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Abstract: Over 640 million people in Africa are expected to rely on solid-fuels for cooking by 2040.
In Western Kenya, cooking inefficiently persists as a major cause of burden of disease due to household
air pollution. Efficient biomass cooking is a local-based renewable energy solution to address this
issue. The Life-Cycle Assessment tool Simapro 8.5 is applied for analyzing the environmental impact
of four biomass cooking strategies for the Kisumu County, with analysis based on a previous energy
modelling study, and literature and background data from the Ecoinvent and Agrifootprint databases
applied to the region. A Business-As-Usual scenario (BAU) considers the trends in energy use until
2035. Transition scenarios to Improved Cookstoves (ICS), Pellet-fired Gasifier Stoves (PGS) and
Biogas Stoves (BGS) consider the transition to wood-logs, biomass pellets and biogas, respectively.
An Integrated (INT) scenario evaluates a mix of the ICS, PGS and BGS. In the BGS, the available
biomass waste is sufficient to be upcycled and fulfill cooking demands by 2035. This scenario has the
lowest impact on all impact categories analyzed followed by the PGS and INT. Further work should
address a detailed socio-economic analysis of the analyzed scenarios.

Keywords: agroforestry; waste valorization; sustainable development goals; renewable energy;
bioenergy transitions; circular bioeconomy; clean cooking; life-cycle assessment; energy policy

1. Introduction

It is estimated that over 40% of the world’s population is currently relying on solid-fuels for
cooking and heating [1]. According to the World Health Organization (WHO), the inefficient utilization
of biomass and coal for these purposes constitutes today’s largest global environmental health risk [2,3].
Worldwide, over 4 million deaths occur per year from illnesses related to the smoke from solid-fuel
combustion indoors, which mainly affects women and children [4,5]. In developing countries, wood
and charcoal continue to play a vital role in meeting household energy demands, where it remains easily
accessible and affordable [6–8]. Thus, the transition to cleaner cooking fuels in advanced cookstoves
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constitutes an important way to address several of the 17 Sustainable Development Goals (SDGs) [9,10],
contributing to address at least five of the SDGs, including the: (1) Good health and well-being (SDG
3); (2) Gender equality (SDG 5); (3) Affordable and clean energy (SDG 7); (4) Climate action (SDG 13);
and (5) Life on land (SDG 15).

In Sub-Saharan Africa (SSA), only 35% of the population have access to electricity and 80% of the
people rely on traditional firewood, charcoal, animal dung and agricultural residues for cooking [11,12].
Negative environmental impacts such as global warming due to the emission of carbon dioxide (CO2),
nitrous oxide (N2O) and methane (CH4), eutrophication related with the emission of nitrogen oxides
(NOx) and N2O, acidification associated with the emission of sulphur dioxide (SO2) and NOx, and
toxicological effects on humans related with the emission of NOx and particulate matter (PM) are
potentially intensified by traditional cooking. In Kenya, the cooking sector emissions are driven by
rapid population and economic growth [13], and household air pollution (HAP) causes 15,600 deaths
with direct impacts on the health of around 15 million people [14–17].

In the Kenyan context, the transition to advanced cookstoves using upgraded biomass fuels
(e.g., wood pellets and biogas) produced via renewable energy strategies constitutes a relevant way to
mitigate HAP. Such locally produced biofuels based on waste valorization and agroforestry strategies
have a great potential to enhance land restoration and livelihoods, as agroforestry is a powerful tool to
enhance multiple ecosystem services [18]. Famers in Kenya are responsible for producing a substantial
part of the food consumed in the region. In this context, an integrated management of crop-residues at
the farm scale can tackle challenges of food security, poverty and climate change [18,19]. Furthermore,
the utilization of crop-residues remains an opportunity for sustainable bioenergy production in rural
and peri-urban communities [20]. In such a perspective, the Kenyan government has worked on
designing proper strategies towards the deployment of efficient bioenergy systems [21,22], including
the use of both agricultural crop [23] and industrial biomass residues [21] for the production of biogas
and densified biomass fuels. The Kenya Country Action Plan (CAP) for Clean Cookstoves and Fuels
has established a target to promote the installation of cleaner cookstoves in 5 million households by
2020 [24]. With a thermal efficiency over two times higher than that achieved by improved cookstoves
using wood-logs and sticks [25,26], advanced biomass cooking solutions such as micro-gasifier and
biogas cookstoves can be key in technologies to address such clean cooking systems.

Despite the existing initiatives, there is currently a knowledge gap on how to design sustainable
cooking strategies in the context of emerging circular bioeconomies. Few studies have analyzed the
life-cycle environmental impact of integrated biomass fuel/cookstove strategies on the mitigation of
HAP at the sub-national level. Various studies have been analyzed the impact of different energy
transition options [8,27,28]. In Western Kenya, Carvalho et al. [26] have applied the Long-Range
Energy Alternative Planning (LEAP) software to analyze the energy savings and emissions caused by
distinct bioenergy strategies on HAP in Kisumu County. The study was applied for the time span
between 2015 and 2035, showing part of the environmental benefits of such strategies. Although the
previous energy modelling study [26] shows the HAP mitigation potential at the sub-national level,
there is currently a limited number of studies assessing the overall environmental performance of these
transitions in a life-cycle assessment (LCA) perspective.

