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Abstract: This discussion paper addresses (1) the challenge of concisely reporting uncertainties in
forest remote sensing (RS) studies, primarily conducted at plot and stand level, and (2) the influence
of reference data errors and how corrections for such errors can be made. Different common ways
of reporting uncertainties are discussed, and a parametric error model is proposed as a core part of
a comprehensive approach for reporting uncertainties (compared to, e.g., conventional reporting
of root mean square error (RMSE)). The importance of handling reference data errors is currently
increasing since estimates derived from RS data are becoming increasingly accurate; in extreme
cases the accuracies of RS- and field-based estimates are of equal magnitude and there is a risk that
reported RS accuracies are severely misjudged due to inclusion of errors from the field reference
data. Novel methods for correcting for some types of reference data errors are proposed, both for the
conventional RMSE uncertainty metric and for the case when a parametric error model is applied.
The theoretical framework proposed in this paper is demonstrated using real data from a typical
RS study where airborne laser scanning and synthetic aperture radar (SAR) data are applied for
estimating biomass at the level of forest stands. With the proposed correction method, the RMSE for
the RS-based estimates from laser scanning was reduced from 50.5 to 49.5 tons/ha when errors in
the field references were properly accounted for. The RMSE for the estimates from SAR data was
reduced from 28.5 to 26.1 tons/ha.
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1. Introduction

Remote sensing (RS) is used in many forest applications, often in combination with field sample
plots to obtain complete maps for some variable of interest (VOI). A typical RS research paper in the
forestry field applies the following suit of methods: (1) inventory a number of field sample plots for
the VOI; (2) extract the corresponding plot level RS data; (3) estimate a model that relates the RS data
to the field sample data; (4) apply the model to the entire RS dataset; and (5) quantify the uncertainty
of estimates at plot or stand level by comparing the RS-based estimates with field reference data [1–7].
This procedure can be repeated for different sensors, methods, regions or acquisition properties, in
order to assess strengths and limitations of one or more RS-based methods of interest. A key part
of the procedure is the assessment of uncertainties, conducted through pairwise comparisons of
model predictions and field references at the level of plots or stands. Problems and possibilities with
uncertainty metrics derived from such comparisons are at the core of this discussion paper.

A commonly used uncertainty metric is the root mean square error (RMSE). Reporting a single
metric, such as the RMSE, is straightforward but also has shortcomings since uncertainties of RS-based
estimates typically are composed of several components. Even in combination with additional metrics,
e.g., bias and correlation coefficient, many commonly used metrics have limitations. Important
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examples include that some of the metrics are only meaningful to apply under certain conditions and
that different error structures may produce similar values of the metrics (e.g., [8]). The characterization
of error structures has been discussed for more than a century [9,10], and recent studies on the subject
include, e.g., [11–14]. They have covered a wide range of topics, e.g., methods-of-moments, simulation
extrapolation, likelihood approaches, and Bayesian methods, often applied to the fields of medicine or
genetics. The assumed conditions are, however, rarely relevant for studies related to remote sensing
of forests.

Another important issue in this context is that field references may contain errors although they are
typically treated as true values. However, the technical development of RS techniques has advanced to
a level where, in extreme cases, the errors in the field references used for the evaluation may be of equal
magnitude as the errors in the RS-based estimates being evaluated. For example, tree heights estimated
from dense laser scanning data are likely to be more accurate than the corresponding heights obtained
from visual inspection in the field, although the field surveyor may be supported by a hypsometer.
Variables such as tree biomass and stem volume are usually assessed by measuring tree diameter at
breast height (DBH), applied in models developed for the study region [15–17]. Such approaches add
additional errors (model errors) and a consequence is that different VOIs may be reported with different
uncertainties as a result of different properties of the field references [18]. However, the procedure
of assessing uncertainties of RS predictions through comparisons with field references has long been
used and is an accepted common practice in the field of RS studies of forests [19–21].

In the past, field-based estimates have typically been much more accurate than the corresponding
RS-based estimates [22]. Ignoring errors in field references in such cases is a fair approximation when
the accuracy of RS-based estimates is computed. However, in this discussion paper we suggest that
field reference errors can no longer be ignored, and hence we want to draw attention to possible
improvements regarding how the uncertainty of RS-based estimates is assessed and reported. Previous
studies in the field of RS-related uncertainty analysis have touched upon this topic [8,23,24], but so far
studies of this kind related to forest assessments appear to be sparse.

The spatial resolution of RS data and the corresponding field assessment units are important
and their relation greatly affects what estimation methods can be applied. A common practice in
forest studies is to distinguish between single trees and area based approaches (ABAs, [25]), where the
latter include sample plots (order of size 10 to 10,000 square meters), stands, or larger regions defined
according to administrative borders. Stands are homogeneous patches of trees, typically formed by
even-aged forestry practices; normal sizes may range from 0.5 ha to 100 ha. The single tree level is
of great interest, and it has been discussed in, e.g., [26–29]. Our study focuses on the ABA, and the
related assessment errors at plot or stand level.

To acquire field reference data at plot level, all trees are normally measured, and hence no sampling
errors, with respect to DBH measurements, are involved. Still, all trees are not measured for all VOIs
even at the plot-level. A common practice is to measure other VOIs than DBH only on randomly
subsampled trees on each plot. The subsample trees are used for developing models or used as a
basis for applying other procedures whereby VOIs such as mean height, stem volume, or biomass are
estimated at plot level [15,30].

Field references at stand level can be acquired in different ways. A common practice in operational
forestry in Scandinavia to obtain such references at low cost is to make the assessments through ocular
inspection, typically supported by measurements at locations within the stands judged to correspond to
the stand average conditions [31–34]. In case more accurate field references are required, sample plots
are typically acquired through some probability sampling scheme in the stands and measurements are
made according to the principles described for sample plots (above). A normal practice is to allocate at
least about 10 sample plots in each stand. While the ocular assessment method leads to both systematic
and random assessment errors the latter method normally involves only random errors due to basing
the estimates on a sample [35]. In rare cases, when the demands for accurate data are high, all the trees
in a stand may be calipered.



