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Abstract

Population-specific assessment and management of anadromous fish at sea requires

detailed information about the distribution at sea over ontogeny for each population.

However, despite a long history of mixed-stock sea fisheries on Atlantic salmon, Salmo

salar, migration studies showing that some salmon populations feed in different regions

of the Baltic Sea and variation in dynamics occurs among populations feeding in the

Baltic Sea, such information is often lacking. Also, current assessment of Baltic salmon

assumes equal distribution at sea and therefore equal responses to changes in off-shore

sea fisheries. Here, we test for differences in distribution at sea among and within ten

Atlantic salmon Salmo salar populations originating from ten river-specific hatcheries

along the Swedish Baltic Sea coast, using individual data from >125,000 tagged salmon,

recaptured over five decades. We show strong population and size-specific differences

in distribution at sea, varying between year classes and between individuals within year

classes. This suggests that Atlantic salmon in the Baltic Sea experience great variation

in environmental conditions and exploitation rates over ontogeny depending on origin

and that current assessment assumptions about equal exploitation rates in the offshore

fisheries and a shared environment at sea are not valid. Thus, our results provide addi-

tional arguments and necessary information for implementing population-specific man-

agement of salmon, also when targeting life stages at sea.
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1 | INTRODUCTION

Knowledge about spatial distribution patterns of fish populations is key

to ensure that conservation and fisheries management actions effectively

target the population in question. However, distribution is often highly

heterogeneous across temporal and spatial scales, which can pose a great

challenge and limit the use of such information in both assessment and

management. The extent of variation in distribution differs both between

species (e.g., sedentary v. migratory species) and among populations

within species (Dunn & Pawson, 2002, Laikre et al., 2005, Ruzzante et al.,

2006). Distribution patterns of fish can also be highly variable among indi-

viduals within populations; e.g., due to partial migration (Chapman et al.,

2012, Jonsson & Jonsson, 1993) and ontogenetic habitat shifts leading to

variation in habitat use among life stages (Barbeaux & Hollowed, 2018,

Dahlgren & Eggleston, 2000, Werner & Gilliam, 1984). Within-population

variation in migration and distribution patterns is governed by a range of

abiotic factors (e.g., temperature; Barbeaux & Hollowed, 2018, Morita

et al., 2014, Otero et al., 2014), biotic factors (e.g., prey availability and

predator avoidance; Brönmark et al., 2008, Barnett & Semmens, 2012)

and genetics (Johnston et al., 2014, Barson et al., 2015). Within
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population variation in migration have implications for population dynam-

ics (e.g., alternative stable states in stage-specific abundance; Schreiber &

Rudolf, 2008), trophic interactions (e.g., affecting the predation pressure

of planktivorous fish on zooplankton, affecting plankton spring dynamics;

Brodersen et al., 2011) and thus, ecosystem dynamics (e.g., affecting inter-

action strengths between and within trophic levels; Brodersen et al.,

2008, Miller & Rudolf, 2011). Therefore, accounting for such variation is

important to understand how changes in the experienced environment,

including variation in exploitation rates and prey densities, affect the

dynamics of heterogeneously distributed populations. Still, we often lack

knowledge on distribution differences between and within populations,

especially in large and open aquatic systems.