As defined by the International Standard Organization (ISO) in the ISO 14040 [29], LCA is a
technique used to quantify the environmental impacts of a product system like a cooking fuel over its
whole life cycle, from raw material acquisition through production, use, end of life, treatment, recycling,
and disposal [29]. A previous LCA study conducted in Kenya observed that biogas from animal
dung and ethanol from wood as cooking fuels had the best environmental performance in almost all
environmental impact categories while charcoal briquettes from wood exhibited poor environmental
performance due to emissions resulting from kiln operation [30]. Okoko et al. [31] confirmed the
higher carbon footprint of unimproved charcoal value-chain in relation to alternative biomass energy
solutions for cooking in Kenya and Tanzania. Lansche and Müller performed a comparative LCA
on traditional biomass and biogas household cooking systems in Ethiopia, demonstrating the high
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potential for environmental improvements when adopting biogas systems. Although the previous
LCA studies analyzed the environmental impacts of alternative cooking value-chains in a certain static
moment in time, they did not include a LCA considering regional energy forecasts, i.e., a dynamic
LCA approach [32]. The dynamic LCA method can be applied to analyze environmental impacts in
different time spans. Pehnt [33], for instance, considered the time-variation of electricity mix in the
assessment of GHGs and acidification impacts. García-Gusano et al. [34] combined energy forecasts
using LEAP with a dynamic LCA approach to evaluate the effects of various coal power plant retrofits
over time. Although various dynamic LCA studies conducted, there is currently a lack of approaches
dedicated to analyzing household energy transitions in the developing region context.

In the present research, a dynamic LCA based data provided by a previous energy forecast
study [26] is conducted to determine the environmental sustainability of emerging biomass cooking
strategies in the Kisumu County (Western Kenya). Although most biomass cookstoves have not
progressed to the point that they are equivalent to Liquefied Petroleum Gas in terms of efficiency
and cleanliness in the household indoor environments [35], this study is confined to evaluate the
advances in the local use of biomass resources in the context of renewable energy and bioeconomy
transitions. WIth this background, the present work constitutes not only an LCA of alternate biomass
value-chains, but also a methodological development in the integration of LEAP/LCA tools for the
analysis of the environmental sustainability of distinct energy policies. Despite the fact that several
studies have conducted life-cycle analysis of products and systems at the country [34,36] and city
levels [37,38], few have combined integrated energy models with LCA to evaluate the environmental
impact of energy policy scenarios at the sub-national level. The Kisumu County in Western Kenya
was selected for the case study as it presents a large availability of endogenous biomass resources,
including agricultural and industrial residues that can potentially be used for the production of cooking
biofuels. The region presents an important area of fertile agricultural land that may serve for the
establishment of local-based agroforestry systems [39,40], which can be used to produce wood fuel in a
more sustainable and resilient manner.

2. Materials and Methods

The present study is focused on analyzing the environmental performance of four bioenergy
transition strategies for household cooking in the Kisumu County (Kenya), considering the importance
of biomass local resources for addressing the resilience of communities in the developing country
context. The study uses some of the results from a previous energy modelling study [26] as input data
to conduct a dynamic LCA. Although the study does not measure the economic and social implications
of the different transition scenarios, the design of the different scenarios for the environmental
assessment is based on the premise that the efficient valorization and use of local biomass resources is
an important waste management solution [31]. Additionally, this study includes the application of
woody agroforestry biomass systems, which are powerful tools to enhance access to energy and food,
land restoration and sustainable livelihoods [18,39]. In Western Kenya, the sustainable use of biomass
for cooking has an important role to enhance various ecosystem services through the creation of local
businesses. Considering the limitations observed to collect social and economic data, the present
environmental assessment serves as a first step for conducting a full sustainability assessment on
advanced local biomass-based cooking transition options. The environmental assessment is focused on
the relevance of introducing renewable energy systems in a developing region of Kenya in the context
of the SDGs [10,41].

Considering the limited number of dynamic LCA studies applied to the developing region context,
the present study focuses on conducting an environmental impact assessment of the bioenergy transition
strategies previously analyzed in an energy modelling study conducted by Carvalho et al. [26]. In line
with the previous study, the present research analyzes the environmental sustainability of the energy
transition options in relation to a business-as-usual scenario for the time span between 2015 and
2035. The dynamic LCA approach considers the evolution of the household energy mix computed
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in the LEAP model for that time span. The LCA results are presented for both the baseline and end
years, considering the projections in the evolution of energy demand and supply until the year 2035,
taking into account historical changes in the economy and demographic conditions in the Kisumu
County. As in the LEAP study [26], in the present LCA study, the BAU scenario also considers that
no policies will be introduced to mitigate environmental impacts of traditional cooking systems.
The present LCA also considers the evolution of the household energy demands according to the
following biomass/cookstove transition scenarios (Figure 1):

(i) Business as usual, considering the evolution according to historical trends on population growth
and urbanization, whereas the use of liquefied petroleum gas (LPG) and electricity will continue
the same and the share of traditional cooking systems will be reduced according to historical
trends (no transition policies adopted);

(ii) Improved cookstoves combusting wood-logs produced via locally sustainable agroforestry
systems (ICS), and biomass briquettes produced with residues with crop residues such as
maize cobs;

(iii) Micro-gasifying cookstoves using pelletized fuels made of sugarcane bagasse and woody biomass
produced in agroforestry systems (PGS);

(iv) Biogas stoves with household organic waste and animal manure being anaerobically digested to
a gaseous mixture including methane (CH4) in local biodigestors (BGS);

(v) An Integrated (INT) scenario evaluated a mix of the ICS, PGS and BGS scenarios (Figure 1).
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the previous LEAP study (Original figure designed by the author).