Remote Sens. 2020, 12, 505 3 of 21

Regardless of the field reference unit, other errors than sampling errors may contribute to
making the field reference value different from the true value. Important examples include missed
or double-counted trees, measurement errors, positioning errors (mainly of sample plot locations)
or erroneous registration of tree species. Positioning errors may be problematic when RS data are
matched with field data, for developing models or for evaluating the performance of the RS-based
methods [36–40]. These errors are due both to GPS inaccuracies in field measurements and inaccuracies
in geo-referencing the RS data. Normally the former kind of error dominates unless survey-grade GPSs
are used [37]. Moreover, temporal deviations between acquisitions of RS and field data contribute to
the problems encountered when matching RS and field data.

It is a complex topic to assess and quantify all different sources of errors in field references.
However, it is important to be aware of such errors and assess whether or not they have substantially
contributed to inflate the apparent uncertainty of the RS-based estimates they are compared with.

This discussion paper addresses the challenge of concisely reporting uncertainties in RS-based
estimates of forest VOIs. A parametric error model is proposed as a core part of an approach to
describe and quantify uncertainties. We argue that this approach has several advantages over the use of
traditional metrics, such as the RMSE. Moreover, we argue that accounting for errors in field references
is becoming increasingly important as RS-based estimates are becoming increasingly accurate. We
propose a novel method for adjusting for such errors and demonstrate the importance of adjustment
using case examples with both real and simulated data.

2. Methods

In this Section, some conventional uncertainty metrics are first presented and their properties
discussed. Then, an error model is proposed as part of an approach to overcome some of the drawbacks
with the conventional metrics. Thirdly, the case where errors in field reference data inflate the apparent
uncertainty of RS-based estimates is introduced and methods are presented whereby adjustments for
reference data errors can be made. Lastly, the theoretical framework is demonstrated on real data in a
case study.

Note that the approaches we describe are all related to study set-ups where RS-based estimates
at plot or stand level are available from any arbitrary RS-based methodology, and the objective is
to assess the uncertainty of the estimates through comparing them with a set of field references.
Other approaches, where the uncertainty assessment is an intrinsic part of the estimation framework
(e.g., [41]) are not covered.

2.1. Conventionally Used Performance Metrics

Different research fields tend to use slightly different metrics for quantifying uncertainty. In this
paper, we limit the scope to continuous variables assessed in ratio (or interval) scale, as opposed to
categorical variables assessed in ordinal or nominal scale. In forest inventories, examples of ratio
scaled variables are growing stock volume, biomass and mean height. Examples of variables assessed
in ordinal or nominal scale are land use category, vegetation class, and soil type. Uncertainties in
assessments of the latter kind of variables are typically presented in contingency tables known as error
matrices [42].

In case of ratio scaled variables a commonly applied metric for reporting uncertainty is the root
mean square error (RMSE). It can be interpreted as an “average” estimation error in units of the VOI
and it is indifferent to the direction of errors. Additionally, it is a negatively oriented score, which
means that lower values are better. By definition it is the square root of the mean value of squared
errors (MSE, Equation (1)), which consists of the squared systematic error (bias) plus the variance of
the random errors, denoted σε2 (or, synonymously, var(ε)).

MSE = Bias2 + σε
2 (1)
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Since the MSE is affected by both systematic and random errors, it is intuitive that a method
(further on denoted estimator) with large bias but small variance could potentially have the same MSE
as an estimator with small bias but large variance, despite substantially different properties of the
errors (Figure 1a,b).Remote Sens. 2020, 12, 505 4 of 5 
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The MSE is usually estimated as:

ˆMSE =
1
n

n∑
i=1

(ŷi − yi)
2 (2)

where ŷ denotes the estimated value and y the reference value, assumed to be the true value, for a
plot or stand i, indexed from 1 to n. A common approach to address the issue that different error
structures can generate the same RMSE, is to report bias and variance separately. This separation of
errors facilitates the understanding of the error characteristics [43,44]. However, the systematic error
often varies across the range of true values of the VOI. For example, regression towards the mean
causes the lower and upper end of the study interval of the VOI to be biased in different directions,
hence making it difficult to describe the bias with a single value. Simple attempts to address this issue
include reporting by classes, which gives information about how the bias changes over the range of the
VOI, but this approach will be limited by how the reported classes are chosen.

To compare results between study regions, the RMSE (or bias and variance) can be put in relation
to the mean value of the VOI, and be reported as RMSE in percent (RMSE%). However, the relative
error is rarely the same across the entire range of the VOI, which is implicitly assumed by reporting
and comparing RMSE%.

Another commonly reported uncertainty metric is the correlation coefficient, r, which measures to
what extent two variables, x and y, are linearly related:

r =
cov(x, y)
σxσy

(3)

Here, cov denotes covariance. If prediction models are developed based on several predictor
variables the coefficient of determination, R2 Equation (4), or R2

adj rather than the correlation coefficient
is typically reported (the latter is an attempt to account for the number of explanatory variables, since
additional explanatory variables would otherwise always increase the R2). The interpretation of R2
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is that the metric measures what proportion of the variance in y that is explained by the model, and
where the bar denotes the mean, i.e.,

R2 =
explained sum o f squares

total sum o f squares
=

∑
i(ŷi − y)2∑
i(yi − y)2 (4)

The bar denotes the mean of y. Some problems with R2 is that it is a positively biased estimate
(fits sample data better than actual population [45]), it is sensitive to small datasets ([46] claimed
that it should not be used for less than 50 samples), it provides no information about whether the
coefficient estimates are biased or not, and it provides only limited insight about whether or not the
model is adequate. It is not a suitable metric when comparisons are made between different datasets.
This is illustrated in Figure 2 where the residual variance is the same but the reference data range
varies. Although it can be argued, based on the residual variance, that the two predictions are equally
accurate, the R2 is substantially higher for the case with the larger range. Other drawbacks with R2

have been covered in discussions and online forums, as well as in research articles. [47] identifies
some pre-requisites and applications for relevant use of correlation coefficients, and the limitations of
explaining “variance contributions” and predicting power from high or low R2 values was addressed
by [48], and [49]. In some research fields, other performance metrics have been reported, such as the
mean absolute error as a robust alternative to RMSE, but in forest RS studies, RMSE and R2 are by far
the most commonly reported metrics [8,50,51].
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2.2. Parametric Error Model

