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Coral reefs are one of the most diverse ecosystems on the planet, harbouring 
approximately twenty-five percent of the diverse eukaryotic life in the oceans, while also 
being important economically for millions of people worldwide. Despite their 
importance, coral reefs are menaced of a very steep decline due to pollution and 
anthropogenic climate change. 

In this thesis, we investigate the microbes that live close-by and inside coral reefs. It is 
believed that microbiomes, both environmental and coral-associated, play an important 
role in coral health, both by contributing to nutrient cycling, such as carbon and nitrogen 
fixation as well as photosynthesis, and by protecting the corals against environmental 
stressors such as pathogens. These microbiomes can be studied using targeted 
approaches, such as metabarcoding, or more general and powerful approaches, called 
metagenomics. 

Metagenomics is a relatively new field of study and the first part of this thesis focuses 
on method development for metagenomics. In paper I, we present InSilicoSeq, a software 
package to simulate metagenomic Illumina reads. InSilicoSeq is useful for testing new 
bioinformatics methods as well as benchmarking existing ones. 

In paper II and III, we study the composition of the coral microbiome from previously 
published studies, and the composition and function of the microbiome of the water and 
upper sediment layer from reefs of the Kenyan coast of the west Indian ocean. We define 
a putative coral core microbiome at the genus level and take a look at the metabolic 
pathways that may be active in the surrounding environment of the corals. While the 
coral core microbiome was largely dominated by one genus, Endozoicomonas, the 
surrounding environment showed great diversity both in taxonomy and in metabolism. 
We found evidence of antibiotics resistance in the water, which we hypothesise mainly 
comes from agriculture. We also publish a catalogue of putative expressed pathways and 
discovered 174 new bacteria in the water and sediment samples.  
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1.1 Coral Reefs 
 

Corals are underwater organisms of the phylum Cnidaria that form colonies of 
stone-like, hard calcified structures, called coral reefs. In their individual forms, 
corals are polyps. Coral polyps are composed of two layers of cells, covered by 
a mucus layer and cover a large calcified skeleton (Figure 1). Unlike jellyfish, 
corals will never enter a medusa stage and will be polyps their whole life. Most 
corals are stony – or reef-building corals – they will attach to stone or other 
structures will be slowly building a calcified structure, of the order of a few 
centimetres per year (Anderson et al., 2017).  
 

Reef-building corals are found in tropical water around the globe. They 
are thought to be the most diverse ecosystem on the planet, harbouring roughly 
twenty-five percent of the macroscopic life in the ocean (Spalding and Grenfell, 
1997; Plaisance et al., 2011). This diversity makes them invaluable for the 
survival of many animal species worldwide, such as thousands of species of fish, 
algae, sponges, crustaceans and more. 
 

Corals have a symbiotic relationship with a unicellular alga: in the vast 
majority of case, Symbiodinium, that provides essential energy to corals via 
photosynthesis. Symbiodinium is an endosymbiont, meaning they live within the 
tissues of corals. 
 

Coral reefs are extremely important from an economic point of view. They 
are often valued in billions, sometimes trillions of dollars, both from tourism and 
the fishing industry (Costanza et al., 1997). Unfortunately, coral reefs are very 

1 Introduction 
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sensitive to a changing environment and face increased and imminent threats 
due to anthropogenic climate change. Factors such as the acidification of oceans 
and mostly the rise in ocean temperature, contribute to their rather quick 
degradation. 
 

 
 
 
 

The most common cause of coral degradation is bleaching. During a 
bleaching event, corals eject their symbiotic partner resulting in loss of 
pigmentation, increased susceptibility to disease, and if the bleached state 
persists, death of the coral (Figure 2) (Graham et al., 2006; Hughes, Kerry, et 
al., 2017). 

Figure 1: Anatomy of a coral polyp. In pink, the two layers of cells, called 
the epidermis and gastrodermis. The blue and grey shapes indicate the 

skeleton produced by the coral polyp. 
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Without reducing drastically our CO2 emissions, the majority of coral reefs 

will likely not survive much longer, and whole ecosystems may collapse. In the 
meantime, researchers can do everything they can for helping corals to be more 
resistant to climate change, but any fix is ultimately temporary (Hughes, Barnes, 
et al., 2017). 

 

 

Figure 2: Panel A displays a healthy Acropora sp. coral. Panel B shows a bleached coral. 
The image to left was taken by Vardhan Patankar and to the right by David Excoffier. Both 
images are licensed under CC BY-SA 4.0 international. 
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1.2 The coral microbiome 
 
Microbes can be found in all multicellular organisms. Barring the case of an 
infection, microbes live a commensal or even symbiotic relationship with their 
hosts, often providing with important immunological or metabolic functions 
(Norman, Handley and Virgin, 2014). Microbes are found everywhere and do 
not need a host to thrive; they are also found in the environment. Those 
communities of microbes, or microbiomes, outnumber eukaryotic organisms by 
order of magnitudes (Kallmeyer et al., 2012). Corals most likely have distinct 
microbiomes in the mucus layer, the tissue and the skeleton (Hernandez-Agreda, 
Gates and Ainsworth, 2017). 
 

While much is known about the endosymbiont living within the corals, 
we know relatively little about the coral microbiome and its functions. Similarly, 
macroscopic life living within the boundaries of reef ecosystems have been the 
focus of ecologists for years, but the microbes living in the water and upper 
sediments layers of reef areas remained elusive, despite the fact that they may 
be one of the most diverse microbial community on the planet, and that they 
certainly contribute to the ecosystem, being part of the microbial food-web and 
at the very least enabling nutrition (Mostajir et al., 2015). 
 