The LEAP software results are used to conduct the LCA analysis based on the previous energy
modelling task, i.e., demand driven (bottom-up) energy model, previously applied for providing energy
and emission projections for policy analysis at the regional level [26,42]. The LEAP modelled results
used in the LCA are based on technical data provided by the Technology and Environmental Database
(TED) coupled to the LEAP software. In this case, the TED is used to calculate emissions from various
types of energy systems in Kenyan households [42–44]. The energy demand results used consider the
evolution in the household energy use and demographic conditions in the Kisumu County, including
different uses of fuel/cookstove systems in the time span between 2015 and 2035 [26]. Considering
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that the present LCA study is based on the same scenarios as those projected in the previous LEAP
study conducted by Carvalho et al. [26], this work also considers that policy measures should be
implemented before 2035 to promote cleaner and sustainable solutions for renewable energy cooking.

2.1. Demographic Data

The main demographic information used to generate the input projection data for the dynamic
LCA is the population of the Kisumu County, per capita income in both urban areas and county,
the typical household size, number of households in both urban and rural areas, as well as the useful
energy demand for cooking and lightning (Table 1).

Table 1. Demographic and energy data of Kisumu County for the baseline year 2015 used by
Carvalho et al. [26] to generate the LEAP data to the LCA model [26].

Type of Data Amount Units Reference

Population 1155 1000 units [45]
Income/capita 1.440 USD [46,47]

GDP growth/capita 4.100 Percent [41]
Household size 4.400 Nr. of people [48]
Nr. of houses 227.0 1000 units [48]
Rural houses 118.0 1000 units [48]
Urban houses 109.0 1000 units [48]

Peri-urban/total nr. 60.00 Percent [49]
Useful cooking energy demand a 0.1200 TOE [50–52]
Useful lightning energy demand b 2.500 MWh [53]

a Based on the average annual useful energy demand for cooking; b Based on the average annual useful energy
demand for lightning in a mid-income urban household in Kenya.

This study is based on the fact that the population in the Kisumu County will increase by 99% in
the period between 2015 and 2035. By 2035, the population income per capita is expected to grow up
to 2900 USD per year, whereas the income per capita in the city of Kisumu (urban income), is expected
to be 1.5 times higher than in both the urban and rural areas of the Kisumu County.

According to the LEAP modelling results [26] used in the LCA model, in the baseline year, the
household energy use was over 9 million Gigajoule (GJ), with wood-logs and charcoal being the main
cooking fuels used in the year 2015. In the LCA study, it is also considered that, despite the trends in
urbanization, a significant part of the peri-urban population is expected to continue living in informal
settings with limited access to electricity and LPG.

Thus, the present study stresses the importance of potential life-cycle based environmental
improvements associated with the introduction of alternative biomass cookstove strategies in the
region. In line with the previous LEAP study, the present LCA study also explores the fact that, by 2035,
bottle biogas and biomass pellet cooking systems might be an affordable way for a substantial part
of the Kisumu County’s population to mitigate environmental impacts related to current traditional
cooking practices [26].

2.2. Resource and Energy Data

In line with the previous LEAP study [26], the projected use of natural resources and final energy
used for cooking and lightning used to model the LCA inputs is computed considering the household
energy use patterns in the historical years between 2010 and 2014 [26]. The calculation of the energy
use is performed according to each type of cooking and lightning fuel/technology system, in order
to model the household energy demands between 2015 and 2035. In the ICS scenario, all the woody
biomass used in 2035 is expected to be produced via agroforestry systems considering the available
agricultural land in both the Kisumu County and the nearby county of Siaya. As there is no sufficient
amount of agricultural land available today that can be converted to agroforestry land systems, in this
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study it is considered that part of the woody biomass produced via agroforestry was sourced by Siaya
County. In the PGS, a full replacement of traditional cookstoves by pellet micro-gasifying stoves is
expected to occur in the year 2035. In urban areas, the biomass pellets are expected to be produced by
a mixture of woody biomass from agroforestry (50%) and sugarcane bagasse (50%), considering that
sugarcane bagasse is the most important crop-residue produced in the industrial sugar belt around the
city of Kisumu. In rural areas, biomass pellets are assumed to be fully produced via the densification
of woody biomass produced in agroforestry systems. Finally, in the BGS scenario, a full replacement
of traditional cookstoves by biogas stoves is projected to occur for the year 2035. Here, half of the
biogas is expected to be produced through the anaerobic digestion of animal manure and the other
half through the digestion of municipal household waste produced in the Kisumu County. The LEAP
functions used to compute the energy data that serves as input data to the LCA model are described in
the Eq. 1-3 and Appendix A of the previous research published by Carvalho et al. [26].