Considering the limitations of the previously discussed uncertainty metrics, an alternative
approach to presenting uncertainties will now be proposed. It is based on a parametric error model,
which allows different error structures to be described and quantified more concisely. Since the errors
are typically both systematic and random, we need to describe both components as well as how
these error components vary across the range of true values of the VOI. The separation of errors into
systematic and random parts is crucial for uncertainty quantification, since it provides a deeper insight
to the properties of the estimates, and thus, how trustworthy they are in applications. We adapt a
linear model to describe displacement (bias), scaling and spread (cf. [8]), i.e.,

TRS = λ0 + λ1·T + ε (5)
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where TRS denotes the RS-based estimate, T is the true value of the VOI, λ0 is a systematic displacement
which remains the same across the entire range of true values, and λ1 makes the systematic error
change across the range of true values. The size of the random error terms, ε, might be quantified
by their standard deviation, σε. The random error terms are orthogonal to the systematic errors and
includes variability from all sources that cannot be accounted for in the modelling, such as random
positioning errors and noise in the RS data [52].

The proposed error model is capable of capturing many different error structures in RS-based
estimates and it describes these using merely the parameters λ0, λ1, and σε. These parameters can
be estimated in numerous ways, including the ordinary least squares method, maximum likelihood
estimators, or Bayesian methods [12,13,53,54].

We now focus on the cases described in Figures 1 and 3, and describe the corresponding error
structures using the proposed error model. For the scatter plot in Figure 1a, the λ0 parameter can
directly be interpreted as bias, since λ1 is 1, and there is hence no additional directional scaling (trend)
to consider. A corresponding interpretation can be made for the scatterplot in Figure 1b. The spread
(standard deviation) of the estimates in the two cases can be assessed through the estimated σε
parameter. Figure 3a can be interpreted in the same way, although Figure 3b might be more difficult to
interpret. Since λ1 , 1, there is a directional scaling where λ1 < 1 indicates overestimation in the lower
end and underestimation at the higher end of the VOI range, and λ1 > 1 would imply the opposite.
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in the scatterplots. The two cases can also be described with density curves (c,d). In (a), there is a
constant systematic error, with λ0 = 81.9 and λ1 = 1 implying a positive shift from the 1:1 line. In (b),
there is a varying systematic deviation due to λ1 , 1.
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A useful visual approach for intuitively understanding the λ-parameters is to inspect the densities
corresponding to the scatterplots. The density shows the relative frequencies, as a continuous
normalized histogram where the area under the curve sums to one. That is, the density curve displays
the relative frequency of different estimates or true values, for a specific dataset. For Figure 3c,
the positive λ0 parameter can be interpreted as a right shift of the observed density curve compared
to the density curve for the references. Note that the shapes of the two curves are similar due to λ1

being about 1, and due to the small random errors in the RS-based estimates. In Figure 3d, λ1 can be
considered a scaling factor, where values > 1 will increase the dynamic range (width of the density
curve) compared to the reference values, while λ1 < 1 causes observations to tend towards the mean.
Thus, the observed density has a narrower range but larger densities compared to the reference density.

This parametric error model can be used to bring more insight to what error components are
involved in the RS-based observations, compared to using conventional metrics such as bias and RMSE.
For example, as shown by [8], the overall bias can be expressed as:

Bias = TRS − T = (λ1 − 1)·T + λ0 (6)

The · operator denotes an average value. Thus (e.g., Figure 3b) the bias is affected by both the
scaling parameter and the displacement parameter.

Correspondingly, the MSE can be expressed as:

MSE =
(
TRS − T

)2
+ (λ1 − 1)2σ2

T + σ2
ε (7)

where, σT denotes the standard deviation of the true values (the other notation is the same as before).
Equation (7) indicates that three error sources contribute to the MSE. The mean error, the scale error,
and the random error. Since the mean error is a combination of the displacement error and the scale
error of the reference mean (see Equation (6)), it can be concluded that MSE consists of a mixture of all
three error types. This identifies the main drawback of MSE (or RMSE), since a single value offers
limited insight to the overall error structure. The relationship between some conventional metrics and
the linear, additive model (5) has partly been discussed by [55,56].

Thus, with the support of a parametric error model we suggest that the structure of errors in
RS-based estimates can be more concisely described and quantified compared to using conventional
metrics such as the RMSE or R2. We suggest that future evaluations of the properties of RS-based
estimates of forest VOIs should consider adopting this technique, at least as a complement to using the
conventional metrics. This will be demonstrated in the case study that follows later in this paper.

2.3. Modeling Field Reference Data

The second objective of this discussion paper is to show how errors in field references affect reported
uncertainties from RS studies and suggest methods to correct for the impact of such errors. In practice
in most forest RS studies, the “best” reference data available are used to evaluate the RS-based estimator,
although the references are estimates of the true values, and hence normally contain errors. Since
the RS data historically have been only weakly correlated with the target variable, e.g., using optical
satellite data of intermediate (~25 m pixels) resolution for estimating biomass [57–59], any uncertainty
in the field reference could often be neglected because minor reference uncertainties have only minor
impact on the results. Improved and new technologies, e.g., laser scanners, have changed this situation
and hence it has become problematic to ignore the field reference errors when RS-based estimates are
evaluated. In extreme cases, the reference estimates may contain even larger errors than the RS-based
estimates being evaluated.

