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One strategy to limit global warming is to phase out fossil products and replace them 

with bio-based alternatives. This is often referred to as transitioning from a fossil 

economy to a bioeconomy. In this transition, it is important to know the environmental 

impact of bio-based products, since it can be greater than that of the fossil products they 

replace. Life Cycle Assessment (LCA) is a suitable methodology for studying the impact 

of bio-based products, since it encompasses the whole life cycle of the product. However, 

LCA rarely considers spatial and temporal variations in impacts. It also rarely includes 

soil processes such as soil carbon balance and only roughly estimates nitrous oxide (N2O) 

emissions from soil.  

In this thesis, LCA was combined with the agro-ecosystem model DNDC to include 

these soil processes and their variations over time and space. The combined method was 

used to assess climate impact and eutrophication in grass production at five sites in 

central and southern Sweden and the climate impact and energy balance in grass-based 

biogas production in Uppsala municipality, Sweden. Analysis of grass cultivation with 

two fertilisation rates (140 and 200 kg N ha-1) at different Swedish sites revealed that the 

higher rate gave a lower climate impact per Mg harvested biomass, but that site properties 

were more important than fertilisation intensity in determining the climate impact. 

Analysis of grass for biogas production, which was assumed to be cultivated on fallow 

land, was conducted for more than 1000 regional sites with different properties in 

Uppsala municipality and the whole life cycle was included (cradle to grave). The results 

showed large variations in impact between different sites, depending on weather 

conditions, soil properties, transport distances etc. The greenhouse gas fluxes from grass 

cultivation with the greatest climate impact were soil N2O emissions and emissions from 

fertiliser manufacture, which contributed to global warming, and changes in soil carbon 

balance, which generally had a climate mitigating effect. Overall, grass cultivation 

increased soil carbon stocks, but this effect was highly site- and time-dependent. The 

grass-based biogas production system reduced the climate impact significantly compared 

with the reference fallow-diesel-mineral fertiliser system. 

The method developed in this thesis, where LCA was combined with agro-ecosystem 

modelling, could be used to assess the environmental impact of agricultural systems in 

other regions. The results could then also be used to assist policymakers in optimising 

agricultural land use planning for food, feed and fuel production. 
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systems. 
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Abstract 



 

 

En strategi för att begränsa den globala uppvärmningen är att fasa ut fossila produkter 

och ersätta dem med biobaserade alternativ. Detta benämns ofta som omställningen från 

en fossil ekonomi till en bioekonomi. I denna omställning är det viktigt att studera 

miljöpåverkan av de biobaserade produkterna, då det har framkommit exempel där den 

biobaserade produkten har större påverkan än det fossila alternativet. Livscykelanalys 

(LCA) är en lämplig metod att använda för att studera miljöpåverkan av en produkt eller 

tjänst. I LCA-metoden tas däremot sällan tids- och platsberoendet med i bedömningen. 

Dessutom inkluderas sällan markprocesser som förändring av markens kollager och 

uppskattning av den potenta växthusgasen N2O görs ofta med grovt förenklade modeller. 

I denna avhandling kombinerades LCA med processbaserad jordbruksmodellering för 

att undersöka tids- och platsberoendet av miljöpåverkan. Den utvecklade metoden 

användes för att studera klimatpåverkan och övergödningen från vallodling på fem olika 

platser i Sverige, samt klimatpåverkan och energibalansen för vallbaserad 

biogasproduktion i Uppsala kommun. Odlingen av gräsvall inkluderade två olika 

gödselgivor, 140 och 200 kg N ha-1. Resultatet visade att vallodling med högre 

gödselintensitet hade en lägre klimatpåverkan per skördat ton biomassa. Men i det stora 

hela hade platsens egenskaper, i form av väder och jordtyp, större betydelse för 

klimatpåverkansbedömningen än gödselnivån. 

Den vallbaserade biogasproduktionen antogs odlas på outnyttjad jordbruksmark i 

träda. Totalt omfattades över 1000 olika platser i studien, alla med olika förhållanden. I 

denna studie inkluderades biogasens hela livscykel, från vagga till grav, vilket innebar 

att även biogasens rötrest inkluderades inom systemgränsen. Resultatet visade stor 

variation i biogasens klimateffektivitet beroende på var vallen odlades i regionen. De 

största växthusgasflödena var i form av utsläpp av lustgas från marken, utsläpp från 

framtagning av gödsel samt förändring av markens kollager. De två första bidrog till 

ökad växthuseffekt, medan den sistnämna minskade systemets klimatpåverkan. Generellt 

innebar vallgräsodlingen ett ökat kollager i marken, men denna effekt var mycket rums- 

och tidsberoende. Totalt gav den vallbaserade biogasproduktionen en betydande 

klimatreduktion jämfört med referenssystemet. Den framtagna metoden i denna 

avhandling, där LCA kombinerades med process-baserad jordbruksmodellering, kan 

användas för att studera miljöpåverkan av jordbrukssystem i andra regioner. Dessutom 

kan metoden användas för att bistå beslutsfattare för att optimera användning av 

jordbruksmark för mat-, foder och bränsleproduktion. 

 

Nyckelord: Livscykelanalys (LCA), markkol, lustgas, DNDC, bio-metan, digestat, 

växthusgaser, växtodling, övergödning 
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Around 80% of global energy consumption is currently fossil-based (IEA, 

2019). This is not sustainable, since burning fossil fuels makes a strong 

contribution to global warming. According to the Intergovernmental Panel on 

Climate Change (IPCC), human-induced warming up to 2017 increased the 

global mean air temperature by approximately 1 °C compared with pre-industrial 

levels (IPCC, 2018). Global warming has already affected people world-wide 

and the environment, and continued warming is projected to result in long-

lasting and even irreversible impacts, such as loss of ecosystems, sea level rise 

and ocean acidification (IPCC, 2014).  

One strategy to mitigate global warming is to phase out fossil energy sources 

and replace them with bio-based alternatives, a change that is often referred to 

as transitioning from a fossil economy to a bioeconomy. In Sweden, one of the 

greatest challenges to this transition lies in the transport sector, where 77% of all 

fuel used is fossil-based (SEA, 2019). Based on current trends, the Swedish 

Environmental Protection Agency (SEPA) estimates that biofuel demand from 

the transport sector will double by 2030, from 20 to 40 TWh (SOU, 2019).  

Combustion of biofuels is often considered climate-neutral, based on the 

rather simplistic assumption that emissions from biofuel use are compensated 

for by biomass regrowth. However, biofuel production entails greenhouse gas 

(GHG) emissions, due to inputs throughout the production chain. Land use, in 

terms of feedstock cultivation, also affects the GHG balance of biofuels, for 

example via changes in soil carbon (C) storage and emissions of nitrous oxide 

(N2O) from soil. Hence, to capture the full impact of a biofuel, the whole life 

cycle of the system must be analysed. This can be done using Life Cycle 

Assessment (LCA), a comprehensive approach that considers environmental 

impacts throughout the whole lifespan of the product analysed (Cherubini & 

Strømman, 2011). 

Biogas is a competitive biofuel option, typically generated from anaerobic 

digestion of organic wastes. Besides energy, the co-produced digestate can be 

1 Introduction 
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used as organic fertiliser, reducing the demand for mineral fertiliser and adding 

carbon to the soil. Grass crops are often suggested as suitable feedstock for 

biogas production (e.g. Smyth et al., 2009; Börjesson & Tufvesson, 2011; 

Auburger et al., 2017). One reason for this is that grass cultivation is a well-

proven agricultural practice that can be implemented in a wide range of 

conditions, without the need for new farming practices (Smyth et al., 2009). 

Moreover, studies have shown that perennial crops, such as grasses, are more 

likely to sequester soil carbon than annual crops (Bolinder et al., 2010). This has 

been shown to be an important factor in carbon footprint calculations for 

bioenergy systems (e.g. Tidåker et al., 2014; Hammar et al., 2017; Yang et al., 

2018). 

Feedstock cultivation for bioenergy production demands arable land, which 

is a limited resource. However, the possibility exists to expand agricultural 

activities using set-aside arable land with no current agricultural production. 

This type of land is suggested to be especially suitable for energy crop 

cultivation, due to low short-term competition with food production and lower 

environmental impact than conversion of natural land (Tilman et al., 2009). 

However, the amount of bioenergy that could be produced using this land needs 

to be investigated, as do the environmental effects when the set-aside land 

resource is utilised at various scales. 

Assessing crop-based biogas systems is often complex, because agriculture 

is highly affected by spatial and temporal variability in e.g. climate, soil 

properties and transport distances. This means that the environmental impact can 

vary substantially depending on where the cultivation takes place (Henryson et 

al., 2019). Despite this spatial and temporal dependency, LCA studies that 

include fine-scale spatial differentiation over time and space are quite rare, due 

to the large data requirement (Nitschelm et al., 2016). Moreover, soil processes 

have repeatedly been excluded from LCA studies (Brandão et al., 2011). 

Advances in life cycle impact assessment (LCIA) methodology during recent 

years have increased its temporal and spatial resolution (e.g. Ericsson et al., 

2013; Henryson et al., 2018). However, reliable dynamic inventory data are 

commonly lacking. Measurements are often time-consuming and costly and are 

therefore not included in the standard LCA procedure, where practitioners 

usually rely on databases with low temporal and spatial resolution (Rebitzer et 

al., 2004).  

In parallel with development of the LCA methodology, much effort has been 

devoted to developing agro-ecosystem models for investigating processes in 

agricultural soils and in plant production. This work has resulted in a range of 

different models, e.g. Daycent (Parton et al., 1998), Daisy (Abrahamsen & 

Hansen, 2000) and DNDC (Li et al., 1992). By using such models to fill data 
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gaps in time-dynamic LCAs, more information could be obtained about the 

spatial and temporal variability in bioenergy systems. 
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The overall aim of this thesis was to obtain information about the climate impact 

and mitigation potential of grass cultivation and grass-based biogas systems. 