Knowledge on spatial distribution patterns is particularly important

for anadromous species, where population dynamics is a consequence of

the performance of individuals in both rivers and oceans (Chaput, 2012,

Jensen et al., 2018, Moore et al., 2014). Management of anadromous fish

may require actions targeting individuals in both habitats (Allen & Singh,

2016). For example, actions to increase survival at sea (Chaput, 2012) and

preserve diversity among individuals across life stages (demographic

structure) is important to ensure population stability (Moore et al., 2014,

Schindler et al., 2010) and to stabilise fisheries yield (Schindler et al.,

2010). One of the ecologically and economically most important anadro-

mous fish species in the North Atlantic Ocean and in the Baltic Sea is the

Atlantic salmon Salmo salar L. 1758 (Hindar et al., 2011, Kulmala et al.,

2013). Variation in individual distribution during the feeding phase of

Atlantic salmon at sea has been observed in the eastern and western

North Atlantic Ocean, based on information from archival tags from

repeat spawners (Lacroix, 2013b, Strøm et al., 2017, 2018), stable-isotope

signatures from scales (MacKenzie et al., 2012) and muscle tissue

(Dempson et al., 2010). These studies suggest that the distribution of indi-

viduals at sea is more similar in some populations than in others and can

also vary within populations depending on the sea age of individuals,

which is partly governed by genetics (Barson et al., 2015, Johnston et al.,

2014). However, these studies are based on few individuals from few

populations and only take the distribution of repeat spawners or the dis-

tribution during the last growth season into account (but see Quinn et al.,

2011, Shelton et al., 2019, Weitkamp & Neely, 2002 for studies on other

anadromous salmonid species). In the Baltic Sea, differences in distribu-

tion have been observed among and within Finnish Atlantic salmon

populations, based on tagged salmon recaptures and stable-isotope ana-

lyses (Kallio-Nyberg et al., 1999, Kallio-Nyberg & Ikonen, 1992,

Torniainen et al., 2013). These distribution differences have been linked

to prey availability, differences in smolt size, origin (hatchery or wild) and

genetics (Jutila et al., 2003, Kallio-Nyberg et al., 1999, 2015, Salminen

et al., 1994). Still, we have limited knowledge regarding how the distribu-

tion pattern of Atlantic salmon in the Baltic Sea (henceforth, Baltic

salmon) varies over ontogeny, how the distribution varies among and

within Swedish Baltic salmon populations and how temporally stable

these distribution patterns are among and within populations.

Atlantic salmon at sea are exploited by mixed-stock fisheries, as

salmon from different populations aggregate and feed in similar geo-

graphic regions (ICES, 2017, Koljonen, 2006). Therefore, detailed knowl-

edge on the population-specific distribution of salmon at sea is

important for estimating population-specific harvesting rates (Crozier

et al., 2004, Ruzzante et al., 2006, Whitlock et al., 2018). In the Baltic

Sea, offshore mixed-stock sea fisheries were long the dominant type of

fisheries targeting Baltic salmon, but during the recent decades offshore

fisheries have decreased (ICES, 2018, Karlsson & Karlström, 1994).

Nowadays, Baltic salmon are mainly exploited by commercial and recre-

ational coastal and river fisheries (ICES, 2018). These fisheries target

returning adults on their spawning migration from their feedings gro-

unds towards and within their natal rivers. Thus, river fisheries are

population-specific while the coastal fisheries still targets salmon from a

mix of populations, but becomes increasingly population-specific the

closer the river mouth the fishing is conducted (Whitlock et al., 2018).

Current assessment of Baltic salmon populations assumes that they

have identical distribution at sea and thus, equal exploitation rates at

sea in the offshore sea fisheries, while for the coastal fisheries,

harvesting rates are assumed to be equal within assessment units (one

assessment unit (AU; six in total) contains a group of Baltic salmon

populations (ICES, 2015, 2018)). Whether these simplifying assumptions

of equal harvesting rates at sea hold is not known, as we lack informa-

tion on the distribution of Swedish Baltic salmon at sea and, for all Bal-

tic salmon populations, how it varies over time and over ontogeny.

Here, we test how the distribution patterns of salmon at sea vary

over ontogeny among and within 10 different salmon populations of

hatchery origin feeding in the Baltic Sea, using data of >125,000 tagged,

released and recaptured salmon covering the time period 1951–1999.

We tested for variation in latitudinal distribution at different biological

levels of organisation, including population, year class and individual-

level variation. We show strong population and size-specific differences

in both mean distribution of salmon at sea and variation in distribution

between year classes and among individuals within year classes.

2 | MATERIALS AND METHODS

The rearing practices and tagging (sedated salmon smolts tagged with

external Carlin tags) procedures used in this study complied with

Swedish animal welfare laws, guidelines and policies as approved by

various authorities; e.g., the Swedish Board of Agriculture and water

courts decisions legitimate for 1950–1999. The reported recaptures

of tagged salmon caught at sea has been recaptured by various types

of fisheries with the large majority by commercial fisheries. Thus, all

recaptured and reported fish was killed. No additional experiments

were carried out using the tagged fish.