That the coral-associated microbial communities play an important role in 
coral health is not a novel idea (Sorokin, 1973) but it is only recently that 
microbiome research has started to be conducted in coral reefs environments 
(Tout et al., 2014; Blackall, Wilson and van Oppen, 2015; Bourne, Morrow and 
Webster, 2016), and we are starting to discover exactly which microbes living 
close by – and inside – coral reefs may be extremely important for the reef 
ecosystem, for processes such as carbon cycling, nitrogen fixation, 
photosynthesis, and even protection against pathogens via antimicrobial 
activities (Figure 3).   
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Figure 3: The reef microbiome. Microorganisms are present inside the coral (A), in the 

water (B) and in the sediment layer of the reef (C). These communities are likely to 
contribute a great deal into their environment, by means of diverse metabolic pathways, 

encompassing photosynthesis, carbon and nutrient cycling, nitrogen fixation and more. This 
image has been designed using resources from freepik.com 
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1.3 Sequencing 
 
The two following sections will briefly describe the methods that can be used to 
analyse the genetic material of microbiomes. 
 

Over the last years, high-throughput DNA and RNA sequencing have 
been claiming the lion's share of the methods used in almost all fields of 
biological research (Reuter, Spacek and Snyder, 2015; Park and Kim, 2016). 
From new insights in cancer to bio-prospecting forests for new pharmaceutics, 
the use of whole-genome or transcriptome sequencing technologies has truly 
revolutionised how we approach designing modern experiments, especially for 
microbial ecology, where many organisms that could not be grown in laboratory 
settings have now been discovered and had their genome sequenced. 
 

In that revolution, one should not forget metabarcoding, which for many 
years has been an affordable and quick alternative to characterise the taxonomic 
distribution and difference between microbial communities and compare 
microbial ecosystems under different conditions. Although we did not collect 
and sequence samples for metabarcoding in this thesis, we reanalysed 
metabarcoding data in paper II and the methodology will be further described in 
the methodology section. 
 

1.3.1 Sequencing Platforms 
 

Several sequencing techniques exist, which we can divide into short- and 
long-read sequencing. An overview of the current platforms is available in Table 
1. 
 
 
Table 1: Overview of modern sequencing technologies 

Platform Read length Throughput 

Illumina MiSeq 2*150-300 15Gbp 
Illunina NovaSeq 2*50-250 up to 3Tbp 
Pacbio Sequel  30kb 20Gbp 
Oxford Nanopore MinION up to mb 15Gbp 
Oxford Nanopore GridION up to mb 250Gbp 
Oxford Nanopore PromethION up to mb up to 10Tbp 

 
 

The most popular platform for metagenomics is currently Illumina, 
mainly due to the high throughput necessary for recovering genomes of medium 
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and low abundance species, but the availability and price-tag of the Oxford 
Nanopore MinION may make it a contender for field sequencing in the very near 
future. 
 

1.4 Bioinformatics applied to Metagenomics 
 
Once genomes, transcriptomes, or amplicons have been sequenced, different 
analyses are possible. These analyses are usually platform-independent, 
meaning that regardless of the sequencing technology used, the tools used might 
differ but the principles behind the bioinformatics workflows and pipelines used 
will not differ much. 
 

A typical workflow starts with quality control: the reads produced by the 
sequencers usually contain errors, as well as technical artefacts such as barcodes 
and adapter sequences. 
 

1.4.1 Quality Control 
 

Reads as they come out of the sequencer – or, more correctly, the 
basecalling software – are not free of errors. Errors can come in different 
flavours: substitutions, insertions, or deletions. Each sequencing platform has 
their known error profiles, including things such known substitution patterns, 
deletions on some long homopolymers, or rather large insertions or deletions. 
 

In a read, each base gets assigned a probability of being the correct one 
by the basecalling software. These probabilities are displayed using PHRED 
scores, defined as the logarithm of the error probability, as shown in the equation 
below. PHRED score as reported by the basecalling software usually range from 
0 to 40, where their respective probabilities are shown in table 2. 
 

𝑄 =	−10 ⋅ 𝑙𝑜𝑔!"𝑃 
 
 
Table 2: PHRED score and their probabilities 

Q P 

10 90 
20 99 
30 99.9 
40 99.99 
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Quality Control is a straightforward step in all bioinformatics analyses, 
where we (i) remove the adapters and barcodes (the technical sequences used by 
different technologies to prime flowcells and  identify different sample to 
sequence them in the same run and (ii) trim the bad quality bases (which, in 
Illumina sequencing, usually happen at the end of the reads), usually Q lower 
than 5 (Macmanes, 2014). 
 

1.4.2 16S Metabarcoding 
 

16S metabarcoding is a very popular, affordable and quick way to get an 
overview of the taxonomic composition of a bacterial or archaeal community. In 
a metabarcoding experiment, only one gene, or part of a gene (The 16S rRNA 
gene in the case of bacteria and archaea) is sequenced. This gene or part of a 
gene is called a barcode. Since all bacteria carry that gene and that gene is 
conserved across the whole kingdom, we can infer the genus of a bacteria only 
for one or two regions of the 16S gene. 
 
