56.40 189.29 173.22 1.07 0.0017 6.43

Production of fertilisers 420396 98.60 247.42 419.94 838.40 1328.11 89.10 2116.30 27.31 0.044 131.22

Soil emissions  4797.60 2350.82  

Production of pesticides 7267 3.93 0.43 0.27 10.22 25.70 0.24 2.23 0.31 0.06

Tractive power 177240 192.74 133.35 4.66 2083.56 45.38  0  27.81

Heat for seed drying 179510 75.09 89.17 21.12 143.14 45.67  2.35  4.69
Electricity for drying and 
   cleaning of the seed 2079 4.77 0.77 12.99 3.98 3.45 0.058 0.19 0 0.66

Machinery inputs 
   (Swedish electricity) 4520 10.38 1.67 28.24 8.65 7.49 0.13 0.41 0 1.44

Transport of fertiliser 1137 2.24 1.04 0.030 11.74 0.29  0  0.18
Machinery inputs, transport 
   of fertiliser, (Sw. el.) 74 0.17 0.027 0.46 0.14 0.12 0.0021 0.0067 0 0.024

Total emissions 822909 402.94 492.24 506.60 3219.89 1512.62 5076.41 4645.53 28.69 0.046 172.53

 
 
Table A16. Emissions categories and energy requirements, cultivation of wheat 
 
Production factor GWP AP EP POCP Input energy 

 [g CO2-
eq/ha] [%] [g SO2-

eq/ha] [%] [g PO4
3--

eq/ha] [%] [g C2H4-
eq/ha] [%] [MJ/ha] [%] 

Seed 82423 3.73 497.25 3.73 81.45 3.73 8.08 3.73 489.93 3.73

Production of fertilisers 1056676 47.80 2106.52 15.80 139.34 6.38 105.85 48.88 5740.19 43.69

Soil emissions 695844 31.48 9019.49 67.64 1671.13 76.51 0 0 0 0

Production of pesticides 7941 0.36 33.57 0.25 1.40 0.064 0.33 0.15 292.54 2.23

Tractive power 177733 8.04 1503.88 11.28 269.17 12.32 61.08 28.21 2456.07 18.69

Heat for seed drying 180841 8.18 145.86 1.09 18.49 0.85 38.82 17.93 2487.33 18.93
Electricity for drying and 
   cleaning of the seed 2443 0.11 6.34 0.048 0.53 0.024 0.59 0.27 516.32 3.93

Machinery inputs 
   (Swedish electricity) 5312 0.24 13.78 0.103 1.16 0.053 1.28 0.59 1122.58 8.54

Transport of fertiliser 1142 0.052 8.51 0.064 1.52 0.069 0.51 0.23 15.76 0.12
Machinery inputs, transport 
   of fertiliser, (Sw. el.) 87 0.0039 0.23 0.0017 0.019 0.00087 0.021 0.0097 18.36 0.14

Total emissions 2210443 100 13335.43 100 2184.21 100 216.56 100 13139.09 100
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Table A17. Emissions, small-scale production of ethanol fuel 
 
Production factor CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 

Cultivation of wheat * 822909 402.94 492.24 506.60 3219.89 1512.62 5076.41 4645.53 28.69 0.046 172.53
Emissions, electricity, small- 
   scale ethanol fermentation * 7965 18.28 2.95 49.77 15.24 13.20 0.22 0.72 0 2.54

Emissions, steam (heat), small- 
   scale ethanol fermentation * 6463 148.66 68.73 20.68 230.53 29.52 0 7.76 12.50 52.35

Emissions, electricity, small- 
   scale ethanol distillation ** 4762 10.93 1.76 29.75 9.11 7.89 0.13 0.43 0 1.52

Emissions, steam (heat), small- 
   scale ethanol distillation ** 37959 873.07 403.64 121.47 1353.89 173.35 0 45.55 73.39 307.47

Emissions, electricity, handling 
   of distiller’s waste *** 59 0.13 0.022 0.37 0.11 0.097 0.0016 0.0053 0 0.019

Emissions, steam (heat), handling 
   of distiller’s waste *** 0 0 0 0 0 0 0 0 0 0

Total machinery, ethanol 
   production, Swedish el. * 2003 4.60 0.74 12.52 3.83 3.32 0.056 0.18 0 0.64

Building material, Swedish el. * 362 0.83 0.13 2.26 0.69 0.60 0.010 0.033 0 0.12
Emissions, handling of waste 
   water, Swedish el. * 1710 3.93 0.63 10.69 3.27 2.83 0.048 0.15 0 0.55

Emissions production of chemi- 
   cals for ethanol production * 7482 2.22 0.27 0.0032 24.50 34.90 0.10 0 0 0 2.37

Transport of chemicals for 
   ethanol production * 379 0.39 0.23 0.0100 3.55 0.097  0  0.036

Transport of chemicals for 
   ethanol production, machinery, 
   Swedish el. * 

1.5 0.0034 0.00056 0.0094 0.0029 0.0025 0.000042 0.00014 0 0.00048

Emissions production of ignition  
   improver and corrosion inhibit- 
   tor ** 

148590 51.44 679.63 5.75 520.86 346.02 0 0 0 0 84.63

Emissions production of  
   denaturants ** 62404 3.56 226.14 0.70 103.00 20.09 0 0 0 0 6.42

Transport of chemicals for 
   ethanol fuel production ** 2393 2.43 1.44 0.063 22.41 0.61  0  0.23

Transport of chemicals for etha- 
   nol fuel production, machinery, 
   Swedish el. ** 

9.5 0.022 0.0035 0.059 0.018 0.016 0.00027 0.00086 0 0.0030

Emissions when driving on the 
   ethanol fuel, fossil chemicals 
   added ** 

433447 15155.75 1839.42 19344.17 0    114.54

Total; cultivation, - driving 1538899 16679.18 3717.97 760.70 24855.07 2145.17 5076.98 4700.36 114.57 0.046 745.95
Total; cultivation, - driving 
   [g/MJengine] 

74.64 0.809 0.180 0.0369 1.21 0.104 0.246 0.228 0.00556 0.0000022 0.0362

Total; cultivation, - driving 
   [g/MJfuel] 

