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Nutrient elements are important for plant growth. Element stoichiometry considers the
balance between different nutrients and how this balance is affected by the environment.
So far, focus of plant stoichiometry has mainly been on the three elements carbon (C),
nitrogen (N), and phosphorus (P), but many additional elements are essential for proper
plant growth. Our overall aim is to test the scaling relations of various additional elements
(K, Ca, Mg, S, Cu, Zn, Fe, Mn), by using ten data sets from a range of plant functional
types and environmental conditions. To simultaneously handle more than one element, we
define a stoichiometric niche volume as the volume of an abstract multidimensional shape
in n dimensions, with the n sides of this shape defined by the plant properties in question,
here their element concentrations. Thus, a stoichiometric niche volume is here defined as
the product of element concentrations. The volumes of N and P (VNP) are used as the
basis, and we investigate how the volume of other elements (VOth) scales with respect to
VNP¸ with the intention to explore if the concentrations of other elements increase faster
(scaling exponent > 1) or slower (<1) than the concentrations of N and P. For example,
scaling exponents >1 suggest that favorable conditions for plant growth, i.e.,
environments rich in N and P, may require proportionally higher uptake of other
essential elements than poor conditions. We show that the scaling exponent is rather
insensitive to environmental conditions or plant species, and ranges from 0.900 to 2.479
(average 1.58) in nine out of ten data sets. For single elements, Mg has the smallest scaling
exponent (0.031) and Mn the largest (2.147). Comparison between laboratory determined
stoichiometric relations and field observations suggest that element uptake in field
conditions often exceeds the minimal physiological requirements. The results provide
evidence for the view that the scaling relations previously reported for N and P can be
extended to other elements; and that N and P are the driving elements in plant
stoichiometric relations. The stoichiometric niche volumes defined here could be used
to predict plant performances in different environments.

Keywords: ecological stoichiometry, elementome, ionome, homeostasis, mineral nutrients, plant growth, scaling,
stoichiometric niche volume
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INTRODUCTION

At least 16 to 17 elements are considered essential for proper
plant growth (Mengel and Kirkby, 2001; Watanabe et al., 2007).
Most interest has been devoted to carbon (C), nitrogen (N), and
phosphorus (P) as these elements are among the quantitatively
most important, and N and P are in general expected to be
limiting plant growth (Elser et al., 2007). Plant element
stoichiometry considers how the balance of plant-internal
elements is influenced by the abiotic and biotic environment.
For example, Knecht and Göransson (2004) and Ladanai et al.
(2010) showed that there are strong correlations between
concentrations of elements in foliage. However, such
correlations require that elements scale isometrically (change
in constant proportions) although several studies have shown
that N and P scale approximately as N ∝ P 1.37or P ∝ N 0.73

(Niklas et al., 2005; Niklas, 2006; Niklas and Cobb, 2006;
Kerkhoff and Enquist, 2006). We are not aware that similar
relations have been studied with other elements, although for
proper plant functioning it could be expected that all essential
elements should increase in proportion to each other
(homeostasis), but deviations from proportionality would
indicate that some elements may rapidly become critical in a
changing environment. The overall aim of this paper is thus to
test the scaling relations of various elements, by using available
data sets from a broad range of plant functional types and
environments. We hypothesize that scaling relations similar to
the one between N and P can be extended to other elements (K,
Ca, Mg, S, Cu, Zn, Fe, Mn) (H1); the full suite of micronutrients
is rarely reported and our analyses will be restricted to these
eight. Although elements other than N and P can be limiting and
changes in climate and N deposition may alter which elements
may replace N or P as limiting, the stoichiometric relations
beyond C, N and P have received little attention. In a recent
paper, Tian et al. (2018) reviewed shifts in stoichiometric
relations in experiments with nutrient additions, elevated CO2