The 16S rRNA gene is about 1600bp long and contains nine hypervariable 
regions (Figure 4). Many short-read (i.e. Illumina) studies use primer pairs 
spawning 1 or 2 regions, per example V3-V4 is standard in human microbiome 
protocols. With long-read sequencing, one can usually sequence the entirety of 
the 16S gene, allowing for slightly better resolution, and a more complete 
overview of the sampled population. 
 

 
Figure 4: The 16S rRNA hypervariable regions 
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1.4.3 Metagenome assembly and Binning 
 

As an alternative to metabarcoding, one can sequence the entirety of 
genomes present in a community. 
 

Once the bad quality bases and technical artefacts have been removed 
from the reads, we assemble the reads in longer contiguous sequences, called 
contigs.  The current most-used algorithm for short reads makes use of de Bruijn 
graphs. Briefly, short reads are split into overlapping 𝑘-mers (words of length 𝑘) 
and a graph connecting those 𝑘-mers together is created. The graph's 
inaccuracies (dead ends, bubbles, …) are then corrected, and we "simply" have 
to follow the path to reconstruct the genome or at least the longest possible 
genomic fragments. (Figure 5) 
 

Current algorithms, combined with the fact that reads from high 
throughput sequencing are often short (max 300bp for Illumina) do not, most of 
the time, allow us to reconstruct complete, circularised bacterial chromosomes. 
Typically for single genomes projects, assemblies will consist of up to 100 
contigs for a decent draft bacterial assembly constituted only of short reads. To 
obtain complete or near-complete genomes, it is possible to complement with 
long reads. 
 

 
Figure 5: Single genome assembly workflow, from a bacterial chromosome to contigs 

A B C

D

E

A bacterial chromosome is in most cases circular (A).
Starting from a lot of bacteria (B) we lyse and sequence
them, giving us reads (C). We then attempt to assemble
the reads together (D and E). Often this technique cannot
recover the complete circular chromosome, but
fragmented linear representations (usually called contigs, E)
are good enough for many things.
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In the case of metagenomes, special assemblers have seen days and 
usually try to solve the difficult problem that is metagenome assembly. 
Depending on the complexity of the community we are studying which may 
contain from tens to hundreds of organisms in various abundances, we may end 
up with thousands or millions of contigs. We need then to separate these contigs 
into genomes, in a process called binning (Figure 6). 
 

The binning process tries to separate the contigs obtained during the 
assembly into individual organisms. It usually uses a combination of coverage 
information and tetra-nucleotide frequencies. Organisms in a community will 
often have different genome coverage, simply because they are found in different 
abundance. Tetranucleotide frequency is the frequency of each unique 4-mer (a 
𝑘-mer of length four) in a DNA sequence, which tends to be conserved (Noble, 
Citek and Ogunseitan, 1998).  The current methods are not perfect, and 
recovered draft genomes usually exhibit various degrees of contamination. 
 

 
Figure 6: Metagenome assembly and binning workflow. From a community of bacteria to 

putative draft genomes 

 
 
 

A B C

D

E

For a metagenomics experiment, we start from a population of
genomes (A), that are amplified (B) and sequenced (C). Forming
contigs is however much more complicated, since the coverage 
is less even than for single genome experiments. Contigs (D) are
then clustered into genome bins (E), which is also an error-prone
process. 
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1.4.4 Genome Annotation and Phylogeny 
 

This is the main strength of whole metagenome studies compared to 16S 
metabarcoding. Once we have collected draft genomes, we can infer which 
genes they contain, and get insights about their metabolism, and ultimately their 
contribution to the community and the environment. 
 

In the case we have assembled and binned genomes that have not been 
previously discovered, the typical phylogeny workflow is called phylogenetic 
placement. It is done by taking a known phylogeny (i.e. the current bacterial tree 
of life) and placing our new genome to an edge of the tree, typically using 
maximum likelihood methods. 
 

1.4.5 Read-level Taxonomic Classification 
 

While sometimes not included in the "recovery of metagenome-assembled 
genomes" workflow, a popular method employed for quick community typing 
of metagenomic dataset is read-level classification, as well as for comparative 
metagenomics. With this method, the reads are directly matched against 
databases. Most current methodologies employ either alignment (approximate 
string matching) against a FM index, or direct 𝑘-mer matching against a 𝑘-mer 
database. 
 

1.4.6 Differential Expression and Pathway Analysis 
 

Newer and more challenging, metatranscriptomics leaves us with a much 
closer picture of the actual metabolism of a bacterial community. While 
metagenomics will find insights into functions in the genomes, there is little 
proof that those genes are actually expressed. 
 

Metagenomics allows us to investigate metabolic potential, while 
metatranscriptomics allows us to see which genes are actually expressed, and 
therefore more likely to play an actual role in the community's metabolism. The 
currently best methods for differential expression of metatransciptomes are 
borrowed from transcriptomics, and fit linear models for each gene, to see if their 
expression patterns are significantly different across conditions. 
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The overarching aim of doing research on coral reef is evidently to prevent reefs 
from going extinct. While we will not achieve this without drastically reduce 
CO2 emissions, coral researchers worldwide are trying to delay the decay of 
reefs, while hopefully policy makers act on CO2 emissions. 
 