This was done by combining agro-ecosystem modelling with life cycle 

assessment methodology. Climate impacts were assessed considering spatial and 

temporal variations. Specific objectives were to analyse: 

 The influence of spatial and temporal variations on the life cycle climate 

impact of grass cultivation in a Swedish context and at different 

nitrogen fertilisation intensities (Paper I-II). 

 The life-cycle climate impact of a grass-based biogas production 

system, including soil processes, using site-differentiated data (Paper 

II).  

 

The work performed in this thesis is depicted graphically in Figure 1. In Paper 

I, the climate impact and eutrophication impact of grass cultivation were 

investigated at five sites in southern and central Sweden. The investigation 

focused on the environmental effect of grass cultivation (cradle to farm-gate) 

and analysed the gross effect, i.e. no reference scenario was used. In Paper II, 

the investigation was expanded to include handling of the grass biomass 

produced, in terms of biogas production and use of the residual digestate as 

fertiliser (cradle to grave). That investigation was performed on regional level 

(Uppsala municipality), including over 1000 spatially distributed sites with 

individual soil properties delivering biomass to a central biogas plant. The 

biogas system was assumed to replace a reference fallow land, diesel fuel and 

mineral fertiliser-based system. 

2 Aim, objectives and structure of the 
thesis 
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Figure 1. Schematic illustration of the work reported in Papers I and II and the links between the 

papers. 
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3 Background 

3.1 Global warming and climate change mitigation 

The greenhouse effect is the warming of the Earth’s surface through gases that 

prevent infrared thermal radiation from escaping the atmosphere. These gases 

are often referred to as greenhouse gases (GHGs). An increased concentration 

of GHGs in the atmosphere leads to more outgoing thermal radiation being 

trapped, which causes distortion in the global energy balance. This distortion, 

i.e. the difference between ingoing and outgoing radiation, is called radiative 

forcing and is expressed in W m-2. Increased radiative forcing leads to the so-

called enhanced greenhouse effect, which means that more energy is trapped in 

the atmosphere resulting in an increased mean global temperature and climate 

change (Myhre et al., 2013b), with multiple potential detrimental consequences.  

Several global warming mitigation targets have been adopted worldwide to 

try to limit global warming. The most prominent example is the Paris Agreement 

signed by the member states of the United Nations Framework Convention on 

Climate Change (UNFCCC) at the 21st Conference of the Parties (COP 21). The 

Paris Agreement states that global warming is to be limited to well below 2 °C 

by the end of this century and that efforts to stay under 1.5 °C should be pursued 

(UNFCCC, 2016). 

The European Union (EU) has established its own targets to battle global 

warming. The first milestone was the 20-20-20 target, which entailed a 20% cut 

in GHG emissions from 1990 levels, 20% energy production originating from 

renewable sources and a 20% increase in energy efficiency, all by 2020 (EU, 

2016a). For the next period, 2021 to 2030, continued emission cuts are targeted, 

at least 40% cuts compared with 1990, at least 32% renewables and a 32.5% 

increase in energy efficiency (EU 2016b). 

In 2017, the Swedish parliament agreed to adopt a climate policy framework, 

which includes a 40% cut in emissions by 2020, 63% by 2030, 75% by 2040 and 

no net territorial emissions by 2045. The policy framework involves a specific 

target for the Swedish transport sector of a 70% cut in emissions by 2030 

compared with 2010 levels. The emission cut milestones referred to in the policy 

framework are for emissions not included in the EU emissions trading system 

(ETS) framework, while the ‘no net territorial emissions’ target comprises all 

emissions (SEPA, 2019). The Swedish commission tasked with evaluating 

progress towards the targets reported early in 2020 that the stated targets are not 

achievable under current policies (Climate Policy Council, 2020). Similar 

statements have been made regarding the Paris Agreement targets (Rogelj et al., 

2016; Peters et al., 2017).  
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To make the environmental targets achievable, the world must promptly 

reduce emissions of GHGs from all sources, and in particular fossil sources. One 

strategy to achieve this is to use biofuels as an alternative to the finite, 

geopolitical unstable and global warming fossil fuel. Biofuels are energy-

enriched chemicals generated from biomass material, such as plants, microalgae 

and bacteria (Rodionova et al., 2017). One such biofuel, biogas (biomethane), 

can be used for replacement of fossil fuels in heat and power generation and in 

transportation. The biogas process has been used for centuries in human-made 

systems for energy production (Bond & Templeton, 2011). Biogas is formed 

from organic materials that are decomposed by a suite of microorganisms in 

anaerobic environments. The resulting gas distribution is dependent on the 

substrate, but typically consists of methane (CH4, 50-70%), carbon dioxide 

(CO2, 25-50%) and small amounts of other gases and water vapour (Plugge, 

2017). Furthermore, biogas is a storable energy carrier that can be saved for 

future usage (Weiland, 2010). It may therefore fit well into renewable energy 

systems with a large share of intermittent energy sources. 

Most suggested pathways for meeting the current climate mitigation targets 

normally comprise negative emissions technologies (NETs) (Clarke et al., 

2014), which remove and isolate GHGs from the atmosphere with the intention 

of reducing warming. NETs include technologies such as carbon capture and 

storage (CCS), whereby carbon is removed from the atmosphere and stored 

underground (Bui et al., 2018). Carbon capture and storage can be combined 

with e.g. bioenergy (BECCS) or direct air capture via chemical reactions 

(DACCS). Other NETs include enhanced weathering on land and in oceans and 

ocean fertilisation (Minx et al., 2018). However, the reliability in large-scale 

deployment of these technologies is still being debated (Anderson & Peters, 

2016), and recent reviews have highlighted the lack of upscaling studies (Minx 

et al., 2018; Nemet et al., 2018). 

3.2 Soil carbon and grass cultivation 

One NET that has received growing interest in recent years is to increase the 

carbon concentration in soil through changes in agricultural practices (Smith et 

al., 2016; Minx et al., 2018). Soils store more than three times as much carbon 

as the atmosphere (Lal, 2004). This means that even small changes in soil carbon 

concentration can have a considerable effect on the global carbon balance. This 

is highlighted by the “4 per 1000” initiative, which was launched at COP 21 with 

the objective of promoting soil carbon sequestration as an important tool in 

climate mitigation schemes. The name of the initiative originates from the 

calculation that if soil carbon storage were to increase by 0.4% per year, human-
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induced CO2 emissions at today’s levels would be offset (Minasny et al., 2017; 

4per1000, 2018). Increasing soil carbon storage is not only beneficial for climate 

change mitigation, but also improves soil quality, for example through increased 

water-holding capacity, a more steady supply of nutrients, improved soil 

structure and reduced risk of soil compaction (Lal, 2004). 

Soil carbon storage is a balance between carbon inputs, in the form of roots, 

crop residues etc., and carbon outputs in the form organic matter degradation 

and carbon leaching. For soils that are in equilibrium, i.e. where carbon inputs 

are equal to carbon outputs, an increase in carbon inputs will result in an 

increased soil carbon stock and soil carbon sequestration. The carbon stock will 

continue to increase until the soil reaches a new dynamic equilibrium, which can 

take a long time (Smith, 2008), especially in the cold climate in Sweden 

(Kätterer et al., 2012). The carbon stock level at which the soil reaches the new 

equilibrium depends on spatially differentiated properties such as soil 

characteristics, climate, type of crop and management. This means that soil 

carbon sequestration will always have a finite climate mitigation capacity 

(Smith, 2014), and that the effect will vary both between different locations and 

between different points in time for a particular mitigating scheme (Kätterer et 

al., 2012). Furthermore, soil carbon sequestration is a reversible process, which 

means that sequestered carbon can be re-emitted to the atmosphere at any time, 

for example if the continuity in land management is broken. Soil carbon loss 

typically happens faster than soil carbon build-up (Smith, 2005). These 

properties make soil carbon sequestration challenging to predict and handle from 

a policy perspective.  

Earlier studies have shown that soil carbon is more abundant in perennial 

cropping systems than in annual systems. This has been attributed to greater root 

production, less exposure to ploughing and longer growing seasons (Baker et al., 

2007; Bolinder et al., 2010; Börjesson et al., 2018). One of the most commonly 

grown crops world-wide is grass, which in Sweden is cultivated on about 40% 

of all arable land (Swedish Board of Agriculture, 2018). Grass is a perennial 

crop, cultivated in either permanent stands or temporary leys. In temporary leys, 

the grass is regularly re-sown or incorporated in crop rotations (Allen et al., 

2011). The grass produced is typically used as fodder, but alternative uses are 

frequently discussed, for example in protein extraction or as feedstock in biofuel 

production (Tilman et al., 2006; Auburger et al., 2017; Carlsson et al., 2017; 

Santamaría-Fernández et al., 2017). Grass is normally grown as a mixture of 

species, sometimes with the inclusion of clover. The advantage of using a 

combination of species is that they can utilise different niches, both spatially and 

temporally. This means that a well-tailored mix often results in higher yields 

than leys of single species (Fogelfors, 2015). While grass species are dependent 
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solely on available nitrogen in the soil, clover species can host nitrogen-fixing 

bacteria that provide the plant with nitrogen derived from the atmosphere. This 

feature makes clovers more robust and means that they can be produced in 

reasonable quantities with minimal energy input. However, grass species are 

generally more efficient at absorbing available soil nitrogen, which makes them 

more competitive in fertilised soils and often provides larger yields than obtained 

for clover species (Fogelfors, 2015). 

Trials in northern Sweden have shown that including a higher frequency of 

perennial crops in crop rotations results in higher carbon stock than in rotations 

based mainly on annual crops (Bolinder et al., 2010). Moreover, Swedish 

national inventories of agricultural mineral soils have shown that carbon stocks 

have increased over the past three decades, which has been attributed to an 

increased area of grass cultivation to support an increasing Swedish horse 

population (Poeplau et al., 2015a). Other strategies to increase soil carbon 

involve recycling of organic material, use of cover crops and nitrogen 

fertilisation (Kätterer et al., 2012). 

