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Abstract

Ninkovic, V. 2002. Plant volatiles mediate tritrophic interaction: barley, aphids and
ladybirds. Doctor’s dissertation
ISSN 1401-6249, ISBN 91-576-6152-9

The effects of plant-plant interactions via volatiles (aerial allelopathy) on herbivores and
their natural enemies were investigated. The model system consisted of four barley
varieties, an aphid pest, Rhopalosiphum padi (L.), and a common aphid predator, ladybird,
Coccinella septempunctata (L.).

Aerial allelopathy significantly affected plant leaf temperature and biomass allocation,
favouring root growth during the vegetative period, the main period for development of R.
padi populations in Swedish barley fields. There was no effect of aerial allelopathy on
relative growth rate and total biomass. A decrease in biomass allocation to the leaves was
compensated for by an increase in specific leaf area. Significant changes in leaf temperature
and biomass allocation of responding plants showed that the allelopathic effect was
systemic. The effects were strictly dependent on which genotypes were combined, and the
capacity of a plant to cause allelopathic induction was not necessarily linked to its capacity
to respond.

The four barley cultivars used did not differ in aphid attractivity and acceptance when
tested separately. In specific cultivar combinations aerial allelopathy caused significant
changes in both laboratory and field experiments. The results from field and laboratory
conditions were not immediately congruent. There were differences between those cultivar
combinations that caused changes in leaf temperature and those that affected aphid
acceptance, indicating that the aphid response was not merely an effect of temperature
preference. There were no differences in olfactory attraction of aphids to different cultivars,
but significant changes were induced by aerial allelopathy.

Olfactometer experiments with ladybird showed that aphid-attacked plants and previously
attacked plants with the aphids removed were more attractive than undisturbed aphids or
undamaged plants. Olfactory cues contributed to aggregation of ladybird adults in weed-
infested plots in a barley field. Adults of ladybird responded positively to a mixture of
barley-weed volatiles but a more complex mechanism possibly involving aerial allelopathy
cannot be excluded.

It is concluded that plant-plant interaction in the barley-weed-aphid-ladybird system has a
significant effect on each trophic level i.e. plant physiology and development, aphid host
plant relations and the searching behaviour of a common predator.

Keywords: Coccinella septempunctata, Rhopalosiphum padi, Hordeum vulgare. aerial
allelopathy, plant-plant interaction, biomass allocation, aphid acceptance, olfactory
response.
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Introduction

Plants constitute a dynamic food resource for herbivorous insects. Factors such as
environmental stress, developmental stage and plant genotype affect host plant
quality (Larsson, 1989; McMillin & Wagner, 1995). Coexistence with other plants
is the most common type of biotic challenge that a plant individual is exposed to.
This may change the physiology of a responding plant with implications for its
quality as a food plant, and plant cues used by insects in host plant location and
food quality evaluation. Biochemical interactions between plant individuals is
called allelopathy and has been defined as ‘any direct or indirect harmful of
beneficial effect by one plant (including micro-organisms) on another through
production of chemical compounds that escape into the environment’ (Rice, 1984).
The mechanism was first described by Molisch (1937) who named it ‘allelopathy’
after the Greek allelon ‘of each other’, and pathos, ‘to suffer’. The term allelopathy
covers both inhibitory and stimulatory effects of plant interactions. Allelopathy has
long been part of agricultural science and has been shown to affect many aspects of
plant coexistence and competition (Rice, 1984; Rizvi & Rizvi, 1992). Plinius (first
century A.D.) wrote that some plant species such as chickpea Cicer arietinum L.,
barley Hordeum vulgare L., and fenugreek Trigonella foenum-graecum L., were
reported to ‘scorch’ cornland.

Allelopathic compounds may be released from plants into the environment in
different ways, such as volatilisation through aerial parts of the plant, exudation
from the roots, leaching from above ground parts of the plant by rain, fog and dew
and by leaching from plant residues (Fig.1). The compounds are referred to as
allelochemicals, and are usually non-nutritional chemicals that affect the growth
and development of neighbouring plants to an extent depending on concentration
and environmental condition (Lovett et al, 1989; Rice, 1984). Many
allelochemicals and secondary metabolites produced by higher plants with the
potential to control pests, diseases and weeds have been identified (see review
Misutani, 1999). From an ecological perspective their role is still only partly
understood (see Heldt, 1997; Reigosa et al., 1999).

Volatile plant-plant interaction (aerial allelopathy) may affect target plants by
changing their phenotypic level of resistance (Karban et al., 2000). Volatiles from
herbivore-attacked plant individuals induce a defence response in neighbouring,
non-attacked plants making them less attractive for herbivores. The first reports of
this phenomenon however (Rhoades, 1983; Baldwin & Schultz, 1983; Bruin et al.,
1992) met some criticism, focusing on the experimental design (Fowler & Lawton,
1985; Karban & Baldwin, 1997). However, later investigations have supported the
principal findings in plant-plant interaction (Bruin et al., 1995; Pettersson et al.,
1996, Bruin & Dicke, 2001; Farmer, 2001). Induction in neighbouring plants is not
exclusively dependent on herbivory. Mechanically damaged plants may also
produce signals that are transmitted as volatiles to undamaged plants and induce
defensive responses to herbivores (Karban et al., 2000). Allelopathic interaction
between undamaged plants can also affect the plant/herbivore relation. Farmer &
Ryan (1990) found that undamaged Artemisia tridentata Nutt., produces methyl
jasmonate, which can induce the accumulation of proteinase inhibitors in leaves of
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Fig. 1. Conceptual allelopathic interaction between plants mediated by allelo-chemicals.

neighbouring tomato plants. This shows that interspecific aerial allelopathic
interactions can activate the expression of genes involved in defence. Based on
experiments with aphids, powdery mildew and thrips, Pettersson et al. (1996)
suggested that induced defence in plants might be comparatively non-specific.

