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ON THE MEAN AND DISPERSION OF THE MOORE-PENROSE

GENERALIZED INVERSE OF A WISHART MATRIX∗

SHINPEI IMORI† AND DIETRICH VON ROSEN‡

Abstract. The Moore-Penrose inverse of a singular Wishart matrix is studied. When the scale matrix equals the identity

matrix the mean and dispersion matrices of the Moore-Penrose inverse are known. When the scale matrix has an arbitrary

structure no exact results are available. The article complements the existing literature by deriving upper and lower bounds

for the expectation and an upper bound for the dispersion of the Moore-Penrose inverse. The results show that the bounds

become large when the number of rows (columns) of the Wishart matrix are close to the degrees of freedom of the distribution.
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1. Introduction. In this article, all matrices are real valued. Let the matrix W : p × p be Wishart

distributed with n degrees of freedom which will be denoted W ∼ Wp(Σ, n), where Σ can be considered to

be a positive definite dispersions matrix. More precisely, there exists a matrix normally distributed random

variable X ∼ Np,n(0,Σ, In) such that W = XX ′, where Np,n(•, •, •) denotes the matrix normal distribution

with the dispersion D[X] = In ⊗ Σ, ′ denotes the transpose and ⊗ denotes the Kronecker product.

Throughout this note it will be assumed that p > n which can be motivated from a high-dimensional

perspective when there are p dependent variables which distribution depends on “many” parameters, in our

case the unstructured Σ, and less independent observations n. Since under this condition W is singular, we

will be interested in the Moore-Penrose inverse of W , which is written W+.

In statistics when W−1 exists one often uses functions of W−1. For example, in discriminant analysis

the linear discriminant function for yi ∼ Np(µ1,Σ), i ∈ {1, . . . , n1}, and zj ∼ Np(µ2,Σ), j ∈ {1, . . . , n2}, if

µ1, µ2 and Σ are known and x is an observation which is to be classified, is based on

D(x;µ1, µ2,Σ
−1) = (µ1 − µ2)′Σ−1(x− (µ1 + µ2)/2).(1.1)

Put n = n1 +n2. If n > (p+ 1) and the parameters µ1, µ2 and Σ are unknown they can be replaced by their

maximum likelihood estimators, in particular Σ−1 is replaced by nW−1, where the sums of squares matrix

W satisfies W ∼ Wp(Σ, n − 2), which yields the classification function D(x; µ̂1, µ̂2,W
−1) with µ̂i denoting

the maximum likelihood estimator of µi, i ∈ {1, 2}. Another example is the weighted least squares estimator

(maximum likelihood estimator) for the Growth Curve model, i.e., Y ∼ Np,n(ABC,Σ, In), where A: p× q,
q < p and C: k× n are known matrices, and {B,Σ} are unknown parameter matrices (see [6,7]). Under full
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rank conditions and p ≤ n− k the maximum likelihood estimator of B equals

B̂ = (A′W−1A)−1A′W−1Y C ′(CC ′)−1,(1.2)

where W = Y (In − C ′(CC ′)−1C)Y ′ ∼ Wp(Σ, n − k). When p > (n − 2) in the discriminant function or

p > (n− k) in the Growth Curve model one sometimes replaces W−1 by W+ since W−1 does not exist (see,

e.g., [4,9]). Thus, when p is “larger” than n, instead of (1.1) and (1.2)

D(x; µ̂1, µ̂2,W
+),

B̂ = (A′W+A)−1A′W+XC ′(CC ′)−1(1.3)

are used. Of course, (1.3) is no longer a maximum likelihood estimator and some more conditions are needed

so that (A′W+A)−1 exists. To replace W−1 by W+, when p is “larger” than n, is, however, often unclear

why this can take place.

If W ∼Wp(Σ, n) then as noted before W = XX ′ for some X ∼ Np,n(0,Σ, In) and if p > n

W+ = X(X ′X)−1(X ′X)−1X ′ = (X+)′X+.(1.4)

This is a well known relation and follows from the four defining conditions of the Moore-Penrose inverse:

WW+W = W, W+WW+ = W+,

(WW+)′ = WW+, (W+W )′ = W+W.