and temperature. They found that N additions increased N
relative to other elements but experimental warming tended to
decrease N and P, and responses to elevated CO2 varied with
element; N:Mg and P:Mg increased and N:Mn and P:Mn
decreased. The analyses of stoichiometric couplings are
generally done by looking at shifts in element ratios. This is no
problem as long as the analysis is restricted to C, N, and P, where
there are only three unique ratios. However, this approach
becomes unwieldy when many elements are involved; with 16
elements there are 120 possible ratios. We will, therefore, look for
an alternative metric that can be used to summarize many
elements. The metric we want to use should be applicable to
an arbitrary number of elements and its value should be
increasing with increasing element concentrations. Our second
basic hypothesis (H2) is that N and P are the driving elements in
plant stoichiometric relations and other elements will scale with
respect to them. We will suggest a metric called stoichiometric
niche volume based on the multidimensional niche concept by
Hutchinson (1957). González et al. (2017) and Penuelas et al.
Frontiers in Plant Science | www.frontiersin.org 2
(2019) suggest stoichiometric niches as important tools for
investigating nutritional relations. Baxter (2015) argues also for
metrics that summarize the whole suite of elements (the ionome
or elementome). Blonder (2018) reviews the use of the
hypervolume niche concept, which we here extend and apply
to plant nutrients.
MATERIALS AND METHODS

Theory
The growth response of plants with respect to the internal
concentration of growth limiting nutrients (cn) can be described
such that below a certain internal concentration (cn,min) plants do
not grow at all, then up to some higher concentration (cn,opt) plant
relative growth rate increases linearly, and above that declines to 0
at some maximal concentration (cn,max) (Ågren andWeih, 2012),
Figure 1. We will call the distance cn,max – cn,min the fundamental
niche of the species, i.e. the range over which the plant can exist,
and the range cn,max – cn,opt the response niche, i.e. the range over
which plant growth responds to changes in nutrient availability;
cn – cn,min defines the realized niche, althoughwewill use only cn as
cn,min is rarely known and is also expected to be small. To
simultaneously handle more than one element we defined
stoichiometric niche volumes as the volume of a parallelepiped
(i.e., an abstract multidimensional shape) in n dimensions, with
the n sides defined by the n element concentrations in question.
FIGURE 1 | Schematic diagram of the relation between relative growth rate
and plant tissue concentration of the limiting element. Scales are arbitrary.
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In particular, we used the following two stoichiometric volumes
(V) based on the realized niches; the first is defined by the product
of the plant N and P concentrations

VNP = cNcP (1)

and the other by the product (P) of the concentrations of the
other elements

VOth = ∏n≠N ,P cn (2)

We interpret these volumes as the n-dimensional stoichiometric
space a plant occupies. N and P are considered important for
ecosystem functioning because both nutrients commonly limit
production of plant biomass (Vitousek and Howarth, 1991).
Therefore, we chose the product of N and P rather than some
other combination to see how other elements behave relative to
these two elements, and it was then logical to combine all elements
in the same manner.

We then calculated the scaling relations between these two
volumes. With scaling we understand the following relationship
between the two sub-volumes defined above

VOth = bVa
NP (3)

Using log-transformed values

ln (VOth) = ln b + a ln (VNP) (4)

a is the scaling exponent, in which we are interested in, leaving
the intercept of the relation, b, for future studies as its
interpretation goes well beyond the scope of this study (see
Niklas and Hammond, 2019 for an in-depth discussion of b).
Regressions were calculated as reduced major axes (RMA)
(Niklas, 2006) as is conventional in this type of studies. A
scaling exponent of 1 indicates that the two volumes increase
proportionally, whereas a value <1 means that the concentrations
of the other elements increase more slowly than those of N and P.

To test the importance of elements to be included in Oth, we
calculated a for the average of 10 random combinations of 2–8
elements in our data sets (Ideal not included) and investigated
how the number of elements included affected a.

Data Sets
A summary of the data sets used to test the scaling relations with
information on elements included is given in Table 1. Most
results will be based on N and P versus K, Ca, Mg
(macronutrients), as S and micronutrients are not reported in
all studies; C is also excluded as it is rarely reported. Some of the
data sets (Tomato, Birch, Wheat1, Salix, CO2-exp, and Hawaii)
were split into subsets to investigate possible effects of treatments
or other external factors.

Tomato: We used data from Ingestad et al. (1994a). These
data were obtained in laboratory experiments with tomato plants
(Lycopersicon esculentum Mill. cv. Solentos) grown under strict
nitrogen limitation and at several daily quantum flux rates, of
which we used two subsets (6 and 18 mol m−2 d−1) to view the
effects of light on the scaling relation. The experiments were
Frontiers in Plant Science | www.frontiersin.org 3
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conducted with the technique of controlled addition rate of the
limiting nutrient (Ingestad and Lund, 1979; Ingestad and Lund,
1986). Scalings are from data for plants at different growth rates
and sampling dates. Nutrient concentrations are tissue
concentrations for whole plants. This data set should illustrate
effects of light intensity on stoichiometry.