Plant volatiles can also influence the searching behaviour of natural enemies of
herbivores. Herbivore-attacked plants release chemical signals that serve as
important olfactory cues for parasitoids (Du et al., 1998; Grasswitz & Paine, 1993;
Powell et al., 1998; DeMoraes et al., 1998; Guerrieri et al., 1999; Van Loon et al.,
2000) and predators (Vet & Dicke, 1992; Drukker et al, 1995; Ninkovic et al.,
2001; Dicke, 1999; Sabelis et al, 1999). Also uninfested plants exposed to
volatiles from herbivore-attacked plants may release volatiles that attract natural
enemies to pest infested areas (Bruin et al., 1992 & 1995). Furthermore, in some
cases, natural enemies can use volatiles emitted by undamaged plants to locate the
potential habitats of herbivores (Benrey et al, 1997; Elzen et al, 1983;
Takabayashi ef al., 1998).

Principal aims of this thesis

The present thesis is a study of mechanisms of how plant-plant interactions may
affect herbivores and their natural enemies. A model system consisting of four
barley cultivars, the bird cherry-oat aphid, Rhopalosiphum padi (L.), and a
ladybird, Coccinella septempunctata (L.), was chosen for the experiments. The
conceptual structure of the thesis is shown in Fig. 2.

The following general questions were addressed:

1. Does aerial allelopathy between barley cultivars affect biomass allocation
between different plant organs during the vegetative growth period? Can this
type of plant interaction affect plant evapotranspiration (leaf temperature)?
(Papers I and II).
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Fig. 2. Conceptual structure of investigated tritrophic interactions.

2. Do volatiles from one undamaged plant affect aphid acceptance of another
plant under laboratory and field conditions. Is the effect of barley cultivar
interaction on aphid acceptance genotype specific? (Papers II and II).

3. How important are volatiles from plants as stimuli for a polyphagous predator,
a ladybird? This question was subdivided into:

a) Is the behavioural response of the ladybird stimulated by volatiles from
infested plants, previously attacked plants, uninfested plants or from
aphids alone? (Paper IV).

b) How do different plant species in mixed stands, and their aerial
allelopathic interactions affect the foraging behaviour of the ladybird
under field and laboratory conditions? (Paper V).

Model system

Plant - Barley

Barley, Hordeum vulgare L., is believed to have originated from a wild form,
usually designated H. spontaneum, in western Asia and northern Africa (Harlan,
1995). Barley is very adaptable and is now grown in all temperate regions from the
Arctic Circle to high mountains in the tropics.

Barley is well known as an allelopathically active crop and one of the earliest
reports on its allelopathic potential came from Plinius (first century A.D.). In recent
literature there are numerous accounts of allelochemicals found in barley. Overland
(1966) showed that barley plants delay germination and inhibit growth of Stellaria
media (L.), Capsella bursa-pastoris (L.), and Nicotiana tabacum L., but not
Triticum aestivum L.. Liu & Lovett (1990, 1993) confirmed that root exudates
from barley plants have allelopathic effects on white mustard Sinapis alba L., when



the two species are sown together. The biological role in plant-plant interactions
and defence to pests and diseases of some known compounds has been examined
and reviewed by Lovett & Hoult (1995). The germination of Sinapis arvesis L.,
was not affected by barley root exudates, but root and hypocotyl growth was
inhibited (Baghestani ef al., 1999). The authors suggested that the allelopathic
compounds, vanillic acid, o-coumarin and scopoletin, may induce this effect. It is
well known that mixing of cultivars can reduce the overall incidence of plant
pathogens (see review Wolfe, 1985). Even mixing susceptible barley cultivars can
give enhanced levels of resistance to powdery mildew (Ibenthal er al., 1985;
Newton & Thomas, 1992).

Barley is sensitive to allelopathic provocation from other plant species. Water
extracts of shoots and roots of goosefoot, Chenopodium murale L., (10-100%
conc.) inhibited germination of seeds, and root and shoot growth of seedlings of
wheat and barley. Barley showed more sensitivity to allelopathic effects than wheat
(Qasem, 1993). Ray & Hastings (1992) reported that barley tolerance to
allelochemicals produced by weeds is genotype specific.

However, the emitted volatiles may also be messengers in interaction with
neighbouring plants (sensu Molisch, 1937; Rice, 1984). In an interspecific aerial
allelopathic interaction, volatiles released from leaves of Artemisia tridentata Nutt.
var. vaseyana (Weaver & Klovich, 1977) and sasa, Sasa cernua Makino, (Li et al.,
1992) inhibited the growth of barley seedlings and decreased the respiration rate of
germinating seeds. These and some other negative effects on barley plants e.g.
lowered content of water and chlorophyll, were observed in experiments with crude
volatile oils and the pure terpenes from leaves of Eucalyptus globulus (Labille.)
and E. citriodara (Kohli et al., 1991). It should be noted that barley is sensitive to
volatile compounds from other species even if it is not a significant emitter of them
itself. For instance, plants exposed to isoprene gas flowered significantly earlier
(Terry et al., 1995) and the leaf temperature of plants exposed to methyl salicylate
was significantly changed (Ninkovic ef al, unpublished) in comparison with
unexposed plants.

