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Abstract 
In forest restoration of oak, planting nursery-growth seedlings is related to high 
operational costs. One cost-efficient alternative is the application of direct seeding. 
However, acorn removal by rodents is one of the major drawbacks in its 
implementation. As rodents rely on their sense of smell to allocate their predators 
and show fear/defense related behaviors, there is a strong potential for the 
application of predator odor cues as a seed protection strategy. Therefore, the overall 
goal of this thesis was to investigate to which extent predator odors could be used as 
a seed protection strategy against foraging rodents. To reach this goal, I established 
laboratory and field experiments to investigate natural-based treatments and 
synthetic odor compounds from predators. The first laboratory study (paper I) 
revealed mink excrement as the most efficient treatment, because it reduced seed 
consumption and seed touch by rodents, but did not have negative effects on 
germination. Based on this results, we established a direct seeding field experiment 
(paper II) were the acorn removal rates were monitored under the application of two 
mink excrement treatments and other factors such as distance to forest edge and 
acorn size. Here, in contrast to the laboratory study, the mink excrement did not 
reduce acorn removal. Factors such as loss of efficiency over time due to excrement 
desiccation or animal habituation after a long odor exposure were accounted as 
possible explanations. The results further confirm the importance of reducing 
suitable habitats for rodents such as post-harvest slash piles, and to select acorn sizes 
with caution, because although bigger acorns produce better seedlings, they are also 
removed in higher quantities. Finally, the laboratory and field studies (paper III and 
IV, respectively) regarding synthetic predator odor compounds showed for the first 
time that the compound 2-propylthietane was avoided by bank voles in laboratory 
settings and reduced the acorn removal rates in natural conditions. This result further 
supports the behavioral relevance of single compounds, which may elucidate fear 
responses as strong as for complex odor mixtures. In conclusion, this thesis 
highlights the relevance of synergies between laboratory and field studies with the 
goal to direct research efforts in finding a better protection strategy during direct 
seeding.  
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For millennia, a plethora of human activities have altered ecosystems 
worldwide and especially forests have experienced a continuum of 
conversion and degradation to fulfil an increasing demand for natural 
resources. Since the dawn of human civilization (post-Pleistocene), a 45.8% 
loss of the global number of trees has been estimated (Crowther et al., 2015). 
One extreme case is Europe, where about 99% of its native forest has been 
altered (Paillet et al., 2010), and only 0.2% of the temperate broadleaved 
forests remain in its natural conditions (Hannah et al., 1995). Thus, the 
European temperate broadleaved forest is one of the most threatened biomes 
in the world (Venter et al., 2016). 

In southern Sweden, human interventions started to have a significant 
impact on broadleaved forests with the first evidence of extensive agriculture 
about 2,000 years ago (Lindbladh et al., 2007). During the industrialization, 
and particularly after the economic boom of the post Second World War era, 
the forest industry became one of the pillars of the Swedish economy 
(Törnlund & Östlund, 2006). As a consequence, reforestation and 
afforestation with fast growing conifers such as Norway spruce (Picea abies 
L.) and Scots pine (Pinus sylvestris L.) has been promoted, and are currently 
dominating what was once a landscape dominated by mixed temperate 
broadleaved forests (Lindbladh et al., 2014). 

The actual status quo of the southern Sweden forests can probably not be 
maintained, not at least because current climate models predict an increase 
of 2-6 °C in the next 100 years for this area (Löf et al., 2012; Koca et al., 
2006) resulting in warmer and more extreme weather. Within this scenario, 
the Norway spruce and Scots pine are not well adapted as both can be easily 
affected by increasing heat, disturbances and pests (Hanewinkel et al., 2013). 
New approaches in forest restoration should therefore include the re-

1. Introduction 
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establishment of more resistant and resilient broadleaved tree species (Bolte 
et al., 2009). Oaks (Quercus spp.), for example, are relatively tolerant to 
climate-driven disturbances (Götmark & Kiffer, 2014; Epron & Dreyer, 
1993) and the regeneration of oak forests or mixed forests with oaks is 
considered as part of the solution to this challenge (Mette et al., 2013; Löf et 
al., 2010a). 

1.1 Oaks and restoration of oak forests 
The genus Quercus includes around 600 species of which approximately 
80% are distributed in tropical and subtropical ecoregions (Johnson et al., 
2019; Mölder et al., 2019). Although only two oak species (pedunculate oak 
(Q. robur L.) and sessile oak (Q. petraea L.)) are native to Scandinavia, they 
are highly valuable as multifunctional forests providing high quality timber 
for the wood industry, biomass for bio-energy production, areas for 
recreation and key habitats for biodiversity (Mölder et al., 2019; Löf et al., 
2016). Due to their long lifespan and the high durability of the dead wood, 
more than 50% of all endangered forest animals, plant and fungi are 
dependent on oak-dominated forests (Felton et al., 2016; Jansson et al., 2009; 
Lindbladh et al., 2007; Berg et al., 1994). However, currently oaks represent 
only 2,2% of the total standing tree volume in southern Sweden (Forestry 
statistics, 2014), and a considerable proportion of these oaks are scattered 
trees in agricultural lands or consist as small mixtures within Scots pine or 
Norway spruce forests (Löf et al., 2016; Drößler et al., 2012). The authorities 
promote the conversion of former Norway spruce stands into more mixed-
oak containing stands and subsidies have been made available, but there are 
still high costs for restoration (Löf et al., 2010b). 

Forest restoration can be defined as “the process of recovering destroyed 
forest or altering existing forest ecosystems towards a predefined historical 
state by active human interventions or by passive natural regeneration” 
(Stanturf, 2005; Stanturf & Madsen, 2002). The natural/passive regeneration 
is a cost-effective method for the restoration of oak (Götmark et al., 2005), 
but regeneration success depends on the conditions and the level of 
degradation of the deforested area (Stanturf, 2005). The lack of mature oak 
trees and seed dispersers, and the magnitude of browsing and seed predation 
(Leverkus et al., 2016; Annighöfer et al., 2015; Den Ouden et al., 2005; 
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Kelly, 2002) can hinder passive restoration in certain areas (Bobiec et al., 
2018). 

The active (or artificial) restoration of oak is the most common practice 
on former agricultural fields and in forests (Buckley & Ford, 2016; Dey et 
al., 2008). Usually, this is carried out by planting nursery-grown 
containerized or bare-root seedlings (Dey et al., 2008). Planting seedlings is 
often associated with a faster seedling growth (Buckley & Ford, 2016; Löf 
et al., 2004) and high survival rates (Dey et al., 2008; Valkonen, 2008; but 
see González-Rodríguez et al., 2011; Löf et al., 2004). However, oak 
seedlings in nurseries often develop shallow root systems or roots can be 
easily pruned during transplanting (Castro et al., 2015). Moreover, this 
technique has the major disadvantage of being expensive and labor intensive 
(Löf et al., 2004; Bullard et al., 1992). For example, cost estimates of active 
oak restoration in Sweden revealed between 4,000-7,000 Euros per hectare 
in 2012 (Löf et al., 2012) and due to the high browsing pressure of wild 
ungulates (Petersson et al., 2019) additional fencing costs further reduce the 
cost-efficiency of this type of forest restoration (Bergquist et al., 2009). 