Birch: We used data from laboratory experiments with
birch plants (Betula pendula Roth.) grown under strict
nutrient limitation and at various light intensities. The
experiments were conducted with the technique of controlled
addition rate of the limiting nutrient (Ingestad and Lund, 1979;
Ingestad and Lund, 1986). N-limited data are from Ingestad
et al. (1994b); P-limited data are from Ericsson and Ingestad
(1988); K-limited data are from Ericsson and Kähr (1993); Mg-
limited data are from Ericsson and Kähr (1995); Mn-limited
data are from Göransson (1994); S-limited data are from
Ericsson and M. Kähr (pers. comm.); Fe-limited data are
from Göransson (1993); Zn-limited data are from Göransson
(1999); and Cu-limited data are from Göransson (1998).
Nutrient concentrations are tissue concentration for whole
plants. These experiments were performed similarly to those
with N-limited tomato but with other elements limiting.
Scalings are from different relative addition rates and
sampling dates. This data set should illustrate the effects of
different limiting nutrients on stoichiometry.

Ideal: This is not a directly measured data set. Instead
we created it from the Tomato data in Fig. 1 in Ågren and
Weih (2012) by calculating the nutrient concentrations
corresponding to relative growth rates of 5%, 10%, …, 100%
of maximum relative growth rates. In this way we got
concentrations at equal relative growth rates for all elements
[ideal nutrient proportions sensu Ågren (1988)]. These
concentrations are such that a decrease in any of them leads
to a decrease in the relative growth rate; all elements are equally
limiting. This data set should illustrate the minimum relative
stoichiometric requirements.

Wheat1: Data are from a fertilization experiment with winter
wheat (Triticum aestivum L.) grown at seven sites in central and
southern Sweden and with four levels of N fertilization (Hamner
et al., 2017). Data are for aboveground plant parts. Scalings were
calculated separately for three subsets representing different
stages of development according to the BBCH scale (BBCH23
3 tillers detectable, BBCH37 flag leaf visible, and BBCH65 full
flowering; Lancashire et al., 1991).

Wheat2: Data are for winter wheat grown in Sweden (Weih
et al., 2016). Data are for aboveground plant parts (vegetative
parts and grain). Scaling is over replicates and different preceding
crops, and includes data from three stages of development:
Vegetative plant parts at beginning of stem elongation
(BBCH31) and beginning of flowering (BBCH61), and only
reproductive parts (kernels at crop maturity). This data set
should illustrate effects of plant developmental stage and
choice of plant parts on stoichiometry.

CO2-exp: Data are from a series of experiments with elevated
CO2 concentration. A summary of the experiments is given in
Frontiers in Plant Science | www.frontiersin.org 4
Table 2. When experiments included combinations of CO2 and
other treatments, only ambient (A) and pure elevated (E) CO2

treatments were used in our analyses. Elevated refers to all CO2

levels above ambient. Data are for foliage. This data set should
illustrate the effects of CO2 on stoichiometry.

Salix: Data are from Ågren and Weih (2012) from a
fertilization experiment (two subsets: unfertilized control, C,
and fertilized and irrigated, W+F) with six willow (Salix spp.)
genotypes. The fertilizer was combined with irrigation and
included N, P, K, Ca, Mg, S, Fe, Mn, B, Zn, Cu, and Mo in the
first year, but only N, P, and K in the second year, which was the
year in which the material for this analysis was sampled. Scalings
are from mature leaves of the different genotypes and crown
positions. This data set should illustrate consequences of
fertilization for stoichiometry.

ICP: Data are based from ICP Forests foliage data (http://icp-
forests.net), sampled over Western Europe. Data are for foliage
of Abies alba, Fagus sylvatica, Larix decidua, Picea abies, Pinus
nigra, Pinus pinaster, Pinus sylvestris, Pseudotsuga menziesii,
Quercus pubescens, and Quercus robur. Scalings are over all
species and locations. This data set should illustrate effects of
species and growth location on stoichiometry.

IBP: Data are from the International Biological Program
(IBP) investigations (Cole and Rapp, 1981) for foliage from 17
different forests grown at nine sites worldwide. This data set
should illustrate large-scale geographical effects and covers
differences in both species and soils. Scaling is over all species
and all locations. Data are for foliage.