Intraspecific aerial allelopathic interactions between plants have rarely been
studied. In the case of interaction between barley plants, this phenomenon has been
addressed in very few studies and only from the viewpoint of induced resistance.
Fujiwara et al. (1987) reported that volatile compounds that were released after
pruning of barley leaves induced systemic resistance against powdery mildew
fungus in intact barley seedlings. This resistance was more prominent in the
primary leaf than in the secondary leaf. From the perspective of plant resistance to
aphids, Pettersson et al. (1996) tested aphid acceptance of plants at the two-leaf
stage that were exposed to volatiles from aphid attacked plants or to powdery
mildew infested plants. In both cases aphid acceptance of volatile exposed plants
was significantly decreased in comparison with plants treated with clean air. The
results of these two studies also support that there is a link between induced
resistance to herbivores and disease (Walling, 2000).

Four spring barley cultivars were chosen for experiments in this thesis, Alva,
Kara, Hulda and Frida. They differ in some genes for resistance to powdery
mildew, Erysiphe graminis f. sp. hordei (see Table 1 in Paper II) and have, as a
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quartet, performed well in experiments with mixed cultivars to control this disease
(Wiik, 1987).

Herbivore - Aphid

Aphids are important pests mainly in the temperate regions of the world, and the
bird cherry-oat aphid, Rhopalosiphum padi (L.) (Homoptera: Aphididae), is a key
pest in cereal crops in Sweden (Wiktelius ef al., 1990) as well as in many other
European countries (Leather et al., 1989; Hansen, 1995). It damages plants both by
direct feeding and by the transmission of plant viruses such as barley yellow dwarf
virus (BYDV).

R. padi is a host-alternating species that has bird cherry, Prunus padus L.
(Rosaceae), as a winter host and a range of grasses, (Poaceae), including cereals as
summer hosts (Blackman & Eastop, 1984 ; Leather & Dixon, 1982; Wiktelius,
1987). Autumn migrants (gynopare) and males are produced on grasses and re-
colonise the winter host. According Dixon & Glen (1971), autumn migrants are
produced in response to short day length and low temperatures.

In Sweden R. padi hibernates as eggs on the winter host. After egg hatching,
aphid colonies develop on young leaves and shoots. After two to three generations,
alate spring migrants develop and migrate to summer hosts. The development of
migrants is initiated by crowding (Wiktelius et al., 1990) and decreasing food
quality (Dixon, 1998). Damage caused by aphid feeding induces the production of
methyl salicylate in the winter host which acts as a repellent for alate spring
migrants and induces take off (Glinwood & Pettersson, 2000 a, b).

R. padi is polyphagous and may appear on different grasses, including winter and
spring cereals. Although some grasses may be preferred, spring sown cereals are
the optimal summer hosts, offering high quality food during the early part of the
summer (Wiktelius et al., 1990; Rautapdi, 1976; Leather & Dixon, 1982). Aphids
have a high capacity for reproduction and intrinsic rate of increase (Dixon, 1998).
The response of the host plant to aphid attack is partly expressed as a loss of water.
However, aphid saliva also contains a considerable amount of enzymes that affect
the attacked plant (Miles, 1999). It has been shown that, over a shorter time
perspective i.e. during the establishment of the aphid colony, these enzymes cause
a change in the attacked plant that improves its food quality (Way & Banks, 1967).
At high aphid population densities the damage caused is so serious that plant tissue
die. This effect on the plant forces the aphids to leave earlier than if the attack had
been less vigorous (MacKay & Lamb, 1996). In general, summer migration by
alatae is promoted by crowding and decreasing plant quality (Walters & Dixon,
1982; Wiktelius er al, 1990). However, a more subtle response to increasing
population is shown by apterae (Pettersson et al., 1997; Quiroz et al., 1997) as an
increased mobility induced by density related semiochemicals. The search for new
host plants and feeding sites by aphid individuals is a stepwise procedure in which
a range of different stimuli are important (Fig. 3).

Landing of alatae of R. padi is elicited by visual stimuli (Ahman et al., 1985;
Nottingham ef al., 1991). Studies with different arrangements of coloured traps
have shown that aphids usually prefer to land on yellow surfaces (Moericke, 1955,
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1969; Prokopy & Owens, 1983; Ahman et al., 1985; Robert, 1987). However,
experiments with monochromatic light showed that R. padi and Aphis fabae
Scopoli, were more sensitive to the green region of the spectrum (Hardie, 1989;
Nottingham et al., 1991). Differences between morphs were found in the duration
of migratory behaviour and the start of maiden flight (Kennedy & Booth, 1963;
David & Hardie, 1988) and the readiness to land increased after starvation (Hardie
& Schlumberger, 1996).