Within a more medium-term timeframe, we hypothesise that the coral 
microbiome as well as the reef microbial ecosystems play important roles in the 
health and disease of coral reefs. They might, to go back to that long-term 
perspective above, be used in coral remediation. Additionally, since the 
microbiome is usually very sensitive to the environment, we hypothesise that it 
could be a good indicator of coral health and show signs of imbalance that could 
be missed while only looking at water properties or the physiology of coral reefs. 
We may also find biomolecules relevant for human health in those poorly studied 
systems, that could have applications in human medicine. Lastly, in the context 
of culturing corals for later reimplantation, it is useful to know about their usual 
environment. 
 

In a more immediate perspective, the goal of this thesis is firstly to 
evaluate and build the necessary frameworks to improve environmental 
metagenomics and metatranscriptomics methodologies. Secondly, we aimed to 
create a baseline for reef microbial studies in the West Indian Ocean region, 
which was lacking and can and will be used for many future studies. Lastly, we 
thought that the mucosal microbiome of the coral may play a crucial role in 
protection against disease, and we wanted to identify potential microbes, 
pathways and molecules that could help protect coral against pathogens. This 
inscribes into the medium-term coral remediation aims, as well as 
bioprospecting. 
 

Studying and trying to save and preserve coral reefs is extremely 
important for many people worldwide, and this thesis hopefully contributes even 
a little bit. 
  

2 Aims of the Thesis 
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This section describes the methods that were used for the three studies included 
in this thesis. 
 

3.1 Simulating Illumina metagenomic data with 
InSilicoSeq (Paper I) 

3.1.1 Illumina Error Types 
 
The error type of Illumina instruments has been subject to a few  
studies, and we have a decent sense of what are the most common systematic 
errors that the technology makes (Schirmer et al., 2016; Ma et al., 2019). Most 
substitution errors are detected by the basecaller and accordingly flagged as poor 
quality. An increase of errors towards the end of the reads, as well as a higher 
error rate for the reverse reads, is generally observed. Insertions and deletions 
(indels) also occur at higher rate than substitutions and are less likely to be 
flagged as poor quality. 
 

During the early development phase of InSilicoSeq we considered using 
existing error profiles from the literature, but it appeared that error profiles are 
machine- and protocol-specific and therefore we decided to model errors based 
when possible on our metagenomic datasets, or when it was not possible, on the 
most recent data available from Illumina. 
 
 
 

3 Methodology 
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3.1.2 Kernel Density Estimation 
 

The Illumina basecaller transforms the light signal from the instrument 
into nucleotide calls and assign a probability of that call being incorrect. While 
the probability distribution is continuous, these probabilities end up being binned 
into PHRED scores, typically ranging from 1 to 40. For each base of the read, 
InSilicoSeq estimates the probability distribution using two-dimensional kernel 
density estimation (Figure 8). 
 

Kernel Density Estimation (KDE) is a non-parametric method used to 
estimate probability densities (Silverman, 1986). Briefly, for every nucleotide 
position, the KDE in InSilicoSeq defines a gaussian kernel for each PHRED 
score at that nucleotide position and then sums the gaussian kernels for 
producing the density function (Figure 7). The gaussian have each a bandwidth 
parameter, which has a lot of influence over the final shape of the distributions. 
A bandwidth too small will lead to undersmoothing, while a bandwidth too large 
may lead to undersmoothing (Sheather and Jones, 1991). 
 

For the density 𝑓 of the unknown distribution of basecall probabilities, its 
Kernel Density Estimator is 
 

𝑓.#(𝑥) =
1
𝑛3𝐾#

$

%&!

(𝑥 − 𝑥%) =
1
𝑛ℎ3𝐾

$

%&!

6
𝑥 − 𝑥%
ℎ 7 

 
where 𝐾# is the gaussian function of bandwidth ℎ, and 𝑥 an observation of the 
unknown PHRED score distribution. 
 

In InSilicoSeq, we empirically chose the bandwidth parameter ℎ to be 
0.2	/	𝑠, 𝑠 being the sample standard deviation; that bandwidth produced the 
smoothest “Illumina-like” quality distributions. 
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Figure 7: One-dimensional KDE 

 
Figure 8: 2D KDE as implemented in InSilicoSeq 

3.2 A data-driven Review of the Coral microbiome 
(Paper II) 

 
A total of nineteen papers were selected, having a reference to a bioproject 
hosting publicly available data. Of those, six did not have data in the bioproject, 
or had insufficient metadata and were therefore excluded from the following 
analysis. The remaining thirteen papers are presented in Table 3. 
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Table 3: Datasets used for paper II 

Authors Bioproject Method  Sequencing 
Technology 

Robertson et al., 2016 PRJNA313050 mothur 97%  454 
Lawler et al., 2016 PRJNA296835 qiime 1 97%  454 
van de Water et al., 2016 PRJNA312472 qiime 1 97%  MiSeq 
Till Bayer et al., 2013) PRJNA189184 mothur 97%  454 
Glasl, Herndl and Frade, 2016 PRJNA310360 qiime 1 98%  454 
Roder et al., 2015l PRJNA277291 mothur 97%  454 
T. Bayer et al., 2013 SRP010998 mothur 97%   454 
Hadaidi et al., 2017 PRJNA352338 mothur 97%  MiSeq 
Vezzulli et al., 2013 PRJNA192455 mothut 97%  454 
Kellogg, Ross and Brooke, 2016 PRJNA297333 qiime 1 97%  454 
van de Water et al., 2017 PRJNA312774 qiime 1 97%  454 
Meyer, Paul and Teplitski, 2014 PRJNA231864 qiime 1 97%  454 
 
 

3.2.1 16S analysis 
 

For many years metabarcoding experiments were done by clustering 
OTUs together, typically at 97% sequence identity. This was done for two main 
reasons and has been somewhat controversial. Firstly, clustering into OTUs 
tends to lump together paralogs (species that have more than one copy of the 
16S gene). Secondly, errors due to sequencing will also be merged together, and 
OTUs should only represent real biological variation, i.e. different species 
(Nguyen et al., 2016; Edgar, 2018). 
 