One way to investigate and demonstrate this issue is to look at the ratio, q, between uncertainties
in the RS data and uncertainties in the field reference data. In our example we use the ratio between
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the standard deviation, σε, of random errors in the RS-based estimates and the standard deviation, σδ,
of random errors in the field reference estimates:

q =
σε
σδ

(8)

If the reference values are estimated without errors, or if the RS estimates have very large errors,
q→∞ . When the random errors in field and RS-based estimates are of equal magnitude, q = 1. For RS
studies in the past, e.g., based on low resolution satellite data, cases where q could be assumed large
would often appear [60–63]. However, based on airborne laser scanning data, q might be in the order
of 1 to 2 for many VOIs [64,65].

Figure 4 illustrates the problem of overestimating the RMSE of the RS-based estimator, due
to errors in the reference data, compared to the case where these are accounted for (according to
the method introduced in the next section). Here it is assumed, that λ0 = 0 and λ1 = 1, which
corresponds to an unbiased RS-based estimator. The RMSE is computed using the traditional estimator,
i.e., Equation (2). As q decreases, the overestimation of the RMSE increases and field reference errors
thus contribute to incorrect conclusions about the uncertainty of the RS-based estimates. It is difficult
to tell an exact threshold for the q-value when this problem is pronounced. However, at q-values below
2 the RMSE is severely overestimated.
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From Figure 4, where the overestimation is computed as (
(
σ2
ε + σ2

δ

)0.5
− σε)/σε ∗ 100, it can be

concluded that with improved RS methods, it is important to account for the errors in the field reference
when the RMSE of a RS-based estimator is computed. This appears especially important for q-values
below 2.

To handle cases where the references contain errors, the proposed parametric error model in
Equation (5) can be used as a basis for corrections. First, the references can be modeled from the
unobserved true value through Equation (9). Note that the true value can rarely be obtained since
some errors will almost always be committed. However, if the reference estimate is obtained from an
objective inventory, a model without any systematic deviation can be asserted and thus expressed as

TRe f = T + δ (9)

where the random error δ has expected value 0 and standard deviation σδ. The δ term contains
all random error sources related to misrepresentation of the true reference values, e.g., random
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measurement errors and sampling errors. They can be reduced to a minimum by using a probability
sampling approach, e.g., if a dense systematic sampling grid is randomly allocated over the area of
interest. From repeated inventory of such (randomly allocated) plots, the magnitude (and distribution)
of the random errors can be estimated.

To relate the RS-based estimates to the field references, Equation (9) can be combined with (5),
modeling the difference D between TRS and TRe f as:

D = TRS − TRe f = λ0 + λ1·T + ε− (T + δ) = λ0 + (λ1 − 1)·T − δ+ ε (10)

From Equation (10) it can be observed that the difference depends on several factors, i.e., the
lambda parameters, the true value, the random error from the field reference, and the random error
from the RS-based estimate.

One of the challenges is to find unbiased estimators of the parameters λ0,λ1 and σ2
ε. Regressing

TRS on TRe f will not yield unbiased estimates of these parameters, a problem known as regression
dilution (or regression attenuation, see e.g., [13,66]). The basic problem is that the estimates of λ0

and λ1 will be biased in regression analysis when the regressor T (in Equation (5)) contains random
errors, i.e., when we use TRe f in the regression instead of T. Different corrections for this bias have
been discussed, e.g., by Frost & Thompson [67] and Fuller [66]. However, only rarely formulae are
provided for correcting both the lambda parameters and the residual variance, σ2

ε.
Below, we first address an important special case and subsequently the general case regarding how

Equation (10) can be utilized for estimating the parameters in our parametric model in Equation (5).

2.3.1. Special Case: λ1 = 1

We begin by assuming λ1 = 1, i.e., that the systematic error remains the same across the entire
range of RS-based estimates, and thus that only λ0 and σε should be estimated. From (10) we notice
that this leads to a straightforward case which is not dependent on the true value T. The λ0 parameter
can be estimated as the mean value of the deviations D, since the expected value of Equation (10) is:

E[D] = E
[(

TRS − TRe f
)]
= λ0 − E[δ] + E[ε] = λ0 (11)

This result follows since the expected value of each of the two random terms is zero.
For this special case, the third parameter in the parametric error model, σε, can be obtained from

σ2
ε (which may alternatively be written as Var(ε)). From Equation (10) it follows that:

Var(D) = Var(λ0 − δ+ ε) = Var(δ) + Var(ε) (12)

This holds, since the reference values (i.e., the estimates from the field inventory) and the RS-based
estimates are independent and hence the random errors δ and ε are uncorrelated. An estimate of
Var(ε) is obtained as:

ˆVar(ε) = ˆVar(D) − ˆVar(δ) (13)

The variance of the random errors in the RS-based estimates is hence estimated as the (empirical)
variance of the differences between the RS-based estimates and the reference estimates, minus the
estimated variance of the reference estimates, Var(δ). In stand level inventories based on randomly
allocated sample plots, the term Var(δ) can be estimated as the average of the estimated variances of
the VOI estimator following sampling theory (e.g., [35]. Other types of reference data would require
other procedures for estimating Var(δ).

Since σ2
ε together with the squared bias (Equation (1)) constitute the MSE, the traditional estimator

of MSE (Equation (2)) is also affected by errors in the field reference data. Based on Equation (10) it
follows that E[ ˆMSE] = λ0

2 + Var(ε) + Var(δ), which means that an unbiased MSE estimator (denoted
with *) can be written as:

ˆMSE∗
(
T̂RS

)
= ˆMSE − ˆVar(δ) (14)
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To determine whether the special case λ1 = 1 or the general case λ1 , 1 is applicable, the hypothesis
λ1 = 1 may be formally tested. The most straightforward approach is to apply a Student’s t test,
but since the λ parameters obtained from ordinary regression are affected by regression dilution,
the t-score must be modified (see [66], Equation (1.1.16)):

t∗ =


∑n

i=1

(
TRe f ,i − TRe f

)2

s2


1
2 (
λ̂1 − λ1

)
, (15)

s2 =

∑n
i=1

[
T̂RS,i − T̂RS − λ̂1

(
TRe f ,i − TRe f

)]2

n− 2
Here, n denotes the sample size. The null and alternative hypotheses are defined as H0 : λ1 = 1

and Ha : λ1 , 1. The derived t-value can then be compared with tabulated values for the desired
significance level in a Students t-distribution table. When

∣∣∣t∗∣∣∣< ttable DF,α where DF denotes degrees of
freedom and α is the significance level, the null hypothesis cannot be rejected and the analysis may
proceed assuming λ1 = 1. Alternatively, the analysis is always performed through estimating both
lambda parameters, even if λ1 would be close to 1.