Aphids do respond to plant volatiles both in trapping experiments and in
olfactometers. Chapman et al. (1981) reported odour induced orientation by
Cavariella aegopodii (Scopoli) towards the host plant volatile carvone in field
experiments. Walking apterae also respond to volatiles from host plants in
olfactometers (e.g. Pettersson, 1970, 1973; Nottingham et al.,, 1991; Pettersson et
al., 1994). Volatiles from oat and wheat plants were attractive to both winged and
unwinged morphs of R. padi, but their responses differed between different
fractions of volatiles (Quiroz & Niemeyer, 1998). It has also been shown that non-
host odour can repel walking apterae (Nottingham et al., 1991; Hori, 1999). With
electrophysiological methods it has been shown that the aphid antenna carries a
series of olfactory organs that contain cells responsive to a range of plant volatiles
(Anderson & Bromley, 1987; Pickett er al.,, 1992; Visser & Piron, 1997; Park &
Hardie, 1998). Olfactory organs in the alate antenna are the primary (one on each
of the two last antennal segments) and secondary rhinaria, while the antennae of
nymph and adult apterae have only primary rhinaria (Pickett et al., 1992). The
secondary rhinaria have been proposed to respond to sex pheromone (Marsh, 1975;
Eisenbach & Mittler, 1980).

Plant stimuli may also be involved in finding the best feeding site on the host
plant. R. padi commonly prefer parts of cereal seedlings just beneath the soil
surface, but at the beginning of ear emergence they are usually found on the upper
leaves (Wiktelius et al., 1990). It has suggested that the apical antennal hairs of
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Mpyzus persicae (Sulz) are contact chemoreceptors used by walking aphids to detect
non-volatile cues associated with the cuticle (Bromley et al. 1980; Powell et al.,
1995). With down waved antennae aphid can touch leaf surface and detect non-
volatile chemical cues associated with the cuticle.

One of the better known phagorepellents affecting aphid feeding is DIMBOA
(2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one) in wheat, which delays phloem
activity during aphid probing (Givovich & Niemeyer, 1991; Givovich et al., 1994).
Some stimuli are associated with the quality of plant sap as aphid food and are
related to the content and composition of amino acids (Weibull, 1988; Sandstrom,
1998) and a type of storage carbohydrate (Weibull, 1990). According to Tjallingii
& Hogen Esch (1993), aphid stylets penetrate between cells towards the phloem,
but almost every cell is sampled along the way. Most plant allelochemicals are
stored inside cells and the aphid thus avoids an important component of the plant’s
defence. However it is still likely that chemicals from sampled cells are token
stimuli for host plant selection (F. Tjallingii, personal communication).

Natural enemy - Ladybird

The seven-spotted ladybird, Coccinella septempunctata (L.) utilises an extensive
range of prey including aphids and other small insects but it also willingly eats
pollen from different plants (Triltsch, 1997). It hibernates as an adult in
aggregations in prominent places in the landscape such as water towers, ridges,
hills etc. usually on the ground near the bases of grass tussocks, under fallen
leaves, and under stones (Hodek & Honek, 1996). Overwintering places are often
utilised year after year and the hibernating insects are usually found in groups. It
has been suggested that this behaviour is supported by pheromones, and some
volatile compounds that may mediate aggregation have been identified (Al Abassi,
et al., 1998). In the spring, adults disperse from the hibernating sites searching for
food and suitable places for oviposition (Majerus, 1994). Newly emerged larvae
eat aphids and, if aphids are in short supply, their first meal may be the egg case.
Cannibalism of eggs is common among newly emerged coccinellid larvae.
Agrawala & Dixon (1993) showed that young larvae, that have dispersed from
their egg clutch, prefer the eggs laid by other females than those laid by their own
mother. However, factors regulating food searching are still only partly understood.

Previously, many scientists (e.g. Biansch 1964; Banks, 1957) believed that neither
visual nor olfactory cues were important in the prey searching behaviour of
ladybirds until physical contact occurred. It is suggested that ladybirds have two
main types of prey-habitat location. One of them is long-range location of habitats,
which operates over (at least) several meters. This mechanism places the ladybird
in the correct habitat with its prey (Hodek, 1973). Visual stimuli are possibly
important in the long-range location of habitats for some species (reviewed by
Dixon, 2000). However, C. septempunctata did not differentiate between short and
tall objects, even though this ladybird species prefer herbaceous plants (Khalil ez
al., 1985).

The second main mechanism of prey-habitat location is area-restricted search.
This mechanism provides signals that are used as cues by ladybirds to locate which
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individual plants carry prey insects. A combination of visual and olfactory cues
from host aphids attracted Harmonia axirydis (Pallas), (Obata, 1986). In
olfactometry experiments, Ponsonby & Copland (1995) showed that Chilocorus
nygrus (F.) was attracted to the combination of host plant and host insect volatiles.
Thus in addition to being attracted by combination of plant and host odours adults
subsequently intensify their searching on patch location (area-restricted search).
They move more slowly and turn more frequently in the presence than in absence
of the odour of their prey (Sengonca & Liu, 1994).

