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Abstract The general unbalanced mixed linear model with two variance components
is considered. Through resampling it is demonstrated how the fixed effects can be
estimated explicitly. It is shown that the obtained nonlinear estimator is unbiased
and its variance is also derived. A condition is given when the proposed estimator is
recommended instead of the ordinary least squares estimator.

Keywords Linear mixed models · Explicit estimators · Ordinary least squares
estimators · Maximum likelihood estimators · Abstract bootstrapping

1 Introduction

Unbalanced data have challenged statisticians for decades. In a simple two-way anal-
ysis of variance model with interactions and an unequal number of replicates per cell,
which is often referred to as the unbalanced case, it is not obvious at all how to test

B Dietrich von Rosen
dietrich.von.rosen@slu.se

Tatjana von Rosen
Tatjana.vonRosen@stat.su.se

Julia Volaufova
jvolau@lsuhsc.edu

1 Department of Statistics, Stockholm University, Stockholm, Sweden

2 Department of Engineering and Technology, Swedish University of Agricultural Sciences,
Uppsala, Sweden

3 Department of Mathematics, Linköping University, Linköping, Sweden

4 Biostatistics Program, LSU Health - New Orleans, School of Public Health, New Orleans, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00362-017-0937-1&domain=pdf
http://orcid.org/0000-0002-3135-4325


372 T. von Rosen et al.

various hypotheses and estimate effects. For this model, however, it is always pos-
sible to construct F-distributed test statistics, under standard normality assumptions,
although there remains a serious issue of interpreting the results. Approximate tests in
non-normal unbalanced two-way random models has been studied by Güven (2012).

In case of a two-way analysis of variance model with random effects the situation
starts to become even more challenging since it is not obvious how to set up the test
statistic so that inference can rely on the F-distribution. In this context, the idea to
sacrifice some power in order to create a balanced data set proposed by Khuri (1986),
Khuri and Littell (1987), Khuri (1990), Gallo and Khuri (1990), Öfversten (1993,
1995) and Christensen (1996) is very appealing.

The abovementioned works were mainly concerned with creating tests for variance
components and estimators of fixed effects in the two-way model with interactions
with the key idea that one can resample from the residuals to increase variation in
order to mimic a balanced model.

In this article we adopt the above mentioned ideas and focus on estimation of
fixed effects parameter in a mixed linear model with two variance components. The
new proposed estimator can be considered as an alternative to the classical moment
estimator, e.g., see Henderson (1953) or Al Sarraj and von Rosen (2009), where in the
latter reference improved moment estimators were discussed although the focus was
on variance components estimation.

Throughout the article, vectors (matrices)will be denoted by bold letters (bold upper
cases), C(·) denotes the column vector space, and for any matrix A, PA denotes the
orthogonal projection ontoC(A).∼Np(μ,�) stands for distributed as a p-dimensional
multivariate normal distribution with mean μ and dispersion matrix �. For a random
vector (variable) E[·] stands for its expectation, D[·] for the dispersion matrix (vari-
ance), and cov[·, ·] for the covariance between two vectors (random variables). Other
notation will be defined in the subsequent text as needed.

2 Model

The main focus in this article is on the explicit estimation of Xβ, the vector of fixed
effects parameters, in the following mixed linear model,

y = Xβ + Zγ + ε, (2.1)

where y is an n × 1 observable random vector. Let X be an n × p, known model
matrix of rank rank(X) = k ≤ p < n and Z an n × m, m < n known matrix, such
that C(Z) �⊂ C(X).

Here, β ∈ Rp is unknown and fixed parameter of the mean. Furthermore, the vector
of random effects, γ ∼ Nm(0, σ 2

γ Im), is assumed to be independently distributed of
the random errors ε ∼ Nn(0, σ 2 In); the variances σ 2

γ ≥ 0 and σ 2 > 0 are unknown
scalar parameters. Note that the model comprises the important case when E[γ ] �= 0
because the mean of Zγ can be “moved into” Xβ.