A more cost-effective alternative for the active restoration of oak forests 
is the application of direct seeding (Löf et al., 2004; Bullard et al., 1992). 
This technique has the potential to reduce restoration costs by 30-50% 
(Ceccon et al., 2015; Löf et al., 2012; Madsen & Löf, 2005) and thus has re-
gained major attention in recent decades (Löf et al., 2019). 
 

1.1.1 Direct seeding of oak 
Direct seeding is one of the oldest techniques for artificial regeneration of 
oaks in which acorns are directly sown into the soil (Abrams & Nowacki, 
2008; Dey et al., 2008). Sowing acorns can either be performed using 
modified agricultural machinery at a recommended row distance of 2.5-4.5 
meters, or by manual  seeding at sowing rates of 6,000-12,000 acorns per day 
and person, depending on manual tools used and site conditions (Johnson et 
al., 2019). 

The direct seeding of oak has several advantages in comparison to 
planting seedlings. First, it can reduce the regeneration costs and easier the 
transport to sowing sites (Madsen & Löf, 2005; Willoughby et al., 2004). 
Hence larger areas can be showed in a shorter period (Ceccon et al., 2015), 
ensuring high stock density for reasonable wood quality at low costs 
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(Madsen & Löf, 2005). Second, seedlings regenerated after direct seeding, 
develop a better tap-root architecture and are therefore more suitable to 
overcome stress conditions in the field such as drought (Zadworny et al., 
2014; Tsakaldimi et al., 2009; Pemán et al., 2006). And third, sowing 
reduces the risk of transporting plant pathogens such as Phytoptera spp. from 
nursery stocks to the field (Sánchez et al., 2005). An overall benefit is that 
stands established through direct seeding are often mixed with other tree 
species and result in more complex stand structures (Twedt & Wilson, 2002) 
which may contribute to increased forest resilience to biotic and abiotic 
disturbances (Pretzsch, 2020). 

1.1.2 Failures in direct seeding of oak: a rodent problem 
Failures of direct seeding of oak depend on multiple factors and are not 
uncommon (Dey et al., 2008). Besides of poor acorn quality due to improper 
storage or seed selection (Johnson et al., 2019; Dey et al., 2008) and poor 
soil conditions at the restoration site (Johnson et al., 2019), the consumption 
and removal of acorns by rodents is the major drawback (Löf et al., 2019; 
Birkedal et al., 2009; Dey et al., 2008). 

The rodent problem has been reported in several studies, where a 80-
100% removal of acorns from restoration sites occurred within the first four 
months after sowing (Martelletti et al., 2018; Van Ginkel et al., 2013; Jinks 
et al., 2012; Prévosto et al., 2011; Puerta-Piñero et al., 2010; Birkedal et al., 
2009). But other factors related to the field preparation or overall 
habitat/microhabitat conditions can further impact seed predation by rodents. 
The presence of competing vegetation after sowing improves habitats for 
rodents resulting in an even higher consumption of acorns (Birkedal et al., 
2010; Gómez, 2004). Therefore, a consequent site preparation is one 
essential prerequisite before direct seeding (Dey et al. 2008; Birkedal et al. 
2010). In this context, sowing in small open fields (< 1 ha) surrounded by 
forest or old field vegetation can increase the rates of acorn predation due to 
high rodent population sizes (Dey et al., 2008; Stanturf et al., 1998). At last, 
an improper timing of sowing can lead to high seed predation if restoration 
operations match the peak of rodent populations (Birkedal et al., 2010).  

Another aspect is wild ungulates. Because of their high density in the 
northern hemisphere (Petersson et al., 2019) and the palatability of oak 
seedlings to wild ungulates (Van Ginkel et al., 2013), fencing is a common 
practice of protection (Bergquist et al., 2009). This also keeps away middle-
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sized acorn consumers such as wild boars (Sus scrofa L.) (Castro et al., 
2015). However, there is evidence that rodent activity and abundance 
increases inside fenced areas, due to the lack of competition form ungulates 
and also the possible exclusion of rodent mammal predators (Perez-Ramos 
& Maranon, 2008). 

1.1.3 Methods for acorn protection 
In the last decades, several techniques were tested to protect sown acorns 
from consumption and removal by rodents. One extreme was the use of 
anticoagulant rodenticides as a lethal method (Jacob & Buckle, 2018; 
Myllymäki, 1975). Today its application has been discouraged as it also 
represents a threat to non-target species and therefore has unpredictable 
negative effects on the environment (Gabriel et al., 2018; Joermann, 1998). 
Simultaneously, several non-lethal acorn protection methods based on 
ecological, physical, silvicultural or chemical strategies were implemented 
(Löf et al., 2019).  

Ecological methods include the two approaches: attraction of prey species 
and food satiation. First, by adding perches in forest restoration sites avian 
predators are to be attracted and consequently reduce rodent presence in the 
area (Farlee, 2013). This method however, relies on the abundance of birds 
of prey which is not reliable for many open field areas (Birkedal et al., 2009). 
Second, the food satiation hypothesis predicts that a high availability of food 
will increase the probability of seeds escaping predation (Janzen, 1971). It is 
therefore suggested that sowing during a year of high masting of oak or a 
high sowed seed density can improve acorn survival (Dey et al., 2008; Perez-
Ramos & Maranon, 2008). 

Different devices have been developed as a physical protection to 
minimize rodent access to acorns. Mesh cages and burying wire mesh 
screens (10-20 cm2) are successful for restricting access to the acorns but 
impair seedling development if not removed (Dey et al., 2008; Weitkamp et 
al., 2001). Another device, consisting of a wire mesh cylinder developed by 
Reque and Martin (2015), protects the acorn from rodent predation and the 
germinated seedling from browsing. However, negative effects on seedlings 
and saplings may occur if not removed in time (Löf et al., 2019). The use of 
degradable tubes did not show satisfactory results rather they further increase 
damage to the seedlings due to frost (Madsen & Löf, 2005; Löf et al., 2004). 
Finally, Castro et al. (2015) developed a “seed shelter” with promising 
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results as it reduces acorn predation by rodents without compromising 
germination. But the polypropylene plastic seed shelter needs to be removed 
after seedling emergence, which increases labor intensity. 

Today silvicultural methods are predominantly applied to reduce acorn 
predation or removal during direct seeding of oak (Löf et al., 2019). This 
techniques include for example, mechanical site operations that remove 
competing vegetation, which are favored rodent habitats (Johnson et al., 
2019; Löf et al., 2019; Dey et al., 2008). Birkedal et al. (2010) compared 
different operations such as disk trenching, patch scarification, top-soil 
removal, and mounding. Their results indicate that mounding reduces cover 
vegetation and allows a better seedling establishment. Another silvicultural 
strategy is to select sowing sites of forest openings bigger than 1-2 ha and far 
from forest edges (Dey et al., 2008; Stanturf et al., 1998). Moreover, there 
are indications of lower acorn predation rates if the direct seeding operation 
is applied in spring rather than autumn which avoids the peak of rodent 
population (Birkedal et al., 2010; Madsen & Löf, 2005). At last, sowing 
depths around 5-10 cm can provide a modest acorn protection from rodents 
(Dey et al., 2008; Nilsson et al., 1996).  