21.23 0.0293 0.0361 0.0146 0.106 0.0412 0.098 0.090 0.00220 0.0000009 0.0121

Total; cultivation, - drivinga 282543 1120.49 1386.31 254.10 2291.01 632.56 0.58 54.83 85.88 0 458.89
Total; cultivation, - driving 
   [g/MJfuel]a 5.43 0.0215 0.0266 0.00488 0.0440 0.0122 0.000011 0.00105 0.00165 0 0.00881

Allocation (MJ) 1205691 16450.81 3495.95 523.98 23481.41 1518.58 3085.47 2874.57 98.42 0.028 655.27

   cultivation, - driving [g/MJengine] 58.48 0.798 0.170 0.0254 1.14 0.0737 0.150 0.139 0.00477 0.0000014 0.0318

   cultivation, - driving [g/MJfuel] 14.83 0.0249 0.0318 0.0101 0.0795 0.0292 0.0593 0.0552 0.00189 0.0000005 0.0104

Allocation (MJ)a 272141 1050.18 1357.39 216.10 2180.43 599.32 0.40 51.36 80.98 0 435.88

   cultivation, - driving [g/MJfuel]a 5.23 0.0202 0.0261 0.00415 0.0419 0.0115 0.000008 0.00099 0.00156 0 0.00837

Allocation (SEK) 1490650 16646.03 3685.84 726.15 24656.28 2054.45 4788.91 4436.26 112.23 0.043 732.81

   cultivation, - driving [g/MJengine] 72.30 0.807 0.179 0.0352 1.196 0.100 0.232 0.215 0.00544 0.0000021 0.0355

   cultivation, - driving [g/MJfuel] 20.31 0.0286 0.0355 0.0139 0.102 0.0395 0.092 0.085 0.00216 0.0000008 0.0119

Allocation (SEK)a 280988 1110.20 1382.11 248.29 2274.91 627.66 0.55 54.33 85.18 0 455.54

   cultivation, - driving [g/MJfuel]a 5.40 0.0213 0.0265 0.00477 0.0437 0.0121 0.000011 0.00104 0.00164 0 0.00875
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Production factor CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 
* Ethanol fuel and distiller’s 
   waste included     

** Ethanol fuel included     

*** Distiller’s waste included     

Allocation (soymeal, soyoil)     

Total; cultivation, - driving (0) 1538899 16679.18 3717.97 760.70 24855.07 2145.17 5076.98 4700.36 114.57 0.046 745.95

Total; cultivation, - driving (0)a 282543 1120.49 1386.31 254.10 2291.01 632.56 0.58 54.83 85.88 0 458.89
Production, soymeal with 
   eq. amount soyoil (1) 875545 2176.72 470.91 2142.17 7864.97 7634.50 339.14 340.53 54.32 0 610.82

Transport of soymeal with 
   eq. amount soyoil (2) 13095 13.33 7.89 0.34 122.63 3.35  0  1.24

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

25.95 0.060 0.0096 0.16 0.050 0.043 0.00073 0.0023 0 0.0083

Total [(0) - [(1) + (2) + (3)]] 650233 14489.08 3239.15 -1381.97 16867.42 -5492.73 4737.85 4359.83 60.25 0.046 133.88

   cultivation, - driving [g/MJengine] 31.54 0.703 0.157 -0.0670 0.818 -0.266 0.230 0.211 0.00292 0.0000022 0.0065

   cultivation, - driving [g/MJfuel] 4.16 -0.0128 0.0269 -0.0265 -0.0476 -0.106 0.091 0.084 0.00116 0.0000009 0.00037

Total [(0) - [(1) + (2) + (3)]]a -606123 -1069.62 907.50 -1888.58 -5696.64 -7005.34 -338.56 -285.70 31.57 0 -153.18

   cultivation, - driving [g/MJfuel]a -11.64 -0.0205 0.0174 -0.0363 -0.1094 -0.135 -0.00650 -0.00549 0.000606 0 -0.00294
a Cultivation and use of the fuel produced excluded. 
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Table A18. Emissions categories and energy requirements, small-scale production of ethanol 
fuel 
 
Production factor GWP AP EP POCP Input energy 

 [g CO2-
eq/ha] [%] [g SO2-

eq/ha] [%] [g PO4
3--

eq/ha] [%] [g C2H4-
eq/ha] [%] [MJ/ha] [%] 

Cultivation of wheat * 2210443 74.15 13335.43 45.69 2184.21 43.87 216.56 10.03 13139.09 52.30
Emissions, electricity, small- 
   scale ethanol fermentation * 9360 0.31 24.29 0.083 2.05 0.041 2.26 0.10 1978.06 7.87

Emissions, steam (heat), small- 
   scale ethanol fermentation * 9532 0.32 201.88 0.69 29.78 0.60 33.58 1.55 86.18 0.34

Emissions, electricity, small- 
   scale ethanol distillation ** 5596 0.19 14.52 0.050 1.22 0.025 1.35 0.063 1182.61 4.71

Emissions, steam (heat), small- 
   scale ethanol distillation ** 55983 1.88 1185.65 4.06 174.90 3.51 197.23 9.13 506.13 2.01

Emissions, electricity, handling 
   of distiller’s waste *** 69 0.0023 0.18 0.00061 0.015 0.00030 0.017 0.00077 14.60 0.058

Emissions, steam (heat), handling 
   of distiller’s waste *** 0 0 0 0 0 0 0 0 0 0

Total machinery, ethanol 
   production, Swedish el. * 2354 0.079 6.11 0.021 0.51 0.010 0.57 0.026 497.49 1.98

Building material, Swedish el. * 425 0.014 1.10 0.0038 0.093 0.0019 0.10 0.0048 89.88 0.36
Emissions, handling of waste 
   water, Swedish el. * 2010 0.067 5.21 0.018 0.44 0.0088 0.48 0.022 424.70 1.69

Emissions production of chemi- 
   cals for ethanol production * 7487 0.25 52.24 0.18 3.20 0.064 0.20 0.0091 121.07 0.48

Transport of chemicals for 
   ethanol production * 380 0.013 2.58 0.0088 0.46 0.0092 0.11 0.0050 5.25 0.021