Let ρ =σ 2
γ /σ 2. The covariance matrix of y is then D[ y]=σ 2(ρZZ′ + In). The

ordinary least squares estimator (OLS) is always available for Xβ, i.e., ˜Xβ = PX y,
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but it is known from maximum likelihood theory that in general, the weighted least
squares estimator asymptotically performs better. In model (2.1), explicit closed form
maximum likelihood estimators are available only in special cases. Therefore, in this
article the aim is to find an explicit estimator for Xβ, which also uses the random
effects variation due to the presence of random effects γ .

3 Main result

Denote l = rank(X : Z), then the dimension of the column space C(X)⊥ ∩ C(X : Z)

is l − k. Let A be an n × (l − k) matrix, such that the column vector space satisfies
C(A) = C(X)⊥ ∩ C(X : Z) = C (

P(X :Z) − PX
)

and A′A = I l−k . The matrix A can
be obtained through the Gram-Schmidt orthogonalization algorithm.

Denote B1 an n × k matrix, such that B1B′
1 = PX and B′

1B1 = Ik . Let B2 =
A(A′ZZ′A)−1/2, and let B3 be any n× (n− l)matrix, such that C(B3) = C(X : Z)⊥
with B′

3B3 = In−l . From the assumptions it follows that A′ZZ′A is positive definite
and therefore its inverse exists: rank(A′ZZ′A) = rank(A′Z) = rank(A : Zo) −
rank(Zo), where Zo is any matrix spanning C(Z)⊥; since A is of full column rank,
the statement is true because C(A) ∩ C(Z)⊥ = C(X : Z) ∩ C(X)⊥ ∩ C(Z)⊥ = {0}.

The matrices Bi , i = 1, 2, 3, satisfy

Rn = C(B1) � C(B2) � C(B3).

Thus, a one-to-one transformation (B1 : B2 : B3)
′ of the model (2.1) yields the

equivalent representation through the following three models:

B′
1 y = B′

1Xβ + B′
1Zγ + B′

1ε, (3.1)

B′
2 y = B′

2Zγ + B′
2ε, (3.2)

B′
3 y = B′

3ε. (3.3)

Since B′
3 y is normally distributed and B3 is orthogonal to (B1 : B2), the vector

B′
3 y is independent of B

′
1 y as well as B

′
2 y.

In the subsequent, the models (3.1), (3.2), and (3.3) constitute the basis for the
derivation of the estimator for Xβ.

From construction of B1 we have B1B′
1 y = PX y = ˜Xβ, the OLS estimator of

Xβ, which is functionally independent of the variance components. However, the
random effects vector γ is included in both (3.1) and (3.2), and thus for an alternative
to the OLS estimator, i.e. a weighted estimator, (3.2) contains essential information
about Xβ.

Notice E[B′
2 y] = 0, B′

2B2 = (A′ZZ′A)−1, and B′
2ZZ

′B2 = I l−k . Hence
D[B′

2 y] = σ 2(ρ I l−k + B′
2B2), which implies that the components in B′

2 y are
correlated and this can cause technical inference problems because if, for example,
conditioning B′

1 y on B′
2 y, the inverse of D[B′

2 y] is needed and may be difficult to
handle.

Now, one can add an extra random term to B′
2 y, whichmeans adding extra variation,

in such a way that the dispersion matrix of the resulting random vector becomes
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diagonal, and its inverse is then easy to utilize. This is a key idea of this article.
The main remaining issue is how to add the necessary portion of proper variation,
since σ 2

γ and σ 2 are both unknown.
The problem can be resolved adopting the ideas of Gallo, Khuri, Öfversten (see

the Introduction for references), and others. These authors performed some kind of
abstract bootstrapping. Implementing their ideas means to take the important step of
adding observable random variables from (3.3) to (3.2) so that eventually a diagonal
dispersion matrix is obtained. Let the new random vector u2 be defined by

u2 = B′
2 y + (λI l−k − B′

2B2)
1/2sel(B′

3 y, (l − k)). (3.4)