Grass is often suggested as an energy- and climate-efficient substrate for 

biogas production (e.g. Tilman et al., 2006; Smyth et al., 2009; Auburger et al., 

2017). Anaerobic digestion of plant material is associated with some difficulties 

regarding process stability. However, co-digestion with other substrates, such as 

manure, household waste and sewage sludge, has been shown to increase the 

stability in the process (Nordberg et al., 1997). Besides energy, the biogas 

production system also produces digestate that can be used as organic fertiliser, 

reducing the demand for mineral fertiliser and adding carbon to the soil. 

However, it is important to consider the emissions that occur during production 

of biofuel, since in some studies the bioenergy system has been shown to have a 

greater life cycle climate impact than the fossil-based system it was intended to 

replace (Creutzig et al., 2015). 

3.3 Environmental impact assessment 

3.3.1 Life Cycle Assessment 

The LCA methodology is a comprehensive approach that aims to include the 

impacts over the lifetime of the product investigated (cradle to grave), although 

the focus can be directed towards a part of the system, such as the production 

phase (cradle to gate). There are various ways to perform an LCA, but the 

globally accepted framework is regulated by the ISO LCA standard, which is 

essentially described in standards 14040:2006 and 14044:2006 (ISO, 2006a; 
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ISO, 2006b). This framework divides the assessment into four phases: (i) goal 

and scope definition, (ii) inventory analysis, (iii) impact assessment and (iv) 

interpretation. In phase (i), the intention of the LCA is formulated, i.e. why the 

study is being performed, possible target groups and whether the results are 

intended to be comparable to those of other products and services. In phase (ii), 

data on all relevant inputs and outputs required to meet the stated goal and scope 

are collected. In phase (iii), the inventory data collected are aggregated into 

specific environmental impacts such as climate impact, eutrophication, 

acidification etc. Finally, in phase (iv), the results are interpreted and put into 

perspective and suggestions are made for possible improvements. All four 

phases are performed iteratively, meaning that they can be adjusted at any time 

throughout the LCA process. 

An important concept in the LCA methodology is the functional unit (FU), 

which is used as the basis for quantification, i.e. the environmental impact is 

quantified per FU. The FU should describe the function of the investigated 

system and can be either input-based (e.g. hectares of land) or output-based (e.g. 

MJ biofuel produced). The chosen FU should be described in the goal and scope 

phase of the LCA. It is not always obvious which FU is most suitable for the 

assessment, and in such cases several units can be included in the assessment 

(Klöpffer & Grahl, 2014). 

In LCA, the most common approach for assessing the climate impact is as 

global warming potential (GWP) (Cherubini & Strømman, 2011). The GWP is 

calculated as the cumulative radiative forcing of a GHG compared with the 

cumulative radiative forcing of the same amount of CO2 over a specific time 

horizon, typically 100 years (Myhre et al., 2013b). The GWP is calculated as: 

         𝐺𝑊𝑃𝑖(𝐻) =
𝐴𝐺𝑊𝑃𝑖(𝐻)

𝐴𝐺𝑊𝑃𝐶𝑂2(𝐻)
=

∫ 𝑅𝐹𝑖(𝑡)𝑑𝑡
𝐻

0

∫ 𝑅𝐹𝐶𝑂2(𝑡)𝑑𝑡
𝐻

0

   (1) 

where AGWP is the absolute cumulative radiative forcing (RF) over a specific 

time horizon H. Since the emissions are relative to CO2, the climate impact is 

given in CO2-equivalents (CO2-eq). There are pre-defined GWP characterisation 

factors for most GHGs. For example, the factor for CH4 is 34 and that for N2O 

is 298, with the inclusion of climate-carbon feedbacks (Myhre et al., 2013a). The 

GWP approach does not include timing of the emissions. Instead, the emissions 

that occur at different points in the life cycle are added together, even though the 

endpoint of the impact differs (Kendall, 2012). 

Another method for assessing the climate impact of GHG emissions is global 

temperature change potential (GTP). This method goes one step further and 

assesses the temperature change of the radiative forcing caused by the GHG 

emission. This is achieved by applying radiative forcing calculation in 
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combination with the temperature response to changes in the radiative forcing. 

By investigating the cumulative absolute global temperature potential (AGTP) 

from the yearly emissions modelled in the life cycle inventory, the temperature 

response can be assessed dynamically throughout a specified analytical time 

horizon. This approach to assessing the climate impact has been used previously 

in LCA studies to evaluate the climate impact of bioenergy systems (Ericsson et 

al., 2013; Hammar et al., 2017).  

The LCA methodology was originally developed as a site-independent tool 

for industrial processes, but it has also been applied to other types of systems. 

For example, it has been used to evaluate the environmental impact of 

agricultural systems (Garrigues et al., 2012). In contrast to industrial processes, 

agricultural systems contain intermediate diffuse sources with large variability 

both spatially and temporally. One example of this is emissions of GHGs, which 

are highly dependent on spatial and temporal properties, such as climate, soil 

type and management practices (Miller et al., 2006). Furthermore, soil 

processes, such as soil carbon sequestration, are rarely included in LCA 

(Brandão et al., 2011), although studies have shown that changes in soil  carbon 

can have a substantial impact on the overall GHG balance of agricultural systems 

(e.g. Tidåker et al., 2014; Hammar et al., 2017; Yang et al., 2018). Today, many 

environmental and administrative decisions are made on local or regional level. 

For this reason, it is relevant to include spatial and temporal gradients of the 

impact within the study area. Some previous studies have integrated spatially 

explicit assessment of agricultural systems (Humpenöder et al., 2013; 

Hörtenhuber et al., 2014; Henryson et al., 2019). These studies highlight the 

importance of spatial differentiation to obtain more relevant results than those of 

classic LCA studies. However, introducing temporal and spatial dependency in 

LCA will increase the data requirement, which can cause problems for the 

analyst.  

3.3.2 Agro-ecosystem modelling 

Measurements of environmental emissions are often lacking due to high cost, 

time constraints and technical feasibility. The second best option is to use 

models. Agro-ecosystem models are used to model processes within the 

agricultural environment. These models are increasingly used in environmental 

planning and management for agriculture (Tonitto et al., 2018). Agro-ecosystem 

models can be divided into two categories, statistical (also called empirical) and 

process-based. Statistical models are normally more straightforward and 

transparent, but because they rely entirely on the data used to derive the 

relationship, in most cases they have a smaller geographical range (Smith et al., 
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2012). In contrast, process-based models can theoretically be applied to many 

combinations of geography, climate, cropping systems and management 

practices (Smith et al., 2012). In practice, however, their use is limited by 

scientific knowledge of the modelled processes (Tonitto et al., 2018). This 

means that the results from process-based models must be carefully scrutinised. 

Agro-ecosystem models have been used in multiple LCA studies to fill data gaps 

in the life cycle inventory (e.g. Bessou et al., 2013; Goglio et al., 2014; 

Kløverpris et al., 2016; Deng et al., 2017). Two of the most important soil 

processes affecting the climate impact of agricultural systems are the soil carbon 

balance and soil N2O emissions. 

Modelling soil carbon balance 

The soil carbon balance is regulated by decomposition of soil organic matter, 

which is the microbial process whereby organic carbon is oxidised to CO2 and 

inorganic substances are released into the soil environment, or incorporated into 

the microbial biomass (Lorenz & Lal, 2012). The process whereby the 

components in the decomposed material are transformed into inorganic 

substances is called mineralisation, while the process of assimilation of 

inorganic substances is called immobilisation (Ågren & Andersson, 2012). To 

date, the dominant paradigm of soil carbon decomposition has been that 

chemical recalcitrance regulates the decomposition of carbon in soils. Therefore 

most soil carbon models are constructed around a type, or pool, of organic 

material that has an intrinsic decay rate. Labile organic matter that is 

decomposed is partly converted into CO2 through microbial respiration and 

partly converted into a more stable pool, eventually reaching an inert pool 

(humus) (Schmidt et al., 2011). Some soil carbon models only simulate the soil 

carbon balance, such as the RothC model (Coleman & Jenkinson, 1996)  and the 

Introductory Carbon Balance Model (ICBM) (Andrén & Kätterer, 1997). These 

models do not simulate crop growth, however, and therefore data on carbon input 

are necessary to operate them. In contrast, dynamic crop-climate models 

describe the interaction between crop growth, soil carbon and nitrogen dynamics 

and environmental processes. Examples of such models are DNDC 

(DeNitrification DeComposition) (Li et al., 1992), DayCent (the daily time-step 

version of CENTURY) (Parton et al., 1998), and the Daisy model (a soil-plant-

atmosphere model focusing on agro-ecosystems) (Abrahamsen & Hansen 2000). 

Agriculture also affects CH4 fluxes, mostly through rearing of livestock, but also 

through soil processes. Soils can act as a net sink or net source of CH4, depending 

on moisture, soil nitrogen level and ecosystems. Native prairie and forests 

systems tend to be net consumers of CH4 (Johnson et al., 2007). 
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Modelling soil N2O emissions 

The most important processes for the evolution of N2O from agricultural soils 

are biological nitrification and denitrification (Khalil et al., 2004). Nitrification 

is the process whereby ammonium (NH4
+) is oxidised to nitrate (NO3

-). The 

NH4
+ enters the soil matrix for example through net mineralisation of organic 

nitrogen, deposition from the atmosphere or via mineral fertiliser (Figure 2). 

During nitrification, N2O is formed as a by-product to varying degrees. Under 

aerobic conditions, less than 1% of the oxidised NH4
+ ends up as N2O (Ågren & 

Andersson, 2012). Under anaerobic conditions, the NO3
- in the soil can be 

reduced to nitrogen gas (N2), which leads to losses of nitrogen from the soil. This 

process is called denitrification and is a four-step reaction in which N2O is an 

intermediate (Figure 2).  