Only few studies have addressed the use of non-lethal chemical methods 
to protect acorns during direct seeding (Löf et al., 2019). As granivorous 
rodents rely on their olfactory system to allocate food (see section 1.3.1), 
chemical methods are meant to act mainly as food suppressants or repellents 
(Hansen et al., 2016). An early study by Bäumler et al. (1990) tested the 
repellent effects of 18 chemicals and plant extracts (e.g., neem oil, L-
phenylalanin, grapefruit extract, diesel). Their results show for example 
repellent effects on diesel and neem oil but with negative effects on acorn 
germination. Similar results have been observed for the primary compound 
of chili capsaicin (Leverkus et al., 2013) and diesel (Leverkus et al., 2017). 

1.2 Small rodents and acorns 
In temperate Scandinavian forest, the yellow-necked mouse (Apodemus 
flavicollis Melchior), the wood mouse (Apodemus sylvaticus L.), and the 
bank vole (Myodes glareolus Schreber) are the major mammalian acorn 
consumers (Birkedal et al., 2009; Hansson, 1971). They are known to play a 
double role in their interactions with oaks (Gómez et al., 2019). That is, as 
seed predators (Steele et al., 2005; Sun et al., 2004; Santos & Tellería, 1997; 
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Crawley & Long, 1995) and as seed dispersers (Steele et al., 2011; Gómez 
et al., 2008; Pons & Pausas, 2007a). Rodents are scatter hoarders where they 
store acorns in multiple dispersed catches for later consumption (Lichti et 
al., 2017; Vander Wall, 1990). Many of these acorns could, however, escape 
predation (Perea et al., 2016) or end up only partly eaten with the embryo 
intact (Yang & Yi, 2012; Perea et al., 2011; Steele et al., 1993), allowing 
germination and seedling establishment if hoarded in suitable habitats 
(Gómez et al., 2019; Johnson et al., 2019). Thus, scatter hoarder rodents are 
a key factor in the dispersal of oaks (Jensen & Nielsen, 1986).  

As mentioned above (section 1.1.2), acorn removal is especially 
problematic for restoration of oak forests when direct seeding is applied. 
Acorns are strongly preferred by scatter-hoarding rodents due to their energy 
and nutrient content (Jinks et al., 2012) and they even smell acorns that are 
buried in the soil (Löf et al., 2019; Dey et al., 2008; Vander Wall, 2003). The 
pattern of acorn removal by rodents can vary in time and space (Lichti et al., 
2017; Perez-Ramos & Maranon, 2008) and the distribution of rodents could 
be influenced by two factors: food quality and quantity (Jensen, 1985). For 
example, the year after a big acorn crop (mast year), small rodent populations 
grow with the consequence of higher acorn consumption in late summer and 
autumn (Ostfeld et al. 1996; Wolff 1996; Schnurr et al. 2002). Furthermore, 
as bigger acorns have a higher nutrient content than smaller acorns, they are 
preferred by rodents (Muñoz and Bonal 2008; Pérez‐Ramos et al. 2008; 
Zhang et al. 2008). Acorn removal rates are further influenced by the habitat 
structure (Jensen & Nielsen, 1986). Rodents increase their foraging in 
habitats containing dense vegetation (Pérez‐Ramos et al., 2008; Pons & 
Pausas, 2007b; Frost & Rydin, 2000) and close to forest edges (Kollmann & 
Buschor, 2003; Ostfeld et al., 1997). This change in behavior is well 
explained by the “predation risk allocation hypothesis” (Lima & Bednekoff, 
1999) which is the topic of the next section. 

1.3 Rodents and their predators 
In the temperate forests of southern Scandinavia, the major predators of 
granivorous rodents are divided into two groups: specialists and generalist 
(Erlinge et al., 1983). The more rodent specialists are the least weasel 
(Mustela nivalis L.) and stoat (M. erminea L.), both belonging to the family 
Mustelidae and two birds of prey: the common kestrel (Falco tinnunculus 
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L.) and the long-eared owl (Asio otus L.). The more generalist predators are 
the mink (Neovison vison Schreber), the European polecat (M. putorius L.), 
the red fox (Vulpes vulpes L.) and two birds of prey: the tawny owl (Strix 
aluco L.) and the common buzzard (Buteo buteo L). Both specialist and 
generalist predators are present all year around and may constitute a 
persistent predation pressure during all rodent’s life cycle (Korpimäki et al., 
2005; Hansson & Henttonen, 1985). Therefore, southern Scandinavian 
rodent populations can fluctuate in densities depending on the presence of 
predators in the ecosytem (Lambin et al., 2006; Hansson & Henttonen, 1985; 
Erlinge et al., 1983). 

Rodents constantly experience a trade-off between foraging effort and 
risk of predation (Bedoya-Pérez et al., 2019; Krijger et al., 2017; Apfelbach 
et al., 2005). This constitutes the basis of the “predation risk allocation 
hypothesis”, which predicts a low foraging effort during short periods of high 
predation risk (Lima & Bednekoff, 1999). In other words, animals need to 
fulfill their dietary and body needs without being preyed upon. The 
assessment of high predation risk is driven by the surrounding habitat 
structure (Laundré et al., 2010). According to the “landscape of fear” 
concept, vegetated habitats have a low predation risk, so rodents will forage 
more intensively than in higher risk open habitats (Laundré et al. 2001; 
Laundré et al. 2010). 

1.3.1 The role of olfaction 
As granivorous rodents are mainly nocturnal, their complex olfactory system 
play a key role in foraging (Vander Wall et al., 2003), identifying 
conspecifics (Ferkin et al., 2004) and detecting the presence of predators 
(Apfelbach et al., 2005). The release of chemicals into the environment as a 
by-products of metabolism is a common pattern in all mammals (Conover, 
2007). For example, mammalian predators produce scent marks or odors for 
intra-specific communication such as individual recognition, breeding, and 
territory marking (Conover, 2007; MacDonald, 1980). But these odors may 
also act as kairomones triggering fear/defense responses in prey species 
(Sbarbati & Osculati, 2006). In general, animals who are prey organisms are 
stressed to have different mechanism and adaptations to defend themselves 
and to avoid capture from predators. These defensive responses can be 
physiological (e.g., changes in the endocrine system), morphological (e.g., 
presences of spines or amour structure), reproductive (e.g., reproductive 
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delay) and behavioral (Kats & Dill, 1998). At the presence of predator’s 
odors rodents use detection avoidance, shift their movements to safe habitats, 
and decrease foraging or feeding as their primary defense mechanisms 
(Hegab et al., 2015; Ylönen et al., 2003; Hansson, 1971). 