Hawaii: Data are from a study of changes in foliar nutrients
along a long-term soil development (300 to 4,100,000 years, 7
subsets) mesic series in Hawaiian rain forests (Vitousek et al.,
1995). Scaling exponents are calculated from data for nine
different species except for the oldest site where data was
available for only eight species. This data set should illustrate
TABLE 2 | Summary of CO2 experiments analyzed.

Reference Location Species Treatments,
µmol mol−1

Luomala et al. (2005) OTC
a

, Finland Pinus sylvestris L. 362 & 693
Blank and Derner
(2004)

Glasshouse Lepidium latifolium L. 360 & 699

Johnson et al. (2004) FACE,
Tennessee

Liquidambar
styraciflua (L.)

Ambient & 542

Le Thiec et al. (1995) Open top,
France

Picea abies (L.)
Karst.

Ambient & A+350

Oksanen et al.
(2005)

OTC
a

, Finland Betula pundula L. Ambient & 2*A

Roberntz and Linder
(1999)

Branch bags,
Sweden

Picea abies (L.)
Karst.

360 & A+337

Pfirrmann et al.
(1996) #5502

Phytotron Picea abies (L.)
Karst.

Ambient & A+300

Walker et al. (2000) OTC
a

, California Pinus taeda L. 354, 525, 700
Weight et al. (2011) Greenhouse Picea abies (L.)

Karst.
400 & 700
February 2020 | Vol
aOTC, open top chamber.
Treatments refer to the CO2 levels used in the treatment. Treatment ambient (A) means
that no level was reported for the untreated system.
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FIGURE 2 | Scatter plots of ln(VOth) versus ln(VNP) for the ten different data sets. For tomato, the different symbols show the two different light levels. For birch, the
different symbols show different limiting elements. For Wheat1 & Wheat2, circles are from Wheat1 and triangles from Wheat2 and different colors show different
development stages. For Salix and CO2, the different symbols show the two different treatments. For IBP & ICP, the different symbols show the two different data
sets. For Hawaii, the different symbols show the different site ages (ky). Scales can be different between panels. In panel d: BBCH23 3 tillers detectable, BBCH31
beginning of stem elongation, BBCH37 flag leaf visible, BBCH61 beginning of flowering.
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effects of long-term soil development on stoichiometry. Data are
for foliage.
RESULTS

Results from the extremely well-controlled birch experiments
show that response niches for N and P almost fill the
corresponding fundamental niches whereas the response niches
for the other elements are considerably smaller than for the
fundamental niches (Table 3). The volume of the response niche
for NP is as much as 73% of the fundamental niche while for the
other elements, where we have data, it is only 0.02%.

We note that taken over all data sets the scaling between N
and P is P ∝ N1.04±0.02 (Supplementary Material, Figure S1),
which is similar to what has been found in the studies cited in the
introduction (H1).

Scatter plots of the relations ln(VOth) versus ln(VNP), where
Oth includes K, Ca, and Mg as these elements are included in all
data sets, are shown in Figure 2, and the scaling exponents a are
given in Table 1. The scaling exponents are close, ranging from
0.938 (Wheat1) to 2.479 (Hawaii) in spite of the large differences
in origins of the data sets. In the data sets, where the data can be
split into subsets depending on treatments or other factors, the
variations between subsets are small (Table 4). The scaling
exponents for different limiting elements in the Birch data set
are shown in Figure 3, indicating very small effects of the actually
limiting nutrient. The scaling exponents for different site ages in
the Hawaii data set are shown in Figure 4, suggesting a weak
increase in the scaling exponent with site age. The Ideal data set
deviates from the other ones by having a much smaller scaling
exponent (0.155) which also shows up when looking at the
scaling element by element versus NP; except for S and Fe the
scaling exponents are much smaller than found in the other data
sets. One reason is that the relation between VNP and VOth in
Ideal is convex whereas it is concave in the other data sets
(Figure 2).