2.1 | Recapture data

To assess the distribution patterns of different salmon populations

feeding in the Baltic Sea, we used recapture data from the Swedish tag-

ging programme, initiated in 1951, in which a proportion of all reared

salmon smolt are tagged with Carlin-tags before release. These smolts

are reared to compensate for the loss of natural salmon production in

rivers with hydropower dams and to enhance wild populations with
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poor status (Karlsson & Karlström, 1994, Romakkaniemi et al., 2003).

Carlin-tags are external tags (attached below the dorsal fin), each having

a unique serial number and instructions for reporting the catch

(Supporting Information Figure S1). Length, origin, age, release location

and date are recorded when the smolt is tagged. If a tagged individual is

recaptured, the catcher is instructed to return the tag together with

date, length, mass, type of fishing (recreational, commercial, brood stock

or scientific), recapture location together with any additional comments.

Until 1999, the Swedish Salmon Research Institute managed the data-

base containing all releases and recaptures of tagged individuals, after

which the hydropower companies have managed the database. After

1999, the recapture report rate, data quality and availability have

decreased (ICES, 2013). For this study, we have managed to assemble

recapture data from 1951–1999 (125,432 individuals with known ori-

gin, recapture location and size at recapture) with sufficient recaptures

from 10 populations and recaptures from, 2004–2010 (418 individuals

with known origin, recapture location and size at recapture from nine

different populations, of which 192 recaptures originated from

Luleälven (Supporting Information Figure S2)). To ensure that we assess

the feeding distribution and not the distribution during the spawning

migration towards their natal river, we excluded individuals that were

caught in coastal gear types during the predominant spawning migration

time (May–July; Siira et al., 2009, Whitlock et al., 2018), as well as all

individuals caught in rivers all year around.

2.2 | Recapture location

Each recaptured salmon with information about the recapture location

has been given a corresponding recapture zone according to a specific

map (Supporting Information Figure S3) when entered into the data-

base. We converted these recapture zones to coordinates

corresponding to the centre of each recapture zone using the World

Geodetic System 1984 (WGS84; www.nga.mil/ProductsServices/

GeodesyandGeophysics/Pages/WorldGeodeticSystem.aspx) decimal

coordinate system.

2.3 | Statistical analyses

We tested for size-specific distribution differences among salmon

at three levels of biological organisation; (a) differences in the

mean latitudinal distribution among populations (population and

size-specific differences in latitudinal distribution); (b) differences

in the latitudinal distribution variation of year-classes; i.e., smolts

released in the same year, between populations (differences in

year-class distribution variation among populations); (c) differences

in the degree of individual latitudinal distribution variation within

year classes among populations (individual variation in

distribution).

●
●

●

●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●●●●●●●

●●●●●●●

●

●

●●●●●●●●
●●●●●●●●●●●●●●●

●●

●

●

●
●
●
●●●

●

●●●

●

●
●
●
●●
●●

●●●●●●
●●

●●
●●●●

●●●●
●●●●●●

●●●●
●●●●●●
●

●●●●
●
●
●

●●●●●●●●●●●●●●

●●●●●●●●●●●

●

●

●

●

●●●
●

●
●●
●

●
●●

●●●●●●●

●●●●●●

●●●●●●●●●●●●●
●●●●

●
●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●

●

●

●

●
●
●●
●●
●●

●

●●●●●●

●
●●●●●
●●●●

●

●●●●●●●●●
●●●●

●●
●

●
●●
●●
●
●●

●
●
●
●●

●
●●●●

●●●
●●
●
●●

●●
●●●●

●●
●●●●

●●●●●●●●●●●

●

●

●

●
●
●●
●●●
●
●

●

●●●●●●●●●●●●

●●●●●
●●●●●●●●
●●●●●●●
●●●●●

●●●●●

●
●●

●●●

●●●●●●●●

●●●●

●

●

●

●

●

●
●●

●●
●●

●
●

●

●

●●●●●●
●●●●

●●●●●●●●
●
●
●●
●●●
●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●

●
●●●
●●
●●●●
●●●●
●●●
●●●
●●
●●
●●●●●●

●
●●
●●

●●
●●

●●●●
●●●
●●●●
●

●●
●●●●
●●
●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●●

●
●●●●●●●●●●

●●●

●

●

●

●

●
●
●●
●●●
●

●

●●●●

●

●

●●●

●
●●
●●
●
●
●
●

●
●
●●

●
●

●●
●●

●
●
●●●●●●●●●●●●●●

●●
●
●●
●●
●
●●●●
●
●
●
●
●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●●●●●●●●