During close contact with aphids visual cues may play a role. Harmon at al.
(1998) reported that C. septempunctata consumed more of the one of two colour
morphs (red and green) of pea aphid that contrasted most with the background
colour. Searching can also be enhanced by chemoreception of arrestant host cues
such as odour from honeydew (Carter & Dixon, 1984; Heidari & Copland, 1993),
wax (Van der Meiracker ef al., 1990) and aphid infested host plants (Obata, 1986,
1997; Ninkovic et al, 2001). It has been reported that C. septempunctata (Al
Abassi et al, 2000) and some other ladybirds species can detect aphid alarm
pheromones using them as means of finding its prey (Nakamuta, 1991; Acar et al.,
2001). Additionally, ladybirds can detect and orientate to individual prey prior to
actual physical contact. In simple arenas, C. septempunctata can detect prey up to a
distance of 1 cm (Nakamuta, 1984).

Experiments, results and discussions

Plant expression of the effects of plant-plant interaction
(Papers I and II)

Plants living together in communities may interact and compete in different ways
to optimise their use of available resources (e.g. Tilman, 1988). In these
interactions a variety of allelochemical compounds may be active in different ways
(Rice, 1984), affecting the growth of plants and their organs. Patterns of biomass
allocation between different plant organs have often been used to explain the
response of plants to variations in resource availability (Glimskdr & Ericsson,
1999).

Effects of plant-plant interaction on biomass allocation of barley plants

The aim of the studies was to investigate whether the aerial allelopathy shown to
affect aphid preference (Paper II, III) also affects biomass allocation between
different plant organs e.g. leaves, stem and roots (Paper I). How the change in
biomass allocation can be reflected in relative growth rate (RGR) and its
morphological and physiological components is outlined in Fig. 4. An important
physiological component is unit leaf ratio (ULR), the increase in biomass per unit
time and leaf area, which is generally strongly correlated with the rate of
photosynthesis per unit leaf area (Poorter & Nagel, 2000). A morphological
component can be further subdivided into specific leaf area (SLA), the leaf area
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Fig. 4. Allelopathic plant-plant interaction.

per leaf dry weight that reflects aspects of leaf morphology, and the leaf mass
fraction (LMF) that reflects biomass allocation to leaves (Poorter & Nagel, 2000).
Based on experiments with aphid acceptance (Paper I, III), aerial allelopathic
interactions between two barley cultivars (Alva and Kara) were selected for studies
of biomass effects of allelopathy studies. Exposure of one cultivar to volatiles from
the other was carried out in ‘two-chamber cages’ (see figure in Paper II) attached
to a vacuum tank. The Kara plants were exposed to one of three different
treatments: air from Alva, air from Kara or clean air.

The results showed that volatiles from cultivar Alva induced changes in the
pattern of biomass allocation in the second cultivar, Kara. Exposed plants allocated
more biomass to roots compared with control plants exposed to air from Kara, or
to clean air (Fig. 5). However, the total dry weight did not differ between
treatments i.e. the principal effect is on the allocation of biomass but not on the
total biomass, and there were no changes in RGR or ULR. However, when Kara
was exposed to volatiles from Alva there was a significant increase in SLA.
According to previous studies (Aerts et al., 1991; Boot & Den Duddelden, 1990) a
low allocation of biomass to the leaves can be compensated for by high SLA,
which is in line with the results of this study.

Thus the results show that aerial plant-plant interaction does not affect total
biomass production but does significantly affect biomass allocation in individual
plants. There may be differences in the pattern of volatiles of Kara and Alva that
induce increased biomass allocation to roots in the exposed Kara plants. The
observed influence of one cultivar on another cultivar probably has implication for
competition. More roots may be of advantage in a dry situation, increasing stress
tolerance. Obviously, such variation would increase the phenotypic stability of
mixture of these cultivars, and thus be of competitive advantage.
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Plant-plant interaction and leaf temperature

In laboratory experiments, effects of aerial allelopathic interaction in barley plants
exposed to volatiles from undamaged barley plants were measured in terms of
changes in leaf temperature. Chaerle at al. (1999) used the same parameter in
studies on plant pathogens to detect early stages of infestation. Recently this
method has been used in studies of plant stomatal role and conductance (Jones,
1999).

After exposure to air from another plant (achieved using ‘two-chamber cages’
(see figure in Paper II)), leaf temperature was measured with an infra-red camera.
The leaf temperature of plants exposed to volatiles emitted by another cultivar was
compared with leaf temperature of two types of control plants. First type of control
plants were exposed to air passing no plant at all (non-inducing control), and
second control plants were exposed to volatiles from the same cultivar (self-
inducing control). To test self-inducing effects (intracultivar interaction)
comparisons were done between self-inducing and non-inducing controls.

The majority of the significant changes relate to decreased temperatures in
exposed plants (see Paper II). The effect was statistically significant only when
certain cultivars were combined. Eight of 12 cultivar combinations of cultivars
exposed to volatiles emitted from another cultivar showed significantly changed
leaf temperature in comparisons to leaf temperature of non-induced controls. When
cultivars exposed to volatile from other cultivars were compared with self-induced
controls, the number of significant changes was reduced to four. Significant self-
inducing effects were found in two of four tested cultivars.

Leaf temperature is regulated by evapotranspiration, which in turn is partly
dependent upon plant physiological status and weather conditions. The results
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indicate firstly that volatiles from plant individuals can affect the
evapotranspiration level of leaves on other plants, and secondly that the response
of the exposed plant may be systemic. The changed evapotranspiration can be
partly explained by significantly increased biomass allocation to roots in plants
exposed to volatiles from different cultivars (Paper I). The present results (Papers
I, I]) are also in line with the previous assumption of a strong positive correlation
between evapotranspiration and root biomass allocation (Sims & Pearcy, 1994).