 

Nitrous oxide is a very potent climate forcer, around 298-fold stronger than CO2 

over a 100-year perspective (Myhre et al., 2013a), which means that even small 

emissions cause large radiative forcing. Estimates of soil N2O emissions are 

associated with large uncertainties. The major reason for this is that the 

emissions show substantial temporal and spatial variations and that the 

underlying processes affecting the emissions are still not fully known 

(Butterbach-Bahl et al., 2013).  

In LCA, the most common approach for estimating soil N2O emissions is the 

IPCC Tier I approach, which is recommended by the IPPC when rigorously 

documented country-specific emission factors are lacking (IPCC, 2006). The 

main limitations with this approach are that: i) it is site-generic and does not 

consider spatial variations between different types of soils and ii) the emission 

factors are biased towards soils in mid-latitude regions, and are thereby not 

equally applicable to soils in the northern hemisphere (Rochette et al., 2018). 

Process-based models can be used to estimate soil N2O emissions for specific 

Figure 2. Production and consumption of the different reactants in nitrification and 

denitrification. 
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conditions and thereby increase understanding of N2O emissions when assessing 

the life cycle impact of agricultural systems. 
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4.1 System description 

In Paper I, the impact of grass cultivation was investigated at five sites spread 

across southern and central Sweden. In Paper II, the impact of a system ranging 

from grass cultivation at more than 1000 sites in Uppsala municipality, central 

Sweden, to biomass conversion and use of the digestate as fertiliser was studied 

using a life cycle approach. In Paper II, the consequence of implementing the 

system using existing fallow land in the region was assessed and the altered 

system was compared with a reference fallow land, diesel fuel and mineral 

fertiliser-based scenario. In contrast, in Paper I only the gross effect of grass 

cultivation was investigated. 

4.1.1 Grass cultivation 

The five sites assessed in Paper I ranged from Kungsängen in east-central  

Sweden to Tönnersa in the south-west (Figure 3). 

4 Method 
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Information about the five different sites used in Paper I is presented in Table 1. 

Individual site weather data for the 30-year period 1986-2015 were collected 

from nearby meteorological stations. 

Table 1. Properties of the five sites studied in Paper I 

Site Karlslund Klevarp Kungsängen Lanna Tönnersa 

Latitude 59.4 57.7 59.8 58.5 56.5 

Mean temp (°C) 

1986-2015 

6.8 5.4 6.9 7.1 8.0 

Mean annual 

precipitation 

(mm) 1986-2015 

691 679 568 598 791 

Soil texture Clay loam Sandy loam Clay Silty clay 

loam 

Sandy loam 

Soil organic 

carbon at surface 

(%) 

2.6 1.7 6.0 2.0 1.5 

Clay content (%) 29 2 57 33 3 

Figure 3. Map indicating the location of the five study sites in central and southern Sweden used 

in Paper I. 
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The grass was cultivated in five-year rotations and analysed over 30 years. The 

rotation started with sowing and rolling in year 1 and ended with ploughing in 

year 5 (Figure 4). During the crop rotation, the grass was assumed to be fertilised 

and cut twice a year. Two fertiliser intensities were investigated, 140 kg N ha-1 

(F1) and 200 kg N ha-1 (F2). The first fertiliser-spreading occasion was 1 May  

(80/120 kg N ha-1) and the second occurred after the first cut on 10 June (60/80 

kg N ha-1). The environmental impact was assessed per hectare (ha) of land and 

per Mg dry matter (DM) yield. 

4.1.2 Grass-based biogas 

In Paper II, the system was expanded to also comprise continued handling of the 

harvested biomass to biogas production. The investigation was performed as a 

case study in Uppsala municipality, where 3587 ha were reported to be under 

fallow in 2014. Information about the current land use was obtained directly 

from the Swedish Board of Agriculture. The sites investigated (N=1240) 

primarily had fine-textured soils, with around 90% defined as silty clay loam, 

clay loam, silty clay and clay (Figure 5). All organic soils and fields smaller than 

0.5 ha were omitted from the analysis, which reduced the total area to 3006 ha. 

The initial carbon content in the remaining mineral soils showed large variation, 

ranging between 0.7 and 11.5 %, with a median value of 2.2%. The soil pH 

ranged between 5.1 and 8.1, with a median value of 6.5. Data for weather 

Figure 4. Schematic overview of the grass cultivation rotation analysed at the five sites in Paper I. 

The grass was sown and the soil was rolled in year 1 and the grass was terminated with ploughing to 

30 cm in year 5. During the crop rotation, the grass was fertilised and cut twice a year. 
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conditions were obtained for 10-year period, 2007-2016. This 10-year weather 

sequence was looped in simulations for a 100-year period. Mean annual 

precipitation in the period was 596 mm and mean annual temperature was 6.5 

°C. 

 

Biogas production in the city of Uppsala is currently based on both food 

waste and sewage sludge and amounts to 162 TJ y-1. The biogas plant in the 

grass-based biogas scenario in Paper II was assumed to be located at the same 

site as the existing municipal biogas plant (Figure 6). The system boundary did 

not include capital goods, such as construction and production of machinery. 

The impact of the system was assessed: (i) per ha, (ii) per MJ biogas produced 

and (iii) for all investigated sites in Uppsala municipality. The same grass 

cultivation management regime as in Paper I was assumed. The fallow land in 

the reference system was assumed to be left unmanaged throughout the study 

period except for cutting once a year in late autumn, with the cut biomass left in 

the field. The system was analysed over 100 years. 

Figure 5. Soil texture and initial soil organic carbon (SOC) content at sites under fallow (N=1240) in 

Uppsala municipality used in Paper II. 
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The grass-based biogas system was divided into six subsystems: grass 

cultivation (GrassCA), biomass conversion (BioCA), digestate (DigA), fallow 

(FallR), fossil fuel (FossR) and mineral fertiliser (MinR) (Figure 7). The first three 

subsystems comprised the altered system (A) and the latter three the reference 

system (R). The investigated systems were also divided into three compartments, 

land use (ΔLU), fuel production (ΔFP) and soil fertilisation (ΔSF). The 

emissions from ΔLU were assessed as the difference between GrassCA and 

FallR, those from ΔFP as the difference between BioCA and FossR and those from 

ΔSF as the difference between DigA and MinR. The comparison in the ΔLU 

compartment was related to the field area, i.e. the calculated emissions were 

based on the same area of grass cultivation and fallow. The comparison in the 

ΔFP compartment was based on engine energy, and that in the ΔSF compartment 

on nitrogen (N) uptake. The total GHG emissions were calculated as the 

difference between the altered system and the reference system as: 

𝐸𝑇𝑜𝑡 = (𝐸𝐺𝑟𝑎𝑠𝑠𝐶𝐴 − 𝐸𝐹𝑎𝑙𝑙𝑅)⏞            
𝐸∆𝐿𝑈

+ (𝐸𝐵𝑖𝑜𝐶𝐴 − 𝐸𝐹𝑜𝑠𝑠𝑅)⏞          
𝐸∆𝐹𝑃

+ (𝐸𝐷𝑖𝑔𝐴 − 𝐸𝑀𝑖𝑛𝑅) ⏞          
𝐸∆𝑆𝐹

   (2) 

Figure 6. (Left) Map of the study region of Uppsala municipality (inside the black line), showing the 

distribution of fallow land (black dots) and the location of the municipal biogas plant (red and black 

dot). (Right) Map of Sweden showing the location of Uppsala municipality. 
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4.2 Agro-ecosystem modelling 

The DNDC model was used in Papers I and II to generate data for the life cycle 

inventory regarding biomass yield, soil carbon changes and soil-borne N2O and 

CH4 emissions. The DNDC model is based on equations from classical laws of 

physics, chemistry and biology and from empirical laboratory observations (Li 

et al., 2006). The model was first developed to simulate carbon and nitrogen 

flows in agricultural soils (Li et al., 1992). Since then, it has been refined and 

updated by a number of researchers across the world to fit specific research 

purposes, which has resulted in branching of the model (Gilhespy et al., 2014). 

Here, a Canadian version (DNDC-CAN) developed and validated for similar 

cool-weather conditions as those prevailing in Sweden was used. This version 

has been refined to e.g. better reproduce crop biomass growth (Kröbel et al., 

2011) soil temperature (Dutta et al., 2017) and evapotranspiration (Dutta et al., 

2016). DNDC-CAN has also recently been extended to simulate perennial 

regrowth after cuts in subsequent years (He et al., 2019). The model has been 

used in previous LCA studies to simulate impacts of agricultural systems 

(Goglio et al., 2014, 2018). 

Figure 7. Schematic illustration of the grass-based biogas system studied in Paper II, divided into six 

subsystems: Grass cultivation (GrassCA), Biomass conversion (BioCA), Digestate use (DigA), Fallow (FallR), 

Fossil fuel (FossR) and Mineral fertiliser (MinR). The net effect of the system was calculated as the difference 

between altered system and reference system. The subsystems were also divided into three compartments: Land 

use (GrassCA - FallR), Fuel production (BioCA - FossR) and Soil fertilisation (DigA - MinR). The basis of 

comparison is shown in the row between the altered system and the reference system. 
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In Papers I and II, the DNDC-CAN model was fed with site-specific data 

comprising soil properties, climate, location and management set-up. Data on 

soil porosity, density, field capacity and wilting point were obtained using a 

pedotransfer model developed by Saxton & Rawls (2006). The model fit to 

observed biomass growth data was analysed in Paper I. 

In Paper II, the same model set-up as employed for the crop in Paper I was 

used, but the grass was assumed to be cultivated on fallow land in Uppsala 

municipality. Based on measuring points comprising carbon, clay, sand and silt 

content, as well as pH, the study sites were given specific properties with 

Geographic Information System (GIS) programming. 