1.3.2 Predators scent as repellents 
Predator odors have been extensively studied as food suppressants or 
repellents against rodents (Parsons et al., 2018; Apfelbach et al., 2005), and 
in recent years there has been an increased interest for their application in an 
ecological based rodent management framework to replace rodenticides in 
agriculture and forestry (Sullivan & Sullivan, 2020; Bedoya-Pérez et al., 
2019; Krijger et al., 2017). Several volatile compounds have been identified 
from the odor of feces, urine and anal glands of mustelids (Ferrero et al., 
2011; Zhang et al., 2005; Crump & Moors, 1985), and feces and urine from 
the red fox (Vernet-Maury, 1980). For example mustelid derived compounds 
such as 2-propylthietane; 2,2-dimethylthietane and indole were tested as 
synthetic mixtures for rodent repellency in a series of field studies by Thomas 
Sullivan (Sullivan et al., 1988b; Sullivan et al., 1988a; Sullivan et al., 1988c) 
or in laboratory experiments as single compounds (Sievert & Laska, 2016; 
Pérez-Gómez et al., 2015; Brechbühl et al., 2013; Sarrafchi et al., 2013a). 
Another volatile compound (2-phenylethylamine) identified as a major 
component of urine in several predators such as bobcats, ferrets, weasels, 
successfully triggered defensive responses in rodents such as avoidance 
(Ferrero et al., 2011). Moreover, a compound (2,5-dihydro-2,4,5-
trimethylthiazole) derived from the red fox has been widely studied (Rosen 
et al., 2015; Fendt et al., 2005) showing different fear related behaviors in 
rodents (Fendt & Endres, 2008; Laska et al., 2005). 

However, results of both field and laboratory experiments are rather 
inconsistent (Apfelbach et al., 2005) and there is still conflicting knowledge 
regarding of whether single compounds or complex mixtures (“bouquets”) 
of compounds are more optimal to elicit fear responses in rodents (Jackson 
et al., 2018; Sievert & Laska, 2016; Apfelbach et al., 2015a). Furthermore, 
only two studies have addressed the use of predators smell to avoid 
consumption or removal of acorns by rodents (Gallego et al., 2017; Sunyer 
et al., 2013b). Volatile compounds, however, where not used in these studies. 
Therefore, there is a great potential in the application of predators smell to 
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reduce acorn removal during direct seeding operations and to place more 
research focus to this field. 
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The overall aim of the present work was to investigate to which extent 
predator odors can be used as a seed protection strategy against granivorous 
rodents and to determine their efficiency to protect acorns for the restoration 
of oak during direct seeding. In this thesis we established laboratory 
experiments and applied these results to ‘real world’ conditions in field 
experiments. While the first two studies investigate natural based treatments, 
the two last are focusing on synthetic volatile compounds.  

In the first part, we investigated in the laboratory the effects of four 
different ‘natural based’ seed protection treatments (chili, citronella, mink 
excrement and sand coating) against bank vole consumption of acorns and 
beech nuts (Paper I). Based on these results we applied mink excrement as a 
treatment to protect acorns in two restoration sites during direct seeding of 
oak (Paper II).  

In the second part of this thesis (Paper III and IV), we examined the 
potential effects of synthetic volatile compounds as repellent candidates from 
different mammalian predators in order to disrupt foraging or trigger fear 
related behaviors in granivorous rodents. In paper III, we established a 
laboratory experiment and determined the most efficient compounds and 
concentrations to repel bank voles. In paper IV, we implemented the best 
synthetic repellent candidates from the laboratory study and performed a 
field experiment to test if the effects of the laboratory setting could also be 
observed under more natural conditions.  

The specific objectives for this thesis were to: 

I. Determine the potential protection effects of four seed protection 
treatments (chili, citronella, mink excrement and sand coating) on 
bank vole consumption of beech nuts and acorns.  

2. Thesis aims 
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II. Elucidate the effects of distance to forest edge, mink excrement, 
and acorn size on the removal of acorns by rodents.   

III. Asses the efficiency and proper concentration of five synthetic 
volatile compounds from different rodent predators as repellent 
candidates against bank voles. 

IV. Determine if synthetic volatile compounds can reduce acorn 
removal rates by rodents and if the removal rates are depending on 
the distance to the odor source.  
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To address the specific objectives of this thesis, laboratory and field 
experiments were conducted including the study of natural based treatments 
(Paper I and II) and synthetic volatile compounds (Paper III and IV). In this 
section, the applied methods are briefly summarized. More detailed 
information can be found in each individual paper. 

3.1 Natural-based seed protection treatments 
Within this work we considered secondary plant metabolites and animal by-
products as our natural-based seed protection treatments. Here, we selected: 
chili (Capsicum chinense Jacq) with coconut fat as a carrier, citronella 
(Cymbopogon winterianus Jowitt) with rapeseed oil as a carrier, mink 
excrement diluted in water, and sand coating (mixture of potato starch and 
sand). Our rationals for this choice were based on accessibility of materials, 
feasible application on seeds, and previous knowledge on their potential 
repellent and seed protection effects (Sunyer et al., 2013a; Nordlander et al., 
2009; Biswas & Biswas, 2006; Nolte & Barnett, 2000).  

3.1.1 No-choice laboratory study (Paper I) 
No-choice feeding experiments were performed at the Astrid Fagraeus 
Laboratory, Solna, Sweden to test if the natural-based seed protection 
treatments can hinder bank voles to consume acorns (Q. robur) and beech 
nuts (Fagus sylvatica L.). Both seed types were prepared with chili/ coconut 
fat, citronella/ rapeseed oil, mink excrement or sand coating. As control 
treatments, seeds were only submerged in water. 

The no-choice experiment was performed in the standard cages, which 
are similar to the home cages of the bank voles (dimensions: 60 x 30 x 40 

3. Methods 
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cm3). Bedding materials and water was provided ad libitum to the animals 
tested. Either 10 treated beech nuts or 5 treated acorns were placed at the 
opposite side of the cage entrance. Each bioassay lasted 7 hours and at the 
end of each bioassay the amount of consumed seeds was measured in order 
to compare the five treatments. Bioassays were conducted in two sessions on 
five consecutive days. Thus, each animal experienced one treatment per day 
arranged in a series of 5 × 5 Latin Squares. We used 20 different bank voles 
for each combination of treatment and seed species resulting in a total of 40 
animals.  

Both beech nuts and acorns were weighed before and after each trial. To 
avoid bias due to water loss or uptake by the seeds, seed samples were placed 
in open jars in the same room as the trials and weighed before and after. 
Furthermore, we recorded at the end of experiments if seeds were handled or 
let untouched in each cage. 

For each treatment and seed species combination a sample of 200 seeds 
(total: 2,000 seeds) were used to test if the treatment affects the germination 
capacity. These germination tests were carried out at the Statsskovenes 
Planteavlsstation nursery, in Humlebæk, Denmark and lasted 14 weeks. 

3.1.2 Direct seeding field study (Paper II) 
To investigate if mink excrement has an effect on acorn removal we 
conducted a field experiment at two forest clear-cuts (Skrylle and Klåveröd) 
in Scania (southern Sweden) between May and September 2019. Both study 
sites were a stand dominated by Norway spruce before felling in December 
2017 for Skrylle and June 2018 for Klåveröd. These two clear-cuts were 
patch scarified (ca. 80 cm wide and 3 m long in tracks at ca. 2 m spacing) 
before spring in 2019 and were direct seeded with pedunculate oak by the 
Scania Landscape Foundation in late April, whereas no direct seeding was 
applied in our experimental areas. 