Transport of chemicals for 
   ethanol production, machinery, 
   Swedish el. * 

1.8 0.000059 0.0046 0.000016 0.00039 0.0000078 0.00043 0.000020 0.37 0.0015

Emissions production of ignition  
   improver and corrosion inhibit- 
   tor ** 

148826 4.99 710.63 2.43 67.29 1.35 273.95 12.68 4994.97 19.88

Emissions production of  
   denaturants ** 62427 2.09 92.19 0.32 13.31 0.27 90.60 4.20 2045.93 8.14

Transport of chemicals for 
   ethanol fuel production ** 2399 0.080 16.30 0.056 2.89 0.058 0.67 0.031 33.15 0.13

Transport of chemicals for etha- 
   nol fuel production, machinery, 
   Swedish el. ** 

11 0.00037 0.029 0.000099 0.0024 0.000049 0.0027 0.00012 2.36 0.0094

Emissions when driving on the 
   ethanol fuel, fossil chemicals 
   added ** 

463758 15.56 13540.92 46.39 2499.01 50.19 1342.00 62.14 0

Total; cultivation, - driving 2981061 100 29189.27 100 4979.38 100 2159.68 100 25121.83 100
Total; cultivation, - driving 
   [g/MJengine] 

144.59 1.416 0.2415 0.1048  1.219

Total; cultivation, - driving 
   [g/MJfuel] 

48.35 0.301 0.0476 0.0157  0.483

Total; cultivation, - drivinga 306860 100 2312.92 100 296.17 100 601.12 100 11982.74 100
Total; cultivation, - driving 
   [g/MJfuel]a 5.89 0.0444 0.00569 0.0115  0.230

Allocation (MJ) 2101516 70.50 23842.84 81.68 4108.23 82.50 2060.08 95.39 18696.66 74.42

   cultivation, - driving [g/MJengine] 101.93 1.156 0.1993 0.0999  0.907

   cultivation, - driving [g/MJfuel] 31.46 0.198 0.0309 0.0138  0.359

Allocation (MJ)a 294415 95.94 2197.64 95.02 281.82 95.16 586.48 97.56 10711.69 89.39

   cultivation, - driving [g/MJfuel]a 5.66 0.0422 0.00541 0.0113  0.206

Allocation (SEK) 2853776 95.73 28415.76 97.35 4853.36 97.47 2145.26 99.33 24179.95 96.25

   cultivation, - driving [g/MJengine] 138.42 1.378 0.2354 0.1041  1.173

   cultivation, - driving [g/MJfuel] 45.91 0.286 0.0452 0.0154  0.464

Allocation (SEK)a 305000 99.39 2296.09 99.27 294.08 99.29 598.99 99.65 11786.40 98.36

   cultivation, - driving [g/MJfuel]a 5.86 0.0441 0.00565 0.0115  0.226
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Production factor GWP AP EP POCP Input energy 

 [g CO2-
eq/ha] [%] [g SO2-

eq/ha] [%] [g PO4
3--

eq/ha] [%] [g C2H4-
eq/ha] [%] [MJ/ha] [%] 

* Ethanol fuel and distiller’s 
   waste included    

** Ethanol fuel included    

*** Distiller’s waste included    

Allocation (soymeal, soyoil)    

Total; cultivation, - driving (0) 2981061 100 29189.27 100 4979.38 100 2159.68 100 25121.83 100

Total; cultivation, - driving (0)a 306860 100 2312.92 100 296.17 100 601.12 100 11982.74 100
Production, soymeal with 
   eq. amount soyoil (1) 1029967 34.55 13825.35 47.36 1134.18 22.78 290.43 13.45 17817.87 70.93

Transport of soymeal with 
   eq. amount soyoil (2) 13129 0.44 89.20 0.31 15.84 0.32 3.69 0.17 181.46 0.72

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

30.50 0.0010 0.079 0.00027 0.0067 0.00013 0.0074 0.00034 6.45 0.026

Total [(0) - [(1) + (2) + (3)]] 1937934 65.01 15274.64 52.33 3829.36 76.90 1865.55 86.38 7116.06 28.33

   cultivation, - driving [g/MJengine] 94.00 0.741 0.1857 0.0905  0.3452

   cultivation, - driving [g/MJfuel] 28.32 0.0333 0.0256 0.0101  0.1367

Total [(0) - [(1) + (2) + (3)]]a -736267 -239.94 -11601.71 -501.60 -853.86 -288.30 306.99 51.07 -6023.03 -50.26

   cultivation, - driving [g/MJfuel]a -14.1 -0.223 -0.0164 0.00590  -0.116
a Cultivation and use of the fuel produced excluded. 
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Table A19. Emissions, medium-scale production of ethanol fuel 
 
Production factor CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 

Cultivation of wheat * 822909 402.94 492.24 506.60 3219.89 1512.62 5076.41 4645.53 28.69 0.046 172.53
Emissions, electricity, medium- 
   scale ethanol fermentation * 7135 16.38 2.64 44.58 13.65 11.83 0.20 0.65 0 2.27

Emissions, steam (heat), medium-
   scale ethanol fermentation * 5290 100.51 16.40 3.53 312.11 11.11 0 7.05 5.82 11.99

Emissions, electricity, medium- 
   scale ethanol distillation ** 4266 9.79 1.58 26.66 8.16 7.07 0.12 0.39 0 1.36

Emissions, steam (heat), medium-
   scale ethanol distillation ** 31068 590.29 96.31 20.71 1833.01 65.24 0 41.42 34.17 70.42

Emissions, electricity, handling 
   of distiller’s waste *** 57 0.13 0.021 0.36 0.11 0.095 0.0016 0.0052 0 0.018

Emissions, steam (heat), handling 
   of distiller’s waste *** 0 0 0 0 0 0 0 0 0 0

Total machinery, ethanol 
   production, Swedish el. * 703 1.61 0.26 4.39 1.34 1.17 0.020 0.06 0 0.22

Building material, Swedish el. * 212 0.49 0.078 1.32 0.40 0.35 0.0059 0.019 0 0.067
Emissions, handling of waste 
   water, Swedish el. * 1671 3.84 0.62 10.44 3.20 2.77 0.047 0.15 0 0.53