4.3 Climate impact assessment 

When all crucial data have been collected in the life cycle inventory, the next 

step in LCA is to estimate the environmental impact caused by these emissions.  

In Papers I and II, both GWP and the dynamic climate impact model were 

used (see section 3.3 of this thesis). All major fluxes of the GHGs CO2, CH4 and 

N2O during the life cycle (see sections 4.1.1 and 4.1.2) were included. In Paper 

II, the climate impact of the biogas per MJ was compared against the impact of 

a fossil alternative, diesel fuel. This was calculated as: 

       𝐺𝑊𝑃 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  (𝐺𝑊𝑃𝐹 − 𝐺𝑊𝑃𝐵) 𝐺𝑊𝑃𝐹⁄  (3) 

where GWPB is the GWP caused by net emissions from the studied system, 

without fossil fuel substitution (i.e. ETot - EFossR), and GWPF is the GWP caused 

by emissions from an equivalent amount of fossil fuel (EFossR). 

4.4 Eutrophication assessment 

In Paper I, the eutrophication impact of grass cultivation was assessed at the five 

sites. This was done using nitrogen and phosphorus leaching data from Johnsson 

et al. (2016), who calculated mean leaching rates through simulations for the 22 

regions in Sweden. The data are presented for specific crops and soil textures 

and include leaching from the root zone and surface runoff.  

The most common approach used for assessing eutrophication is the CML 

method (Guinée, 2002). This is a site-generic method, which places the impact 

indicator at the point of emissions and hence neglects the fate of the eutrophying 

emissions. Furthermore, the method does not consider whether the recipient is 

nitrogen- or phosphorus-limited, and therefore all discharges of nitrogen and 

phosphorus to the environment are considered to be potentially eutrophying. 

This is a simplistic approach and in reality eutrophication is a much more 
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complex phenomenon. This is especially true in Sweden, which is surrounded 

by the Baltic Sea, the world’s largest brackish water basin. The Baltic Sea is 

considered both nitrogen- and phosphorus-limited, with the degree varying 

between different sub-basins (Swedish EPA, 2006). Therefore, to complement 

the CML method, a site-specific method for assessing marine eutrophication was 

used in Paper I. This method was developed by Henryson et al. (2018), who 

present emissions factors for different regions in Sweden. The emission factors 

used in CML and the Henryson approach are presented in Table 2. 

Table 2. Marine eutrophication and potential eutrophication at the study sites, calculated using 

nitrogen (N) and phosphorus (P) characterisation factors (CF) taken from CML (Guinée, 2002) 

and from Henryson et al. (2018), respectively 

Site 

Marine eutrophication (Henryson et al.) 

(kg N-eq kg-1) 

Potential eutrophication  (CML) 

(kg N-eq kg-1) 

N CF  P CF N CF  P CF  

Karlslund 0.169 0.672 1 7.23 

Klevarp 0.122 0.499 1 7.23 

Kungsängen 0.435 2.48 1 7.23 

Lanna 0.55 0 1 7.23 

Tönnersa 0.835 0 1 7.23 

 

4.5 Energy balance assessment 

In Paper II, the energy balance of the grass-based biogas system was evaluated  

by calculating the energy ratio (ER) (Djomo et al., 2011), using the equation: 

          𝐸𝑛𝑒𝑟𝑔𝑦 𝑟𝑎𝑡𝑖𝑜 =  𝐸𝑂𝑈𝑇 𝐸𝐼𝑁⁄    (4) 

where EOUT is the energy produced in the system, biogas in this case, and EIN is 

the primary energy input to the system in terms of fossil fuel and electricity. The 

fraction of the biogas produced that was used to heat the reactor was not included 

in the energy balance calculations.  
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5.1 Climate impact 

5.1.1 Grass cultivation 

In the analysis in Paper I, the climate impact of grass cultivation showed large 

variability between the five sites and between the two fertiliser intensity levels 

(Figure 8). According to the results, soil properties and weather conditions were 

more important than fertiliser intensity for the climate impact of grass 

cultivation. For all sites, the higher fertilisation rate (200 kg N ha-1) entailed a 

lower climate impact per Mg harvested biomass. The GHG fluxes with the 

largest climate impact were changes in the soil carbon stock, soil N2O emissions 

and emissions from fertiliser manufacture. The changes in soil carbon stock 

mitigated the climate impact of grass cultivation, while N2O emissions from soil 

and emissions from fertiliser manufacture increased the climate impact. The 

largest climate impact per Mg DM yield was found for the fine-textured soil in 

Kungsängen, at the lower fertilisation rate. Lower climate impact was found for 

the coarser-textured soils in Klevarp and Tönnersa with lower initial carbon 

content. A lower impact was also found at the Lanna site, which had the largest 

soil carbon sequestration.  

5 Results and discussion 
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5.1.2 Grass-based biogas 

In Paper II, the system boundary was expanded to include utilisation of the 

harvested grass biomass and, in contrast to Paper I, the net effect of the system 

was investigated. Figure 9 shows the climate impact of the system over the 

studied time horizon using all fallow land included in the analysis. In the land-

use compartment (ΔLU), the largest impact was from nitrogen fertiliser 

manufacture and soil-borne N2O emissions, while a negative impact was 

simulated in terms of soil carbon sequestration, which is in accordance with the 

results in Paper I. However, when the net effect of grass cultivation was studied 

the largest impacts were from nitrogen fertiliser manufacture, mainly since no 

fertiliser was used in reference land use, green fallow. In contrast to Paper I, field 

operations resulted in a relatively larger climate impact. This was because 

chopping of the grass biomass was included in Paper II to facilitate subsequent 

anaerobic digestion. In the fuel production compartment (ΔFP), the largest 

impact was due to CH4 losses during production and storage of the digestate. 

This compartment had a large net negative impact from the avoided emissions 

from the substituted diesel fuel. For the soil fertilisation compartment (ΔSF), the 

largest mitigation potential was in increased soil carbon stock and avoidance of 

nitrogen fertiliser manufacture through substitution of digestate. 

Figure 8. Total climate impact of grass cultivation during 30 years at the five study sites in Paper I 

for fertilisation rates F1 (140 kg N ha-1) and F2 (200 kg N ha-1), assessed as Global Warming 

Potential over 100 years (GWP100). 
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The climate impact was also assessed dynamically over the study period. The 

net climate impact of the total grass-based biogas system showed a decreased 

temperature response over the study period (Figure 10). Although the altered 

system entailed an increased temperature response, the impact from the 

reference system was larger, which resulted in a total net negative climate 

impact. This was largely attributable to the substitution of diesel fuel. For the 

altered system, the impact was dominated by the emissions from GrassCA in the 

long-term and BioCA in the short-term. This was because the main emission from 

BioCA was CH4, which is a relatively short-lived climate forcer. This explains 

the climate impact declination for this subsystem over time. For the net effect of 

the system, the land use compartment (ΔLU) and the soil fertilisation 

compartment (ΔSF) more or less cancelled each other out over the 100-year time 

horizon. 

Figure 9. Total net climate impact of the grass-based biogas system in Uppsala municipality over 100 

simulated years. The emissions (assessed as GWP100) are aggregated into the three compartments: Land 

use, Fuel Production and Soil fertilisation, and are expressed in Gg CO2eq (G = 109) 
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When all study sites in the region were included, the net GWP of the biogas 

produced was 10 g CO2-eq MJ-1, without substitution of fossil fuel (FossR). This 

corresponded to a GWP reduction of 85% compared with diesel fuel. However, 

the variation between sites was large, ranging between 102 and 79% reduction, 

depending on where in the region the grass was cultivated. Figure 11 shows the 

GWP reduction compared with diesel fuel depending on the fraction of total 

available land area used. For example, if only 10% of the best performing land 

was utilised, the GWP reduction increased to 95%. 

Figure 10. Temperature response, in degrees Kelvin (K) using all fields studied (N=1240, 3006 ha) 

in the region, for (left) the altered system and (centre) the reference system, and (right) the total net 

effect. 
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In Paper II a scenario analysis was performed, where the base scenario was 

compared with two alternative scenarios: (i) increased fertilisation in grass 

cultivation and (ii) biomass cultivation with biological nitrogen fixation. 

Increasing the fertilisation intensity increased the total climate mitigation effect 

of the system compared with the base scenario. This was attributable to the 

increased yield in scenario (i), which entailed higher biogas production, enabling 

more diesel to be substituted. The biological nitrogen fixation scenario (ii) also 

resulted in total higher mitigation potential than the base scenario, although the 

yield was lower. This was because no fertiliser was used, due to the assumption 

that the nitrogen requirement of the crop was met through atmospheric nitrogen 

fixation. This scenario also reduced soil N2O emissions, which corresponds with 

IPCC default values for leguminous crops (IPCC, 2006), where direct N2O 

emissions are neglected based on results from Rochette & Janzen (2005). The 

climate impact per MJ produced biogas of the two scenarios was also analysed. 

The results indicated that the nitrogen fixation scenario yielded the most climate-

efficient biofuel, with higher mitigation effect than both the base scenario and 

the increased fertilisation scenario. The lowest mitigation effect per MJ biogas 

produced was in the increased fertilisation scenario (Figure 12). 