The effects of different cultivar combinations are not congruent with regards to
the change in leaf temperature and aphid acceptance (Paper II), which is an
indication that the aphid response is not merely an effect of temperature
preference. This may also suggest that the leaf temperature changes do not fully
reflect the physiological response of the recipient plant expressed in changed aphid
preferences.

Effects of plant-plant interaction on aphid acceptance
(Papers Il and III)

So far very few studies have been directed towards the effects of allelopathic
interaction between plants on aphid feeding behaviour. It has been shown that
aphid-attacked plants produce allelopathic volatiles that promote changes in
neighbouring plants making them less acceptable for aphids (Pettersson et al.,
1996). In olfactometer experiments, it was shown that volatiles from barley plants
treated with a mixture of four allelopathic compounds found in root exudates of
couch-grass, Elytrigia repens (L.) Nevski., repel apterae of R. padi (R. Glinwood,
personal communication). Although plants usually grow together with other plants
that potentially produce allelochemicals, the role of plant allelochemicals is very
poorly studied in the context of aphid plant acceptance. Settling of R. padi was
significantly reduced when barley plants were exposed to allelochemicals from root
exudates of living couch-grass E. repens plants (R. Glinwood, personal
communication). These substances did not affect or stimulated aphid probing when
offered to aphids in artificial diets at the same concentrations as applied to the
plants. This indicates that the substances affect the physiology of the treated plant
rather than the aphids directly by phagostimulation.

Effects of barley-barley interaction on aphid host plant acceptance

In intraspecific studies of plant-plant interaction, the effects of aphid acceptance of
a neighbouring plant was tested in greenhouse and field experiments (Fig. 6)
(Paper 11, III). Four barley cultivars were used. In greenhouse experiments,
underground communication by roots was prevented.

After treatment, settling of R. padi apterae on exposed plants was compared with
that on control plants treated with air from no other plant or air from a plant of the
same cultivar (Paper II). A preference test was used, in which aphids had access to
treated and control plants of the same cultivar. After exposure to air from another
plant, significant changes in aphid acceptance were found in seven of 16 possible
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Fig. 6. Allelopathic plant-plant interaction and aphids.

combinations of inducing and responding plants. The change in aphid acceptance
was observed only in combinations of certain cultivars, suggesting a genotype-
related phenomenon. It was also interesting that changes in aphid acceptance were
found in intracultivar interactions. Two of the four cultivars showed this effect
(Paper II). However, in an untreated state (Paper II, II]), or in pure stands in the
field (Paper III), the four barley cultivars did not show differences in aphid
acceptance.

In the field experiments, four barley cultivars were sown in pure stands and in
pairwise combinations with cultivars side by side in separate rows (Paper III).
Settling tests were done in situ in the field plots and showed that aphid acceptance
changed in some combinations of cultivars. In a laboratory test in which plants of
one cultivar were exposed to air from the other cultivars, aphid acceptance was
significantly reduced in three of the four cultivars when treated with air from
certain other cultivars. Two of these three cultivars showed significant reduction
under field conditions but in different combinations. Only Kara showed
significantly reduced aphid acceptance both when exposed to volatiles from Alva
in the laboratory and when it was mixed with Alva in the field.

All these results support the hypothesis that plant-plant interaction causes
responses in neighbouring plants that change aphid host plant acceptance. The
results also show that this mechanism is not restricted to optimal growing
conditions in the laboratory, although it may be modified under field conditions
depending on plant genotype and prevailing growing conditions.

Effects of barley-barley interaction on aphid olfactory response

The odour component of plant-plant interaction, in which aphid settling resistance
was induced was tested in two series of olfactometer experiments (Ninkovic et al.,
unpublished). Plants at the three leaves stage were kept in chambers (see Fig. 1 in
Paper II) which, after five days of exposure, were directly connected by tubes to
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Table 1. Change in aphid plant attraction after exposure of one barley cultivar to
another. AB is a chimney cage where the responding cultivar B was exposed to
volatiles from inducing cultivar A. BB is chimney cage with the same cultivars in
both chambers, where cultivar B is exposed to volatiles from the same cultivar. 0B
is chimney cage without plants in the first chamber, where cultivar B was not
exposed to plant volatiles. The number of aphids tested per combination was 20.
Data were analysed with Friedman ANOVA. (NS not significant, P>0.05).

Inducing  Responding Sum of number visiting per arm P value
cultivar cultivar AB 0B BB Blank

Alva Frida 25 20 52 33 NS
Hulda 40 50 47 41 NS
Kara 25 20 52 33 0,02

Frida Alva 32 45 56 34 NS
Hulda 26 39 34 37 NS
Kara 15 60 57 40 0,002

Hulda Alva 26 46 47 43 NS
Frida 36 38 49 37 NS
Kara 28 37 31 32 NS

Kara Alva 37 53 55 38 NS
Hulda 26 28 19 48 NS
Frida 37 42 58 36 NS

the arms of a four-way olfactometer (Pettersson, 1970). Air flowing through the
system passed over the odour source in the chamber directly connected to the arms
of olfactometer, before being drawn out of the centre of the arena from where it
was vented through a tube attached to the same vacuum tank used in exposure of
the plants. Each of the arm- zones received air from one applied odour source: the
odour of plants exposed to volatiles from a different barley cultivar (AB in tables
1, 2), odour from plantsexposed to volatiles from the same cultivar (BB in tablesl,
2), odour from unexposed plants (OB in tablesl, 2) or clean air (00 in tablesl, 2).