Published in 2016, dada2 offers a new approach to metabarcoding data 
analysis, correcting systematic errors present in sequencing datasets and 
skipping clustering into OTUs, instead assigning taxonomy to every sequence 
variant (Callahan et al., 2016). Dada2 can also detect organisms that have 
multiple copies of the 16S gene, and deal with them appropriately. It outputs less 
spurious sequences than previously described methods. 
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Figure 9: Pipeline used for paper II 

 

3.2.2 Modelling of the core microbiome 
 

To identify the microbes that were present in all datasets, we employed 
the DESeq2 software package (Love, Huber and Anders, 2014). Initially 
developed for transcriptomics and differential RNA-seq analysis, DESeq2 has 
proven robust, and is known to perform well with count matrices for other data 
types than RNA-seq. 
 

Briefly, DESeq2 fits a generalised linear model (GLM) for each 
observation (row) from a count matrix of the form 
 

𝐾%'~	𝑁𝐵(𝜇%' , 𝛼%') 
 

𝜇%' = 𝑠'𝑞%' 
 

log(F𝑞%'G = 𝑘'𝛽% 
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where 𝛼%' is the dispersion parameter, also called the within-group variance. 
DESeq2 estimates this within-group variance via maximum likelihood (Figure 
10). The mean 𝜇%' is composed of a size factor 𝑠	and 𝑞%', which is the expected 
true count, proportional to the expected true fragment concentration 𝑥' and a 
coefficient β%. In our study, we used contrasts to make the specific comparison 
of groups. DESeq2 calculates contrasts after fitting the GLM and calculate the 
Wald statistic by multiplying the coefficient 𝛽% by a contrast vector on the 
numerator, and by taking the square root of the product of the covariance matrix 
by the contrast vector on the denominator.  
 

 
Figure 10: Dispersion estimates for the core microbiome modelling 
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3.3 Molecular Ecology of Coral Reef Microorganisms in 
the Western Indian Ocean coast of Kenya (Paper III) 

 

3.3.1 Sample collection and preparation 
 
The three samples sites were chosen for their distinct human activities. Mombasa 
and Malindi were arguably the most polluted, due to their numerous touristic 
activities, and their proximity to large industrial hubs. Kilifi lies a bit farther 
from the coast, and suffers less from pollution, besides boat traffic at large of the 
island.  

 
For the water samples, we collected four litres per sample that were then 

filtered through a 0.2 µm membrane to retain only the microbial cells. The 
sediment samples were collected using a 10 ml syringe barrel. DNA was 
extracted using Mobio PowerWater and PowerSoil isolation kits, respectively. 
Samples were then amplified by multiple displacement amplification (MDA) 
using Qiagen’s REPLI-G kit. 

3.3.2 Choice of sequencing platform and depth 
 

Illumina sequencing was chosen due to the diversity of the samples. We 
performed a pilot study using Illumina MiSeq and extrapolated the needed 
sequencing depth to recover ninety-five percent of the microbial population. 
Given the needed sequencing depth, Illumina was the only acceptable choice, 
and the NovaSeq instrument would give us the best price per base. The pilot 
study was also used to verify our protocol and check that contamination (human 
and phytoplankton) was minimal. We used nonpareil (Rodriguez-R and 
Konstantinidis, 2014) for extrapolating the coverage needs (Figure 11). It was 
estimated that to recover 95% of the organisms living in the community, we 
would need between 172 and 343 Gigabases of data. 
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Figure 11: Nonpareil extrapolation curves 

 

3.3.3 Bioinformatics Analyses 
 

The bioinformatics pipeline used in Paper III can be divided in 3 parts 
(Figure 12): 

- Taxonomic classification 
- Metagenome assembly and binning 
- Protein assembly and annotation 

 
In this paper we used kraken2 (Wood, Lu and Langmead, 2019), which uses 

exact 𝑘-mer matches to classify reads against a nucleotide database (nt in this 
case). Each 𝑘-mer originating from a sequence is assigned to the lowest common 
ancestor of all the sequences in the database containing that 𝑘-mer. The hits from 
the forward and reverse read are then compared to each other, and their lowest 
ancestor is selected if they are not in agreement. 

 
Assembly was performed with megahit (Li et al., 2015). Megahit is a de-

Bruijn graph-based assembler that is optimised for metagenomes. It uses 
comparatively less-memory than other assemblers, making it possible to 
assemble larger metagenomes with a reasonable RAM footprint. This is made 
possible by the use of a succinct de Bruijn graph, which is a compressed 
representation of a de Bruijn graph. The assemblies were then binned (or 
clustered) with the objective of recovering draft genomes from individual 
organisms. Metabat2 was used for the binning (Kang et al., 2019). Metabat2 uses 
coverage information, obtained by mapping the reads back to the assembly with 
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bowtie2 (Langmead and Salzberg, 2012), and tetranucleotide frequencies to 
cluster similar contigs together, using graph partitioning with the contigs as 
nodes, and their similarity scores as edges. The binning quality is then checked 
with checkm (Parks et al., 2015) and the bins are eventually refined with refinem 
(Parks et al., 2017). 
 