Figure 11. Global warming potential (GWP) reduction compared with diesel from using the 

grass-based biogas system, without fossil fuel substitution (FossR), in relation to fraction of 

total available land area used. 
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5.2 Soil carbon balance 

5.2.1 Grass cultivation 

Over the 30-year time horizon applied in Paper I, the carbon stock increased for 

all sites and with both fertiliser intensities, though the change was small for 

Kungsängen F1 (Figure 13). Increasing the fertilisation intensity from 140 to 

200 kg N ha-1 increased carbon sequestration at all sites, although there were 

fluctuations in the curves as a result of the rotation period (Figure 13). In every 

fifth year the grass was restarted, i.e. the standing grass was ploughed under, 

which meant that all biomass, above and below ground, entered the soil organic 

carbon pool. For most sites, the sequestration rate was higher in the first part of 

the simulation period. This is worth considering when including soil carbon in 

climate impact assessments, since the period over which soil carbon change is 

averaged may have a large impact on the calculated sequestration. The total 

sequestration over the 30-year time horizon varied between 0 and 4 for the F1 

Figure 12. Total temperature response (degrees K), over 100 years, and average biogas potential 

(TJ per year) for the base scenario and for two alternative scenarios: increased mineral nitrogen 

(Min N) fertilisation and use of biological N-fixing crops. The values next to the points show 

the temperature response per unit of biogas produced (K*10-17MJ-1). 
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fertilisation intensity (140 kg N ha-1) and between 3 and 6.5 Mg C ha-1 for the F2 

intensity (200 kg N ha-1). This shows that not only the fertilisation rate, but also 

the spatial properties of the site, are important in determining soil carbon 

sequestration. According to Bolinder et al. (2017), the mean soil carbon 

sequestration potential of grass cultivation in Sweden is 560 and 85 kg C ha-1 y-

1 in the topsoil and subsoil, respectively. However, these values represent the net 

effect compared with cultivating annual cereals, whereas in the results presented 

in Figure 13 only the gross effect is shown. Depending on what is chosen as the 

reference scenario, the net effect will display large variation. 

 

5.2.2 Grass-based biogas 

In Paper II, the grass was assumed to be cultivated on fallow land in Uppsala 

municipality. The net soil carbon balance for the grass cultivation was calculated 

as the difference between grass cultivation and fallow land (Figure 14).  

The carbon balance for grass cultivation showed large spatial variability in 

the region, where the introduction of grass cultivation led to increased soil 

Figure 13. Simulated cumulative change in carbon (C) stock for the five sites investigated in Paper 

I and the total for all sites. The grey line represents fertilisation rate F1 (140 kg N ha-1) and the 

black line F2 (200 kg N ha-1). 
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carbon stock at some sites and carbon depletion at others. However, most soils 

showed an increase in carbon concentration with grass cultivation. A similar 

pattern was found for the reference fallow land, but the carbon increase was 

smaller and the depletion was larger. This led to a net increase in carbon stock 

at all sites, which means that 100 years of grass cultivation would result in higher 

carbon concentration at the sites than 100 years with fallow. The net effect of 

the soil carbon change showed lower spatial variability, due to counterbalanced 

spatial variability in grass cultivation and fallow land. The importance of the 

dynamic dimension of the soil carbon balance was more evident in Paper II, 

where a 100-year perspective was adopted, than in Paper I with its 30-year study 

period. 

 

The spatial variability in carbon stock change in grass cultivation showed the 

highest correlation to initial carbon content (r = -0.79) and clay content (r = 

0.50). This indicates that soils with low initial carbon content and high clay 

content had a higher capacity to sequester carbon (Figure 15). Similar results 

have been obtained in other studies (Kätterer et al., 2012; Poeplau et al., 2015b). 

Figure 14. Simulated cumulative change in soil carbon (C) sequestration in the study region of Uppsala 

municipality. Change in C stock (Mg C ha-1) for (left) grass cultivation only and (centre) fallow only, and 

(right) net effect of the land use, i.e. grass cultivation – fallow. The grey line represents the 5th percentile 

in the region, the black line the median and the dashed black line the 95th percentile. 
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In Paper II, the effect on soil carbon content of using the digestate from the 

biogas production as fertiliser in winter wheat cropping was analysed. The 

results showed increased soil carbon stock with digestate application and large 

depletion of the carbon stock with mineral fertilisation. This resulted in large net 

soil carbon sequestration for the soil fertilisation part of the life cycle. Compared 

with the ΔLU compartment, the net effect of using digestate as fertiliser showed 

a greater net increase in the soil carbon stock in the ΔSF compartment (Figure 

16).  

Figure 15. Change in soil carbon (C) content (%) after 100 years of grass cultivation, related to the input 

parameters with the largest correlation for the study region, initial C content and clay content. Total C 

change from grass cultivation on the y-axis, initial C content on the x-axis. The colour and shape of the 

markers represent the clay content. Fitting line and R2 for the respective clay concentration is displayed 

in the corners, 0-25th percentile in the lower left corner, 25-75th in the lower right corner and 75-100th 

in the upper right corner. 
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This was mainly because of the high carbon depletion in winter wheat 

cultivation with mineral fertiliser. Unfortunately, studies regarding the long-

term impact of digestate on soil  carbon are lacking. Digestate is a complex 

organic amendment, since its composition varies between biogas systems 

depending on the substrate used. Digestate could potentially be compared to 

sewage sludge or manure (Bolinder et al., 2017). Results from long-term field 

trials on degradation of farmyard manure showed that the carbon fraction 

remaining in the soil after 5, 10 and 37 years was 30%, 20% and 9%, respectively 

(Tatzber et al., 2012). Using these figures for farmyard manure degradation, the 

soil carbon sequestration from digestate application would be 10 Mg ha-1 over 

37 years, which indicates that the estimates obtained in this thesis may be slightly 

low. 

 

Figure 16. Simulated soil carbon (C) sequestration in winter wheat cultivation using mineral fertiliser 

(grey), digestate fertiliser (dashed) and the net effect, i.e. digestate – mineral. Modelled for one field, 

which represented average conditions in the study region 
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5.3 Soil nitrous oxide emissions 

5.3.1 Grass cultivation 

For the LCA calculations, the soil-borne N2O emissions were estimated using 

the DNDC model. In Paper I, the yearly cumulative emissions showed large 

variation between sites and fertiliser intensities. Increased fertilisation elevated 

the mean N2O emissions for all five sites. The highest emissions with both F1 

and F2 were from the soil in Kungsängen, while the lowest emissions were from 

the Klevarp site (Table 3). In general, the N2O emissions were higher from fine-

textured soils than from coarser-textured soils. This is consistent with findings 

from a meta-analysis based on observations by Rochette et al. (2018). 

Table 3. Simulated yearly mean N2O emissions for the five sites studied in Paper I, estimated using 

the DNDC model (mean over a 30-year time horizon ± standard deviation) 

The N2O emissions simulated with the DNDC model were compared against 

emissions estimates obtained using two other methods, IPCC tier I and the 

method developed by Rochette et al. (2018). The results showed only small 

differences between the mean values obtained with the different methods. 

However, the estimates obtained with the site-specific methods DNDC and 

Rochette et al. showed large variation in emissions between sites and years. As 

shown in Table 3, the DNDC model estimated the highest emissions for the soil 

in Kungsängen, whereas the Rochette et al. method estimated the highest 

emissions for the soil in Lanna. The estimates for the remaining sites were quite 

similar, but with generally higher estimated emissions with the DNDC model. 

5.3.2 Grass-based biogas 

In Paper II, the N2O emissions were simulated in the same manner as in Paper I, 

but the simulation was performed for over 1000 sites in Uppsala municipality 

and compared with a reference system, i.e. fallow. For the grass cultivation, the 

mean yearly N2O emissions varied between 4.4 and 0.6 kg N2O ha-1, with 3.2 kg 

Site and  

fertilisation intensity 

Mean N2O emissions (kg N2O ha-1) 

F1 F2 

Karlslund 3.4 ± 0.46 3.9 ± 0.54 

Klevarp 1.9 ± 0.27 2.1 ± 0.32 

Kungsängen 5.2 ± 0.95 6.1 ± 1.03 

Lanna F1 2.9 ± 0.34 3.5 ± 0.40 

Tönnersa F1 2.2 ± 0.35 2.5 ± 0.42 
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N2O ha-1 from the median soil (Figure 17). The high proportion of fine-textured 

soils and high soil carbon content in the region could explain the rather high N2O 

emissions. This led to high N2O emissions also from the fallow land, ranging 

between 3.7 and 0.3 kg N2O ha-1, with 1.3 kg N2O ha-1 from the median field. 

This resulted in all sites having net N2O emissions varying between 2.0 and 0.2 

kg ha-1, depending on where in the region the grass was cultivated. The increase 

in N2O emissions compared with the fallow land was attributable to the mineral 

nitrogen fertiliser applied in grass cultivation. The dynamic variations in N2O 

emissions were due to variations in the input weather data. In Paper II, 10-year 

weather data were looped in the model, which explains the recurring pattern in 

the emissions (Figure 17). The modelled spatial variation in N2O emissions from 

grass cultivation showed the strongest correlation to soil pH (r = -0.87) and initial 

soil carbon concentration (r = 0.50), indicating that soils with low pH and high 

carbon content were most likely to cause high N2O emissions. Experimental 

studies have shown that pH affects the ratio between N2O and N2 emissions, with 

increasing N2O emissions with decreasing pH. This effect has been attributed to 

the interference from N2O denitrification in environments with lower pH (e.g. 

McMillan et al., 2016; Russenes et al., 2016). 

 

The net effect on total N2O emissions of using digestate instead of fertiliser 

was also investigated. Mean net N2O emissions were 0.5 kg N2O ha-1 y-1, i.e. use 

of digestate in winter wheat cultivation entailed on average higher N2O 

Figure 17. Annual nitrous oxide (N2O) emissions from soil in (left) the grass system and (centre) from 

fallow land, and (right) net emissions from biogas feedstock cultivation during 100 years for all sites 

(N=1240). The dashed black line represents the 95th percentile soil (max), the grey line the 5th 

percentile soil (min) and the black line the median soil. 
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emissions than with mineral fertiliser. However, the variation between years was 

quite large throughout the 100-year study period, with somewhat increasing 

emissions from digestate use and decreasing emissions from mineral fertiliser 

use over time. The increased N2O emissions from the digestate simulations were 

attributable to the increased nitrogen content in the soil due to increased 

availability of degradable soil organic matter from the digestate (Figure 18). 