2.3. Life-Cycle Assessment

After modelling the supply of energy in the various scenarios, the LCA is applied according to the
international ISO14040 standard, which defines three main steps to conduct a LCA: (i) Aim and Scope;
(ii) Inventory analysis; (iii) Interpretation. This study aims to analyze material and energy flows, and
quantify the environmental impacts of distinct bioenergy value-chains for cooking across the life-cycle
stages of the different systems, including feedstock collection, processing, distribution and use, as
described in Table 2. This study has the final goal of identifying opportunities for environmental
improvement, supporting decision makers to understand the sources and magnitudes of impacts
throughout the life cycle of each system [31]. Although this study does not include any social and
economic assessment of the proposed bioenergy strategies, the application of LCA in this study can be
strategic to support environmentally sustainable energy planning policies in the Kisumu County.

Table 2. Bioenergy value-chains for cooking, life cycle stages, assumptions, and source of data based
on a previous scenarios established by Carvalho et al. [26,40].

Life Cycle Stages
Policy Option and Bioenergy Value Chains

BAU ICS PGS BGS

Feedstock
collection

Assumption

Unsustainable
harvesting no

regrowth—
Manual [54]

Sustainable
harvesting

agroforestry—
Manual [39,54]

Sustainable
harvesting of
bagasse and

agroforestry wood—
Manual [39,54]

Sustainable
waste &
manure

harvesting—
Manual

Ecoinvent processes
adapted 1,2

Residual wood,
dry| market

Residual wood,
dry| market

bagasse straw
(50%)/wood pellet

(50%) prod| market c

Biogas, from
grass| market

Feedstock
processing

Technology Inefficient
charcoal kilns

Efficient char.
kilns

Efficient pelleting
engines

Efficient
municipal
digestors

Efficiency/source 10–15% 20% 99% 50–60%

Distribution Transport/distance
Rural: None.

Urban: Bicycle
(30 km)

Rural: None.
Urban: Bicyc.

(30 km)

Rural: None. Urban:
Bicyc. (30 km)

Rural: None.
Urban: NA

Use Cooking efficiency 3 <20% >20–30% 30–45% 50–60%
1 Liquified Petroleum Gas (LPG) was considered according to the Ecoinvent process Liquefied petroleum gas {RoW}|
market for| APOS, U; 2 Electricity was considered to be produced according to the Ecoinvent process Market for
electricity, medium voltage KE; 3 The stoves with the indicated range of cooking efficiencies dominate the mix of
fuel/cookstove systems; c Two Ecoinvent processes, respectively one applied for biomass residues and the other for
woody biomass.
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2.3.1. System Boundaries

In this study, an LCA is performed in function of the cumulative energy demand for the various
energy cooking scenarios analyzed in LEAP. The LCA is based on a regionalized inventory and impact
assessment from raw material extraction to energy end-use for cooking. The calculations are performed
by using the software Simapro 8.5 by applying the ReCiPe method [55].

The study is conducted taking into account the ISO standard 14040 [29,56], according to the
following life-cycle stages (Figure 1):

• Production and transportation of the mix of the cookstove fuel feedstock from the production site
to the processing location;

• Processing of the mix of feedstock into a form of ready to be used fuels in cookstoves;
• Distribution of the different types of fuels from the processing locations to the respective retailers

or consumers;
• Use of the fuels via their combustion or use of electricity in a cookstove, according to the mix of

cooking systems;

2.3.2. Inventory Analysis

The inventory analysis is based on data from provided by the LEAP modelling study conducted
by Carvalho et al. [26], and information collected from the literature and background data from
version 3.1 of the ecoinvent [57] and Agrifootprint databases [57]. In order to compensate for the
unavailability of regional Life Cycle Inventory (LCI) data, we permitted the use of direct proxies for
certain processes [58]. Some fuel categories (e.g., charcoal, briquettes, wood from unsustainable forest
management) are not included in the Ecoinvent database and values have to be approximated (e.g., for
charcoal it is assumed that to produce 1 ton of charcoal, 5 tons of wood are necessary). For other
fuel categories, e.g., kerosene, biogas and wood pellets only general values (global averages) on raw
material extraction and production (upstream processes) are used. The Ecoinvent data processes used
in the study are presented in Appendix A (Tables A1–A3).