At both clear-cuts we randomly selected four blocks with split-split plots 
(Figure 1a). This consisted of two main treatments (habitats), which were: 
open area inside the clear-cut and an area near the forest edge. The distance 
between the two main treatments was between 20-24 m. At each habitat, 
three sub-plots (1 x 2 m) contained respectively: (i) mink excrement directly 
applied on top of the sown acorn (ME), (ii) seed coating with mink excrement 
(MEC), and (iii) control acorns without mink excrement (C) as sub-
treatments. The distance between sub-plots was 5 m. Each sub-plot was 
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further divided in two rows (split-split plot) for direct seeding of two 
different sized acorns (small: < 4.8 g, and big: ≥ 4.8 g fresh weight). 

Ten acorns were sown manually at 5 cm depth for each split-split plot 
(960 acorns in total). To detect the presence of acorns after sowing a small 
hole was drilled (ø 0.8 mm) at the basal end opposite the embryo side of each 
acorn, and a flat metal washer (ø 15 mm) was attached using 5 cm of wire 
thread (Figure 1b). Thereafter, with the use of a pin-point metal detector we 
monitored presence or absence of acorns after 15, 30, 60, 90 and 120 days of 
sowing. We also recorded emergence of seedlings (Figure 1c) during each 
monitoring visit. At the end of the experiment, seedling height was 
measured, and the percentage of ground vegetation was estimated visually 
for each main plot.  
 

3.2 Synthetic volatile compounds 
We selected the following synthetic volatile compounds: (i) 2-
phenylethylamine (2-PEA, ≥ 99% purity, Sigma-Aldrich, Darmstadt, 
Germany) a general compound of carnivore’s smell (Ferrero et al., 2011), 
(ii) 2-propylthietane (2-PT, ≥ 95% purity, Chemspace, Riga, Latvia) from 
anal gland secretions of mustelids (Crump, 1980), (iii) indole (≥ 99% purity, 
Sigma Aldrich, Darmstadt, Germany) from anal gland secretion of mustelids 
(Brinck et al., 1983), and (iv) 2,5-dihydro-2,4,5-trimethylthiazoline (2,5-
TMT, ≥ 97% purity,  Bio SRQ, Sarasota, Florida, USA) form fox urine and 
feces (Vernet-Maury, 1980). In addition, we used heptanal (≥ 95% purity, 
Sigma Aldrich, Darmstadt, Germany), which was identified has the most 
pronounced compound form mink fur (for more details please see 
supplementary material in Paper III). This selection was based on previous 
studies (Ferrero et al., 2011; Apfelbach et al., 2005; Lindgren et al., 1995; 
Sullivan et al., 1988a) and compound stock availability by different chemical 
vendors. In the field study (Paper IV), only 2-PEA, 2-PT and indole were 
used. 
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Figure 1. a) Experimental design for one block with split-split plots. Main plot treatments 
were the open area of the clear cut and the area near the forest edge (gray rectangle). 
Subplots consisted of the sub treatments ME (mink excrement), MEC (Mink excrement 
coating) and C (control). Each split-split plot contained one row of 10 small acorns and 
another row with 10 big acorns. b) Acorns of pedunculated oak with attached metal 
washer used during direct seeding. c) Seedlings of oak three months after sowing (photos: 
Adrian Villalobos). 
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3.2.1 Two-choice laboratory study (Paper III) 
In a two-choice design we evaluated three fear/defense related behaviors in 
bank voles at the presence of five synthetic volatile compounds (2-PEA, 2-
PT, indole, heptanal, and TMT) at two concentrations (1% and 5% (w/w) 
diluted with pentane (puriss p.a. ≥ 99% purity, Sigma Aldrich, , Darmstadt, 
Germany). Experiments were carried out at the Institute of Environmetal 
Sciences (Jagiellonian University, Krakow, Poland). In total 33 female and 
33 male laboratory-bred bank voles were randomly selected from a control 
line colony (Sadowska et al., 2008). For the two-choice design we used three 
Y-mazes (Figure 2a) placed simultaneously in the experimental room. Each 
Y-maze consisted of three arms: One arm was selected as a “shelter” zone. 
The two remaining arms were randomly selected as treatment arm where 
clean air (control arm) or air mixed with the volatile compound (compound 
arm) was puffed inside the Y-maze. At the distal end of the treatment arms, 
rodent food was placed ad libidum. An air inlet connected with 
polytetraflouroethylene (PTFE teflon®) tubing distributed the odors inside 
the arms (Figure 2a). To avoid the odor plumes entering the shelter zone, two 
air outlets at 25 cm from the arm ends were connected with PTFE tubing to 
a reversed air pump (Figure 2a: red arrows). During 1 hour, odors were air 
puffed at every 5 min for 1 min (total 10 air puffs/h). Before the experiment, 
each bank vole was acclimatized to the experimental set-up for 10 hours. 
Furthermore, animals experienced just one single compound at one 
concentration. In total, 6 behavioral trials per diluted compound were 
performed. All experiments were carried out during the beginning of the 
artificial night cycle of the animals and were video recorded. 

At each air puff, we examine the following fear related behaviors: (i) 
Food contact was scored as a binary response. If the animals poked their 
noses into the food cage (Figure 2a) for more than 5 consecutive seconds it 
was noted as 1, otherwise as 0. (ii) To estimate the Area avoidance, we 
defined a 10 cm virtual detection zone from the food cage to the center of the 
Y-maze at each treatment arm (Figure 2a) and measured the cumulative time 
spend in each detection zone. (iii) Move to shelter, was recorded binary and 
if the bank voles returned to the shelter and stayed inside for more than 10 
consecutive seconds it was noted as 1, otherwise as 0. 
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3.2.2 Effects of synthetic compounds on acorn removal (Paper IV) 
The experiment was carried out at two broadleaved forest stands in southern 
Sweden (Alnarp and Skrylle). At each forest site we examined the efficiency 
of three synthetic compounds (2-PEA 5%, 2-PT 1%, and indole 5% (w/w)) 
in reducing acorn removal by granivorous rodents. In both sites we 
conducted a randomized block design with four blocks (ca 45 x 45 m each) 
and five plot treatments in each block. The plot treatments consisted of a 
circular metal cage with a diameter of 60 cm, a height of 30 cm, and a mesh 
size of 2.5 cm. At the center of the cage, a plastic pole holding a cartoon delta 
house was placed at ca. 5 cm above ground (Figure 2b). Inside the delta house 
1 g of SPLAT (Specialized Pheromone Lure Application Technology, ISCA 
Technologies, Riverdside, CA, USA) pellet was positioned. Each pellet of 
SPLAT functioned as a chemical dispenser, releasing the mixed in active 
ingredient. The five treatments were: 2-propylthietane + SPLAT (2-PT-S), 
2-phenylethilamine + SPLAT (2-PEA-S), indole + SPLAT (I-S), control 
without active volatile compound + SPLAT (C-S) and control without 
SPLAT pellet and delta house (C). Inside the mesh cages 12 acorns of sessile 
oak were positioned in an arrangement of one acorn at 5, 10 and 15 cm from 
the odor source in four different directions (Figure 2b). In addition, three 
pieces of rodent food were placed aside of each acorn.  