If n ≥ p, W+ reduces to W−1. Moreover, the density for W−1 (when n ≥ p) is well known and it follows

directly from the Wishart density by the transformation W →W−1 and using the Jacobian |W |−1/2(p+1).

Concerning the density of a Moore-Penrose inverse there are some results available when a matrix Z, has

full column rank. In this case, Z+ = (Z ′Z)−1Z ′ has a density |Z+(Z+)′|−pf(Z), where f(Z) is the density

for Z (see [2,5,10,11]). From this expression, in principle, the density for W+ can be found and advanced

direct calculations of Jacobians leads to the density for W+ (see [5,11]).

To derive moments via the density is however not easy. One reason for the difficulty is that the density

expression is a function of the eigen values which is difficult to handle. Moreover, let A be a non-singular

square matrix and then AW+A′ does not equal ((A′)−1WA−1)+ unless A is an orthogonal matrix. Contrary

to, if W−1 exists, then AW−1A′ = ((A′)−1WA−1)−1 which often is used in calculations. This implies that

if considering W+ it matters if Σ in Wp(Σ, n) equals Ip or differs from the identity matrix. Moreover, Cook

and Forzani [1] in an interesting article presented a number of results when Σ = Ip. They also discuss when

Σ is an arbitrary positive definite matrix and find some approximations of the mean and dispersion matrix,

i.e., E[W+] and D[W+]. In this article, we complement their results, in particular, by deriving upper bounds

of these moments.

We are interested in E[W+] and D[W+], and it seems for our purposes difficult to utilize the density

for W+. If W ∼Wp(Σ, n) and p+ 1 < n, then

E[W−1] =
1

n− p− 1
Σ−1,(1.5)



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 124-133, March 2020.

Shinpei Imori and Dietrich von Rosen 126

and if p+ 3 < n,

D[W−1] = c1(Ip2 +Kp,p)(Σ−1 ⊗ Σ−1) +

{
c2 −

1

(n− p− 1)2

}
vecΣ−1vec′Σ−1,(1.6)

where vec stands for the vec-operator, Kp,p is the commutation matrix (see, e.g., [7, Section 1.3]) and

c1 =
1

(n− p)(n− p− 1)(n− p− 3)
, c2 = (n− p− 2)c1.

If p > n+ 1 and Σ = Ip it can be shown that

E[W+] =
n

p(p− n− 1)
Ip.(1.7)

One way of proving this relation is, since for Σ = Ip and for all orthogonal matrices Γ, ΓW+Γ′ has the

same distribution as W+, it follows that E[W+] = cIp for some positive constant c. The constant can be

determined by taking the trace, i.e., E[tr{W+}] = cp and using (1.4):

tr{W+} = tr{X(X′X)−1(X′X)−1X′} = tr{(X′X)−1},

where now X ′X ∼ Wn(In, p) which yields (1.7), since E[tr{(X ′X)−1}] = n/(p − n − 1), and thus, c =

n/{p(n− p− 1)}.

The first statement in the next theorem has hereby been verified. For the second statement it is referred

to [1]. However, it can be noted that due to invariance with respect to orthogonal transformations it is

enough to know E[(tr{W+})2] = E[(tr{(X′X)−1})2] and E[tr{W+W+}] = E[tr{(X′X)−1(X′X)−1}] which

can be obtained from (1.6).

Proposition 1.1. (Cook and Forzani [1]) Let W ∼Wp(Ip, n). Then,

(i) if p > n+ 1, E[W+] = a1Ip, where a1 = n/{p(p− n− 1)};
(ii) if p > n+ 3,

E[vecW+vec′W+] = a2(Ip2 +Kp,p) + a3vecIpvecI ′p,

where

a2 =
n{p(p− 1)− n(p− n− 2)− 2}

p(p− 1)(p+ 2)(p− n)(p− n− 1)(p− n− 3)
,

a3 =
n{4 + n(p+ 1)(p− n− 2)}

p(p− 1)(p+ 2)(p− n)(p− n− 1)(p− n− 3)
.