2.3.3. Impact Assessment

The environmental performance of the different transition policy options in the Kimusu County
are assessed taking into account the following environmental impact categories: (i) Global warming;
(ii) Ozone formation, human health; (iii) Particulate matter formation; (iv) Terrestrial acidification;
(v) Water consumption; (vi) Freshwater eutrophication; (vii) Marine eutrophication; (viii) Mineral
resource scarcity; (vix) Fossil resource scarcity and (x) Land use. These are considered to reflect
the most relevant/critical environmental impacts which can be associated with the combustion of
solid-fuels in cookstoves. In this work, the first category is mostly associated with the combustion of
fossil and biomass fuels and its effect on the emission of atmospheric pollutants with a global warming
potential such as CH4, N2O, carbon monoxide (CO) and particulate matter. The second category is
associated with the formation of ozone, which is related to processes that release NOx compounds into
the environment. The third process is directly associated with atmospheric emissions from combustion
processes, as referred to in the first category. The forth category is associated with the acidification of
the soil due to emissions of certain nitrogen compounds such as ammonia (NH3) and NOx, which
can be associated with the use of chemicals and fertilizers that cause emissions to the soil. The fifth
category is related with the consumption of water consumption and availability in the ecosystems and
can be associated with its incorporation in industrial processes, which can be specifically used for the
production of some chemicals and other materials. The sixth and seventh categories are associated
with the excessive presence of certain nutrients in water systems, due to the release of phosphorus
and nitrogen compounds, respectively, which can be associated with the use of certain chemicals and
fertilizers. The eighth and ninth categories are mostly associated with the extraction of raw materials
from nature and the scarcity of these resources. The last category can be associated with relative



Energies 2020, 13, 719 8 of 17

species loss due to the use of land, related to the processes of land transformation, land occupation and
land relaxation.

3. Results

3.1. Biomass Resources and Energy Demands

The Kisumu County has an agro-industrial and municipal organic waste feedstock of over
1.8 million t biomass (Table 3). The present work assumed that all the mass of biomass feedstock
analyzed are suitable for an efficient and sustainable conversion to upgraded cooking fuels such as
biomass pellets and biogas.

Table 3. Biomass available in BAU, 2015 (t) and use in the BAU, ICS, PGS, BGS and INT, 2035 (t).

Availability
BAU, 2015

Demand
BAU, 2035

Demand
ICS, 2035

Demand
PGS, 2035

Demand
BGS, 2035

Demand
INT, 2035

Wood-logs
(forest) 1 1.05 × 104 9.28 × 105 - - - -

Wood-logs
(agrofor.) 2 5.65 × 105 - 1.63 × 105 1.34 × 105 - 5.60 × 104

Maize cobs 9.50 × 105 - 1.88 × 105 - - 1.40 × 104

S. bagasse 2.60 × 105 - - 1.05 × 105 - 3.10 × 104

Org. waste 2.35 × 105 - - - 2.04 × 105 2.00 × 104

Manure 4.26 × 105 - - - 2.04 × 105 2.00 × 104

Total 1.94 × 106 - 3.51 × 105 2.39 × 105 4.08 × 105 1.41 × 105

1 Considering wood harvesting manual practices unsustainable with no regrowth. 2 Considering the demand for
woody biomass will be produced via sustainable agroforestry systems in the available agricultural land in both
the Kisumu (35%) and Siaya (65%) Counties. 3 Potential in the year 2015 to produce wood-logs with the available
agricultural land, considering that 10% of the agricultural land can be converted to agroforestry land and the
productivity of 10 t of woody biomass per ha of agroforestry land.

In the BAU scenario, in the year 2035, the demands for wood-logs in the Kisumu County would
exceed the forest production capacity and potential agroforestry systems in that scenario and year.
In the BAU scenario, in the year 2035, it will be necessary to import around 861 thousand ton of
wood-logs from other regions, an amount that corresponds to around 92.8% of the total use.

According to the ICS scenario, the current capacity for producing woody biomass via sustainable
agroforestry systems is able to satisfy 35% of the future demand of wood-logs. In this scenario,
the current availability of feedstocks of maize cobs is sufficient to fulfill 100% of the demands for
briquetting this biomass residue and transform it to a usable cooking fuel (Table 3). In the PGS scenario,
the current capacity of agricultural land for the production of woody biomass in sustainable agroforestry
systems can satisfy 42% of the future demands for wood-logs. According to the assumptions and
projections made for this scenario, the current availability of sugarcane bagasse is sufficient to satisfy
100% of the demands for this biomass feedstock to produce sufficient biomass pellets for satisfying the
energy cooking demands in 2035. Finally, in both the BGS and INT scenarios, the biomass feedstocks
available in 2015 will be sufficient to address 100% of the demands for the production of wood-logs
and upgraded fuels made of various biomass feedstocks considered in those two scenarios.

3.2. Fuel Energy Inventory Data

In the BAU scenario, due to population growth and the rate of urbanization, the amount of fuel in
terms of energy consumption is expected to increase by over 50% until 2035 in relation to the baseline
year from around 9 to approximately 14 million GJ. This condition is related to the fact that there will
be more people with energy needs and a higher fraction of the population consuming charcoal in
urban areas, in case no policy is adopted to change the patterns of energy usage for cooking. In the ICS
scenario, the projected increase in the energy consumption is expected to smoothen in relation to the
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BAU, since the energy consumption by 2035 will be in the order of 13 million GJ (Figure 2). In the
PGS scenario, the energy consumption is expected to increase by 26% in the period between 2015 and
2035, reaching a value in the order of 12 million GJ. The smallest increase in the energy consumption is
predicted for 2035 in the BGS scenario, being this in the order of 8%. In the INT scenario, the energy
consumption is expected to increase by 20% to 11 million GJ in 2035.
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In the BAU scenario, the greenhouse gas (GHG) emissions are expected to increase by 10%, ranging
from around 220 thousand t of CO2e in 2015 to around 245 thousand t of CO2e in 2035. In the ICS
scenario, the GHG emissions are predicted to be reduced by 18% to a value around 180 thousand t of
CO2e in 2035 (Figure 2). The amount of fuel input flows to the LCA model regarding t fuel production
and cooking life-cycle stages by type of fuel/cooking system in each scenario, are respectively described
in detail in the Appendix A (Tables A2 and A4).