2.3.2. General Case: λ1 , 1

When the RS-based estimates have different systematic errors across the range of true values,
a more general approach is needed. Assuming λ1 , 1 implies a systematic scaling error that varies
across the range of true values of the VOI. This might, e.g., be the case for estimation methods based
on linear regression that often suffer from regression towards the mean.

Our goal is to estimate the parameters in the parametric error model (5), i.e., λ0, λ1 and σ2
ε.

As discussed above, when regressing the RS-based estimates on field references containing random
errors (according to Equation (9)), the parameter estimates will be biased due to regression dilution
(e.g., [66]). The following adjustments of the lambda parameters have been proposed in previous
studies [66,68–70]:

λ̂∗0 = TRS − λ̂∗1·TRe f (16)

λ̂∗1 = λ̂1·

1 + ˆVar(δ)
ˆVar

(
TRe f

)
− ˆVar(δ)

 (17)

where ∗ denotes the corrected parameter estimate. While it is known from several previous studies
how corrections should be made for the lambda parameters, few studies appear to have addressed
how estimates of σ2

ε should be adjusted in the case of errors in reference data. Based on [34] we provide
a derivation of an adjustment factor in Appendix A. The result is that a corrected variance, Var∗(ε),
can be estimated as:

ˆVar∗(ε) = ˆVar(ε)·

[
1−

r2
· ˆVar(T̂Re f )

ˆVar(T̂Re f )− ˆVar(δ)

]
1− r2 (18)

Var(ε) denotes the residual variance from regressing TRS on TRe f , and r = cor(TRS, TRe f ) is the
Pearson correlation between RS-based and field reference values. As the correction term in Equation (18)
is a ratio, it is sensitive to small datasets.

When λ1 , 1, the biased estimator of MSE (2) cannot be as easily corrected as in the special
case of λ1 = 1. This is due to the varying systematic error across the range of true values of the VOI.
To compute an unbiased estimate of MSE, the definition of MSE (1) can instead be used, with the bias
derived from Equation (6), by inserting unbiased estimates of λ0 and λ1, according to Equations (16)
and (17). The random error term is obtained from Equation (18). The MSE depends on T for λ1 , 1,
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which is something to consider regarding the interpretation of MSE. However, to obtain a crude MSE
estimate in this case the study population mean may be inserted as the true value of the VOI.

The general estimators proposed above allow for uncertainty reporting using the parametric error
model, accounting for random errors in the field references. Contrary to using uncorrected RMSE- or
R2- metrics, relevant comparisons between studies can be made this way.

3. Case Study Demonstrations

To demonstrate the proposed procedures for estimating the parameters of a parametric error
model and for adjusting for errors in field references, a typical RS study was performed on a dataset
that was previously used [6] for stand level estimation of aboveground biomass (AGB) based on laser
scanning and radar RS data. For illustration and comparison, the traditional uncertainty metrics
RMSE and R-square are also reported. Below we provide a brief description of the datasets and
study objectives; for details we refer to [6]. TanDEM-X radar data (interferometric phase height and
coherence) and sparse airborne laser scanning (ALS) data (height percentile 99 and the canopy density
metric vegetation ratio) were collected in 2011 for two Swedish test sites, approximately 900 km apart.
They cover mainly boreal forest with 85% to 90% coniferous trees. At the northern test site, Krycklan,
field data were available from 2008 for 29 stands, 0.7 to 26 ha large, collected using a random sampling
procedure. At the southern test site, Remningstorp, 32 circular stand-like plots (0.5 ha each) were
surveyed by tallying all trees in 2011, using the same field procedure. At both test sites, the same
allometric models were used with DBH as explanatory variable, to compute average aboveground
biomass [15]. The corresponding RS data acquired in 2011 were extracted and averaged for all stands at
both test sites. Linear regression models were estimated for data from TanDEM-X and ALS, respectively,
from the southern test site (Remningstorp) and then the models were applied and evaluated on the
data from the northern test site (Krycklan). The regression models for TanDEM-X (Equation (19)) and
ALS (Equation (20)) were:

AGB = β0 + β1·phase height + e (19)

AGB = β0 + β1·(height perc. 99·veg.ratio) + e (20)

where βi, i = [0, 1] denote the parameter values and e denotes a random error. The parameter estimates
are given in Table 1.

Table 1. The model parameter estimates.

Sensor Model β0 β1

TanDEM-X Equation (19) −208 10.9
ALS Equation (20) −51.7 0.128

Based on these models, Equations (19) and (20), the RS-based estimates denoted T̂RS in the
previous sections were generated through application across all pixels in each stand, and averaging,
to obtain biomass ha−1.

The random error in the field references in Remningstorp was set to 0, since all trees were
measured in the small stands. Thus, no sampling errors would occur. The corresponding random
error in Krycklan was estimated as the mean of estimated variances for all stands, and it was found to
be σ̂2

δ = 111 tons2/ha−2 (see Appendix B). The lambda parameters, the RMSE, the corrected RMSE,
and the bias corrected t-value are presented in Table 2.

Table 2. Estimated parameters for the error models, t-scores corrected for regression dilution, q-values,
RMSEs, and RMSE*s for the evaluations in the Krycklan test site.