Emissions production of chemi- 
   cals for ethanol production * 7482 2.22 0.27 0.0032 24.50 34.90 0.10 0 0 0 2.37

Transport of chemicals for 
   ethanol production * 329 0.33 0.20 0.0086 3.08 0.084  0  0.031

Transport of chemicals for 
   ethanol production, machinery, 
   Swedish el. * 

1.3 0.0030 0.00048 0.0081 0.0025 0.0022 0.000037 0.00012 0 0.00042

Emissions production of ignition  
   improver and corrosion inhibit- 
   tor ** 

148590 51.44 679.63 5.75 520.86 346.02 0 0 0 0 84.63

Emissions production of  
   denaturants ** 62404 3.56 226.14 0.70 103.00 20.09 0 0 0 0 6.42

Transport of chemicals for 
   ethanol fuel production ** 2339 2.39 1.39 0.062 21.96 0.60  0  0.22

Transport of chemicals for etha- 
   nol fuel production, machinery, 
   Swedish el. ** 

11 0.024 0.0039 0.066 0.020 0.018 0.00030 0.00096 0 0.0034

Transport of wheat to ethanol 
   production * 3836 4.11 3.03 0.10 38.28 0.98  0  0.32

Transport of wheat to ethanol 
   production, machinery, 
   Swedish el. * 

407.5 0.94 0.15 2.55 0.78 0.68 0.011 0.037 0 0.13

Transport of distiller’s waste 
   from ethanol production *** 12305 13.17 9.72 0.32 122.79 3.15  0  1.03

Transport of distiller’s waste 
   from ethanol production, 
   machinery, Swedish el. *** 

1307 3.00 0.48 8.17 2.50 2.17 0.037 0.12 0 0.42

Transport of produced ethanol 
   fuel ** 1138 1.16 0.68 0.030 10.69 0.29  0  0.11

Transport of produced ethanol 
   fuel, machinery, Swedish el. ** 5.1 0.012 0.0019 0.032 0.010 0.0085 0.00014 0.00047 0 0.0016

Emissions when driving on the 
   ethanol fuel, fossil chemicals 
   added ** 

433447 15155.75 1839.42 19344.17 0    114.54

Total; cultivation, - driving 1546913 16364.09 3371.25 636.40 25584.52 2021.24 5076.95 4695.43 68.68 0.046 469.64
Total; cultivation, - driving 
   [g/MJengine] 

75.03 0.794 0.164 0.0309 1.24 0.098 0.246 0.228 0.00333 0.0000022 0.0228

Total; cultivation, - driving 
   [g/MJfuel] 

21.39 0.0232 0.0294 0.0122 0.120 0.0388 0.098 0.090 0.00132 0.0000009 0.00682

Total; cultivation, - drivinga 290558 805.40 1039.59 129.79 3020.45 508.62 0.54 49.91 39.99 0 182.58
Total; cultivation, - driving 
   [g/MJfuel]a 5.58 0.0155 0.0200 0.00249 0.0580 0.0098 0.000010 0.00096 0.00077 0 0.00351
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Production factor CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 

Allocation (MJ) 1199820 16138.56 3158.67 402.56 24040.17 1397.41 3085.42 2869.86 55.14 0.028 393.45

   cultivation, - driving [g/MJengine] 58.20 0.783 0.153 0.0195 1.17 0.0678 0.150 0.139 0.00267 0.0000014 0.0191

   cultivation, - driving [g/MJfuel] 14.72 0.0189 0.0253 0.0077 0.0902 0.0268 0.0593 0.0551 0.00106 0.0000005 0.00536

Allocation (MJ)a 266271 737.93 1020.10 94.69 2739.19 478.16 0.36 46.66 37.71 0 174.07

   cultivation, - driving [g/MJfuel]a 5.11 0.0142 0.0196 0.00182 0.0526 0.0092 0.0000068 0.00090 0.00072 0 0.00334

Allocation (SEK) 1485014 16317.52 3331.76 595.00 25253.87 1926.37 4788.85 4431.26 66.72 0.043 457.36

   cultivation, - driving [g/MJengine] 72.03 0.791 0.162 0.0289 1.225 0.093 0.232 0.215 0.00324 0.0000021 0.0222

   cultivation, - driving [g/MJfuel] 20.20 0.0223 0.0287 0.0114 0.114 0.0370 0.092 0.085 0.00128 0.0000008 0.00659

Allocation (SEK)a 275352 781.69 1028.03 117.15 2872.51 499.59 0.48 49.33 39.66 0 180.09

   cultivation, - driving [g/MJfuel]a 5.29 0.0150 0.0197 0.00225 0.0552 0.0096 0.0000093 0.00095 0.00076 0 0.00346
* Ethanol fuel and distiller’s 
   waste included     

** Ethanol fuel included     

*** Distiller’s waste included     

Allocation (soymeal, soyoil)     

Total; cultivation, - driving (0) 1546913 16364.09 3371.25 636.40 25584.52 2021.24 5076.95 4695.43 68.68 0.046 469.64

Total; cultivation, - driving (0)a 290558 805.40 1039.59 129.79 3020.45 508.62 0.54 49.91 39.99 0 182.58
Production, soymeal with 
   eq. amount soyoil (1) 875545 2176.72 470.91 2142.17 7864.97 7634.50 339.14 340.53 54.32 0 610.82

Transport of soymeal with 
   eq. amount soyoil (2) 13095 13.33 7.89 0.34 122.63 3.35  0  1.24

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

25.95 0.060 0.0096 0.16 0.050 0.043 0.00073 0.0023 0 0.0083

Total [(0) - [(1) + (2) + (3)]] 658247 14173.99 2892.44 -1506.28 17596.87 -5616.66 4737.81 4354.90 14.36 0.046 -142.43

   cultivation, - driving [g/MJengine] 31.93 0.688 0.140 -0.0731 0.854 -0.272 0.230 0.211 0.00070 0.0000022 -0.00691

   cultivation, - driving [g/MJfuel] 4.32 -0.0189 0.0202 -0.0289 -0.0336 -0.108 0.091 0.084 0.00028 0.0000009 -0.00494