Following the start of each experimental period (4 pm), we visually 
determined for each plot treatment, and then after 4, 8, 12, 16, 24, 28, 32, 36, 
40 and 48 hours, whether acorns and rodent food were removed. Experiments 
were replicated in two sessions at each site. For the second experimental 
session, we randomly changed the plot treatment position within the blocks, 
and new acorns and rodent food were placed inside the mesh cages. 
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Figure 2. a) Design of the Y-maze (Paper III) with the following arm dimensions: 
L×W×H: 37.5 × 15 × 11 cm. At each treatment arm a mesh cage with food was provided 
at all times during the experiment. Doted lines at 10 cm from the food cages indicate the 
detection zone. Dashed red arrows show the odor plumes direction. A coconut half-shell 
was used as a shelter. b) Design of the wire mesh treatment cage and the acorn-rodent 
food arrangement from Paper IV. A treated pellet SPLAT was placed inside the delta 
house at the center of the mesh cage. 
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4.1 The seed protection effects of four natural-based 
products 

The results from paper I show that the application of mink excrement on both 
beech nuts and acorns was the most successful treatment as seed protection 
because it reduced the consumption of seeds by male and female bank voles 
(Figure 3a), reduced the handling of seeds by rodents about 50% (Figure 3b) 
and did not have major negative effects on seed germination (germinated 
beech nuts, mink excrement = 61%, control = 79%; germinated acorns, mink 
excrement = 70.5%, control = 73.5%). For the protection of seeds during 
direct seeding operations, it is highly important that the method applied does 
not only reduce consumption but also reduces catching and removal of seeds 
from restoration sites (Takahashi et al., 2006). Moreover, treatments should 
not have negative effects on seed germination (Johnson et al., 2019; Dey et 
al., 2008). Hence, this combined result highlights the potential applicability 
of mink excrement as a seed protection method during direct seeding. 

The repellent effects of several predator odors on different rodent species 
have been previously described (Apfelbach et al. 2005; Apfelbach et al. 2015 
and references therein). The more natural-based application of this strategy 
is normally performed by placing predator excrement (Koivisto & Pusenius, 
2003; Nolte et al., 1994), spraying urine (Borowski, 1998; Epple et al., 
1993), placing pieces of bedding materials from the predators burrow 
(Sullivan et al., 1985), or placing a fabric cloth which was previously in 
contact with the predator close to food (Masini et al., 2005). Other studies 
showed a reduction of acorn removal by rodents when excrements of the 
common genet (Genetta genetta L.) were sprayed on acorns (Gallego et al., 

4. Main results and discussion 
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2017; Sunyer et al., 2013a). However, the effect on the consumption of mink 
excrement treated seeds has – to the best of our knowledge – not formerly 
been documented; neither has the influence of any predator excrements on 
germination capacity been reported in the literature. 

 
Figure 3. a) Consumption of beech nuts and acorns by male and female bank voles. 
Different letters represent significant differences between the treatments for beechnuts 
(black) and acorns (grey). Asterisks indicate significant differences between beech nuts 
and acorns. b) Percentage of cages with touched beech nuts and acorns. Letters indicate 
significant differences between the treatments. Asterisks indicate significant differences 
between seed species (Villalobos et al., 2019). 

Contrary to our results with mink excrement, the treatments with 
chili/coconut fat and citronella/rapeseed showed a clear trade-off between 
reducing bank vole consumption of seeds (Figure 3a) and also the 
germination capacity (germinated beech nuts, chili = 18%, citronella = 5.5%; 
germinated acorns = 51.5% for chili and citronella). In addition, the 
citronella treatment did not decrease the handling of seeds as showed by the 
chili/coconut treatment, thus depleting its repellent effect (Figure 3b). This 
results are in line with studies from Nolte and Barnett (2000), Jensen et al. 
(2003), and Willoughby et al. (2011) where repellent effects of the chili 
compound capsaicin were observed. Besides, Leverkus et al. (2013) found 
negative effects in germination of capsaicin treated acorns. Similarly, Biswas 
and Biswas (2006) described a reduced consumption of rice grains by 
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weevils when citronella was applied but with negative effects on germination 
rates.  

Finally, our results show that sand coating as a physical barrier failed to 
protect seeds rather increased the consumption. One reason for this could be 
the material used for creating the coat, potato starch is palatable and 
nutritious to rodents. In summary, the treatments chili/coconut fat and 
citronella/rapeseed, and the sand coating method cannot be recommended 
for future applications. 

4.2 Direct seeding of oak: The effects of distance to 
forest edge, acorn size and mink excrement 

In our direct seeding experiment (paper II), we applied mink excrement as 
an acorn protection method based on our results from the previous laboratory 
experiment (paper I). We further observed the effects of sowing near or at 
far distance from the forest edge as well as of sowed small or big acorns. Our 
results revealed no seed protection effects for the two treatments with mink 
excrement (treatment MEC and ME), rather in most of the cases, removal of 
acorns increased under these treatments (Figure 4). This is in contrast to our 
laboratory results from paper I. 

Different attempts have been made to use predator odors as natural 
repellents but dissimilar results between laboratory and field studies are 
common (Apfelbach et al., 2005). Particularly in our study, there may be 
several reasons for this contradiction. First, it is possible that the olfactory 
cues from the mink excrement dissipated quickly due to desiccation, despite 
having been buried in the soil (Bytheway et al., 2013). Second, we cannot 
discard that habituation to the predator smell by rodents has occurred. There 
are strong possibilities that after a long-lasting exposure to predator odor 
cues without real attacks from a predator, the prey animals habituate and do 
not alter their foraging behavior in response (Apfelbach et al. 2005). Above 
all, our results are in line with some other work where feces of the least 
weasel did not reduce foraging behavior in bank voles (Sundell et al., 2004), 
and neither did rabbits (Oryctolagus cuniculus L.) reduced foraging at the 
presence of mink excrement (Bakker et al., 2005). 
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Figure 4. Removal of acorns from two acorn sizes (big and small) in two habitats (Near 
forest edge and Open cleat-cut), and at two clear-cut sites: Skrylle (top) and Klåveröd 
(bottom). The treatments are: ME = Mink excrement, MEC = Mink excrement coating 
and C = Control. Different letters show significant differences (p < 0.05) between the 
repellent treatments (paper II). 

In general, at the end of the experiment 120 days after sowing no more 
than 60% of sown acorns were removed at both field sites (Figure 4). This is 
another contrasting result to several previous studies where nearly 100% of 
acorn removal has been reported during direct seeding (Martelletti et al., 
2018; Van Ginkel et al., 2013; Birkedal et al., 2009; Den Ouden et al., 2005; 
Madsen & Löf, 2005; Schnurr et al., 2002). However, our experiments were 
laid out simultaneously as a direct seeding operation by the Scania 
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Landscape Foundation outside our plots but at the same sites. Thus, more 
direct-seeded acorns were available. This result supports the predator-
satiation hypothesis (Janzen, 1971), where it is expected that a higher 
availability of food resources leads to an increase of the probability of seeds 
escaping consumption.  

The acorn removal rates were significantly higher in the open area 
compared to near the forest edge at one of our sites (Klåveröd, Figure 4). 
Although previous research showed higher seed removal by rodents at the 
edge of a deciduous forest (Kollmann & Buschor, 2003), our result can be 
explained by the presence of large post-harvest slash piles (Figure 5) close 
to our open area sub-plots. Indeed, findings of Birkedal et al. (2010) reported 
higher rodent captures at sowing sites closer to slash piles in a clear-cut. 
Thus, it is possible that slash piles are suitable rodent shelters, providing a 
safe zone without risk of predation. This is in line with the “landscape of 
fear” concept, where habitats with a low predation risk will be used more 
intensively than higher-risk habitats (Laundré et al., 2010). 