Sensor Dataset λ*
0 λ*

1 σ2
ε

* t*
value q RMSE tons/ha RMSE* tons/ha

TanDEM-X Krycklan −9.35 0.847 114 −2.90 1.31 28.5 26.1
ALS Krycklan −49.5 1.01 59.3 −1.01 1.23 50.5 49.5
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The corresponding scatterplots (predicted-vs-reference) are given in Figure 5a,b. Since the
regression model indicates a systematic deviation for the evaluation test site, a few plots are predicted
with negative biomasses. These have no physical meaning and could be removed or truncated to zero.
Merely investigating the RMSE values gives no explanation to why the ALS estimates appear worse
than the TanDEM-X based estimates. However, scatterplots and visualizations of the error model
reveal how the significant systematic deviation due to the ALS model causes the larger RMSE.Remote Sens. 2020, 12, 505 12 of 13 

 

 

Figure 5. Scatterplots of estimated aboveground biomass (AGB) vs. field reference AGB at the 
evaluation test site Krycklan. (a) TanDEM-X (b) ALS. 

The estimated error model parameters may be displayed visually to simplify the understanding 
of how the error changes with the true AGB (Figure 6). The figure shows the systematic errors for 
different true AGB values, and around the systematic error a ±2𝜎𝜎�𝜀𝜀 wide band for the random error 
terms is displayed. For low AGB values, the error is smaller with the estimates based on TanDEM-X 
data, while at higher AGB values the errors approach similar magnitudes, although with different 
trends. The error related to the ALS estimates are however nearly constant for the entire range of 
values, but the downward shift is due to a bias. The t-values should be interpreted with regard to 27 
degrees of freedom (29 stands – 2 parameters), where the tabulated two-tailed 95% t-value = 2.052. 
Hence, for the TanDEM-X based estimates the t-value −2.90 implies that the null hypothesis should 
be rejected. For the ALS case, where the t-value is −1.01, the null-hypothesis cannot be rejected and 
𝜆𝜆1 may be considered as equal to one in the analysis. Hence, the special case (𝜆𝜆1 = 1) could have been 
used instead of computing both lambda parameters. Note that in Figure 5, the errors in the reference 
dataset complicates the visual interpretation, whereas in Figure 6 the effect of such errors have been 
removed. 

 

Figure 6. Visualization of the error structure for the empirical case study. The solid lines are due to 
𝜆𝜆0∗  and 𝜆𝜆1∗  and the band width represents the random errors as ±2𝜎𝜎𝜀𝜀∗. 

Figure 5. Scatterplots of estimated aboveground biomass (AGB) vs. field reference AGB at the
evaluation test site Krycklan. (a) TanDEM-X (b) ALS.

The estimated error model parameters may be displayed visually to simplify the understanding
of how the error changes with the true AGB (Figure 6). The figure shows the systematic errors for
different true AGB values, and around the systematic error a ±2σ̂ε wide band for the random error
terms is displayed. For low AGB values, the error is smaller with the estimates based on TanDEM-X
data, while at higher AGB values the errors approach similar magnitudes, although with different
trends. The error related to the ALS estimates are however nearly constant for the entire range of
values, but the downward shift is due to a bias. The t-values should be interpreted with regard to 27
degrees of freedom (29 stands – 2 parameters), where the tabulated two-tailed 95% t-value = 2.052.
Hence, for the TanDEM-X based estimates the t-value −2.90 implies that the null hypothesis should
be rejected. For the ALS case, where the t-value is −1.01, the null-hypothesis cannot be rejected and
λ1 may be considered as equal to one in the analysis. Hence, the special case (λ1 = 1) could have
been used instead of computing both lambda parameters. Note that in Figure 5, the errors in the
reference dataset complicates the visual interpretation, whereas in Figure 6 the effect of such errors
have been removed.

In the dataset from Krycklan, the random errors in the field references were relatively small
because of an ambitious study design where a large number of sample plots were distributed in each
stand. Thus, the corrections due to random errors in the field references were fairly moderate in the
case study demonstration. To illustrate the effects of larger random errors in the field reference, Figure 7
shows corrected and uncorrected estimates of RMSE for the case where additional random errors in the
field reference data were added through simulation (1000 repetitions with error terms assumed to be
normally distributed). When the random errors became very large, the correction exceeded the actual
biomass and the corrected result would be a negative biomass, which can never appear in practice.
These were therefore truncated to zero, which caused the small downward trend.
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In the case study dataset, the standard deviation of errors in the field reference was about
10 tons/ha; it can be seen in Figure 7 that this magnitude of uncertainty in reference data has only a
minor effect on the reported RMSEs. However, larger standard errors in the field reference would have
led to substantial overestimation of the RMSE, unless the corrections proposed in this paper would not
have been applied.

4. Discussion and Conclusions

This paper discusses the challenge of unambiguously reporting uncertainties when RS-based
estimates of forest characteristics are computed and evaluated at the level of plots and stands
by comparing them with field reference data. We demonstrate that conventional metrics such as
RMSE or R2 are ambiguous and that clearly different error structures in the RS-based estimates
may produce the same numerical values of these metrics. As an alternative, we propose that the
parameters of a parametric error model should be estimated and presented. The error model is
linear and consists of three parameters: λ0,λ1 and σε, allowing for a wide range of error structures
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(e.g., see Figures 1–3 and 5). The approach might be further developed by allowing for additional
parameters offering more flexibility, such as heterogeneous random errors (a variable magnitude of the
random errors across the range of true VOI values). Tian et al. [8,71] reported one such possibility, where
logarithmic transformations make multiplicative errors additive. Yet, while the model (Equation (5)) is
fairly simple it resolves several problems of under-determination, i.e., that different error structures
can produce the same value of an uncertainty metric, by clearly separating systematic and random
error components. Vasquez and Whiting [72] discussed how random and systematic errors could be
accounted for in uncertainty propagations in computer models. This required additional Monte Carlo
simulations and error propagation using Taylor’s series expansion, which increase the complexity.
The error model we adapt is straightforward and generic, which facilitates comparisons, yet it is
sufficiently complete to cover a wide range of different error structures. The parametric form makes
it comprehensive, since the error for any true value can be computed, compared to conventional
uncertainty metrics, where RMSE, bias and R2 all have limitations. The parametric error model offers a
possibility for standardized reporting of error structures and allows for adequate comparisons between
different studies. However, since conventional metrics are difficult to ignore, methods for relating the
proposed error parameters to bias and RMSE were also described. Inspection of density curves can
also provide additional insight to the structure of uncertainties.