2. Preparation. In this section, mainly some useful lemmas are presented. Let λ1(A) ≥ λ2(A) ≥ · · · ≥
λn(A) be the ordered eigen values of a symmetric matrix A: n × n. Moreover, A ≥ 0 (A > 0) means that

A is positive semi-definite (positive definite) and A ≥ B means that A − B ≥ 0, where both A and B are

supposed to be positive semi-definite. Concerning ordering of matrices the following definitions will be used.

Definition 2.1. Let U and V be positive semi-definite matrices.

(i) (Löwner ordering) If, for all vectors α of proper size, α′Uα ≤ α′V α, then it is written U ≤ V .
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(ii) If, for all vectors α of proper size, α′E[U ]α ≤ α′E[V ]α, then it is written E[U ] ≤ E[V ].

(iii) Let U = U1 ⊗ U2 and V = V1 ⊗ V2, where all matrices are supposed to be positive semi-definite. If,

for all vectors α of proper size,

(α⊗ α)′U(α⊗ α) ≤ (α⊗ α)′V (α⊗ α),

then it is written U � V .

(iv) If, for all vectors α of proper size,

(α⊗ α)′D[U ](α⊗ α) ≤ (α⊗ α)′D[V ](α⊗ α),

then it is written D[U ] � D[V ], i.e., D[α′Uα] ≤ D[α′V α].

The condition in (i) is identical to the condition of positive semi-definiteness of V −U . Note that in (iii)

U1⊗U2 also can be of the form vecU1vec′U2 or K•,•(U1⊗U2) since vecU1vec′U2 = vecU1⊗vec′U2 (forgetting

that vecUi cannot be positive semi-definite) and (α⊗ α)′K•,•(U1 ⊗U2)(α⊗ α) = (α⊗ α)′(U1 ⊗U2)(α⊗ α).

Some obvious but useful results are presented in the next lemma.

Lemma 2.2.

(i) If Ai � Bi, i ∈ {1, 2}, then A1 +A2 � B1 +B2.

(ii) If Ai ≤ Bi, i ∈ {1, 2}, then A1 ⊗A2 � B1 ⊗B2.

Proof. Note that

(α⊗ α)′(A1 +A2)(α⊗ α)

= (α⊗ α)′A1(α⊗ α) + (α⊗ α)′A2(α⊗ α)

≤ (α⊗ α)′B1(α⊗ α) + (α⊗ α)′B2(α⊗ α)

= (α⊗ α)′(B1 +B2)(α⊗ α),

and (i) has been established. Moreover,

(α⊗ α)′(A1 ⊗A2)(α⊗ α)

= α′A1αα
′A2α

≤ α′B1αα
′B2α

= (α⊗ α)′(B1 ⊗B2)(α⊗ α),

and (ii) is verified.

The next lemma presents a well known result whereas in a third lemma a more specific result is given.

Lemma 2.3. (Poincaré separation theorem) Let L: n×p satisfy LL′ = In and let A: p×p be a symmetric

matrix. Then, for i ∈ {1, . . . , n},

(i) λi(LAL
′) ≤ λi(A);

(ii) λi(LAL
′) ≥ λp−n+i(A).

Lemma 2.4. Let L: n× p satisfy LL′ = In and let

P0 = L′(LΣL′)−1(LΣL′)−1L,

where Σ > 0. Then



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 124-133, March 2020.

Shinpei Imori and Dietrich von Rosen 128

(i) (λp(Σ−1))2L′L ≤ P0 ≤ (λ1(Σ−1))2L′L;

(ii) P0 ≤ λ1(Σ−1)Σ−1.

Proof. The lower inequality of the statement (i) follows if a λ can be found such that

(LΣL′)−1(LΣL′)−1 − λIn ≥ 0.(2.8)

Thus, a value of λ has to be determined which is smaller or equal to

λn((LΣL′)−1(LΣL′)−1).