For the protein assemblies, we used the Plass software (Steinegger, Mirdita 
and Söding, 2018). Plass is a greedy assembler, that does not use a de Bruijn 
graph, but rather relies on all vs all overlap calculation of reads, which plass 
achieves in linear time. The plass assemblies, as well as the genome bins passing 
the quality threshold were then annotated using gtdb-tk (Chaumeil et al., 2019) 
and eggnog-mapper (Huerta-Cepas et al., 2017). 

 
Figure 12: Pipeline used for paper III 
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As mentioned earlier the objectives of the thesis were two-fold. Firstly, it was 
important to investigate and develop new methods for metagenomics. Secondly, 
we wanted to employ stat-of-the-art methods to investigate the microbial 
communities living within reefs. 
 

4.1 Simulating Illumina metagenomic data with 
InSilicoSeq (Paper I) 

 
Software for simulating genomics and metagenomics existed previously, but 
most were outdated, undocumented or unmaintained (Escalona, Rocha and 
Posada, 2016). InSilicoSeq makes it easier to simulate metagenomes from a 
user-defined community or random genomes from the NCBI. As such, 
InSilicoSeq has already been used in the development of several new 
metagenomics software (Georgiou et al., 2019; Valdes, Stebliankin and 
Narasimhan, 2019; Kalantar et al., 2020; Mallawaarachchi, Wickramarachchi 
and Lin, 2020) 

4.1.1 Speed 
InSilicoSeq is multi-threaded and can generate half a million reads in less 

than 10 minutes (Figure 13).  
 

4 Results and Discussion 
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Figure 13: Speed of read simulation software 

 

4.1.2 Accuracy 
 

InSilicoSeq produces realistic Illumina data. Of the other software tested, 
only ART (Huang et al., 2012) models as closely the per-base quality (Figure 
14). However, even ART fails to properly model the mean sequence quality 
distribution, while InSilicoSeq at least produces low-quality sequences 
occasionally (Figure 15). 
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Figure 14: Base-level accuracy for real data and selected simulation software 
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Figure 15: Read mean qualities for real data and selected simulation software 

 

4.1.3 Current and future benchmarks 
 

One of the primary goals when developing InSilicoSeq was to benchmark 
taxonomic classifier and binning algorithms against each other, in order to 
choose the most suited tools for analysing our data. Performing this benchmark 
has been problematic, mainly due to lack of computing power and storage. Our 
benchmark framework for taxonomy classification tools, available at 
https://github.com/HadrienG/2019_classifiers_benchmark, was not able to run 
on our hardware in the desired timeframe. The software architecture is 
nevertheless there, and it would be desirable to complete that benchmark in the 
future. Concerning the binning software used in paper III, we chose metabat2 in 
accordance with the initial CAMI results, the most recent metabat2 paper 
(Sczyrba et al., 2017; Kang et al., 2019), as well as preliminary internal results 
on smaller datasets (https://github.com/SGBC/metagenome-binning). 
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4.2 A data-driven Review of the Coral microbiome 
(Paper II) 

 
In this paper, we reanalysed 405 samples from 13 different 16S metabarcoding 
studies (Table 3) and attempted to define a minimal core microbiome for corals. 
This putative core microbiome is composed of 24 bacteria and largely dominated 
by Endozoicomonas (Table 4). Endozoicomonas has previously been 
hypothesized to be the dominating member of the coral microbiome (Till Bayer 
et al., 2013; Pogoreutz et al., 2018), although their function is currently unclear. 
 
Table 4: The putative coral core microbiome 

Genus Mean Log Fold Change  p value 

Endozoicomonas 1,731.70 1.1586  0.0731 
Acinetobacter 34.51 -1.3349  0.0136 
Rubritalea 33.03 -1.1755  0.0327 
Acholeplasma 28.18 -1.3279  0.0111 
SUP05_cluster 20.60 -0.8288  0.0842 
Parahaliea 17.96 -1.2033  0.0355 
Ascidiaceihabitans 16.68 -0.7208  0.0924 
Delftia 14.83 -1.3969  0.0032 
Undibacterium 12.39 -1.4143  0.0026 
Sphingobium 11.73 -1.1520  0.0166 
Methylobacterium 10.83 -1.4906  0.0018 
Fulvivirga 10.21 -1.0302  0.0520 
Streptococcus 8.95 -1.2378  0.0090 
Corynebacterium_1 8.58 -1.2939  0.0086 
Coxiella 7.67 -1.4753  0.0074 
Turneriella 7.62 -1.1979  0.0210 
Aquabacterium 7.10 -1.3663  0.0037 
Coraliomargarita 6.99 0.7788  0.0866 
Micrococcus 6.92 -1.0060  0.0315 
OM43_clade 6.51 -1.2169  0.0163 
Lawsonella 6.26 -1.1695  0.0146 
Chryseobacterium 6.22 -0.9954  0.0451 
Aureispira 5.87 -1.0024  0.0483 
Luminiphilus 5.33 -0.7981  0.0874 
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Due to the limitation of 16S analyses, we of course only have resolution 
to the genus level. A logical next step is to conduct whole metagenome 
sequencing experiments on the coral reef microbiome, in order to identify the 
bacterial species being part of the coral core microbiome, and eventually 
decipher their function. 16S studies can be valuable for comparing microbiome 
composition, but insights on the functionality of the microbiome is very limited. 
Still, knowing the composition of a healthy coral microbiome is a great interest; 
some studies have notably tried to transplant a healthy microbiome cocktail into 
diseases corals (Damjanovic et al., 2019). 
 