Four unexposed barley cultivars were placed in cages connected to the
olfactometer to test their inherent attractivity to aphids. No significant differences
between the tested cultivars were observed. However, aphid entries into the
olfactometer arm were significantly lower in response to volatiles from cultivar
Kara exposed to cultivars Alva or Frida, (Table 1). The same combinations were
also tested with the inducing cultivars removed from the cages, and only the
responding cultivars present. Aphid entries into the olfactometer arm were
significantly lower with the inducing cultivar removed only in the combination
Kara exposed to Alva (Table 2). This indicates that exposure to volatiles from Alva
may induce a systemic change in the volatile profile of Kara, which is in line with
results from other experiments (Paper II, II]). These results also indicate that this
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Table 2. Change in aphid plant attraction after exposure of one barley cultivar to
another with the provoking cultivars removed after five days exposure. AB* is a
chimney cage with different cultivars in the cages where inducing culivar A was
removed. BB* is chimney cage with the same cultivars in both chambers and
cultivar B was removed from first chamber. 0B is chimney cage without a cultivar
in the first chamber (unexposed cultivar). The number of aphids tested per
combination was 20. Data were analysed with Friedman ANOVA. (NS not
significant, P>0.05).

Inducing  Responding Sum of number visiting per arm P value
cultivar cultivar AB* 0B 0B* Blank
Alva Frida 41 52 30 40 NS
Hulda 49 48 36 32 NS
Kara 16 29 38 19 0,03
Frida Alva 37 39 63 21 0,04
Hulda 36 33 47 26 NS
Kara 35 43 55 46 NS
Hulda Alva 46 38 44 41 NS
Frida 41 34 61 37 NS
Kara 32 39 54 25 NS
Kara Alva 38 54 53 36 NS
Hulda 28 48 26 22 NS
Frida 46 48 66 35 NS

phenomenon is genotype specific, not only for the responding cultivar but also for
the inducing cultivar.

Effects of plant odurs on searching behaviour of ladybirds
(Papers IV and V)

C. septempunctata is an important aphid predator, but its impact as a control agent
is variable (Obrycki & Kring, 1998). The searching behaviour of the seven-spotted
ladybird has been studied from many perspectives (e.g. Kersten, 1969; Meiracker
et al., 1990; Nakamuta, 1991), but so far the effects of herbivore induced volatile
semiochemicals and aerial allelopathy have not been considered as factors that
affects its behavioural responses.

Odour of aphid infested plants and ladybirds

The literature shows that plant chemical signals emitted from herbivore damaged
plants are important cues in the host location process of natural enemies (e.g.
Dicke, 2000; see Introduction). Despite the dramatic increase in research in this
area in the last 20 years, the role of these types of signals in predator orientation to
prey is less well understood (Cortesero et al., 2000). According to Hodek & Honek
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Fig. 7. Aphid induced plant signals and ladybirds.

(1996), the question of whether coccinellids find their prey by visual and/or
olfactory cues cannot yet be answered unambiguously.

The olfactory response of adult C. septempunctata (Fig. 7) was tested to four
sources of volatiles; R. padi, R. padi -infested barley plants, previously R. padi -
infested and uninfested plants (Paper IV). The aim was to rank these sources
according to their influence on food searching behaviour. The volatiles were
collected by conventional polymer air entrainment techniques, and used as odour
sources in olfactometer bioassays.

Sengonca & Liu (1994) reported that C. septempunctata were attracted by
volatiles from aphids. However, our results showed that C. septempunctata did not
respond to volatiles from undisturbed, non-feeding aphids, which is in line with
studies by Nakamuta (1984). Adults were significantly more attracted to volatiles
emitted by barley plants infested with R. padi than to volatiles from uninfested
plants. It has been shown that adults of the two-spotted ladybird Adalia bipunctata
(L.) were more attracted to volatiles from plants of Vicia faba L., infested with 4.
fabae than to uninfested plants (Raymond et al., 2000). However, when aphids and
aphid products (exuviae and honeydew) were removed from the infested plants, the
attraction was lost, so the influence of honeydew and alarm pheromone cannot be
excluded in that study. Nevertheless, in the current study previously infested plants
were still attractive after the aphids were removed and the plants washed with
water. The weak response of ladybird adults to volatiles from uninfested plants
indicates that these have a limited impact on prey habitat searching. Hamilton et al.
(1999) reported that another ladybird species, Hippodamia convergens Guerin-
Menevile, responded to odours from radish leaves.

The current results indicate that food-searching behaviour of adult seven-spotted
ladybird is influenced by volatiles emitted both by barley plants infested with
aphids and previously infested plants. It seems that the aphids in this case were
undisturbed since there was no response to aphids alone. Disturbed aphids produce
alarm pheromone, which attracts C. septempunctata (Nakamuta, 1991; Al Abassi
et al., 2000) and other ladybirds (Acar et al., 2001).
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Fig. 8. Allelopathic plant—plant interaction and ladybirds.