Lemma 2.3 (i) will be used and

λn((LΣL′)−1(LΣL′)−1) = (λ1(LΣL′LΣL′))−1 = (λ1(ΣL′LΣ))−1

= (λ1(LΣΣL′))−1 ≥ (λ1(ΣΣ))−1 = (λp(Σ−1))2,

and the lower inequality of (i) has been verified. The upper inequality of (i) can be proven in the same

manner.

Concerning statement (ii)

Σ−1/2(λ1(Σ1/2P0Σ1/2)Ip − Σ1/2P0Σ1/2)Σ−1/2 ≥ 0

and

λ1(Σ1/2P0Σ1/2) = λ1((LΣL′)−1) = (λn(LΣL′))−1 ≤ (λp(Σ))−1,

where the inequality is based on Lemma 2.3 (ii).

3. Main results. The aim is to determine bounds for E[W+] and D[W+], W ∼Wp(Σ, n), in the case

when p > n and Σ > 0 is unstructured.

3.1. Upper and lower bounds for E[W+]. When W ∼Wp(Σ, n) there exists a normally distributed

X ∼ Np,n(0,Σ, In) such that W = XX ′. Let Y = Σ−1/2X and then, due to (1.4),

E[W+] = (2π)−np/2
∫
e−tr{YY′}/2Σ1/2Y (Y ′ΣY )−1(Y ′ΣY )−1Y ′Σ1/2 dY(3.9)

will be studied. Now make the variable substitution Y ′ = TL, where LL′ = In, L: n × p, and T = (tij) is

lower triangular with positive diagonal elements. The Jacobian of this transformation equals (see, e.g., [3,

Theorem 1.4.20] and [8, p. 38])

|J(Y → T, L)|+ =

n∏
i=1

tp−iii g(L),(3.10)

where g(L) =
∏n

i=1 |Li|+, Li = (`jk), j, k ∈ {1, . . . , i} and the functionally independent elements in L are

`12, `13, . . . , `1p, `23, . . . , `2p, . . . , `n1, . . . , `np. Here |• |+ denotes the absolute value of the determinant. Thus,

instead of (3.9), one has

E[W+] = (2π)−np/2
∫
e−tr{T

′T}/2Σ1/2L′(LΣL′)−1T−1(T ′)−1(LΣL′)−1LΣ1/2

×
n∏

i=1

tp−iii g(L) dLdT.
(3.11)
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Put V = T ′T and (see, e.g., [3, Theorem 1.4.18])

|J(T → V )|+ = 2−n
n∏

j=1

t
−(n−j+1)
jj .

Then

E[W+] = (2π)−np/22−n
∫
e−tr{V}/2Σ1/2L′(LΣL′)−1V −1(LΣL′)−1LΣ1/2

× |V |(p−n−1)/2g(L) dLdV.

If p− n− 1 > 0 it follows from the expectation of the inverse Wishart matrix in (1.5) that

E[W+] = (p− n− 1)−1c(n, p)−1
∫

Σ1/2L′(LΣL′)−1(LΣL′)−1LΣ1/2g(L) dL,(3.12)

where c(n, p) = (2π)np/22ns(n, p) and s(n, p) is the standardization constant in a Wishart density for a

Wn(In, p)-variable, i.e.,

s(n, p)

∫
e−tr{V}/2|V |(p−n−1)/2 dV = 1.

Before proceeding a lemma is presented which can be used to integrate out g(L) from certain forthcoming

expressions.

Lemma 3.1. Let g(L) be as in (3.10), LL′ = In and s(n, p) is as in (3.12). Then

(i)
∫
g(L) dL = c(n, p);

(ii)
∫
L′Lg(L) dL = np−1c(n, p)Ip.

(iii)
∫

(α′L′Lα)2g(L) dL = (2n+ n2)(2p+ p2)−1c(n, p)(α′α)2, for all α ∈ Rp.

Proof. Let Y ∼ Np,n(0, Ip, In), p > n, and then

1 = (2π)−np/2
∫
e−tr{YY′}/2dY.