 

5.4 Eutrophication 

The eutrophication impact of grass cultivation was assessed in Paper I, using  

both the CML method, which assesses potential eutrophication, and the method 

developed by Henryson et al. (2018), which assesses marine eutrophication 

(Figure 19). The largest potential eutrophication effect was found for the coarser-

textured soils in Klevarp and Tönnersa, due to higher leaching rates, while the 

fine-textured soils had lower impacts. For assessment of marine eutrophication, 

the location of the site was included. The results indicated the largest 

eutrophication for grass cultivation in Tönnersa, which was due to high nitrogen 

leaching rate and proximity to the coast (see Figure 3). These two methods for 

assessing eutrophication should not be compared to each other, since they 

Figure 18. Annual nitrous oxide (N2O) emissions from soil over a 100-year time horizon following 

fertilisation of winter wheat. The grey line represents emissions from winter wheat cultivation with 

mineral fertiliser, the black dashed line emissions from winter wheat cultivation with digestate. The 

black line shows the net effect, i.e. the difference between digestate and mineral fertiliser. 
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describe different types of eutrophication. Instead, they can be seen as 

complementary approaches.  

 

5.5 Energy balance 

In Paper II, the energy balance of the altered system was analysed by applying 

the energy ratio equation, where the energy output in terms of biogas was divided 

by the primary energy input in terms of fossil fuels and electricity. The largest 

primary input was found to be in the biomass conversion subsystem, where most 

energy was used for upgrading, compression and pumping, and stirring in the 

biogas reactor. The second largest primary energy input was in the grass 

cultivation subsystem, where most of the energy input was used for fertiliser 

manufacture. In total, the primary energy input was 47.8 TJ y-1 and the energy 

output was 167.4 TJ y-1, which resulted in an energy ratio of 3.5 (Figure 20).  

Figure 19. (Left) Potential eutrophication impact assessed using the CML approach and (right) 

marine eutrophication impact assessed using the methodology of Henryson et al. (2018) 
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5.6 Concluding discussion 

5.6.1 Grass-based biogas and climate mitigation 

The results from Paper II showed that implementing the proposed system, where 

fallow land was converted to grass cultivation for biogas production, resulted in 

a considerable climate impact reduction for the study region (Figure 10). As for 

most energy production systems, the grass-based biogas entailed gross 

environmental impacts. The climate impact was mostly influenced by soil-borne 

N2O emissions and emissions from fertiliser manufacture. The calculated net 

climate mitigation effect was very dependent on the reference system used. In 

Paper II, biogas was assumed to replace diesel fuel, which entailed large negative 

GHG emissions (Figure 12). In the current Swedish context, using biogas to 

replace diesel for transportation purposes is a realistic option. However, over a 

Figure 20. Annual primary energy (PE) input and energy output of the altered system for the study 

region of Uppsala municipality, divided between the subsystems grass cultivation (GrassCA), biomass 

conversion (BioCA) and digestate use in winter wheat cultivation (DigA). 
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100-year perspective the most obvious reference fuel may change, which was 

not considered in the assessment in Paper II. 

The most commonly used method to assess climate impact in LCA is to 

calculate GWP. One problem with this method is that it does not include the 

dynamic variation in the impact. Thus the dynamics of the impact were also 

analysed in this thesis. The results revealed that the impact of different processes 

changed over time. This aspect of climate impact can be important when 

planning agricultural systems. For the grass-based biogas system studied, the 

biogenic CO2 from combusting the biofuel was not included because the grass 

had a short rotation. For a feedstock with a longer time between harvests, 

biogenic CO2 can also be included in the analysis to show the payback time of 

the biofuel. 

In general, grass cultivation increased soil carbon stock. The grass-based 

biogas system yielded double net soil carbon sequestration, both from the grass 

cultivation itself and from using the digestate in winter wheat cultivation (see 

Figure 9). These results confirm the importance of including soil carbon balance 

in climate impact calculations of biofuels. Under current EU regulations, 

biofuels that meet the sustainability criteria set in the EU Renewable Energy 

Directive are entitled to a vital tax reduction. However, current regulations do 

not allow soil carbon effects from feedstock cultivation or from use of digestate 

to be accounted for (Council Directive 2009/28/EC). This decision penalises 

perennial feedstock crops in favour of annual crops such as maize or cereals. 

The results in this thesis demonstrate the multiple benefits of the proposed 

grass-based biogas system. Besides providing an alternative to diesel, the system 

also entails more resilient land use, which could maintain or increase soil fertility 

through increased soil carbon stock for future biomass cultivation. The grass 

biomass produced could also serve as back-up animal feed in the event of crop 

failure, e.g. due to droughts or heatwaves, since these types of weather events 

are projected to become more frequent with increased global temperature (IPCC, 

2014).  

5.6.2 Temporal- and spatial-dependent LCA 

The assessed systems showed large variations between sites and years. These 

types of variations are rarely included in LCA, but the results in this thesis 

indicate that they need to be tackled to get the full picture of the environmental 

impact of agricultural systems. Soil N2O emissions and soil carbon balance 

showed the largest influence on the spatial variation in the climate impact of the 

system. In Paper II, gross soil N2O emissions showed the strongest correlations 

to soil pH and soil initial carbon content, while soil carbon change correlated 
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most strongly to soil initial carbon content and soil clay content. For the net 

effect, almost all spatial variation was explained by variations in N2O emissions, 

because the variation in soil carbon changes in grass cultivation was cancelled 

out by the variation in fallow land.  

The simulations showed that the carbon sequestration rate was higher during 

approximately the first one-third of the simulation period and declined over time 

(Figure 13 and Figure 14). This demonstrates the importance of analysing the 

temporal aspect when including soil carbon changes in climate impact footprint 

calculations. Moreover, it is important to remember that soil carbon 

sequestration is a reversible process, which means that if the land use scheme is 

interrupted, e.g. if grass cultivation is replaced by annual cereal crops, there is a 

large risk that the sequestered carbon will be lost again to the atmosphere. 

Therefore, long-term commitment by landowners is needed to create robust 

mitigation schemes involving soil carbon sequestration, in order to sustain the 

mitigating effect. 

Furthermore, increased grass fertilisation rate resulted in an increase in soil 

carbon sequestration. However, this may be a precarious strategy for increasing 

soil carbon stock, since the increased fertilisation rate in this thesis also increased 

the soil N2O emissions. When the soil reaches the new carbon equilibrium it will 

no longer sequester carbon, but the elevated N2O emissions will continue, which 

means that the system can transform from climate-mitigating to climate-forcing 

over time. 

5.6.3 Agro-ecosystem modelling and LCA 

Temporal- and spatial-dependent LCA entails large data requirements. This was 

addressed in this thesis by adopting a biogeochemical agro-ecosystem model 

(DNDC) to fill data gaps in the life cycle inventory. The DNDC model has been 

applied in studies all over the world, including in LCA studies, with satisfactory 

results (Gilhespy et al., 2014). Following an assessment of different methods for 

estimating soil-borne N2O and CO2 emissions, Goglio et al. (2018) concluded 

that DNDC was the only model among those tested that gave similar results to 

measurements for N2O emissions estimates. An advantage of using these kinds 

of agro-ecosystem models, in contrast to simple carbon models, is that crop 

growth and nitrogen and carbon fluxes can be modelled simultaneously, which 

means that interactions between these processes are included. In this thesis, the 

DNDC model managed to reproduce observed biomass growth, with positive 

model efficiency values. This indicates that soil carbon inputs, which affect soil 

organic carbon turnover, were adequately simulated. 
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The current paradigm of soil carbon stock change is based on the idea that 

organic matter stabilisation is controlled solely by the molecular structure of the 

material. However, this view has been challenged, and consideration of physical 

protection of carbon in soil has been emphasised (Schmidt et al., 2011). This 

means that other mechanisms may also be important for the decomposition rate, 

e.g. micro-environmental conditions that restrict the access (or activity) of 

decomposer enzymes, such as hydrophobicity, soil acidity or sorption to surfaces 

(Schmidt et al., 2011). Models based on carbon quality are still the best available 

approach, however, since the understanding of physical protection of soil carbon 

is in its infancy. 

Modelling soil N2O emissions is associated with large uncertainties. In LCA, 

the IPCC tier I approach for estimating N2O emissions is the most common 

method used. However, IPCC only recommends tier I if other data are lacking 

(IPCC, 2006), because this approach does not differentiate between spatial 

properties, e.g. regarding soil and weather properties. The modelling approach 

used in this thesis revealed large spatial variation, which indicates that this aspect 

has large effects on the life cycle climate impact. In a recent report, IPCC 

describe a refinement to the suggested approach of greenhouse gas inventories 

whereby the spatial dimension is included in the IPCC tier I approach by 

spatially disaggregating emission factors by climate region (IPCC, 2019). This 

is a step forward in addressing the spatial variation in N2O emissions, but still 

on very low resolution. 
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 A grass-based biogas system doubled biogas production in the study 

region, significantly reduced the climate impact and increased soil 

quality by increasing soil carbon stock. 

 Climate impact assessment of grass cultivation showed substantial 

spatial variation. The greenhouse gas fluxes with the greatest climate 

impact were soil N2O emissions and emissions from fertiliser 

manufacture and changes in soil carbon balance. Grass cultivation 

tended to increase soil carbon stock, which reduced the life cycle 

climate impact of the system, but this effect was highly site- and time-

dependent. 

 Increasing mineral fertilisation rate increased biogas yield and the 

climate mitigation potential for the study region, but reduced the 

mitigation per MJ biogas. Soil properties and weather conditions proved 

more important than fertilisation rate for the simulated climate impact 

of grass cultivation.  

 The combined LCA-DNDC modelling method could be used to design 

biomass production schemes in other regions, as a strategic tool to assist 

in land use planning of local energy production on the most suitable 

arable land for this purpose. 