As Table 5 shows, element identity matters as different
elements scale differentially, but even more important is how
many elements are included in Oth. Figure 5 shows that the
scaling exponent increases linearly with number of elements (n)
(a = −0.0523 +0.6485n, r2 = 0.9932).
Frontiers in Plant Science | www.frontiersin.org 6
DISCUSSION

Our general result is that the proposed scaling with NP as a basis
is robust as shown by the insensitivity to diverse conditions
(limiting element, light intensity, CO2 level, growth location,
species) supporting our hypothesis 1 (H1) that scaling relations
TABLE 4 | Reduced major axes (RMA) scaling exponents (aRMA) with 95%
confidence intervals for regressions between ln(VNP) and ln(VOth) for data sets
that can be split into subsets. For Wheat2 all refers to BBCH23 plus BBCH37. All
r2, except for CO2 and Salix, are significant at 1% level.

Data set Treatment n aRMA r
2

Tomato All 16 1.291 ± 0.075 0.93
6 8 1.284 ± 0.269 0.97
18 8 1.296 ± 0.117 0.97

Wheat1 All 70 0.968 ± 0.082 0.93
BBCH23

a

14 0.960 ± 0.132 0.87
BBCH37

c

28 1.011 ± 0.093 0.92
BBCH65

e

28 0.900 ± 0.194 0.82
Wheat 2 All 39 1.050 ± 0.080 0.5

BBCH31
b

20 0.929 ± 0.165 0.57
BBCH61

d

19 1.331 ± 0.110 0.53
Salix All 115 1.398 ± 0.025 0

C 48 1.308 ± 0.088 0.05
W+F 67 1.318 ± 0.022 0.07

CO2-exp All 40 1.323 ± 0.024 0.02
A 20 1.369 ± 0.060 0.02
E 20 1.271 ± 0.038 0.12
February
 2020 | Volume 11 | Artic
aBBCH23 3 tillers detectable.
bBBCH31 beginning of stem elongation.
cBBCH37 flag leaf visible.
dBBCH61 beginning of flowering.
eBBCH65 full flowering.
FIGURE 3 | Scaling exponents with 95% confidence intervals as a function
of limiting element in the Birch data set. All refers to the scaling exponent
when data for all limiting elements are combined.
TABLE 3 | Sizes of fundamental niches and response niches for birch.

Element Fundamental niche Response niche Response/fundamental

N, mg/g 42.3 41.8 0.99
P mg/g 5.7 4.2 0.74
K, mg/g 40.2 5.4 0.13
S, mg/g 2.7 1.7 0.64
Mg, mg/g 3.5 1.2 0.34
Zn, µg/g 46.8 25.7 0.55
Mn, µg/g 213.8 13.1 0.06
Fe, µg/g 207.1 40.0 0.19
VNP 241 175
VOth 787211653 150816
VOth/VNP 3264948 861
le 23
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can be established also for other elements than N and P and the
predictions proposed by Niklas et al. (2005); Niklas (2006);
Niklas and Cobb (2006), and Kerkhoff and Enquist (2006). The
only factor that appears to disrupt the scaling is the choice of
plant parts (kernels differ from vegetative parts in the Wheat2
data set, Figure 2), and heavy fertilization not including all
elements as in the Salix data set. The increase in scaling exponent
with site age in the Hawaiian data set is probably a result of the
rapid decline in N and P in the oldest sites (Vitousek et al., 1995)

The way we have defined the scaling means that the scaling
exponent for several elements should be the sum of the scaling
exponents for the individual elements. The choice of elements to
include in Oth is, therefore, important as some elements (Mg, S)
make a very small contribution compared to others (Fe, Mn), but
on average (from Table 3) adding an element should increase the
scaling exponent with 0.703 in agreement with Figure 5. As soon
as two or more elements are included in Oth, the scaling
exponent can, therefore, be expected to be larger than 1
meaning that the combined concentrations of elements in Oth
will increase faster than the concentrations of NP. We do not
know the physiological reason for this. The faster increase in P
than N can be explained by the growth rate hypothesis (e.g.
Ågren, 2004), but we do not know if a similar mechanism is
applicable also to other elements. It should also be noted that if
we can find a mechanistic explanation for the relative changes in
plant nutrient concentrations, it does not need to be of the form
given by eq (3), because this equation is flexible enough to fit
several underlying models. Without an underlying mechanism
for the scaling, it is not meaningful to attempt to investigate in
detail the intercept (b) in the scaling, although this parameter
should give further insight into the relations (Niklas and
Hammond, 2019). It should also be observed that the choice of
units of concentrations (mg g−1, µg g−1, mol g−1) will not affect
the scaling exponent as changes of units only shifts data parallel
to the axes and thus is important only when analyzing the
intercept but not the slope.