We have introduced here a selection operator, sel(B′
3 y, (l − k)), which selects l − k

independent observations from B′
3 y ∼ Nn−l(0, σ 2 I). This selection may be repre-

sented by e.g., an (l − k) × (n − l) matrix R, whose rows are the arbitrarily chosen
l − k rows of In−l . Obviously, RR′ = Il−k . One possible version of (3.4) is then

u2 = B′
2 y + (λI l−k − B′

2B2)
1/2RB′

3 y. (3.5)

The scalar λ is chosen large enough so that the matrix λI l−k − B′
2B2 is nonnegative

definite and hence the square root in (3.4) exists. There exist several matrix square
roots but the different choices do not effect the results in any way.

Theorem 3.1 Let u2 be given by (3.5). Then,

u2 ∼ N(l−k)(0, σ 2(ρ + λ)I l−k).

Proof Since u2 is a linear combination of two independently normally distributed
random vectors B′

2 y and B′
3 y, it is also normally distributed. Thus, only the first two

moments of u2 have to be determined. For the expectation, it follows immediately that
E[u2] = 0 because E[B′

2 y] = 0 and E[B′
3 y] = 0. Further, direct calculations show

that D[u2] = σ 2(ρ + λ)I l−k , which completes the proof. ��
It is clear that if u2 is to be used, the parameter λ should be chosen as small

as possible (with respect to the existence of the square root) because the dispersion
of u2 is proportional to λ. Thus, a natural choice for λ is the largest eigenvalue of
B′
2B2 = (A′ZZ′A)−1.
Note that all components in u2 are mutually independent, which indeed is a very

nice property. Moreover, denote u1 = B′
1 y. Then, because of independence between

u1 and B′
3 y,

cov[u1, u2] = cov[B′
1Zγ , B′

2Zγ ] = σ 2ρ B′
1ZZ

′B2.

Conditioning u1 on u2 we obtain

E[u1|u2] = E[u1] + cov[u1, u2]D[u2]−1u2

= B′
1Xβ + ρ

ρ + λ
B′
1ZZ

′B2u2.
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Thus, if the ratio of the variances ρ = σ 2
γ /σ 2 is known and because the distribution

of u2 is independent of β, the ”natural” estimator of Xβ is given by B1
̂

̂B′
1Xβ, where

̂

̂B′
1Xβ = u1 − ρ

ρ + λ
B′
1ZZ

′B2u2. (3.6)

In general, the variances or their ratio are not known, hence the ratio

ρ

ρ + λ
= 1 − λ

ρ + λ
(3.7)

has to be estimated.
Denote after selection, the remaining variables in (3.3) by

u3 ∼ Nn−2l+k(0, σ 2 In−2l+k). (3.8)

Moreover,

E[(u′
2u2)

−1] = 1

(l − k − 2)σ 2 (ρ + λ)−1, l − k > 2, (3.9)

since

u′
2u2

σ 2(ρ + λ)
∼ χ2(l − k),

and E[u′
3u3] = (n − 2l + k)σ 2.

Because u2 and u3 are independently distributed, it immediately follows that
(ρ + λ)−1 is estimable, i.e.

l − k − 2

n − 2l + k
E[u′

3u3(u
′
2u2)

−1] = 1

ρ + λ
, (3.10)

and thus also Xβ can be estimated.

Proposition 3.2 For themodel in (2.1), let ui , i = 1, 2, 3, and B j , j = 1, 2, be defined
as in the text preceding this proposition. Then, if n − 2l + k > 0 and l − k − 2 > 0,

̂Xβ = B1(u1 − f ), (3.11)

where f = (1 − cu′
3u3(u

′
2u2)

−1)B′
1ZZ

′B2u2, c = λ(l − k − 2)/(n − 2l + k), and
λ equals the largest eigenvalue of B′

2B2.