●●
●
●●●●●●●●●●

●●
●●●●●●●●

●

●

●●●●●●

●

●●●●●

●

●

●●●
●
●

●

●●●●●●●●●●

●
●

●

●

●

●
●
●
●●●●●
●●
●●●●●●

●●●●●●●●●●●●●●●

●●●●●●
●●

●●
●

●

●●●●●●●●

●

●

●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●●●
●●
●
●●●●●●●●●●
●●

●●●●●●
●

●●●

●●●●
●●●●●
●●

●

●

●●●●●●●

●

●

●●●●●●●●

●●●●●●●●
●
●●
●

●

●
●

●
●

●

●
●

●●

●●●●●

●
●●
●●
●●

●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●

●●●
●●●●
●●●●
●●●●●●●●

●●●●●

●

●
●

●
●

●●●●●
●●

●●●●●●●●●●●

●

●
●●

●●

●

●
●●
●
●●●
●
●●●●●●●●

●●●

●

●

●

●

●●●●●●●

●
●●
●●●●●●●●

●●●●●●●●

●●
●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●

(a) (b)

Dalälven

Indalsälven
Ljungan

Ljusnan

LuleälvenSkelle�eälven
Torneälven

Umeälven

Ångermanälven

Mörrumsån

54°

55°

56°

57°

58°

59°

60°

61°

62°

63°

64°

65°

66°

TorneälvenLuleälvenSkelle�eälvenUmeälven
Ångermanälven

IndalsälvenLjunganLjusnanDalälvenMörrumsån 13 14 15 16 17 18 19 20 21 22 23 24 25

Natal River Longitude (°E)

Re
ca

pt
ur

e 
la

�t
ud

e 
(°

N
)

Fork length (cm)
●●

●●

●●

●●

●●

●●

10−30
30−50

50−70
70−90

90−110
110−130

F IGURE 1 (a) Map showing the river outlet locations of the 10 Baltic Salmo salar tag recapture populations analysed (1951–1999) and
(b) boxplots (−, median;, interquartile range; |, 95% range; •, outliers; each data point ≥10 recaptures) showing their population-specific mean
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2.3.1 | Population and size-specific differences in
latitudinal distribution

To test for size-specific differences in the mean latitudinal distribution

among populations, we calculated the annual mean recapture latitude

for six size classes (10–30, 30–50, 50–70, 70–90, 90–110 and

110–130 cm) for each population and analysed for differences

between populations and between size classes using two-way

ANOVA including population and size class as explanatory factors.

We used Tukey's honest significant difference (HSD) post hoc test to

determine which populations' distributions differed significantly.

2.3.2 | Differences in year-class distribution
variation between populations

To test for differences in year-class distribution variation between

populations, we used Levene's test for homogeneity of variance, com-

paring the annual variance of recapture latitudes within each size class

among populations.

2.3.3 | Individual variation in distribution

To test for differences in individual variation in distribution, we com-

pared the SD of the annual mean recapture latitude of each year class

between populations using two-way ANOVA including population and

size class as explanatory factors. We used Tukey's HSD post hoc test to

determine which population's distribution variation differed significantly.

For all analyses, the smallest size-class, 10–30 cm, was excluded

as these recaptures are governed by the location of each populations'

river and not by the distribution of individuals feeding at sea (Figure 1

and Supporting Information Figure S4). The largest size-class,

110–130 cm, was excluded in all statistical analyses due to insufficient

sample sizes to compare distribution among populations (Figure 1 and

Supporting Information Figure S4). We also excluded distribution esti-

mates based on <10 recaptured individuals within a size class of a spe-

cific year class or recapture year and recaptures from, 2004–2010 in

all analyses due to the low number of recaptures (418 individuals with

known origin, recapture location and size at recapture from nine dif-

ferent populations, of which 192 recaptures originated from

Luleälven; Supporting Information Figure S2 and Table S1). Validity of

assumptions on homogenous variance, normally distributed residuals

and potential outliers were assessed visually using quantile–quantile

(QQ), residual v. fitted and residual-leverage plots. All statistical ana-

lyses were conducted using R 3.5.1 (R Core Team, 2018). We per-

formed Levene's test for homogeneity of variance using the function

leveneTest(), included in the R-package Car, 3.0–2 (Fox et al., 2018).