  

6 Conclusions 
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The method in this thesis could be used to assess the environmental impact from 

other types of biomass-producing systems for food, feed and fuel production. It 

could also be used to assess a biomass production system with both food and 

feedstock crops, e.g. a grass-cereal-rotation. 

A number of process-based agro-ecosystem models are available, including 

the DNDC model, all of which are formulated slightly differently. One strategy 

to deal with the inherent uncertainty in simulations could be to apply different 

models to the same case and use differences in the results in uncertainty 

calculations for the LCA outcomes. However, existing models are based on 

current collective scientific understanding of agro-ecosystem processes and 

there are still many knowledge gaps that need to be filled to improve the models. 

More basic research is therefore essential, e.g. on the processes underlying soil 

N2O formation and soil carbon balance. Field trials with continuous 

measurements are also needed to better understand the spatial and temporal 

dynamics of these processes. Field trials are needed in particular to determine 

the soil carbon balance following digestate application, which could have a large 

impact on footprinting calculations for biogas production. 

The results in this thesis indicate that nitrogen-fixing crops, such as clovers, 

can be a promising feedstock in bioenergy systems, since they require little or 

no nitrogen fertiliser, which reduces the life-cycle climate impact of the system. 

They also result in a lower rate of N2O formation in soil, which further reduces 

the climate impact. The nitrogen-fixing crop was simulated rather roughly in this 

thesis and different aspects of atmospheric nitrogen fixation by crops were not 

handled in detail. For more comprehensive conclusions, the nitrogen-fixing 

ability in bioenergy systems needs to be further scrutinised.  

  

7 Future research 
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One strategy to limit global warming is to phase out fossil products and replace 

them with bio-based alternatives. This is often referred to as transitioning from 

a fossil economy to a bioeconomy. In Sweden, a major challenge to this 

transition is the transport sector, where around 80% of fuel used is of fossil 

origin. Combustion of biofuels is often considered climate-neutral, but all 

biofuels cause greenhouse gas emissions during production, e.g. due to different 

inputs and land uses. It is important to assess these emissions, since studies have 

shown that the bio-based alternative can have a greater climate impact than the 

fossil fuel it replaces. Life Cycle Assessment (LCA) is a comprehensive 

methodology that aims to include environmental impacts from the whole life 

cycle of a studied product or system. 

Environmental impact of agricultural systems is generated by inputs to the 

system, such as fertiliser, agro-chemicals, machinery and energy. The efficiency 

of the system, i.e. how much output it produces in relation to input, will also 

affect its environmental impact. Moreover, in agricultural systems, emissions 

also occur from biological processes, such as changes in the soil carbon balance 

and soil N2O and CH4 emissions. To complicate matters even further, these 

emissions are determined by the regional and local climate and by site-specific 

physical, social and environmental conditions, all of which vary over time and 

space. Variations in these processes are rarely included in LCA methodology, 

due to lack of data. 

In this thesis, agricultural models were used to include spatial and temporal 

variability in LCA. In one modelling study, the climate impact and 

eutrophication impact of grass cultivation at five sites in southern and central 

Sweden were assessed. The grass was modelled in five-year rotation periods for 

two different fertilisation intensities over 30 years. In a second modelling study, 

climate impact and energy balance were assessed for grass-based biogas 

production over a 100-year period. The grass was assumed to be cultivated on 

fallow land at more than 1000 different sites in Uppsala municipality, Sweden, 
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harvested twice a year and transported to a central biogas plant for conversion 

to biogas for transportation purposes.  

The results showed that the environmental impact varied widely between 

sites. Spatial changes in soil and weather conditions had a greater influence on 

the results than mineral nitrogen fertilisation rate. The greenhouse gas fluxes 

causing the greatest climate impact were soil N2O emissions and emissions from 

fertiliser manufacturing, both of which increased the climate impact of the 

system, and changes in soil carbon balance, which reduced the impact. The soil 

carbon sequestration effect of the system showed large spatial and temporal 

variations, but soils with low initial carbon content and high clay content were 

generally more likely to show increased carbon stock.   

The grass-based biogas system analysed significantly reduced the climate 

impact from the study region compared with reference scenario (fallow land-

diesel fuel-mineral fertiliser). The methodology enables the best sites from a 

climate impact perspective to be selected, which could reduce the total impact 

from the biogas system. Analysis of the dynamic impact of the grass-based 

biogas system revealed that in a short time perspective the climate impact was 

dominated by biomass conversion, i.e. from harvested grass to biogas, while in 

a longer time perspective the climate impact was mostly influenced by grass 

cultivation. This effect was because the main greenhouse gas emitted during 

biomass conversion was CH4, which is a relatively short-lived climate forcer. 

This led to the climate impact from this part of the life cycle levelling out over 

the 100-year time horizon analysed. The grass-based biogas system had a double 

soil carbon effect, from grass cultivation and from using the digestate as a soil 

amendment and fertiliser in winter wheat cultivation. 

The method developed in this thesis could also be used to study the 

environmental impact of agricultural systems in other regions. 
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En strategi för att begränsa den pågående globala uppvärmningen är att fasa ut 

fossila produkter och ersätta dem med biobaserade alternativ. Detta benämns 

ofta som övergången från en fossilekonomi till en bioekonomi. I Sverige ligger 

en av de största utmaningarna för att förverkliga denna övergång i 

transportsektorn, där ungefär 80 % av det bränsle som används har fossilt 

ursprung. 

Alla biobränslen orsakar utsläpp under produktionen av bränslet och de 

råvaror som behövs. Dessa utsläpp är viktiga att studera eftersom det har funnits 

fall där biobränslet har visats ha en större klimatpåverkan än det fossila 

alternativet. Livscykelanalys (LCA) är en metod som tar hänsyn till utsläpp 

under hela livscykeln av en produkt eller ett system och är därför en passande 

metod för att beräkna miljöpåverkan av dessa typer av system. 

Miljöpåverkan av ett jordbrukssystem beror på systemets inputs, så som 

gödsel, kemikalier, maskiner, energi osv. Från systemet uppstår även outputs 

såsom mat, bränsle och foder. Hur effektivt systemet är, dvs hur mycket output 

som genereras per input, kommer också att påverka den beräknade 

miljöpåverkan av systemet. För jordbrukssystem sker även miljöpåverkan inom 

systemet från biologiska processer, exempelvis förändring av markens kollager 

samt markbundna utsläpp av N2O och CH4, vilka är två potenta växthusgaser. 

För att ytterligare komplicera saker, så är utsläppen påverkade av och inbäddade 

i klimatologiska, fysiska, sociala och miljöförhållanden. Dessa faktorer varierar 

dessutom över tid och rum. Variationerna av dessa faktorer är vanligen 

försummade i LCA, ofta beroende på bristen av data. 

I denna avhandling användes jordbruksmodeller för att inkludera rums- och 

tidsberoendet av miljöpåverkan i LCA-metodiken. Avhandlingen är baserad på 

två studier. I den första studien undersöktes klimatpåverkan och övergödning av 

vallgräsodling på fem olika platser, utspritt över södra och mellersta Sverige. 

Den undersökta vallodlingen simulerades i 5-åriga rotationsperioder, med två 

olika gödselgivor, och systemet analyserades i 30 år. I den andra studien 

Populärvetenskaplig sammanfattning 



72 

 

undersökes klimatpåverkan och energibalansen av vallbaserad 

biogasproduktion. Vallodlingen antogs vara placerad på mark som rapporterats 

ligga i träda i Uppsala kommun. Vallen skördades två gånger per år och 

transporterades till en central biogasanläggning, där biomassan omvandlades till 

biogas i syfte att användas som bränsle för transporter. I denna studie 

simulerades vallgräsodlingen på över 1000 olika marker med unika 

förhållanden, med avseende på jordtyp och transportavstånd. Systemet 

analyserades över en 100-årsperiod. 

Avhandlingens resultat visade att miljöpåverkan av vallgräsodlingen hade 

stor variation mellan olika typer av marker. I själva verket visade sig spatialt 

differentierade egenskaper såsom jord och väder ha större påverkan på resultatet 

än gödselgivan. De växthusgasflöden som hade störst påverkan på systemets 

klimatpåverkan var utsläpp av lustgas från marken, utsläpp relaterade till 

mineralgödseltillverkning samt förändring av jordens kollager. De första två 

flödena ökade klimatpåverkan, medan den sistnämnda, reducerade systemets 

klimatpåverkan. Inbindning av kol i jordbruksmarken visade dock stor rumslig 

och tidsberoende variation. Generellt hade marker med låg initial kolhalt och 

hög lerhalt större benägenhet att öka kollagret. 

Implementering av det vallbaserade biogassystemet visade en tydlig 

reducerad klimatpåverkan, jämfört med det antagna referenssystemet. Med den 

använda metoden kunde de marker inom regionen som var bäst lämpade för 

systemet, ur ett klimatperspektiv, identifieras och på så sätt minska 

klimatpåverkan av den producerade biogasen. Genom att analysera den 

dynamiska klimatpåverkan avslöjades att för kortare tidsperspektiv skedde den 

största klimatpåverkan under konverteringen av biomassa, dvs från skördad vall 

till biogas. Men på längre sikt dominerades klimatpåverkan av vallgräsodlingen. 

Detta var en följd av att utsläppen i  konverteringen av biomassan var främst i 

form av CH4, vilket är en relativt kortlivad växthusgas. Detta ledde till att 

klimatpåverkan från denna del av livscykeln klingade av över den 100-åriga 

analyshorisonten. För det vallbaserade biogassystemet identifierades en dubbel 

kolinbindningseffekt, både från vallgräsodlingen och dessutom genom att 

använda den producerade rötresten som gödselmedel i höstveteodling. 

Den framtagna metoden i denna avhandling kan även användas för att studera 

miljöpåverkan av jordbrukssystem i andra regioner. 
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