3.3. Environmental Impact Assessment

In the BAU scenario, in the year 2015, approximately 62% of the use of household energy for
cooking was associated with the use of open fires, whereas the use of charcoal represents 27% of the
residential energy consumption for cooking, and the use of kerosene stoves represents 6% of the energy
use for cooking (Figure 3).

In the BAU scenario, the LCA results also reflect the effects of population growth and increasing
urbanization in Western Kenya between 2015 and 2035 with an increase of 96% in all impact categories
(Figure 3; Table 4). In this scenario, with the increased urbanization, an increased number of households
is expected to have access to charcoal for cooking, reducing the direct exposure to certain household
air pollutants. However, the LCA results also reflect that this improvement is not reflected in an
overall reduction of environmental impacts, a fact that can be associated with the low thermochemical
conversion performance of charcoal kilns.
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Figure 3. Environmental impacts in the BAU 2015, ICS 2035, PGS 2035, BGS 2035 and INT 2035 scenarios
in relation to the BAU scenario, according to the percentage determined in the BAU 2035 scenario.

Table 4. Environmental impacts based on critical ReCiPe categories which are associated with biomass
cooking activities in the Kisumu County in the BAU scenario in the years 2015 and 2035.

Impact Categories 1 BAU 2015 BAU 2035

Global warming (kg CO2eq) 3.4 × 1010 6.7 × 1010

Fine particulate matter formation (kg PM2.5eq) 1.5 × 108 3.0 × 108

Terrestrial acidification (kg SO2eq) 1.5 × 108 3.0 × 108

Freshwater eutrophication (kg Peq) 9.5 × 106 1.9 × 107

Marine eutrophication (kg Neq) 8.9 × 105 1.7 × 106

Fossil resource scarcity (kg oileq) 1.1 × 1010 2.1 × 1010

Water consumption (m3) 6.7 × 108 1.3 × 109

Land use (m2a cropeq) 9.4 × 1010 1.9 × 1011

1 Calculated according to the ReCiPe method [55].

The impact of the introduction of improved cookstoves in the ICS scenario is predicted to
contribute to the reduction of the effect of household energy activities on “Global warming”, “Fine
particulate matter formation”, “Terrestrial acidification”, “Freshwater eutrophication”, “Marine water
eutrophication”, “Fossil resource scarcity”, “Water consumption” and “Land use” between 80 and 90%
in relation to the BAU scenario in the year 2035. Additionally, the introduction of advanced gasifier
cookstoves combusting pelletized fuels is expected to reduce the environmental impacts of all the
referred categories by over 98% in relation to the BAU 2035 scenario (Figure 3; Table 5). Furthermore,
the replacement of traditional cookstoves by biogas stoves is predicted to reduce those impacts by
the same order of magnitude as in the previous scenario. In the INT scenario, the environmental
impacts associated with the analyzed impact categories are expected to be around 97% lower than
those observed in the BAU scenario in 2035 (Figure 3; Table 5).

In the year 2035, and for the ICS scenario, the introduction of ICSs using wood-logs produced
in agroforestry systems will contribute to an over 80% reduction in all the environmental impacts
analyzed in this study in relation to the BAU scenario. Such improvements are partly associated with
the fact that the improved cookstoves are around twice more efficient than traditional cooking systems,
which results in significant fuel savings. Additionally, the use of woody biomass produced in a more
sustainable way is expected to reduce the pressure on natural ecosystems. However, despite reflecting
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the reduction in the harvesting of woody biomass from Kenyan forests, the life cycle inventory in
this study does not account for the positive environmental impacts related to the introduction of
agroforestry systems, i.e., those impacts associated with the preservation of biodiversity and possible
land-use changes (LUCs), due to limitations in accessing to real datasets that can reflect certain localities.
Such environmental aspects are not accounted in the life-cycle inventory for scenarios of biodiversity
losses and LUCs enhanced by the rate of deforestation associated with higher consumption of woody
biomass from the forests. In the same year, for both the PGS and BGS scenarios, and for all analyzed
impact categories, the introduction of the advanced cookstove systems in 2035 will contribute to
reducing the environmental impacts by over 90% in relation to the BAU scenario in 2035. In a similar
way, the technology advancements allow the achievement of even higher thermal energy conversion
efficiencies in relation to traditional systems. Beyond that, these scenarios result from the utilization of
biomass residues in micro-gasifier and biogas cookstoves, which are going to either be disposed of in
natural environment or inefficiently burned in open fields if no measures are introduced. Furthermore,
in this study, no environmental impacts are allocated to the upcycled biomass residues (i.e., sugarcane
bagasse, animal manure and organic waste), which explains the fact that these two biomass/fuel
systems have a higher environmental performance than the improved cookstoves. Finally, in the INT
scenario, the adoption of the mixed biomass cookstove strategies is expected to contribute to reduce
the environmental impacts by a value between 94% and 95% (Table 5).