Total [(0) - [(1) + (2) + (3)]]a -598108 -1384.71 560.78 -2012.89 -4967.20 -7129.27 -338.59 -290.63 -14.32 0 -429.49

   cultivation, - driving [g/MJfuel]a -11.49 -0.0266 0.0108 -0.0387 -0.0954 -0.137 -0.0065 -0.0056 -0.00028 0 -0.00825
a Cultivation and use of the fuel produced excluded. 
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Table A20. Emissions categories and energy requirements, medium-scale production of 
ethanol fuel 
 
Production factor GWP AP EP POCP Input energy 

 [g CO2-
eq/ha] [%] [g SO2-

eq/ha] [%] [g PO4
3--

eq/ha] [%] [g C2H4-
eq/ha] [%] [MJ/ha] [%] 

Cultivation of wheat * 2210443 74.07 13335.43 45.15 2184.21 43.05 216.56 10.79 13139.09 52.60
Emissions, electricity, medium- 
   scale ethanol fermentation * 8385 0.28 21.76 0.074 1.83 0.036 2.02 0.10 1772.01 7.09

Emissions, steam (heat), medium-
   scale ethanol fermentation * 7660 0.26 234.71 0.79 40.32 0.79 10.60 0.53 70.53 0.28

Emissions, electricity, medium- 
   scale ethanol distillation ** 5013 0.17 13.01 0.044 1.10 0.022 1.21 0.060 1059.42 4.24

Emissions, steam (heat), medium-
   scale ethanol distillation ** 44987 1.51 1378.43 4.67 236.80 4.67 62.28 3.10 414.24 1.66

Emissions, electricity, handling 
   of distiller’s waste *** 67 0.0023 0.18 0.00059 0.015 0.00029 0.016 0.00081 14.26 0.057

Emissions, steam (heat), handling 
   of distiller’s waste *** 0 0 0 0 0 0 0 0 0 0

Total machinery, ethanol 
   production, Swedish el. * 826 0.028 2.14 0.0073 0.18 0.0036 0.20 0.0099 174.56 0.70

Building material, Swedish el. * 249 0.0083 0.65 0.0022 0.054 0.0011 0.060 0.0030 52.56 0.21
Emissions, handling of waste 
   water, Swedish el. * 1964 0.066 5.10 0.017 0.43 0.0085 0.47 0.024 415.04 1.66

Emissions production of chemi- 
   cals for ethanol production * 7487 0.25 52.24 0.18 3.20 0.063 0.20 0.0098 121.07 0.48

Transport of chemicals for 
   ethanol production * 329 0.011 2.24 0.0076 0.40 0.0078 0.093 0.0046 4.55 0.018

Transport of chemicals for 
   ethanol production, machinery, 
   Swedish el. * 

1.5 0.000051 0.0040 0.000013 0.00033 0.0000066 0.00037 0.000018 0.32 0.0013

Emissions production of ignition  
   improver and corrosion inhibit- 
   tor ** 

148826 4.99 710.63 2.41 67.29 1.33 273.95 13.65 4994.97 20.00

Emissions production of  
   denaturants ** 62427 2.09 92.19 0.31 13.31 0.26 90.60 4.51 2045.93 8.19

Transport of chemicals for 
   ethanol fuel production ** 2345 0.079 15.97 0.054 2.84 0.056 0.65 0.033 32.41 0.13

Transport of chemicals for etha- 
   nol fuel production, machinery, 
   Swedish el. ** 

12 0.00042 0.032 0.00011 0.0027 0.000054 0.0030 0.00015 2.63 0.011

Transport of wheat to ethanol 
   production * 3847 0.13 27.78 0.094 4.95 0.097 1.38 0.069 53.16 0.21

Transport of wheat to ethanol 
   production, machinery, 
   Swedish el. * 

479 0.016 1.24 0.0042 0.10 0.0021 0.12 0.0058 101.21 0.41

Transport of distiller’s waste 
   from ethanol production *** 12339 0.41 89.10 0.30 15.86 0.31 4.42 0.22 170.51 0.68

Transport of distiller’s waste 
   from ethanol production, 
   machinery, Swedish el. *** 

1536 0.051 3.99 0.013 0.34 0.0066 0.37 0.018 324.64 1.30

Transport of produced ethanol 
   fuel ** 1141 0.038 7.77 0.026 1.38 0.027 0.32 0.016 15.77 0.063

Transport of produced ethanol 
   fuel, machinery, Swedish el. ** 6.1 0.00020 0.016 0.000053 0.0013 0.000026 0.0015 0.000073 1.28 0.0051

Emissions when driving on the 
   ethanol fuel, fossil chemicals 
   added ** 

463758 15.54 13540.92 45.85 2499.01 49.26 1342.00 66.85 0

Total; cultivation, - driving 2984127 100 29535.51 100 5073.61 100 2007.52 100 24980.18 100
Total; cultivation, - driving 
   [g/MJengine] 

144.74 1.433 0.2461 0.0974  1.212

Total; cultivation, - driving 
   [g/MJfuel] 

48.41 0.307 0.0495 0.0128  0.480

Total; cultivation, - drivinga 309926 100 2659.16 100 390.39 100 448.96 100 11841.09 100
Total; cultivation, - driving 
   [g/MJfuel]a 5.95 0.0511 0.00750 0.00862  0.227
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Production factor GWP AP EP POCP Input energy 

 [g CO2-
eq/ha] [%] [g SO2-

eq/ha] [%] [g PO4
3--

eq/ha] [%] [g C2H4-
eq/ha] [%] [MJ/ha] [%] 