 
Figure 5. Presence of post-harvest slash piles at the clear-cut in Klåveröd. Acorn removal 
was higher near the slash piles as they may represent a suitable shelter for rodents (photo: 
Adrian Villalobos). 
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Overall, bigger acorns produced larger seedlings regardless of any 
treatment combination (habitat or mink excrement). But a larger acorn size 
did not lead to higher germination rate. Similar results were obtained by Xiao 
et al. (2004) on the jolcham oak (Q. serrata Murray). However, for northern 
red oaks (Q. rubra L.), there is evidence that bigger acorns increase 
germination rates and overall seedling performance during direct seeding 
(St-Denis et al., 2013; Kormanik et al., 1998). If a bigger acorn size is 
recommended for direct seeding, it shall be taken with caution as we 
observed higher removal rates for big acorns. Thus, a conflict between small 
and big acorns emerges because sowing big acorns may improve the early 
growth of the seedling but they are also preferred by rodents (Muñoz & 
Bonal, 2008; Kormanik et al., 1998). 

4.3 Synthetic predator odors as potential seed protection 
strategies: from the lab to the field 

To determine if synthetic predator odor compounds have the potential to be 
applied as a seed protection strategy we first developed a laboratory study 
(paper III) using previously known predator compounds which have had 
repellent effects against rodents from previous studies (see sections 1.3.2 and 
3.2). Our first results show such effects on bank voles with the compounds 
2-phenylethylamine (2-PEA), 2-propylthietane (2-PT) and more modest in 
indole. Thereafter, we brought these three compounds to the field (paper IV) 
and observed if similar results could be detected in a more natural 
environment. In the following sections, I will discuss our results in more 
detail. 

4.3.1 Testing synthetic predator odors on bank voles 
Strong avoidance effects of the bank voles were observed when the 
compound 2-PEA was applied in the Y-maze setting (paper III). Here bank 
voles spent more time in the control arm compared to the compound arm at 
both tested concentrations (Figure 6). The 2-PEA compound is a biogenic 
amine as a product from decarboxylation of the amino acid phenylalanine - 
a general component of urine from different carnivore mammals (Ferrero et 
al., 2011). Ferrero et al. (2011) found that 2-PEA in a 10% concentration 
elicits innate avoidance behavior, increases the plasma corticosterone levels 
indicating stress, and activates multiple olfactory sensory neurons in rodents, 
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which support our results. Furthermore, we detected fewer contact to the 
food cages at the presence of 2-PEA, which may suggest feeding suppression 
effects, and more moves to shelter were also observed. However, the few 
studies which implemented 2-PEA to their trials do not have information 
regarding feeding suppression or escape behavior in rodents (Wernecke, 
2016; Ferrero et al., 2011). Thus, our results seem to be new for rodents. 

The compound 2-PT at a 1% concentration (w/w) significantly reduced 
the time spend in the compound arm (Figure 6) and reduced the food contact 
by bank voles. This results are consistent with previous laboratory 
experiments highlighting that 2-PT treated areas were avoided by mice 
(Sievert & Laska, 2016; Pérez-Gómez et al., 2015; Brechbühl et al., 2013; 
Sarrafchi et al., 2013b), and consumption of food pellets by Long Evans rats 
(Rattus rattus domestica L.) was reduced (Heale & Vanderwolf, 1994). 
Moreover, a study from Sarrafchi et al. (2013b) found that mice can 
recognize and avoid 2-PT in concentrations as low as 1.3x10-9 mol/L. 
Hence, from our experiments we could expect that a 1% concentration of 2-
PT is sufficient to elicit avoidance response in bank voles. 

A clear avoidance effect was observed for indole at a 5% concentration 
(Figure 6). However, we did not find significant effects on food contact or 
moves to shelter. Previously, there are no studies regarding the 
implementation of indole as a single compound in rodents. Previous field 
studies have used indole in mixtures with sulfurous compounds (Sullivan et 
al., 1988a) or other nitrogenous compounds (Swihart et al., 1995). These 
mixtures showed different results. For example Sullivan et al. (1988a) found 
feeding suppression in meadow voles (Microtus pennsylvanicus Ord) and 
montane voles (Microtus montanus Peale), whereas Swihart et al. (1995) did 
not observe feeding reduction in meadow voles.  

The fox related compound TMT and the mink fur compound heptanal did 
not show avoidance effects (Figure 6). Unexpectedly, voles were attracted to 
the compound TMT. This is in contrast to previous results where a clear 
avoidance behavior and feeding suppression have been observed in rats 
during two-choice laboratory experiments (Endres & Fendt, 2007; Burwash 
et al., 1998). Although, we do not have a clear explanation for the observed 
attraction to TMT by our bank voles, previous studies described different 
avoidance responses depending on the rat strain (Rosen et al., 2006; Staples 
& McGregor, 2006; McGregor et al., 2002). Thus, our results could further 
suggest that responses to TMT may differ depending on the rodent strain or 
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species. We found the compound heptanal as the most pronounced volatile 
compound from mink fur. Other studies have also described this compound 
in urine from ferrets (Mustela furo L.) (Zhang et al., 2005) and otter (Lutra 
lutra L.) spraint (Kean et al., 2015). However, heptanal was also found in 
products of non-predator mammals such as cattle fur (Isberg et al., 2016) and 
different organic materials such as plant flowers (Deisig et al., 2012). Thus, 
this compound seems to be a more general compound in origin and alone 
does may not denote the presence of a predator to rodents. 

 
Figure 6. Cumulative time spend by bank voles in the Y-maze detection zone at the 
control arm (white) and the compound arm (gray) during 10 air puffs. Asterisks indicate 
significant difference between the arms of the y-maze. Error bars represent the standard 
error of the cumulative time spend by bank voles (paper III). 

4.3.2 Reducing removal of acorns with synthetic predators’ odor 
Our field experiment from paper IV revealed a significant reduction of acorn 
removal by rodents when 2-PT was used at field sites (Figure 7). This result 
further support our observations in laboratory bioassays from paper III. To 
our knowledge, this is the first time 2-PT has been applied as a single 
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compound to control the removal of any type of seeds. Moreover, only few 
experiments have tested the effect of 2-PT to reduce foraging in rodents 
during field settings. For example, a reduction of bark and vascular tissue 
feeding on apple trees by meadow voles has been observed (Sullivan et al., 
1988a), and stem damage to Scots pine by the red-backed vole (Myodes 
gapperi Vigors) were significantly reduced in China (Sullivan et al., 
1991). However and contrary to our study, 2-PT has then only been 
implemented as a 1:1 mixture with 3-propyl-1,2-dithiolane in these studies. 
Furthermore, we observed the lowest rate of acorn removal (between 25% 
and 45%) at the close distance from the odor source (5 cm) in the 2-PT 
treatments. For the longer distance (15 cm), between 65% and 80% of the 
acorns were removed. In contrast, a semi-field study by Sundell et al. (2004) 
showed that when mustelid excrement was placed at two different distances 
(1 m and 3 m) from food, the closest distance did not reduced foraging on 
rodents. Though, a distance of 1 m might be too far and therefore our results 
may suggest that distances farther than 5 cm could reduce the intensity of the 
odor signal. Indeed, Gire et al. (2016) states that under natural conditions the 
encounter rate of strands of an odor often decreases with distance from the 
odor source due to forces of turbulent diffusion and shifting winds (Cardé & 
Willis, 2008) and this might be particularly relevant in forests. 