Table 5. Environmental impacts based on critical ReCiPe categories which are associated with biomass
cooking activities in the Kisumu County in the ICS, PGS, BGS and INT scenarios in 2035.

Impact Categories 1 ICS 2035 PGS 2035 BGS 2035 INT 2035

Global warming (kg CO2eq) 9.7 × 109 2.1 × 108 1.6 × 108 1.9 × 109

Fine particulate matter format. (kg PM2.5eq) 4.3 × 107 4.3 × 105 2.7 × 105 8.2 × 106

Terrestrial acidification (kg SO2eq) 4.3 × 107 5.1 × 105 3.8 × 105 8.2 × 106

Freshwater eutrophication (kg Peq) 2.7 × 106 2.6 × 104 6.1 × 103 5.0 × 105

Marine eutrophication (kg Neq) 2.5 × 105 4.1 × 103 5.6 × 102 4.8 × 104

Fossil resource scarcity (kg oileq) 3.0 × 109 5.8 × 107 4.8 × 107 5.9 × 108

Water consumption (m3) 1.9 × 107 7.9 × 105 3.3 × 105 3.5 × 107

Land use (m2a cropeq) 2.6 × 1010 4.0 × 108 4.5 × 105 5.0 × 109

1 Calculated according to the ReCiPe method [55].

In this study, a small difference is observed for the variations in the environmental impacts of
the different biomass cookstove transition measures in relation to the BAU scenario in the year 2035.
However, it is possible to observe that the BGS and PGS scenarios are the ones with higher reduction
of the environmental impacts in relation to the analyzed categories. This result follows the trend
observed for the evolution of the GHG emissions as shown in a previous study conducted by Carvalho
et al. [26]. These environmental improvements can mostly be explained by the high efficiency of the
thermochemical conversion processes associated with the combustion of biogas and pelletized fuels,
which has a significant potential effect on reducing impacts such as on those associated with “Global
warming”, “Fine particulate matter formation”, “Water consumption” and “Land use”.

4. Conclusions

Considering the premise that local-based and renewable energy solutions are needed in the short
to medium term to address HAP in developing countries, this study shows that the transition to
biogas and micro-gasifying cookstove systems combusting upgraded biofuels, i.e., biogas and biomass
pellets, greatly contributes to reducing critical environmental impacts beyond deforestation and HAP
associated with a potential future phase out of traditional cooking practices in Western Kenya. In the
BGS scenario, the availability of animal manure and organic waste in the year 2015 (661 thousand
t) is 4% higher than the expected consumption of this feedstock in the year 2035 (408 thousand t).
In the PGS scenario, the availability of agricultural land to produce agroforestry woody biomass in the
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Kisumu County in 2015 (around 57 thousand t) is not sufficient to satisfy the projected demands for
this feedstock in the year 2035 (around 134 t); imports from the neighboring county of Siaya should be
considered to adjust future supply and demand. Additionally, in this scenario, the amount of sugarcane
bagasse available in 2015 (260 thousand t) is more than enough to satisfy 100% of the demands for this
feedstock in the projected PGS scenario in the year 2035 (around 105 thousand t).

Overall, the LCA confirms the hypothesis of increasing the environmental sustainability of current
cooking systems and related fuel value-chains in Western Kenya through the introduction of advanced
cookstoves combusting either biogas (BGS scenario) or pelletized fuels (PGS scenario). Such measures
are expected to reduce by over 80% the environmental impacts for all the referred categories analyzed
in relation to the BAU scenario in the year 2035. Although this study has demonstrated the great
environmental benefits of the suggested measures, further studies are required to consolidate this
sustainability assessment through the performance of both social and economic assessments of the
proposed valorization alternatives.

By showing that biogas and pellet fuel/advanced cookstove value-chains are viable in terms of
the mitigation of the environmental impacts, this study may orient the scientific community and
energy sector stakeholders about the environmental benefits of such valorization and energy efficiency
alternatives at the sub-national level. As the suggested bioenergy cooking strategies mitigate a wide
range of life-cycle environmental impacts beyond HAP, an interesting and specifically relevant area
for future research is related to the analysis of the environmental externalities (e.g., on human health)
associated with the mitigation of greenhouse gas and PM emissions in Western Kenya. In such a
context, this study does not yet fully provide consolidated recommendations to decision-makers
responsible for designing energy policies in the Kisumu County, which will only be possible after a
solid socio-economic assessment is carried out.

Future work in this area is highly relevant in order to provide key recommendations not only
for policy makers, but also for local biomass industries, which could be interested in capitalizing
investments in alternate value-chains. Furthermore, government incentives for the deployment
of innovative logistical systems and tax credits—including the deployment of advanced biomass
valuation alternatives and cookstove via local community-based projects—present a potential to enhance
sustainable livelihoods through bottom-up policies design with the participation of the population.
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Appendix A

Information about the inventory data for the LCA are presented in the tables below.
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Table A1. Dataset used from the Ecoinvent database related to the LCA study in every fuel.