The results support our second hypothesis (H2) that N and P
are the driving elements in plant stoichiometric relations and
other elements will scale with respect to them. Our choice of the
NP niche volume as the basis for the scaling can seem arbitrary,
but we think that N and P differ from the other elements because
they are the most commonly limiting growth. This is reflected by
the fact that plants respond over the entire N and P fundamental
niches (Table 3), whereas plants can take up large quantities of
other elements without any positive or negative effects on growth
(the response niches are much smaller than the fundamental
niches). This should also explain the variability around the
scaling relation, some of the element uptake has little
functional consequences. An associated question is what
controls the uptake of elements. N and P are probably taken
up to the extent that they are available, but uptake of other
elements could either be controlled by availability or by plant
physiological and/or biochemical requirements resulting in the
maintenance of certain nutrient balances (homoestasis). The
larger fundamental niches than response niches for other
elements than N and P will cause the concentrations of these
FIGURE 4 | Scaling exponents as function of site age in the Hawaii data set.
The lowest age is the value for the scaling taken over all ages.
TABLE 5 | Reduced major axes (RMA) scaling exponents (aRMA) with 95%
confidence intervals for regressions between ln(VNP) and one single elements
calculated from the combined Wheat1, Wheat2, plus ICP data and the Ideal data
sets respectively. Ca is missing in the Ideal data set.

Element Mg S Cu Ca K Zn Fe Mn

Combined 0.031± 0.063± 0.224± 0.263 0.432± 0.802± 1.393± 2.147+
0.075 0.06 0.029 0.036 0.015 0.021 0.018 0.087

Ideal 0.017± 0.311± 0.016± 0.159± 0.447± 2.402± 0.283+
0.434 0.097 0.449 0.063 0.152 0.023 0.083
FIGURE 5 | Scaling exponent as a function of the number of elements
included in VOth. The scaling exponent for n = 1 is the average of the scaling
exponents in Table 4.
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other elements to be higher than physiologically necessary
compared to N and P, resulting in larger scaling exponents
than what physiological constraints require. However, the fact
that scaling exponents from field data are larger than those in the
Ideal data set suggests that plants do not minimize their efforts to
acquire nutrients, instead increasing availability of N and P
provides the plants with resources to take up proportionally
more of other elements; scaling exponents larger than 1 in most
of the data sets would otherwise indicate faster increasing
requirements for other elements than N and P. We have not
included C in our analyses because C has not been reported in
most of the studies we have used. This might not be a major
problem as Ladanai et al. (2010) point out, N might be a better
base for analyzing stoichiometric relations than C.

Ågren and Weih (2012) analyzed causes for variability in
stoichiometry in the Salix data set and found that elements could
be divided into three groups. The first group (N, P, S, and Mn)
was associated with nucleic acids and proteins, the second group
(Mg, K, and Ca) was associated with structure and
photosynthesis, and the third group (Fe, Zn, B, and Al) with
enzymes. These three groups are also apparent with some
differences in our scaling relations (Table 3); here Mn appears
in the third group andMg in the first group. However, Ågren and
Weih (2012) argue that other principles for classification group
the elements differently. The possibility of grouping elements
together could simplify the analyses of scaling relations as a
smaller number of scaling relations would be necessary
to investigate.

In conclusion, it might not be necessary to analyses all
bioelements as the niche volume of N and P together can
predict the niche volume of the other elements. This is also in
line with the nutrient balance concept of Baxter (2015), where he
argues that combinations of elements (rather than individual
elements) should be treated as the phenotypes of interest; and
where he visualizes the balance of elements as placed on a beam
scale, with N and P on one side and all the other elements on the
other side. The stoichiometric niche volumes developed in our
paper could be used to explore the elemental phenotypes
Frontiers in Plant Science | www.frontiersin.org 8
suggested by Baxter (2015). However, our results are based on
a correlation between VNP and VOth and if this is the result of an
underlying causal relation, the roles of N and P versus other
elements can be reversed. Further development could be on how
to use the niche volume to predict plant performances and also to
investigate in depth how environmental factors (temperature,
water availability, soil type.) affects scaling. The lack of such data
in our data sets prevented such analyses.
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