Contrary, to our laboratory study from paper III, we did not find the 
expected repellent effects for the compound 2-PEA as acorns were greatly 
removed at one of our field sites (Figure 7). This is also in contrast to the 
strong avoidance behavior observed in rats and mice in a previous study 
(Ferrero et al., 2011). One possible explanation for our result could be that 
the concentration of 5% (w/w) 2-PEA used into the dispenser matrix 
(SPLAT) was not appropriate for field studies. In a laboratory experiment by 
Wernecke (2016) rats were avoided by the compound 2-PEA only at lower 
concentrations (0.04, 0.4; and 4 µmol/mL). Though, their results were not 
verified under field conditions.  

The compound indole did not reduce the removal of acorns at our two 
field sites (Figure 7). During semi-field conditions, findings from Arnould et 
al. (1998) found that domestic sheep (Ovis aries L.) did not avoid indole as 
a single compound. Though, no studies from rodents can be found in the 
literature when indole is applied as single compound. Moreover, our field 
results on indole are also in contrast to the avoidance effect observed from 
paper III. One possibility for this dissimilar results can be that for certain 
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compounds, laboratory-bred and wild type rodents could differ in their 
modes of action. Animals under more natural conditions have had previous 
experiences with a wider variate of odorants cues released by different 
sources (e.g. predators, conspecifics, plants) (c.f. Conover, 2007). 
Compounds such as indole are found in different organisms from mustelid 
(Crump & Moors, 1985; Brinck et al., 1983), invertebrates (Tomberlin et al., 
2017) to different plants (Bischoff et al., 2015). It is therefore possible that 
during field conditions rodents cannot assess this compound as predator 
scent. 

The experimental plots in the forested areas of Alnarp were surrounded 
by a mixture of open areas, orchards and crop fields, which might show a 
richer habitat with more rodents compared to the site of Skrylle (formed by 
a more ordinary mixed forest dominated by Norway spruce managed for 
timber production). This may explain the higher trend on acorn removal in 
Alnarp compared to Skrylle (Figure 7). 

 
Figure 7. Percentage of acorn removal over time between the three compound treatments 
(red lines) and the two controls (gray lines). Treatments are: 2-PT-S = 2-propylthietane 
in SPLAT, 2-PEA-S = 2-phenylethylamine in SPLAT, I-S = indole in SPLAT, C-S = 
SPLAT dollop without compound, C = control treatment without SPLAT nor delta house. 
Figure on the left shows results from Alnarp and to the right results from Skrylle. Data 
from the three distances (sub-treatments) and from two sessions are polled in the figure. 
All curves have censored data. Different letters represent significant differences (paper 
IV). 
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In this thesis I provide insights for the potential use of predator odors as a 
tool for future improved forest restoration using direct seeding. I could also 
demonstrate the importance of determining potential synergies between 
controlled laboratory settings and close to the real world field studies. This 
is particularly important in areas such as animal behavior or when strategies 
are to be recommended for future applications in forestry and agriculture. 
However, the present work also shows the complexities of how prey animals 
react to predator odors under different environments. 

The main results from paper I (laboratory study) and paper II (field study) 
show indeed different results. In paper I we concluded that mink excrement 
could be used as a potential seed protection strategy. Contrary, our results 
from paper II did not show the expected results and instead a higher acorn 
removal was observed under the treatment with mink excrements. Although, 
inconsistent results between laboratory and field studies regarding the 
behavioral responses of pray animals to predator odors are difficult to explain 
(Apfelbach et al., 2005), one explanation derived from our results could be 
that the mink excrements applied in the field desiccated fast and the olfactory 
cues volatized quickly (Bytheway et al., 2013). Furthermore, if the olfactory 
signal was lost but previously identified by rodents, it could have had a 
counter-productive effect, so that rodents learned where the acorns were 
buried. Therefore, future research efforts should focus on different 
application modes of excrements to ensure its efficiency over longer periods. 
Here one possibility could be the combination of different seed protection 
strategies. For example, physical barriers such as the seed shelter developed 
by Castro et al. (2015) in combination with mink excrement. Placing mink 
excrement inside the shelter could reduce the possibilities of excrement 
desiccation and may facilitate the use of biodegradable materials for the 

5. Conclusions and future perspectives 
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construction of the seed shelter. Additionally, further research on the 
application of excrements from more prey specific predators such as the least 
weasel and the stoat may give significant results in the field. There is 
evidence of stronger aversive effects in rodents if odors are from sympatric 
predators with longer shared evolutionary history (Apfelbach et al., 2005). 

Results from paper II further highlight the relevance of removing post-
harvest slash piles from clear-cuts and controlling the vegetation in order to 
reduce suitable habitats for rodents. Moreover, selecting big acorns may 
improve the early seedling growth. But rodents prefer big acorns, implying 
a conflict between acorn size and removal rates. In addition, our overall 
results from paper II suggest a food satiation effect (Janzen, 1971) when an 
additional supply of acorns is available in a clear cut. We, therefore, 
recommend future studies on the application of higher acorn densities or to 
satiate rodents with alternative food during direct seeding of oak. 

The application of synthetic chemical strategies for seed protection is 
unexplored (Löf et al., 2019) and the few studies following the non-lethal 
chemical approach have been rather inconsistent in reducing acorn removal 
by rodents (Leverkus et al., 2017; Leverkus et al., 2013; Bäumler et al., 
1990). Moreover, there are no studies regarding the application of single 
synthetic compounds to protect acorns. Therefore, the results from this thesis 
are new and show a potential for the application of the synthetic odor 
compound 2-propylthietane (2-PT) as a seed protection strategy. We found 
similar effects for this compound in both, the laboratory (paper III) and the 
field (paper IV) study. 2-PT triggered avoidance behavior in bank voles in 
the laboratory and reduced acorn removal by rodents in the field. This further 
supports the relevance of single compounds which may elucidate fear 
responses as strong as for complex odor mixtures (Jackson et al., 2018; 
Saraiva et al., 2016). Although, these results are encouraging, we need to 
address several limitations. First, both field and laboratory experiments were 
carried out under short periods compared to the time needed for an acorn to 
germinate and produce a seedling (circa. two months). Second, our field 
experiments only revealed protection of acorns at a close distance to the 
predator odor source (5 cm). Therefore, further studies should focus on the 
application of 2-PT for longer periods. Moreover, more research is needed 
to optimize the release rates of compounds together with the use of chemical 
dispensers such as SPLAT. Lastly, different methods to increase the effective 
distance from the odor source should be determined. In this way, we may in 
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the future develop cost-efficient strategies for restoration and direct seeding 
of oak. Finally, my results further contribute to the understanding of the 
complex behavioral patterns involving the role of olfaction in the prey-
predator dynamics and revived questions to be addressed in future studies. 
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