3 | RESULTS

3.1 | Population and size-specific differences in
latitudinal distribution

Generally, all 10 Baltic salmon populations migrated to the southern

Baltic Sea to feed after leaving their respective natal river (Figure 1).

However, the latitudinal extent of this southward migration differed

between populations (ANOVA, F1,9 = 33.642, P < 0.001) and size-

classes (ANOVA, F1,3 = 369.008, P < 0.001). The size-dependency of

this southward migration also differed between populations (interaction

term, ANOVA, F1,24 = 5.075, P < 0.001; Figure 1 and Supporting Infor-

mation Figure S4). In size class 30–50 cm, salmon from Umeälven and

Ångermanälven were caught furthest south and salmon from Ljusnan

and Dalälven mostly to the north, despite the latter two populations

originating from rivers located further south (Figure 1). The differences

TABLE 1 Mean (± SD) recapture latitude (�N) of 10 Baltic Salmo salar populations caught 1951–1999, sorted north (top) to south (bottom)
based on river outlet location

Population

Fork-length size class (cm)

30–50 50–70 70–90 90–110

Torneälven – 57.3 (± 2.2) abd # 56.4 (± 1.5) ab –

Luleälven 60.4 (± 3.1) a 57.6 (± 2.5) a 56.9 (± 2.0) ab 56.8 (± 2.0) bc

Skellefteälven 60.6 (± 2.8) abc 57.5 (± 2.2) ab 56.7 (± 1.8) ab 56.4 (± 1.9) ab

Umeälven # 58.4 (± 2.8) d 56.8 (± 1.8) b 56.5 (± 1.6) a # 56.2 (± 1.4) a

Ångermanälven 58.5 (± 2.5) d 57.3 (± 2.0) ab 56.7 (± 1.8) ab # 56.2 (± 1.6) ab

Indalsälven 59.2 (± 2.7) bd 57.4 (± 2.1) ab 56.8 (± 1.9) ab # 56.2 (± 1.6) a

Ljungan 59.7 (± 2.8) abd " 58.6 (± 2.3) c 57.3 (± 2.1) bc # 56.2 (± 1.8) ab

Ljusnan 61.6 (± 2.3) ac 57.8 (± 2.2) acd 57.2 (± 2.1) bc 56.7 (± 1.7) abc

Dalälven " 61.9 (± 2.1) c 58.3 (± 2.3) cd " 57.5 (± 2.1) c " 57.3 (± 2.1) c

Mörrumsån – # 56.7 (± 1.4) b 56.5 (± 1.3) ab # 56.2 (± 1.2) abc
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between populations in mean latitudinal distribution decreased in the

larger size classes (> 30–50 cm), but still also for these size classes,

salmon from Ljusnan, Dalälven and Ljungan were caught mostly to the

north. This suggests that the differences in distribution patterns among

populations are governed by more factors than location of river mouth

and migration speed during the first year at sea. In addition, even in the

largest size class (90–110 cm), population-specific differences in distri-

bution were evident (Figure 1 and Table 1).

3.2 | Differences in year-class distribution
variation between populations

The variation in distribution among year-classes differed between

populations in the size classes 50–70 cm and 70–90 cm (Figure 2 and

Table 2). Generally, the distribution variation among year classes

decreased with increasing body size (Figure 2). The largest variation

among year classes was observed in the size range 30–70 cm for

salmon from the rivers Luleälven, Ångermanälven and Indalsälven, but

in the size range 50–90 cm for salmon from the rivers Ljusnan and

Dalälven (Figure 2).