Our second objective was to extend the use of the parametric error model to cover cases where the
field references used for evaluation contain random errors. The proposed estimators adjust for such
random errors. It was further shown how they could be combined with the error model to evaluate the
RS based estimates relative to the unobserved truth, and thus correct for uncertainties due to random
reference errors. For the case of constant bias across the range of true values, we identified a special
case where the variance of the random errors in the reference data should be subtracted from the
traditional MSE estimator to obtain a corrected, unbiased, MSE* estimator. An adjusted Student’s
t-test that corrects for regression dilution due to random errors in the reference data can be used to
determine if the special case is applicable.

The error model parameters can be visualized as linear error bands vs. the reference values to
provide an intuitive understanding of how the errors change across the range of true values. The
band center represents the systematic error component and the width the random error component,
for any true reference value (Figure 6). A potential development of this approach would be to allow
for heteroscedastic errors in the error model.

The difference between the parametric error model adapted in this study and prediction models
linking RS data with field references should be stressed. As described in the introduction, prediction
models where the field reference is used as the dependent variable and the RS metrics as the independent
variables, are often developed based on regression analysis [6,26,73–75]. Such models normally predict
the field reference unbiasedly, conditional on the RS data. However, this does not mean that the model
provides unbiased predictions conditional on the true field reference values. Instead, RS-based models
often provide predictions that tend towards the mean, i.e., low true values are overestimated and high
true values are underestimated [76]. With the error model, which links observed values with true
values for the VOI, this is reflected through λ1-values smaller than one. Thus, the residual variance
from a prediction model (which is typically reported in RS studies) would not be equal to the residual
variance of the error model, although the sizes would normally be of similar magnitude (e.g., [34]).

Corrections for errors in the reference data should be considered at least with q-values approaching
2 or lower. Depending on the application, this value might be chosen differently. Some papers using RS
to generate digital elevation models suggest that the reference data should be at least three times better
(q = 3) than the method to be evaluated [77,78]. From Figure 4, that corresponds to an overestimation
of the RMSE with 5.4% and might hence be a reasonable rule of thumb.

Our discussion does not address the reasons for errors in field reference data and in the case study
demonstration, it was assumed that sampling errors was the dominating random error source. This is
normally the case for estimates at the stand level and it agrees with the error budget presented by [79].
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Estimates at plot level may instead be limited by random positioning errors. These two error sources
are expected to make up the absolutely dominating error part. This study assumed that the references
were unbiased, hence not containing systematic errors. The magnitude and possible influence of, e.g.,
measurement errors and locational errors (crucial in RS) as random and systematic error components
should be covered more in future studies. In addition, model errors (e.g., relating the inventoried
diameter and tree species to biomass) were ignored in this study. The magnitude of model errors
is likely to vary depending on the values of the input variables, and systematic model errors can
sometimes contribute significantly to the total uncertainty [79].

The combination of presenting an error model and adjust for errors in the reference data has, to
our knowledge, not been presented previously for RS-based forest applications. We adapt the proposed
error model which agrees with the one presented by [8], and improve its use further. Problems related
to regression dilution and uncertainties in the reference data in general have been discussed extensively
in several books [12–14,66]. We propose a solution that covers both areas, which is relevant for many
forest RS cases. We suggest that it could be used as a baseline for error reporting.

It is concluded that improved RS techniques make the reference data errors more important to
consider (when compared to errors in RS-based estimates) and this paper provides a new method to
quantify the effects of such errors and correct for them. We suggest that such corrections should be
implemented if the ratio (q) between the standard deviation of random errors in the field reference and
the standard deviation of random errors in the RS-based estimate is smaller than 2. By reporting the
three parameters required for the error model, a more complete and transparent characterization of the
errors in the RS-based estimates can be provided, which simplifies comparisons between studies.
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Appendix A. Residual Variance Estimations

Task: determine the variance for the random component ε in Equation (5). The model is written as

TRS = λ∗0 + λ∗1·T + ε∗

TRS and T are the RS estimate and true value respectively, and λ∗0 and λ∗1 are model parameters.
ε∗ is a random error term with expected value zero. If true values were available, Var(ε∗) could be
obtained as the residual variance. When T is replaced with TRe f (objectively inventoried reference
data), the following regression model is obtained:

TRS = λ0 + λ1·TRe f + ε

with notation corresponding to the previous model. The task is now to find the relation between Var(ε)
and Var(ε∗). Var(ε) can be obtained using linear regression analysis. The following standard result is
used as a basis for our derivations:

Var(ε) = Var(Y)
(
1− r2

)
(A1)
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where r denotes correlation.
The following relationships can be defined:

Var(ε∗) = Var(TRS)(1− r(TRS, T)2) (A2)

Var(ε) = Var(TRS)(1− r
(
TRS, TRe f

)2
) (A3)

By applying a correction term, K, defined as K = Var(ε∗)/Var(ε) and by inserting Equations (A2)
and (A3), we obtain:

K =
1− r(TRS, T)2

1− r
(
TRS, TRe f

)2 =

1− Cov2(TRS,T)
Var(TRe f )·Var(T)

1− r
(
TRS, TRe f

)2 =

1−
λ1

2
·Var(T)

Var(TRe f )

1− r
(
TRS, TRe f

)2 =

1− λ1
2
·

(
1 + Var(δ)

Var(TRe f )

)2

·
Var(T)

Var(TRe f )

1− r
(
TRS, TRe f

)2 =

1−
Cov2(TRS,TRe f )

Var2(TRe f )
·

(
Var(T)+Var(δ)

Var(T)

)2
·

Var(T)
Var(TRe f )

1− r
(
T̂RS, T̂Re f

)2 =

1−
r(TRS,TRe f )

2
·Var(TRS)

Var(TRe f )
·

(
Var(TRe f )

Var(T)

)2

·

(
Var(T)

Var(TRS)

)
1− r

(
TRS, TRe f

)2 =

1−
r(TRS,TRe f )

2
Var(TRe f )

Var(TRe f )−Var(δ)

1− r
(
TRS, TRe f

)2

This derivation also uses (9), TRe f = T + δ. The asymptotically unbiased estimator is therefore
expressed as ˆVar(ε∗) = ˆVar(ε)·K̂.