Effects of mixed plant odours on ladybirds

It seems to be a general phenomenon that increased botanical diversity reduces pest
problems and enhances the impact of natural enemies (Andow, 1991). Although
several hypothetical explanations have been suggested the mechanisms behind the
positive effects of mixed cropping are still only partly understood, (see
Vandermeer, 1992). The effect is usually suggested to be due to increased activity
of natural enemies of the herbivores (enemies hypothesis, Root, 1973; Trujillo &
Altieri, 1990; Letourneau, 1987) or to difficulty for the pest insect to find its host
plants (disruptive crop hypothesis Root, 1973; Feeny, 1976; Vandermeer, 1992).
Our main aim was to investigate mechanisms affecting the habitat preferences of C.
septempunctata (Paper V) (Fig. 8). In a field study, the frequency of adult C.
septempunctata was higher in barley plots containing high densities of the common
weeds Cirsium arvense L., and E. repens than in control plots with only barley

(Paper V).

In view of the ladybird responses to volatiles from aphid-attacked plants, it can
be hypothesised that odours may also affect preferences for mixed botanical stands.
Thus their importance for the foraging behaviour of C. septempunctata was
examined in olfactometer experiments using odours from adequate plants from the
field observations. Adult C. septempunctata showed a significantly stronger
attraction to mixed odours of barley and each of the two weeds than to barley
alone. Ladybirds responded differently to barley plants that had been exposed to
air from the two weeds. The E. repens-exposed barley plant lost its attractivity
while the C. arvense-exposed barley plants maintained attractivity. No differences
in ladybird preference were found to odours of the two weeds alone, using barley
odour as a control.

As no aphids or pollen were present in the plots during the experiment, the results
show that C. septempunctata responds to the botanical characteristics of the habitat
even if no food resources are available. Tamaki et al. (1981) reported that the
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occurrence of Coccinella transversoguttata Muls., in polycultures is associated
with different plants, not with aphid densities. Furthermore, our results strongly
suggest that olfactory cues and plant-plant interactions in diversified plant stands
can be important mechanisms in predator attraction to sites with a complex
botanical diversity even when no aphids are present.

Summary and conclusions

This thesis addressed the question of how aerial allelopathy affects host plants, the
aphid, R. padi, and its predator ladybird, C. septempunctata. The results do not
immediately lend themselves to a conclusive discussion linking the different
trophic levels together, but each level can be discussed per se and hypothetical
links can be visualised in the light of existing knowledge.

With reference to the three principal questions raised in the Introduction, the
results of the experiments can be summarised and commented on as follows:

1. Does aerial allelopathy between barley cultivars affect biomass allocation
between different plant organs during the vegetative growth period? Can this
type of plant interaction affect plant evapotranspiration (leaf temperature)?
(Papers I and II).

- Aerial allelopathy significantly affected biomass allocation, favouring root
growth during the vegetative period, which is the main period for development
of R. padi populations in Swedish barley fields.

- There was no effect of aerial allelopathy on the relative growth rate (RGR) and
total biomass, but a decrease in biomass allocation to the leaves was
compensated for by an increase in specific leaf area (SLA).

- Effects of aerial allelopathy on biomass allocation and leaf temperature are
expressions of a systemic effect in the responding plant.

- The effects demonstrated were strictly dependent upon which genotypes were
combined, and the capacity to provoke effects was not necessarily linked to
the capacity to respond to allelopathic induction.

2. Do volatiles from an undamaged plant affect aphid acceptance of another plant
under laboratory and field conditions? Is the effect of barley cultivar
interaction on aphid acceptance genotype specific? (Papers Il and III).

- The four barley cultivars did not differ in aphid attractivity and acceptance
when plant individuals were tested separately, but significant effects of
intraspecific aerial allelopathy were shown in the laboratory as well as in field
experiments.

- Effects on aphid host plant selection were strictly limited to specific
combinations of genotypes and were not immediately congruent under field
and laboratory conditions.

- There was a significant effect of aerial allelopathy (Paper I) on leaf
temperature (Paper II), but results with different cultivar combinations were
not congruent with changes in aphid acceptance. This indicates that the aphid
response was not merely an effect of temperature preference.
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- There was no difference in olfactory attraction of aphids to different cultivars,
but significant changes in this response were induced by aerial allelopathy.

a) How important are volatiles from plants as stimuli for a polyphagous predator,

a ladybird? This question was subdivided into:

b) Is the behavioural response of the ladybird stimulated by volatiles from
infested plants, previously attacked plants, uninfested plants or from
aphids alone? (Paper IV).

¢) How do different plant species in mixed stands, and their aerial
allelopathic interactions affect the foraging behaviour of the ladybird
under field and laboratory conditions? (Paper V).

- Olfactometer experiments showed that aphid-attacked plants and previously
attacked plants with the aphids removed were more attractive than undisturbed
aphids or undamaged plants.

- Olfactory plant cues contributed to aggregation of C. septempunctata adults in
weed-infested plots in a barley field.

- Adults of C. septempunctata responded positively to a mixture of barley/weed
volatiles but a more complex mechanism possibly involving aerial allelopathy
cannot be excluded.

The experimental results show that aerial allelopathy affects each of the three
trophic levels in the model system. This stimulates further work to implement
cultural practices based on a better understanding of the active mechanisms in
developing sustainable plant production systems.
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