3.3 | Individual variation in distribution

There was large individual variation in distribution among individuals

from the same river also when released in the same year (Table 3,

Supporting Information Figure S5). The degree of individual variation

in distribution within year classes differed between populations

(ANOVA, F1,9 = 15.889, P < 0.001) and size-classes (ANOVA,

F1,3 = 81.049, P < 0.001). Also, this size-dependency differed between

populations (interaction term, ANOVA, F1,24 = 3.397, P < 0.001). For

all populations except Dalälven (Torneälven and Mörrumsån excluded

due to low sample size), the largest individual variation in distribution
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F IGURE 2 The mean recapture latitude of different smolt year-classes for 10 Baltic Salmo salar populations caught 1951–1999 as a function
of fork length. A year class (represented by a line) consists of tagged salmon released in the same year and river (release year indicated by colour).
A large range of recapture latitudes (i.e., vertical range) indicates a large difference in distribution at sea among year-classes. Smolt release year

TABLE 2 Summary of the Levene's
test for homogeneity of variance in
distribution variation among year classes
within size classes across eight Baltic
Salmo salar populations caught in
1951–1999 (Torneälven and Mörrumsån
excluded due to low sample size)

Summary statistics

Fork-length size–class (cm)

30–50 50–70 70–90 90–110

F(df ) 0.703 (7) 2.201 (7) 2.528 (7) 1.615 (7)

P* >0.05 <0.05 <0.05 > 0.05

*Significant differences (P < 0.05) indicate population–specific differences in distribution variation among

year–classes.
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was observed in the size class 30–50 cm, after which it generally

decreased with increasing size (Table 3 and Supporting Information

Figure S5.

4 | DISCUSSION

In this study, we show significant differences in size-specific distribu-

tion patterns both between and within Swedish Baltic salmon

populations. Most salmon migrate to the southern Baltic Sea for feed-

ing, but the extent of this southward migration varies both with origin

of population and body size. We also demonstrate that the

populations differ in how variable their distributions at sea are, both

between smolt year classes and among individuals within smolt year

classes. These findings suggest that Baltic salmon populations may

experience very different environments at sea, including different

exploitation rates (currently assumed to be idential among populations

in the Baltic salmon assessment model; ICES, 2015, 2018).

We found substantial size-specific differences in the mean latitu-

dinal distribution between populations. Interestingly, the most north-

erly originating populations reached the southern feeding grounds of

the Baltic Sea first (at smallest size). In contrast, the more southerly

originating populations (i.e., salmon from River Dalälven and Ljusnan)

first perform a northward migration, followed by a migration to the

southern parts of the Baltic Sea. Despite that, salmon from all

10 populations eventually reach the southern Baltic Sea, population-

specific differences in latitudinal distribution remain also among the

largest individuals. Similar to our findings, previous studies on the dis-

tribution of salmon at sea originating from Finnish rivers have shown

that different salmon populations can feed in different areas of the

Baltic Sea (Kallio-Nyberg et al., 1999, Kallio-Nyberg & Ikonen, 1992,

Torniainen et al., 2013, 2017). Our study complements these earlier

studies, showing that distribution at sea varies with body size, both

within and between populations. Why individuals of different body

size feed in different areas of the Baltic Sea could be due to shifts in

abiotic (e.g., temperature preference; Barbeaux & Hollowed, 2018,

Morita et al., 2010, Otero et al., 2014) and biotic (e.g., prey availability;