Make the same variable transformations as in the beginning of this section, i.e., Y ′ = TL, V = T ′T and we

end up with the expression

1 = c(n, p)−1s(n, p)

∫
|V |(p−n−1)/2e−tr{V}/2g(L) dV dL

which after integrating out V establishes (i), where we can assume that V ∼ Wn(In, p). To verify (ii) it is

started with the known integral E[Y Y ′] = nIp, i.e.,

nIp = (2π)−np/2
∫
e−tr{YY′}/2Y Y ′ dY.

Once again making the variable transformations Y ′ = TL, V = T ′T yields

nIp = c(n, p)−1s(n, p)

∫
|V |(p−n−1)/2e−tr{V}/2L′V Lg(L) dV dL

= c(n, p)−1p

∫
L′Lg(L) dL
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and (ii) has been shown.

Finally, we show (iii). A moment relation for the Wishart distribution yields that

E[vec(Y Y ′)vec′(Y Y ′)] = n(Ip2 +Kp,p) + n2vecIpvec′Ip

= (2π)−np/2
∫
e−tr{YY′}/2vec(Y Y ′)vec′(Y Y ′) dY.

From the same arguments for proving (i) and (ii), it follows that

n(Ip2 +Kp,p) + n2vecIpvec′Ip = c(n, p)−1s(n, p)

∫
|V |(p−n−1)/2e−tr{V}/2(L⊗ L)′vecV

×vec′V (L⊗ L) g(L) dV dL

= c(n, p)−1
∫

(L⊗ L)′{p(In2 +Kn,n) + p2vecInvec′In}(L⊗ L) g(L) dL.

Note that

(α⊗ α)′(L⊗ L)′Kn,n(L⊗ L)(α⊗ α) = (α′L′Lα)2,

(α⊗ α)′(L⊗ L)′vecIn = α′L′Lα.

These relations imply that

(2n+ n2)(α′α)2 = (2p+ p2)c(n, p)−1
∫

(α′L′Lα)2 g(L) dL.

Note that the proof of (i) follows a possible way of deriving the Wishart density (see, e.g., [8, Corollary

3.2.1]).

Theorem 3.2. Let W ∼Wp(Σ, n), p > n+ 1 and Σ > 0. Then, in the sense of Definition 2.1 (ii),

a1(λp(Σ−1))2Σ ≤ E[W+] ≤ a1(λ1(Σ−1))2Σ,

where a1 is given in Proposition 1.1 (i).

Proof. Put

P = Σ1/2L′(LΣL′)−1(LΣL′)−1LΣ1/2.(3.13)

It follows from Lemma 2.4 (i) that

(λp(Σ−1))2Σ1/2L′LΣ1/2 ≤ P ≤ (λ1(Σ−1))2Σ1/2L′LΣ1/2.

Using (3.12) and Lemma 3.1 (ii) yield the statement (i).

Note that the bounds presented in Theorem 3.2 are sharp in the sense that the upper and lower bounds,

if Σ = Ip, are identical and equal the expectation in (1.7).

A consequence of the theorem is that if p is close to n + 1 the Moore-Penrose inverse nW+ can be a

poor estimator of Σ−1 because, in this case, a1 becomes large. It is also noted that if a1 becomes large

this has nothing to do with the true Σ−1. This means that in many high-dimensional problems the main

problem occurs when p is close to n and not when p is much larger than n, for example when considering

the estimator (1.3) of the mean parameter in the Growth Curve model.

Another upper bound is presented in the next theorem.
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Theorem 3.3. Let W ∼Wp(Σ, n), p > n+ 1 and Σ > 0. Then, in the sense of Definition 2.1 (ii),

E[W+] ≤ 1

p− n− 1
λ1(Σ−1)Ip.

Proof. Let P be as in Theorem 3.2. According to Lemma 2.4 (ii),

P ≤ λ1(Σ−1)Ip.(3.14)

Thus, (3.12) and Lemma 3.1 (i) imply the statement of the theorem.

3.2. Upper bounds for D[W+]. Put

H = Σ1/2Y (Y ′ΣY )−1(Y ′ΣY )−1Y ′Σ1/2.