System Ecoinvent Database Unit Process Used

Openfire wood Residual wood, dry {GLO}| market for| APOS, U
ICS wood Residual wood, dry {GLO}| market for| APOS, U
Kerosene Kerosene {RoW}| market for| APOS, U

Trad charcoal 1 Residual wood, dry {GLO}| market for| APOS, U
Impro charcoal 1 Residual wood, dry {GLO}| market for| APOS, U

Electric Market for electricity, medium voltage KE
LPG Liquefied petroleum gas {RoW}| market for| APOS, U

ICS briquette residue Wood pellet, measured as dry mass {RoW}| market for wood
pellet| APOS, U

ND-gasifier biomass pellets (50/50) 1
Straw, stand-alone production {GLO}| market for| APOS, U

(50%)/Wood pellet, measured as dry mass {RoW}| market for
wood pellet| APOS, U (50%

FD-gasifier biomass pellets (50/50) 1
Straw, stand-alone production {GLO}| market for| APOS, U

(50%)/Wood pellet, measured as dry mass {RoW}| market for
wood pellet| APOS, U (50%)

ND-gasifier wood pellets Wood pellet, measured as dry mass {RoW}| market for wood
pellet| APOS, U

FD-gasifier wood pellets Wood pellet, measured as dry mass {RoW}| market for wood
pellet| APOS, U

Biogas digester Biogas, from grass {GLO}| market for| APOS, U
Biogas stove Biogas, from grass {GLO}| market for| APOS, U

1 Based on LHVwood = 18MJ/drykg. To produce 1 kg of charcoal, 5 kg of wood are needed.

Table A2. Energy inputs in the fuel production life-cycle stage (TJ), considering each fuel system.

Year 2015 End Year 2035

System BAU BAU ICS PGS BGS INT

Unsustainable wood 1 5280 4462 - - - -
Sustainable wood

(agroforestry) 2 - - 2927 - - 565.0

Kerosene 2185 1624 1624 1624 1624 1624
Charcoal 1146 3152 - - - -

Electricity 470.1 2955 2955 2955 2955 2955
LPG 90.30 1039 1039 1039 1039 1039

Maize cobs - - 3391 - - 569.6
Sugarcane Bagasse - - - 3781 - 1121

Wood-chips
(agroforestry) 3 - 4462 - - - -

Animal manure 23.10 - 2927 - - 565.0
Municipal waste - 1624 1624 1624 1624 1624
1 Roundwood produced from manual harvesting practices with no regrowth. 2 Roundwood produced with manual
harvesting with regrowth of nitrogen fixing trees [39,40]. 3 Wood-chips produced in wood chipping engine after
sustainable production of wood in agroforestry systems.
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Table A3. Material/distance inputs in the fuel transport life-cycle stage (tkm 1) for each fuel system in
urban areas.

Year 2015 End Year 2035

System BAU BAU ICS PGS BGS INT

Wood 6.43 × 106 3.86 × 106 2.53 × 106 - - 3.33 × 102

Briquettes 2.97 × 105 - 5.35 × 106 - - 8.49 × 105

Charcoal 4.20 × 104 2.30 × 106 - - - -
Biomass
pellets 9.00 × 103 - - 6.30 × 106 - 1.87 × 106

Biogas
cylinder 2.40 × 104 - - - 3.06 × 106 1.22 × 106

LPG 6.43 × 106 6.18 × 105 6.18 × 105 6.18 × 105 6.18 × 105 6.18 × 105

Kerosene 2.97 × 105 4.92 × 105 4.92 × 105 4.92 × 105 4.92 × 105 4.92 × 105

1 Considering the average distribution distance of 30 km from the production areas to the households.

Table A4. Energy inputs in the cooking life-cycle stage (TJ), considering each cooking system.

Year 2015 End Year 2035

System BAU BAU ICS PGS BGS INT

Openfire wood 5067 4178 - - - -
ICS wood 203.4 284.0 2895 - - 532.6
Kerosene 237.6 725.7 725.7 725.7 725.7 725.7

Trad charcoal 433.8 1320 - - - -
Impro charcoal 575.8 1832 - - - -

Electric 19.30 524.7 524.7 524.7 524.7 524.7
LPG 74.10 532.8 532.8 532.8 532.8 532.8

ICS briquette residue - - 3391 - - 569.6
ND-gasifier biomass pellets (50/50) 1 - - - 968.0 - 399.3
FD-gasifier biomass pellets (50/50) 1 - - - 2813 - 721.6

ND-gasifier wood pellets - - - 879.9 - 333.5
FD-gasifier wood pellets - - - 158.4 - 52.80

Biogas digester 23.10 79.80 79.80 79.80 1299 930.4
Biogas stove 5067 - - - 1939 768.8

1 Biomass pellets are a mixture of biomass residues with 50% bagasse and 50% woody biomass produced in
agroforestry systems.
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