Jacobson et al., 2018, Kallio-Nyberg et al., 1999) requirements over

ontogeny. Size-specific differences in distribution are important to

consider as body size is a key trait governing how fish interact with

prey (Jacobson et al., 2018, Mittelbach & Persson, 1998, Scharf et al.,

2000), mortality risk (Lundvall et al., 1999, Sogard, 1997) and recruit-

ment to size-selective fisheries. That individuals from different

populations occupy and feed in different areas at sea, even when of

similar size, could be due to genetically controlled distribution pat-

terns (Kallio-Nyberg & Ikonen, 1992, Putman et al., 2014, Quinn et al.,

2011, Royce et al., 1968); e.g., via evolutionary adaption to local feed-

ing conditions (Fraser et al., 2011). Our analyses also give evidence for

population-specific patterns in degree of distribution variation

between smolt year classes. This indicates that the distribution of

some populations might be more influenced by environmental (e.g.,

currents, temperature; Ikonen, 2006, Lacroix, 2013a) and biotic

drivers (e.g., prey availability; Mäntyniemi et al., 2012), compared with

others (Freshwater et al., 2019). Also, hatchery practices (e.g., size at

release) could differ among our study populations; these have been

shown to affect the feeding distribution of Finnish Baltic salmon

populations (Jutila et al., 2003, Kallio-Nyberg et al., 2011, 2015, Sal-

minen et al., 1994) and the time spent at sea before returning to

spawn (Kallio-Nyberg et al., 2011, Orell et al., 2018). Thus, the size at

release probably affects the feeding distribution of hatchery reared

Baltic salmon. The mean release size of tagged smolts varied among

years and increased during our study period but was generally similar

for most populations, with the largest difference between Umeälven

and Dalälven (Supporting Information Figures S6 and S7). Thus, differ-

ent hatcheries practices may contribute to the observed differences in

distribution at sea observed among populations. Still, the fact that we

found population-specific patterns of distribution variation among

populations that did not significantly differ in smolt release size

(cf. Table 1 and Supporting Information Figure S7) suggests that local

adaptation may play a role in the extent populations alter their distri-

bution in response to environmental drivers. We further show that

the degree of individual distribution variation differs between

TABLE 3 Mean standard deviation
(± SD) in recapture latitude (�N) among
individuals within year classes of
different size classes of 10 Baltic Salmo
salar populations caught 1951–1999. The
populations with the smallest and largest
degree of individual variation in
distribution are denoted in bold

Population

Fork-length size class (cm)

30–50 50–70 70–90 90–110

Torneälven – 2.2 (± 1.0) a bc 1.8 (± 0.9) a bc –

Luleälven 3.1 (± 0.6) a 2.4 (± 0.6) a 2.0 (± 0.5) a 1.9 (± 0.8) a b

Skellefteälven 3.0 (± 0.7) a 2.2 (± 0.6) a b 1.8 (± 0.5) a b 1.9 (± 0.8) a b

Umeälven 2.9 (± 0.2) a 1.7 (± 0.4) cd 1.5 (± 0.5) bc 1.4 (± 0.6) a

Ångermanälven 2.7 (± 0.5) a 2.0 (± 0.5) bc 1.8 (± 0.5) a bc 1.5 (± 0.6) a

Indalsälven 2.7 (± 0.6) a 2.1 (± 0.5) a b 1.8 (± 0.5) a b 1.5 (± 0.6) a

Ljungan 3.1 (± 0.6) a 2.4 (± 0.4) a b 2.2 (± 0.5) a 1.7 (± 0.7) a b

Ljusnan 2.5 (± 0.5) a b 2.2 (± 0.6) a b 2.1 (± 0.6) a 1.8 (± 0.4) a b

Dalälven 2.0 (± 0.6) b 2.2 (± 0.5) a b 2.1 (± 0.6) a 2.2 (± 0.4) b

Mörrumsån – 1.3 (± 0.4) d 1.3 (± 0.4) c 1.7 (± 0.4) a b

Different superscript letters denote significant differences in recapture latitude between populations

within each size class, P < 0.05.
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populations. Thus, individuals originating from the same population,

entering the sea in the same year, can experience very different local

environments depending on from which population they originate.

This may be caused by population-specific differences in the extent to

which spatial distribution at sea is genetically determined or governed

by individual responses to environmental cues (Freshwater

et al., 2019).

Despite population-specific differences in distribution at sea, we

found that the population-specific distribution patterns have been

rather stable over time (1950s–1999), especially for some populations

(e.g., Umeälven; Figure 2). The latter is surprising given the dramatic

changes in the Baltic Sea during the study period, including a regime

shift in the offshore fish species community (Casini et al., 2009,

Möllmann et al., 2009), large temporal variability in available prey for

salmon (Jacobson et al., 2018, Kallio-Nyberg et al., 1999, Mäntyniemi

et al., 2012) and increasing sea-surface temperatures and nutrient

loadings (Reusch et al., 2018). This five decade long stability of

observed distributions suggests population-specific distribution differ-

ences hold over time.