The proposed estimator for Xβ is a nonlinear estimator since it is nonlinear in u2
and u3. The main objection against this estimator might be that the choice of l − k
components from B′

3 y is arbitrary. Notice that the distribution of u2 and u3 does not
depend on choice of R in (3.5). Some kind of U -statistic approach may circumvent
this type of arbitrariness but this will not be explored in this article.

123



376 T. von Rosen et al.

4 E[̂Xβ] and D[̂Xβ]
In this section, E[̂Xβ] and D[̂Xβ]will be studied, where ̂Xβ was given in Proposition
3.1. The calculations are somewhat lengthy but fairly straightforward. In the following,
the next lemma is needed.

Lemma 4.1 Let u2 be given by (3.5). Then,

(i) E[u2(u′
2u2)

−1u′
2] = (l − k)−1 I l−k;

(ii) E[u2(u′
2u2)

−1(u′
2u2)

−1u′
2] = (l − k)−1(l − k − 2)−1(ρ + λ)−1 1

σ 2 I l−k .

Proof Let � be an arbitrary orthogonal matrix. Since �′u2 has the same distribution
as u2, �′E[u2(u′

2u2)
−1u′

2]� = E[u2(u′
2u2)

−1u′
2] and

�′E[u2(u′
2u2)

−1(u′
2u2)

−1u′
2]� equals E[u2(u′

2u2)
−1(u′

2u2)
−1u′

2]. Therefore,

E[u2(u′
2u2)

−1u′
2] = c1 I l−k,

E[u2(u′
2u2)

−1(u′
2u2)

−1u′
2] = c2 I l−k,

for some constants c1 and c2. Applying the trace-function to these relations yields
c1 = (l − k)−1 and

c2 = (l − k)−1E[(u′
2u2)

−1] = (l − k)−1(l − k − 2)−1(ρ + λ)−1 1

σ 2 ,

where (3.9) was utilized (see e.g., Kollo and von Rosen 2005; Lemma 2.4.1 for dis-
cussion). ��

The following moment relations will be used in the subsequent calculations:

E[u1] = B′
1Xβ, E[ui ] = 0, i = 2, 3, E[ f ] = 0,

E[u1|u2] = B′
1Xβ + ρ(ρ + λ)−1B′

1ZZ
′B2u2, (4.1)

D[u1] = σ 2(ρB′
1ZZ

′B1 + Ik), (4.2)

D[u2] = σ 2(ρ + λ)I l−k, (4.3)

E[u′
3u3] = (n − 2l + k)σ 2, (4.4)

E[(u′
3u3)

2] = (n − 2l + k)(n − 2(l − 1) + k)(σ 2)2. (4.5)

Here we have used u′
3u3/σ

2 ∼ χ2(n − 2l + k).
Since E[u2(u′

2u2)
−1] = 0, it follows from Proposition 3.2 that for all β ∈ Rk ,

E[̂Xβ] = E[B1u1] = Xβ. (4.6)

Furthermore, from Proposition 3.2 it follows that

D[̂Xβ] = B1 (D[u1] + D[ f ] − 2cov[u1, f ]) B′
1, (4.7)
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since it can be shown that cov[u1, f ] = cov[ f , u1]. The dispersion D[u1] was pre-
sented in (4.2) and it remains to derive D[ f ] and 2cov[u1, f ]. We start calculating

D[ f ] = E[(1 − cu′
3u3(u

′
2u2)

−1)2B′
1ZZ

′B2u2u′
2B

′
2ZZ

′B1],

where as in Proposition 3.2,

c = λ
l − k − 2

n − 2l + k
.