Now, similarly to (3.9),

E[vecW+vec′W+] = (2π)−np/2
∫
e−tr{YY′}/2vecHvec′H dY,

and performing the same transformations as when discussing E[W+], i.e. Y → (T, L) and thereafter T → V

we end up with the following integral:

E[vecW+vec′W+] = (2π)−np/22−n
∫
e−tr{V}/2|V |(p−n−1)/2

× (Σ1/2L′(LΣL′)−1)⊗2vecV −1vec′V −1((LΣL′)−1LΣ1/2)⊗2g(L) dLdV.

(3.15)

Since by standardizing (3.15) appropriately we can assume that V ∼Wn(I, p) and then, instead of (3.15), it

follows from (1.6) by adding E[vecW+]E[vec′W+] and using the definition of P given by (3.13), if p−n−3 > 0,

E[vecW+vec′W+] = c(n, p)−1
∫

(c1(Ip2 +Kp,p)(P ⊗ P ) + c2vecPvec′P )g(L) dL,

where

c1 =
1

(p− n)(p− n− 1)(p− n− 3)
, c2 = (p− n− 2)c1.(3.16)

According to Definition 2.1 (iv) it is of interest to study, for an arbitrary α,

(α⊗ α)′E[vecW+vec′W+](α⊗ α)(3.17)

and

E[(α′W+α)2] = c(n, p)−1
∫

(2c1 + c2)(α′Pα)2g(L) dL.(3.18)

From Lemma 2.4 (i) and the inequality (3.14), upper and lower bounds of E[(α′W+α)2] are obtained as

follows:

Theorem 3.4. Let W ∼Wp(Σ, n), p > n+ 3, Σ > 0. For all α ∈ Rp,

(i) d(n, p)(λp(Σ−1))4(α′Σα)2 ≤ E[(α′W+α)2] ≤ d(n, p)(λ1(Σ−1))4(α′Σα)2,

(ii) E[(α′W+α)2] ≤ (2c1 + c2)(λ1(Σ−1))2(α′α)2,
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where d(n, p) = (2c1 + c2)(2n+ n2)(2p+ p2)−1, c1 and c2 are defined in (3.16).

Proof. Combining (3.18) with Lemma 2.4 (i), we have

(2c1 + c2)(λp(Σ−1))4
{
c(n, p)−1

∫
(α′Σ1/2L′LΣ1/2α)2g(L) dL

}
≤ E[(α′W+α)2]

≤ (2c1 + c2)(λ1(Σ−1))4
{
c(n, p)−1

∫
(α′Σ1/2L′LΣ1/2α)2g(L) dL

}
.

Hence, by applying Lemma 3.1 (iii), we can obtain (i). On the other hand, if we use the inequalities (3.14)

instead of Lemma 2.4 (i), (3.18) implies that

E[(α′W+α)2] ≤ (2c1 + c2)(λ1(Σ−1))2(α′α)2
{
c(n, p)−1

∫
g(L) dL

}
.

Then, Lemma 3.1 (i) yields (ii).

Note that the exact value of E[(α′W+α)2] can be calculated when Σ = Ip because according to Theo-

rem 3.4 (i) the upper bound the equals lower bound, which is also verified from Proposition 1.1 (ii). Com-

bining Theorem 3.4 with Theorem 3.2 or Theorem 3.3, upper bounds of D[W+] can be obtained.

Theorem 3.5. Let W ∼Wp(Σ, n), p > n+ 3, Σ > 0. According to Definition 2.1 (iv),

D[W+] � {d(n, p)(λ1(Σ−1))4 − a21(λp(Σ−1))4}(Σ⊗ Σ),

D[W+] � (2c1 + c2)(λ1(Σ−1))2Ip2 − a21(λp(Σ−1))4(Σ⊗ Σ),

where a1 is given in Proposition 1.1 (i), d(n, p) in Theorem 3.4, c1 and c2 are defined in (3.16).

It is worth noting that the inverse inequality of the first result in Theorem 3.5 is also established when

Σ = Ip, which can be confirmed by Proposition 1.1. In this sense, the first upper bound is sharper than the

second one if Σ is close to Ip. However, if λ1(Σ−1) is quite large (i.e., λp(Σ) is very close to zero), then the

second one may be better than the first one.
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