The observed differences in distribution at sea among Baltic

salmon populations suggest that populations are likely to respond dif-

ferently to changes in sea fisheries management and environmental

change. The strong north–south gradient in the Baltic Sea environ-

ment and correspondingly in species composition (Bonsdorff, 2006;

HELCOM, 2009) means that the environment experienced by salmon

(e.g., temperature, salinity, size and species- composition of prey;

Jacobson et al., 2018), can be very different even for a 2� latitudinal

difference in distribution (Table 1 and Figure 1). Changes in the spatial

distribution of commercial and recreational fishing will also affect

these populations differently, depending on their spatial overlap.

Populations with a more homogeneous distribution are likely to be

more negatively affected if fisheries are concentrated on their feeding

area than populations with a more variable distribution. Thus, not only

is it important to adapt assessment and management to population-

specific distribution patterns, but management should also aim to

maintain the diversity in migration and distribution patterns observed

within and among salmon populations. It is increasingly recognised

that such intraspecific diversity may be equally important as diversity

among species to maintain ecological resilience (Schindler et al., 2010)

and ecosystem services (Des Roches et al., 2018). The information on

population-specific distribution patterns provided herein is therefore

important for implementation of population-specific assessment and

management of Baltic salmon also at sea. Specifically, accounting for

population-specific distribution patterns could be one way forward

towards better estimates of population-specific exploitation rates at

sea (Chaput, 2012, ICES, 2018, Koljonen, 2006, Whitlock et al., 2018).

Population-specific responses to environmental change could also be

a reason why some Baltic salmon populations have more synchronous

dynamics than others (McKinell & Karlström, 1999). Thus, we argue

that this distribution variation should be accounted for to better

understand how Baltic salmon populations respond to changes in

exploitation rates and environmental conditions at sea, as different

populations clearly experience different environments at sea.

Recapture data of tagged individuals provides a snap-shot in time

of where an individual is feeding. Ideally, mark–recapture data should be

combined with data on individual migratory patterns (e.g., using archival

tags; Strøm et al., 2017) to further increase our understanding of the dis-

tribution patterns of different Atlantic salmon populations at sea. A

potential caveat when using recaptures of tagged individuals is that in

areas with salmon but no fishing, there will be no recaptures. An alterna-

tive is to use fisheries independent methods, such as stable-isotope ana-

lyses from tissue samples of returning spawners (Dempson et al., 2010,

MacKenzie et al., 2012, Torniainen et al., 2013). Nevertheless, according

to Torniainen et al. (2013), assessing population-specific distribution

based on recaptures of individual salmon at sea provides similar results

on a coarse spatial scale (feeding in either the northern or southern Bal-

tic Sea) as retrospective distribution analyses using stable isotopes, col-

lected from returning adults caught prior to spawning in their natal river.

In addition, Carlin-recaptures give an exact location of an individual

(when caught), not possible to determine using retrospective distribution

analyses based on stable isotopes (Hutchinson & Trueman, 2006). Even

so, using recapture data when there is spatial and temporal variation in

fishing effort makes it difficult to analyse changes in distribution for spe-

cific populations over time. However, we focus on comparing distribu-

tions between populations. As we only compare recaptures of equally

sized individuals for the same time period at sea, we argue that the

population-specific distribution differences found in our study are cau-

sed by differences in the spatial distribution between study populations

and not by spatial differences in catchabilities due to population charac-

teristics (e.g., any morphological differences making individuals from

some populations more likely to be caught in specific areas of the Baltic

Sea compared with others). In addition, given the significant number of

recaptures in this study, we argue that our estimates of differences in

the distribution patterns of salmon individuals and smolt year-classes

between populations in the Baltic Sea are reliable.

In conclusion, we demonstrate large variation in size-specific distri-

bution patterns among and within Baltic salmon populations. These

results question the assumption currently used in Baltic salmon assess-

ment of identical responses to changes in offshore sea fisheries. The

observed differences in distribution could also affect salmon population

dynamics and contribute to explaining why some populations have more

synchronous dynamics than others. We found consistent differences in

distribution pattern between study populations over several decades,

despite large-scale changes in the Baltic Sea offshore environment. Thus,

we argue that our results are important to consider in the future devel-

opment of Baltic salmon assessment and management as salmon from

different populations evidently experience different local environmental

conditions and exploitation rates at sea. Specifically, we argue that it is

key to account for distribution differences between populations at sea to

succeed in current efforts to develop a more population-specific assess-

ment and management of Atlantic salmon in the Baltic Sea.
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