Hence, we calculate

E[B′
1ZZ

′B2u2u′
2B

′
2ZZ

′B1] = σ 2(ρ + λ)B′
1ZZ

′B2B′
2ZZ

′B1,

where (4.3) was used;

−2E[cu′
3u3(u

′
2u2)

−1B′
1ZZ

′B2u2u′
2B

′
2ZZ

′B1]
= −2c(n − 2l + k)σ 2E[u2(u′

2u2)
−1u′

2]B′
1ZZ

′B2B′
2ZZ

′B1

= −σ 22c(n − 2l + k)(l − k)−1B′
1ZZ

′B2B′
2ZZ

′B1,

where (4.5) and Lemma 4.1 (i) were used;

E[c2(u′
3u3)

2(u′
2u2)

−2B′
1ZZ

′B2u2u′
2B

′
2ZZ

′B1]
= c2(n − 2l + k)(n − 2(l − 1) + k)(σ 2)2E[u2(u′

2u2)
−1(u′

2u2)
−1u′

2]
×B′

1ZZ
′B2B′

2ZZ
′B1

= σ 2c2
(n − 2l + k)(n − 2(l − 1) + k)

(l − k)(l − k − 2)(ρ + λ)
B′
1ZZ

′B2B′
2ZZ

′B1,

where (4.5) and Lemma 4.1 (ii) were used, which together yield

D[ f ] = σ 2
(

ρ + λ − 2c
(n − 2l + k)

l − k

+ c2
(n − 2l + k)(n − 2(l − 1) + k)

(l − k)(l − k − 2)(ρ + λ)

)

B′
1ZZ

′B2B′
2ZZ

′B1. (4.8)

Next cov[ f , u1] will be calculated via conditioning u1|u2. Here E y[·] indicates
that expectation is taken with respect to the distribution of y.

cov[ f , u1] = Eu2Eu1|u2Eu3 [(1 − cu′
3u3(u

′
2u2)

−1)B′
1ZZ

′B2u2u′
1]

= Eu2 [(1 − c(n − 2l + k)σ 2(u′
2u2)

−1)B′
1ZZ

′B2u2u′
2B

′
2ZZ

′B1]
×ρ(ρ + λ)−1

= σ 2ρ

(

1 − c
(n − 2l + k)

(l − k)(ρ + λ)

)

B′
1ZZ

′B2B′
2ZZ

′B1, (4.9)

where (4.4) and Lemma 4.1 (i) have been applied. Thus, D[̂Xβ] is obtained.
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Denote the combined constants in D[ f ] and cov[ f , u1] by

ρ1 = ρ + λ − 2
l − k − 2

l − k
λ + l − k − 2

l − k

n − 2(l − 1) + k

n − 2l + k

(λ)2

ρ + λ

−2ρ

(

1 − (l − k − 2)λ

(l − k)(ρ + λ)

)

. (4.10)

After substituting (4.8), (4.9), and (4.10) into (4.7), we get

D[̂Xβ] = σ 2PX + σ 2ρPX Z
[

I + ρ1

ρ
Z′B2B′

2Z
]

Z′PX . (4.11)

The above obtained results are summarized in the next theorem.

Theorem 4.2 Let ̂Xβ be given by (3.11) and let ˜Xβ be the OLS of Xβ. Then

(i) for all β ∈ Rk, σ 2 > 0, ρ ≥ 0,

E[̂Xβ] = Xβ;

(ii)

D[̂Xβ] = D[˜Xβ] + σ 2ρ1PX ZZ′B2B′
2ZZ

′PX ,

where ρ1 is given by (4.10).

5 Comparison of D[̂g′β] with the dispersion matrix of the OLS
estimator

Let g′β be an arbitrary estimable function ofβ , i.e., g ∈ C(X ′). Equivalently, g = X ′h
for some h. From (4.11) and Theorem 4.2 we get immediately,

D[̂g′β] = D[̂h′Xβ] = D[˜g′β] + σ 2ρ1h′PX ZZ′B2B′
2ZZ

′PXh.

As presented in (4.2), the dispersion matrix of ˜Xβ = B1u1 = PX y equals

σ 2B1(ρB′
1ZZ

′B1 + Ik)B′
1 = σ 2PX (ρZZ′ + Ik)PX ,

from where it immediately follows,

D[˜g′β] = σ 2h′PX (ρZZ′ + Ik)PXh.