Allocation (MJ) 2090835 70.07 24074.65 81.51 4180.40 82.39 1911.83 95.23 18232.00 72.99

   cultivation, - driving [g/MJengine] 101.41 1.168 0.2028 0.0927  0.884

   cultivation, - driving [g/MJfuel] 31.25 0.202 0.0323 0.0109  0.350

Allocation (MJ)a 283734 91.55 2429.44 91.36 353.99 90.68 438.22 97.61 10247.03 86.54

   cultivation, - driving [g/MJfuel]a 5.45 0.0467 0.00680 0.00842  0.197

Allocation (SEK) 2842988 95.27 28665.83 97.06 4930.54 97.18 1989.57 99.11 23568.34 94.35

   cultivation, - driving [g/MJengine] 137.90 1.390 0.2392 0.0965  1.143

   cultivation, - driving [g/MJfuel] 45.70 0.291 0.0467 0.0124  0.453

Allocation (SEK)a 294212 94.93 2546.16 95.75 371.26 95.10 443.30 98.74 11174.79 94.37

   cultivation, - driving [g/MJfuel]a 5.65 0.0489 0.00713 0.00851  0.215
* Ethanol fuel and distiller’s 
   waste included    

** Ethanol fuel included    

*** Distiller’s waste included    

Allocation (soymeal, soyoil)    

Total; cultivation, - driving (0) 2984127 100 29535.51 100 5073.61 100 2007.52 100 24980.18 100

Total; cultivation, - driving (0)a 309926 100 2659.16 100 390.39 100 448.96 100 11841.09 100
Production, soymeal with 
   eq. amount soyoil (1) 1029967 34.51 13825.35 46.81 1134.18 22.35 290.43 14.47 17817.87 71.33

Transport of soymeal with 
   eq. amount soyoil (2) 13129 0.44 89.20 0.30 15.84 0.31 3.69 0.18 181.46 0.73

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

30.50 0.0010 0.079 0.00027 0.0067 0.00013 0.0074 0.00037 6.45 0.026

Total [(0) - [(1) + (2) + (3)]] 1941000 65.04 15620.88 52.89 3923.58 77.33 1713.39 85.35 6974.41 27.92

   cultivation, - driving [g/MJengine] 94.15 0.758 0.1903 0.0831  0.3383

   cultivation, - driving [g/MJfuel] 28.37 0.0400 0.0274 0.00713  0.1340

Total [(0) - [(1) + (2) + (3)]]a -733201 -236.57 -11255.47 -423.27 -759.64 -194.58 154.83 34.49 -6164.68 -52.06

   cultivation, - driving [g/MJfuel]a -14.08 -0.216 -0.0146 0.00297  -0.118
a Cultivation and use of the fuel produced excluded. 
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Table A21. Emissions, large-scale production of ethanol fuel 
 
Production factor CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 

Cultivation of wheat * 822909 402.94 492.24 506.60 3219.89 1512.62 5076.41 4645.53 28.69 0.046 172.53
Emissions, electricity, large- 
   scale ethanol fermentation * 6336 14.54 2.34 39.59 12.12 10.50 0.18 0.57 0 2.02

Emissions, steam (heat), large- 
   scale ethanol fermentation * 4617 108.65 9.23 0.92 221.91 9.70 0 8.77 5.08 10.46

Emissions, electricity, large- 
   scale ethanol distillation ** 3788 8.69 1.40 23.67 7.25 6.28 0.11 0.34 0 1.21

Emissions, steam (heat), large- 
   scale ethanol distillation ** 27114 638.08 54.23 5.42 1303.28 56.94 0 51.52 29.83 61.46

Emissions, electricity, drying of 
   distiller’s waste *** 10560 24.24 3.90 65.98 20.20 17.50 0.30 0.96 0 3.37

Emissions, steam (heat), drying 
   of distiller’s waste *** 31657 745.00 63.31 6.33 1521.66 66.48 0 60.15 34.82 71.76

Total machinery, ethanol 
   production, Swedish el. * 366 0.84 0.14 2.29 0.70 0.61 0.010 0.033 0 0.12

Building material, Swedish el. * 110 0.25 0.041 0.69 0.21 0.18 0.0031 0.0100 0 0.035
Emissions, handling of waste 
   water, Swedish el. * 1632 3.75 0.60 10.20 3.12 2.71 0.046 0.15 0 0.52

Emissions production of chemi- 
   cals for ethanol production * 7482 2.22 0.27 0.0032 24.50 34.90 0.10   2.37

Transport of chemicals for 
   ethanol production * 309 0.32 0.18 0.0081 2.90 0.079  0  0.029

Transport of chemicals for 
   ethanol production, machinery, 
   Swedish el. * 

1.4 0.0032 0.00052 0.0087 0.0027 0.0023 0.000039 0.00013 0 0.00045

Emissions production of ignition  
   improver and corrosion inhibit- 
   tor ** 

148590 51.44 679.63 5.75 520.86 346.02 0 0 0 0 84.63

Emissions production of  
   denaturants ** 62404 3.56 226.14 0.70 103.00 20.09 0 0 0 0 6.42

Transport of chemicals for 
   ethanol fuel production ** 1754 1.79 1.04 0.046 16.47 0.45  0  0.17

Transport of chemicals for etha- 
   nol fuel production, machinery, 
   Swedish el. ** 

7.9 0.018 0.0029 0.050 0.015 0.013 0.00022 0.00072 0 0.0025

Transport of wheat to ethanol 
   production * 40292 40.20 23.91 1.06 379.18 10.32  0  3.82

Transport of wheat to ethanol 
   production, machinery, 
   Swedish el. * 

150 0.34 0.056 0.94 0.29 0.25 0.0042 0.014 0 0.048

Transport of distiller’s waste 
   from ethanol production *** 9632 9.00 5.43 0.25 92.04 2.47  0  0.92

Transport of distiller’s waste 
   from ethanol production, 
   machinery, Swedish el. *** 

29 0.066 0.011 0.18 0.055 0.048 0.00080 0.0026 0 0.0091

Transport of produced ethanol 
   fuel ** 17885 18.27 10.64 0.47 167.93 4.58  0  1.69

Transport of produced ethanol 
   fuel, machinery, Swedish el. ** 81 0.19 0.030 0.51 0.15 0.13 0.0023 0.0073 0 0.026

Emissions when driving on the 
   ethanol fuel, fossil chemicals 
   added ** 

433447 15155.75 1839.42 19344.17 0    114.54

Total; cultivation, - driving 1631153 17230.15 3414.21 671.67 26961.90 2102.86 5077.16 4768.05 98.41 0.046 538.14
Total; cultivation, - driving 
   [g/MJengine] 