It is noteworthy to point out that the results of our analysis consistently 
found fewer OTUs than were previously reported. We accredit these differences 
to the dada2 algorithm as explained in the methods. Systematic errors present in 
the sequencing data were mostly corrected, leading to less spurious variants than 
with classical OTU clustering. 
 

Lastly, the diversity in bleached or lesioned samples was much less 
important than in the healthy mucus or tissue samples. It is consistent with 
previous findings in other species, where a diseased state causes a microbiome 
imbalance (Lozupone et al., 2012). 

4.3 Molecular Ecology of Coral Reef Microorganisms in 
the Western Indian Ocean coast of Kenya (Paper III) 

 
This study provided with the first metagenomes from the coast on the West 
Indian Ocean. The goal of this paper was to (i) get a baseline community from 
the microbes surrounding the reef and (ii) hypothesise what metabolism these 
communities eventually bring to their environment. 

4.3.1 Rationale 
 

In paper II we discussed the limitations of 16S sequencing and discussed 
how important it was to pivot to WMS for the coral microbiome. We chose 
however to focus here on the surrounding environment of the corals, instead of 
on the coral themselves. We will come back to that in the conclusion of this 
thesis but designing and carrying a WMS experiment on the coral microbiome 
has and will be proven challenging. While we developed and refined our coral 
metagenomics and metatranscriptomics protocols, we decided to sequence the 
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coral environment: water and upper sediment layer, in parallel. The surrounding 
environment of coral reef remains interesting, as the different communities are 
expected to interact with each other and exchange nutrient, as well as being 
affected by the same environmental stressors; this makes the surrounding 
microbiomes of coral reefs promising markers against pollution and other 
environmental challenges. 
 

4.3.2 Genome binning 
 

A total of 782 genome bins were recovered from the assemblies, of which 
197 had > 50% completeness and < 25% contamination (Figure 16). Of those, 
94 bins were > 75% completeness and 26 > 90%.  
 

 
Of the 197 bins with > 50% completeness, 166 came from the water 

samples. We hypothesised that the sediment samples were harder to assemble, 
possibly due to abnormal GC content or more repeat-rich genome, or uneven 
coverage. 
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Additionally, the majority of assembled genomes were Proteobacteria, 
followed by Bacteroidetes (Figure 17). The majority of Bacteroidetes exhibited 
potential vancomycin resistance, which may have come from the use of 
avoparcin in agriculture (Bager et al., 1997; Nilsson, 2012). Avoparcin is an 
antibiotic very similar to vancomycin, which is not permitted to use in the 
European Union for fear of antibiotic resistance but is in use in Kenya. 
 

4.3.3 Protein Assembly 
 

Protein assembly is a new and promising method to get more functional 
insights from a metagenome than from classical metagenome assembly. Protein 
assembly on average recovers more putative proteins than “classical” 
metagenome binning (Steinegger, Mirdita and Söding, 2018). As with 
metagenome assembly, it is however challenging to know if those proteins are 
expressed by the microbial cells: we more often than not talk about metabolic 
potential in such experimental setup. 

 
As with the rest of the dataset, the metabolic potential of the water and 

sediment communities was very diverse. We found 424 different pathways in 
the datasets. Amongst the most abundant pathways were notably biosynthesis of 
antibiotics, biosynthesis of secondary metabolism, carbon fixation and 
metabolism, and quorum sensing. These pathways indicate that surrounding 
communities may provide with important nutrient exchange within the reef 
ecosystem, as well as being an important first line of defence against pathogens.  
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Figure 17: phylogenetic tree of the 176 bacterial genome bins 



48 
 

 

 



49 
 

The objectives of this thesis were two-fold. Firstly, we wanted to improve 
methods used for metagenomics. With Paper I, we provided the bioinformatics 
community with a simple, yet powerful way to simulate metagenomic 
sequencing data. As stated previously, our simulator was already used for 
developing several new bioinformatics tools. 
 

Several methodological improvements can still be made, which would 
benefit the whole field. Metagenome binning is not a solved problem yet, and 
some Machine Learning (ML) algorithms, such as DBSCAN or affinity 
propagation have shown promise. At the moment of this writing, there are still 
benchmarking needs to be filled. Only one large scale independent 
benchmarking of metagenomics methods has been performed so far, the CAMI 
challenge. For reproducibility and replicability’s sake, it would be valuable to 
present and publish one more benchmarking framework. 
 

Secondly, we wanted to investigate the bacterial communities living in 
close proximity and within coral reefs. In Paper II we re-analysed public datasets 
to try to decipher the members of the coral microbiome. In paper III, we take a 
more modern approach, WMS, to sequences the microbial communities living 
in the water and upper sediment layer of coral reefs in Kenya. 
 

In paper II, we propose a putative core microbiome for tropical coral reefs. 
Largely dominated by Endozoicomonas, its function remains to be understood. 
In paper III, we presented 176 novel bacterial genomes, as well as the first 
metagenomes from the coast of the West Indian Ocean. Additionally, the 
pathway analysis revealed potential exchanges between microbial communities. 
 