Appendix B. Computational Example for TanDEM-X Case Study Data

This is a computational demonstration of using the proposed estimators to correctly estimate the
parameters λ∗0, λ∗1 and σ2∗

ε , that are required for the error model (5). This will be carried out for the
estimates based on TanDEM-X data, illustrated in the case study with Tables 1 and 2.

At the first test site (Remningstorp), a linear regression model (Equation (19)) is used to train the
parameters (Table 1) and then this model is applied to the TanDEM-X data for the second test site,
Krycklan, to generate the RS based estimates, TRS.

The next step is to estimate the biased error model parameters of λ̂0,1, which we denote Ψ0,1. They
are the estimated intercept and slope parameters.

TRS ∼ Ψ0 + Ψ1TRe f + ε

The parameter values are Ψ0 = −3.99, Ψ1 = 0.789, Var(ε) = 192, and the standard errors (SE) for
Ψ0,1 are 6.56 and 0.0644 respectively, for 27 degrees of freedom (DF).

To estimate the unbiased error model parameters λ̂0, λ̂1, σ̂2
ε we insert the biased parameters in the

estimator Equations (16)–(18).
Since there is a dependence between some of the equations, we will solve them in the order of

Equations (17) and (16), and lastly (18).
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Using (17)→ λ̂1 = 0.789·
(
1 + 111

1650−111

)
= 0.846.

Using (16)→ λ̂0 = 70.1− 0.846·93.9 = −9.34

Using (18)→ σ̂2
ε = 192·

[1− 0.848·1650
1650−111 ]

1−0.848 = 114.
These error parameters (including rounding errors) correspond to those presented in Table A1.

Additionally, we can compute the corrected t-value, t∗. This may be carried out first to possibly identify
the special case and hence avoid using the more extensive general estimators. The corrected Student’s
t-test with the modified, unbiased t score (Equation (15)) is used.

Assume H0 : Ψ1 = 1, Ha : Ψ1 , 1.
The normal (biased) t-score is computed as: t = Ψ1−1

SE(Ψ1)
= 0.789−1

0.0644 = −3.28
The unbiased t-score computed with Equation (15):

s2 =

∑n
i=1

[
TRS,t − TRS − λ̂1

(
TRe f ,i − TRe f

)]2

n− 2
=

∑27
i=1

[
T̂RS,i − T̂RS − λ̂1

(
TRe f ,i − TRe f

)]2

27− 2

gives s2 = 245 and t∗ = −2.90 respectively.
To reject the null hypothesis H0, it requires |t| > ttable DF,α, where ttable DF,α represents the significance

level α and DF is the degrees of freedom, the sample size minus the amount of parameters. Using
the two-tailed 5% level with 27 degrees of freedom, ttable 27,0.05 = 2.052 Hence, the null hypothesis
is rejected.

Table A1. Table with values computed for the training dataset, Krycklan, required to compute the
proposed error model parameters.

Term Value Description

Var(τ)RS 269 tons2 ha−2 Var(τ) is computed as the variance of the residuals for estimated values,
regressed on the reference values (evaluation). When the same dataset
is used for both training and evaluation, this number is directly
obtained as the variance of the estimated residuals.

Var
(
T̂Re f

)
1650 tons2 ha−2 Var

(
TRe f

)
is computed as the variance of all stand means in the

reference dataset.
Var(δ) 111 tons2 ha−2 Var(δ) is the mean of all stand variances, where each stand variance is

computed as the variance of the stand sample plots divided by the
amount of sample plots for the stand.

r2
RS,Re f 0.848 r2 is computed as the squared correlation coefficient between estimated

stand values (TRS) and the reference stand values
(
TRe f

)
TRe f 93.9 tons ha−1 TRe f is computed as the mean stand reference.
TRS 70.1 tons ha−1 TRS is the mean value of the stand estimates in Krycklan, based on

RS data.
Var(DRS) 260 tons2 ha−2 Var(DRS) is computed as the mean squared deviation from the mean of

the differences between references and RS estimates.
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Table A2. Table with stand values for the dataset Krycklan used in the case study. Field estimated
(T̂Re f ) biomass (AGB), standard deviation of biomass (sd), and the estimates based on RS data (T̂RS ).
The standard deviation was computed as the standard deviations of the sample plots for each stand.

Index Field Reference
AGB t/ha sd(AGB) t/ha RS Estimate t/ha

1 85.7 10.1 50.9
2 72.4 9.69 49.7
3 69.2 4.96 61.1
4 58.6 3.84 63.2
5 104 16.3 94.5
6 135 15.0 95.0
7 183 13.2 138
8 119 11.0 109
9 106 8.50 84.8
10 140 9.97 111
11 167 15.4 128
12 116 6.15 80.2
13 23.1 4.47 18.9
14 74.3 2.92 48.9
15 86.0 7.74 78.9
16 158 24.8 92.3
17 35.1 5.92 15.4
18 85.6 8.46 44.0
19 89.3 6.29 81.7
20 109 10.9 82.7
21 120 11.1 74.0
22 84.5 6.81 71.9
23 42.7 7.42 25.6
24 95.8 8.58 94.0
25 112 13.1 95.6
26 73.8 13.6 57.5
27 27.5 5.75 −10.1
28 113 9.04 81.3
29 37.1 5.28 16.0
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