79.12 0.836 0.166 0.0326 1.31 0.102 0.246 0.231 0.00477 0.0000022 0.0261

Total; cultivation, - driving 
   [g/MJfuel] 

23.01 0.0398 0.0302 0.0129 0.146 0.0404 0.098 0.092 0.00189 0.0000009 0.00814

Total; cultivation, - drivinga 374797 1671.45 1082.55 165.07 4397.83 590.25 0.75 122.53 69.73 0 251.08
Total; cultivation, - driving 
   [g/MJfuel]a 7.20 0.0321 0.0208 0.00317 0.0845 0.0113 0.0000144 0.00235 0.00134 0 0.00482
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Production factor CO2 CO HC CH4 NOx SOx NH3 N2O HCl PAH Particles

 [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] [g/ha] 

Allocation (MJ) 1232425 16226.66 3134.03 378.34 23811.87 1395.84 3085.38 2880.88 50.34 0.028 386.79

   cultivation, - driving [g/MJengine] 59.78 0.787 0.152 0.0184 1.15 0.0677 0.150 0.140 0.00244 0.0000014 0.0188

   cultivation, - driving [g/MJfuel] 15.35 0.0206 0.0249 0.0073 0.0858 0.0268 0.0593 0.0553 0.00097 0.0000005 0.00523

Allocation (MJ)a 298875 826.03 995.47 70.47 2510.89 476.59 0.32 57.67 32.91 0 167.41

   cultivation, - driving [g/MJfuel]a 5.74 0.0159 0.0191 0.00135 0.0482 0.0092 0.0000061 0.00111 0.00063 0 0.00322

Allocation (SEK) 1466249 16378.46 3273.93 527.04 24833.91 1814.16 4427.91 4111.89 59.27 0.040 437.55

   cultivation, - driving [g/MJengine] 71.12 0.794 0.159 0.0256 1.205 0.088 0.215 0.199 0.00288 0.0000019 0.0212

   cultivation, - driving [g/MJfuel] 19.84 0.0235 0.0276 0.0101 0.105 0.0348 0.085 0.079 0.00114 0.0000008 0.00620

Allocation (SEK)a 315085 871.28 1005.19 85.20 2681.44 494.90 0.41 60.20 34.25 0 172.54

   cultivation, - driving [g/MJfuel]a 6.05 0.0167 0.0193 0.00164 0.0515 0.0095 0.0000078 0.00116 0.00066 0 0.00331
* Ethanol fuel and distiller’s 
   waste included     

** Ethanol fuel included     

*** Distiller’s waste included     

Allocation (soymeal, soyoil)     

Total; cultivation, - driving (0) 1631153 17230.15 3414.21 671.67 26961.90 2102.86 5077.16 4768.05 98.41 0.046 538.14

Total; cultivation, - driving (0)a 374797 1671.45 1082.55 165.07 4397.83 590.25 0.75 122.53 69.73 0 251.08
Production, soymeal with 
   eq. amount soyoil (1) 875545 2176.72 470.91 2142.17 7864.97 7634.50 339.14 340.53 54.32 0 610.82

Transport of soymeal with 
   eq. amount soyoil (2) 13095 13.33 7.89 0.34 122.63 3.35  0  1.24

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

25.95 0.060 0.0096 0.16 0.050 0.043 0.00073 0.0023 0 0.0083

Total [(0) - [(1) + (2) + (3)]] 742487 15040.04 2935.40 -1471.01 18974.25 -5535.03 4738.02 4427.52 44.10 0.046 -73.92

   cultivation, - driving [g/MJengine] 36.01 0.730 0.142 -0.0714 0.920 -0.268 0.230 0.215 0.00214 0.0000022 -0.00359

   cultivation, - driving [g/MJfuel] 5.94 -0.0022 0.0211 -0.0283 -0.0071 -0.106 0.091 0.085 0.00085 0.0000009 -0.00362

Total [(0) - [(1) + (2) + (3)]]a -513869 -518.65 603.74 -1977.61 -3589.82 -7047.65 -338.39 -218.01 15.41 0 -360.98

   cultivation, - driving [g/MJfuel]a -9.87 -0.00996 0.0116 -0.0380 -0.0690 -0.135 -0.00650 -0.00419 0.000296 0 -0.00693
a Cultivation and use of the fuel produced excluded. 
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Table A22. Emissions categories and energy requirements, large-scale production of ethanol 
fuel 
 
Production factor GWP AP EP POCP Input energy 

 [g CO2-
eq/ha] [%] [g SO2-

eq/ha] [%] [g PO4
3--

eq/ha] [%] [g C2H4-
eq/ha] [%] [MJ/ha] [%] 

Cultivation of wheat * 2210443 71.48 13335.43 43.57 2184.21 41.59 216.56 10.51 13139.09 47.19
Emissions, electricity, large- 
   scale ethanol fermentation * 7445 0.24 19.32 0.063 1.63 0.031 1.80 0.087 1573.45 5.65

Emissions, steam (heat), large- 
   scale ethanol fermentation * 7452 0.24 169.50 0.55 28.67 0.55 8.05 0.39 61.56 0.22

Emissions, electricity, large- 
   scale ethanol distillation ** 4451 0.14 11.55 0.038 0.97 0.019 1.07 0.052 940.71 3.38

Emissions, steam (heat), large- 
   scale ethanol distillation ** 43764 1.42 995.48 3.25 168.37 3.21 47.25 2.29 361.52 1.30

Emissions, electricity, drying of 
   distiller’s waste *** 12409 0.40 32.20 0.11 2.71 0.052 2.99 0.15 2622.42 9.42

Emissions, steam (heat), drying 
   of distiller’s waste *** 51097 1.65 1162.29 3.80 196.58 3.74 55.17 2.68 422.10 1.52

Total machinery, ethanol 
   production, Swedish el. * 430 0.014 1.12 0.0036 0.094 0.0018 0.10 0.0050 90.95 0.33

Building material, Swedish el. * 130 0.0042 0.34 0.0011 0.028 0.00054 0.031 0.0015 27.39 0.098
Emissions, handling of waste 
   water, Swedish el. * 1918 0.062 4.98 0.016 0.42 0.0080 0.46 0.022 405.39 1.46