Let d = l−k−2
l−k . In order to see if the proposed estimator̂β improves the ordinary least

squares estimator, according to Theorem 4.2 (ii), the condition under which ρ1 < 0,
i.e.

ρ + λ − 2dλ + d n−2(l−1)+k
n−2l+k

(λ)2

ρ+λ
− 2

(

ρ − d ρλ
ρ+λ

)

< 0
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Table 1 Configuration settings and calculated λ for the simulation study

Configuration σ 2 λ n l n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

1 1 7.175 30 3 13 11 6 – – – – – – –

2 1 2.089 38 10 3 3 3 3 4 7 4 2 5 4

In all cases β = 10

has to be studied. This expression is equivalent to

ρ > λ + d
(

n−2(l−1)+k
n−2l+k − 2

)

λ2

ρ+λ
, (5.1)

where it has been used that

ρ
ρ+λ

= 1 − λ
ρ+λ

.

Theorem 5.1 Let ̂Xβ be given by (3.11). Then for every estimable function g′β,
D[˜g′β] − D[̂g′β] > 0 if and only if

ρ > λ(1 − (1 − 2
n−2l+k )(1 − 2

l−k ))
1
2 .

Proof Manipulating (5.1) yields that ̂Xβ has a smaller dispersion matrix if and only
if

ρ − λ + λ2

ρ+λ
n−2l+k−2
n−2l+k

l−k−2
l−k > 0.

The statement of the theorem is the solution to this inequality. ��
From Theorem 5.1 it follows that the inequality ρ >λ is a simple criterion for deciding
if ̂Xβ should be used instead of the OLS estimator, although ρ has to be estimated.
Here we can use as variance estimator σ̂ 2 = (n−2l+k)−1u′

3u3. However, if we use
the estimator ρ̂ = n−2(l+1)+k

l−k u′
2u2(u

′
3u3)

−1 − λ, which is motivated by (3.8), we
observe that if ρ << λ, ρ̂ can take negative values. Similarly, if we use the estimator
σ̂ 2

γ = (l − k)−1u′
2u2 − λσ̂ 2, which is also motivated by Theorem 3.1 and (3.8), we

can observe that if σ 2
γ << σ 2, σ̂ 2

γ can take negative values, indicating that the OLS
estimator is preferable.

6 Example: unbalanced one-way random model

A special case of model (2.1) is the one-way random effects model

yi j = β + γi + εi j , (6.1)
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Table 2 Empirical estimates, and the theoretical variances D[β̃] and D[̂β] for Configuration 1

ρ = σ2
γ

σ2 β̃ (OLS) ̂β σ̂ 2 σ̂ 2
γ D[β̃] D[̂β] ̂MSE(β̃) ̂MSE(̂β)

0.10 9.996 9.995 0.997 0.036 0.070 0.274 0.069 0.269

0.25 9.995 9.996 0.999 0.312 0.124 0.324 0.121 0.326

0.50 9.997 9.996 1.001 0.700 0.214 0.407 0.214 0.419

1.00 9.910 9.999 1.003 1.024 0.396 0.574 0.394 0.567

1.50 9.996 9.993 1.001 1.486 0.577 0.741 0.577 0.739

2.00 9.994 9.999 0.999 2.123 0.758 0.907 0.763 0.923

2.50 10.017 10.009 1.007 2.361 0.939 1.074 0.938 1.066

5 10.007 10.008 0.997 4.873 1.844 1.907 1.866 1.933

10 9.996 9.991 0.998 10.080 3.656 3.574 3.541 3.509

20 10.054 10.039 0.996 19.954 7.278 6.907 7.334 6.912

Bold values indicate the instanceswhen the newly suggested estimator has smaller variance than the ordinary
least squares estimator

Table 3 Empirical estimates, and the theoretical variances D[β̃] and D[̂β] for Configuration 2

ρ = σ2
γ

σ2 β̃ (OLS) ̂β σ̂ 2 σ̂ 2
γ D[β̃] D[̂β] ̂MSE(β̃) ̂MSE(̂β)