 

5 Conclusion and Future Perspectives 
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Our work on The Kenyan metagenomes provides with an important 
baseline for future reef studies and was the first metagenomics study of the 
regions’ reefs. In the future it would be desirable to study the coral microbiome 
itself, both from the surface mucus layer and the coral tissue.  We have already 
collected DNA and RNA samples from the surface mucus layers of twenty-five 
Acropora spp. coral colonies, at the same three samples sites described in paper 
III. The samples were sequenced at SciLifeLab, and the data analysis is ongoing. 
Given the large amount of data, getting preliminary results may well take twelve 
months or so. 
 

We foresee that this analysis will provide the valuable functional insights 
into the coral microbiome that were missing from previous 16S metabarcoding 
studies, and that in these methods lie the future of coral reef microbiology. We 
now have a pretty broad idea of the taxonomy of the coral microbiome and have 
putative functions for bacteria living alongside in the reef. The logical next step 
is to look at the function of the coral microbiome. 
 

There are a lot of considerations and hurdles to overcome when planning 
and conducting a metatranscriptomics experiment. Firstly, sampling sites tend 
to be far from laboratories, and, RNA degrading quickly, it is important to be 
able to transport it quickly and safely to cold storage. Dry ice and RNA later are 
a must but are expensive and hard to get in some countries. Secondly, and one 
of the reasons coral microbiome have almost extensively been studied using 
metabarcoding, is that removal of the host genetic material is difficult. Not only 
one must be sure that samples are not dominated by the studied coral but neither 
by the genetic material of Symbiodinium. Thirdly, metatranscriptomics has 
poorly established workflows and is a very recent methodology. Few studies 
have seen light, and while they are thought to perform decently, the RNA-Seq 
methods have not been adapted to the hierarchical nature of the variables in 
metatranscriptomes. Indeed, the gene expression levels in metatranscriptomics 
experiments can be explained by (i) high gene expression and (ii) high 
abundance of the bacteria whose gene it is. There is a need for adapting the linear 
modelling used in RNA-Seq to analyse both metagenomics and 
metatranscriptomics data. Promising leads are joint modelling or hierarchical 
testing. 
 

In paper III, we published a large bacterial catalogue, as well as a protein 
catalogue, which may be used to design more targeted monitoring experiments. 
While physicochemical properties of coastal waters have remained stable even 
in polluted reefs, we believe that bacteria may be good indicators of coral reef 
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health, and our findings may help designing primer-based approaches for 
continuous, cheap coral reef monitoring. 
 

Overall, this thesis helped to lay foundations for coral reef work in West 
Africa and elsewhere. Deciphering the functions and metabolism of the coral 
microbiome is within reach, and the microbiome may play an important role in 
coral health, and coral sustainability if we can, in a medium-term perspective, 
monitor more efficiently coral health by monitoring surrounding bacteria, and 
perhaps even reimplant healthy microbiomes in damaged ecosystems. Then, if 
we reduce drastically our CO2 emissions within the next decades, coral may have 
a shot at survival. 
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Imagine a sandy beach, turquoise water and a myriad of fish swimming around 
colourful stony structures. These structures – called reefs – are formed very 
slowly by small organisms called corals. Corals harbour many different species 
of fish, sea urchins, algae, and more. They are very important economically, 
bringing tourism revenue, protecting coast from extreme weather events and 
many people worldwide depend on them for food. Corals live a symbiotic 
relationship with an alga, Symbiodinium, that provides energy to them. 
 

Corals are surprisingly fragile and sensitive to environmental changes. 
Their leading cause of death is called bleaching. During a bleaching event, corals 
eject Symbiodinium and lose their colour. Bleaching mostly happens with sudden 
rise of temperature but can also be caused by more salinity or acidity in the water. 
If the coral is in a prolonged state of bleaching, it dies. Due to global warming, 
bleaching, as well as other diseases, happens more frequently, and corals are 
menaced of extinction if humanity does not reduce their CO2 emissions. 
 

Corals, like every other organism on earth, is surrounded by 
microorganisms, such as bacteria and viruses. Microorganisms are found inside 
all living things, such as humans, and corals! In this thesis, we hypothesise that 
bacteria play an important role in the health of coral reefs. Firstly we focus on 
methodological improvements, since the study of microbes’ genomes from the 
environment is a relatively new science. Secondly, we try to identify which 
microbes are found in all coral reefs around the world. Lastly, we focus on 
function – what the microbes do, not just what they are – of the bacteria 
surrounding reefs on the Kenyan coast of the west Indian ocean. 
 

We find that the bacterial communities living on the reef are very diverse, 
and that they probably participate by exchanging nutrients (food) with their 

Popular science summary 
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surroundings. Additionally, we find evidence of antibiotic resistance in the water 
communities, which may partly be caused by the use of antibiotics in agriculture. 
We also find evidence that some bacteria on the reef also produce antibiotics, 
which could be a sign that bacterial communities play a role in protecting coral 
reefs from microorganisms that cause diseases. 
 

To conclude, this work provides with a first good idea of which bacteria 
can be found within corals, and what bacteria surrounding the reef are doing. In 
the future, we would want to monitor the bacterial communities we have studied. 
We think they are more sensitive than corals to environmental changes, and the 
monitoring could predict health issues in the reef. Additionally, we would like 
to investigate further the function of the bacteria that live inside corals. 
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