Emissions production of chemi- 
   cals for ethanol production * 7487 0.24 52.24 0.17 3.20 0.061 0.20 0.0095 121.07 0.43

Transport of chemicals for 
   ethanol production * 310 0.010 2.11 0.0069 0.37 0.0071 0.086 0.0042 4.28 0.015

Transport of chemicals for 
   ethanol production, machinery, 
   Swedish el. * 

1.6 0.000053 0.0043 0.000014 0.00036 0.0000068 0.00040 0.000019 0.35 0.0012

Emissions production of ignition  
   improver and corrosion inhibit- 
   tor ** 

148826 4.81 710.63 2.32 67.29 1.28 273.95 13.30 4994.97 17.94

Emissions production of  
   denaturants ** 62427 2.02 92.19 0.30 13.31 0.25 90.60 4.40 2045.93 7.35

Transport of chemicals for 
   ethanol fuel production ** 1759 0.057 11.98 0.039 2.13 0.041 0.49 0.024 24.31 0.087

Transport of chemicals for etha- 
   nol fuel production, machinery, 
   Swedish el. ** 

9.3 0.00030 0.024 0.000079 0.0020 0.000039 0.0023 0.00011 1.97 0.0071

Transport of wheat to ethanol 
   production * 40396 1.31 275.74 0.90 48.98 0.93 11.18 0.54 558.33 2.01

Transport of wheat to ethanol 
   production, machinery, 
   Swedish el. * 

177 0.0057 0.46 0.0015 0.039 0.00073 0.043 0.0021 37.31 0.13

Transport of distiller’s waste 
   from ethanol production *** 9655 0.31 66.89 0.22 11.89 0.23 2.53 0.12 133.47 0.48

Transport of distiller’s waste 
   from ethanol production, 
   machinery, Swedish el. *** 

34 0.0011 0.087 0.00029 0.0074 0.00014 0.0081 0.00039 7.13 0.026

Transport of produced ethanol 
   fuel ** 17932 0.58 122.13 0.40 21.69 0.41 4.99 0.24 247.83 0.89

Transport of produced ethanol 
   fuel, machinery, Swedish el. ** 95 0.0031 0.25 0.00081 0.021 0.00040 0.023 0.0011 20.10 0.072

Emissions when driving on the 
   ethanol fuel, fossil chemicals 
   added ** 

463758 15.00 13540.92 44.24 2499.01 47.59 1342.00 65.16 0

Total; cultivation, - driving 3092405 100 30607.85 100 5251.62 100 2059.59 100 27841.62 100
Total; cultivation, - driving 
   [g/MJengine] 

150.00 1.485 0.2547 0.0999  1.350

Total; cultivation, - driving 
   [g/MJfuel] 

50.49 0.328 0.0529 0.0138  0.535

Total; cultivation, - drivinga 418204 100 3731.50 100 568.40 100 501.04 100 14702.53 100
Total; cultivation, - driving 
   [g/MJfuel]a 8.03 0.0717 0.0109 0.00962  0.282
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Production factor GWP AP EP POCP Input energy 

 [g CO2-
eq/ha] [%] [g SO2-

eq/ha] [%] [g PO4
3--

eq/ha] [%] [g C2H4-
eq/ha] [%] [MJ/ha] [%] 

Allocation (MJ) 2126320 68.76 23908.98 78.11 4150.89 79.04 1905.33 92.51 18372.60 65.99

   cultivation, - driving [g/MJengine] 103.14 1.160 0.2013 0.0924  0.891

   cultivation, - driving [g/MJfuel] 31.93 0.199 0.0317 0.0108  0.353

Allocation (MJ)a 319219 76.33 2263.77 60.67 324.48 57.09 431.72 86.17 10387.64 70.65

   cultivation, - driving [g/MJfuel]a 6.13 0.0435 0.00623 0.00829  0.200

Allocation (SEK) 2728248 88.22 27574.52 90.09 4750.56 90.46 1968.40 95.57 22608.80 81.21

   cultivation, - driving [g/MJengine] 132.33 1.337 0.2304 0.0955  1.097

   cultivation, - driving [g/MJfuel] 43.50 0.270 0.0432 0.0120  0.434

Allocation (SEK)a 336605 80.49 2402.82 64.39 346.55 60.97 437.52 87.32 11149.26 75.83

   cultivation, - driving [g/MJfuel]a 6.47 0.0462 0.00666 0.00840  0.214
* Ethanol fuel and distiller’s 
   waste included    

** Ethanol fuel included    

*** Distiller’s waste included    

Allocation (soymeal, soyoil)    

Total; cultivation, - driving (0) 3092405 100 30607.85 100 5251.62 100 2059.59 100 27841.62 100

Total; cultivation, - driving (0)a 418204 100 3731.50 100 568.40 100 501.04 100 14702.53 100
Production, soymeal with 
   eq. amount soyoil (1) 1029967 33.31 13825.35 45.17 1134.18 21.60 290.43 14.10 17817.87 64.00

Transport of soymeal with 
   eq. amount soyoil (2) 13129 0.42 89.20 0.29 15.84 0.30 3.69 0.18 181.46 0.65

Transport, machinery (Sw. el.) 
   of soymeal with eq. 
   amount soyoil (3) 

30.50 0.00099 0.079 0.00026 0.0067 0.00013 0.0074 0.00036 6.45 0.023

Total [(0) - [(1) + (2) + (3)]] 2049278 66.27 16693.22 54.54 4101.59 78.10 1765.46 85.72 9835.85 35.33

   cultivation, - driving [g/MJengine] 99.40 0.810 0.1989 0.0856  0.4771

   cultivation, - driving [g/MJfuel] 30.45 0.0605 0.0308 0.00813  0.1889

Total [(0) - [(1) + (2) + (3)]]a -624923 -149.43 -10183.13 -272.90 -581.63 -102.33 206.91 41.30 -3303.24 -22.47

   cultivation, - driving [g/MJfuel]a -12.0 -0.196 -0.0112 0.00397  -0.0634
a Cultivation and use of the fuel produced excluded. 
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