0.10 9.999 10.000 0.999 0.108 0.037 0.045 0.037 0.044

0.25 10.000 10.000 0.994 0.262 0.054 0.061 0.056 0.062

0.50 10.007 10.007 0.992 0.529 0.082 0.087 0.082 0.087

1.00 9.996 9.993 1.004 0.986 0.138 0.140 0.140 0.142

1.50 10.003 10.002 0.999 1.475 0.195 0.191 0.196 0.194

2.00 9.999 9.998 0.999 1.964 0.251 0.243 0.257 0.252

2.50 9.992 9.993 1.001 2.486 0.307 0.294 0.307 0.299

5 9.991 9.988 1.001 4.999 0.587 0.547 0.604 0.569

10 9.996 9.994 1.007 9.961 1.148 1.049 1.155 1.076

20 10.017 10.015 1.002 20.015 2.270 2.050 2.200 2.033

Bold values indicate the instanceswhen the newly suggested estimator has smaller variance than the ordinary
least squares estimator

where i = 1, . . . , l, j = 1, . . . , ni , and n = ∑l
i=1 ni . The expectation β ∈ R is our

parameter of interest. All distributional assumptions of model (2.1) are assumed to
hold.Here k = 1, thematrix X is ann-dimensional columnvector of ones, X = 1n , and
the matrix Z is a block matrix of column vectors of ones of length ni , Z = Diag{1ni }.
The OLS estimator of β is ȳ = u1, the average of all n observations. It is well known
that the maximum likelihood estimator (MLE) of μ, in case of an unbalanced model,
has to be obtained iteratively. Note that C(X) ⊆ C(Z) and thus l = rank(Z).

We illustrate our procedure using a small simulation study for model (6.1). A broad
range for the ratio of the variance components ρ is considered. The number of levels
l of γ is chosen as small as l = 3 with relatively higher number of observations ni
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Fig. 1 Histogram from 10,000 estimates of σ̂ 2
γ for Configuration 2, for ρ = 5, illustrating positive proba-

bility of negative estimates of σ 2
γ

Fig. 2 Histogram from 10,000 estimates of ̂β for Configuration 2, for ρ = 5, illustrating the symmetry of
the distribution of ̂β

per level, and a relatively higher l = 10, with smaller numbers ni . Because of the
proportionality, we considered σ 2 = 1 only.

All setting configurations are presented in Table 1. For each configuration, 10,000
simulations were carried out. The OLS estimates as well as ̂β estimates are presented
as averages of 10,000 observed estimates. In addition, the estimates of σ 2 and of σ 2

γ

are presented. The observed MSE of the OLS estimators as well as of the ̂βs are also
included here. The results are presented in Tables 2 and 3.
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Fig. 3 Histogram from 10,000 estimates of the OLS estimator for Configuration 2, for ρ = 5

In Sect. 5, it was suggested that the new proposed estimator has a smaller dispersion
if ρ > λ = 7.175 which is in complete agreement with Table 2 where for ρ = 10
or ρ = 20 simulations indicate the new estimator has a smaller dispersion than the
OLS estimator, but not for ρ = 5. The results for Configuration 2 are presented in
Table 3. Now using Table 3 and Theorem 5.1, it follows that ρ should be larger than
1.97 if ̂β is to be applied instead of the OLS estimator. This strategy is supported by
results of simulations presented in Table 3. The tables indicate that even a smaller ρ

can be used but one has to remember that estimated variances and MSEs are applied,
in particular that σ̂γ can become negative (see Figure 1). However, with confidence
we can state that the new estimator is better than the least squares estimator in certain
regions of the parameter space (described through ρ) as it is shown in Theorem 5.1 and
simulations. In addition, we would like to point out that in spite of̂β being a nonlinear
estimator, it is an unbiased estimator as is shown in (4.6), and as we observed in
our simulations, its distribution seems to be symmetric around its expectation. For
illustration see histograms of ̂β and of the OLS estimators in Figure 2 and Figure 3,
respectively.
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