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Abstract
Biomass recalcitrance, the inherent resistance of plants towards deconstruction, negatively affects the viability of biorefineries.
This trait is not only dictated by the properties of the biomass but also by the conversion system used and its interactions with
specific features of the biomass. Here, biomass recalcitrance to anaerobic digestion (AD) was assessed using a biomethanation
potential (BMP) assay. Plant material (n = 94) was selected from a large population of natural Salix viminalis accessions,
previously evaluated for biomass recalcitrance using hydrothermal pretreatment–enzymatic hydrolysis. Correlations between
yields from the two biological conversion systems were evaluated, as well as the influence of biomass compositional features,
analyzed by pyrolysis-molecular beam mass spectrometry (py-MBMS), and other biomass physical properties on conversion
performance. BMP values averaged 198.0 Nml CH4/g biomass after 94 days, ranging from 28.6 to 245.9. S lignin and
carbohydrate-derived spectral features were positively correlated with performance under both systems, whereas G lignin, p-
coumaric acid, and ferulic acid-derived ions were negatively correlated with yields and rates. Most spectral features were more
strongly correlated with enzymatic hydrolysis yields compared to methane production. For early-stage methane production and
rate, recalcitrance factors were similar compared to enzymatic hydrolysis, with weaker correlations observed at later timepoints.
The results suggest that although variation in methane potential was considerably lower than enzymatic hydrolysis yields, a
reduced recalcitrance under this system will still be of importance to improve early conversion rates. Spectral features of low
methane-producing samples indicate the presence of inhibitory substances, warranting further study.
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Introduction

Biorefineries convert renewable biomass resources such as
energy crops, plant residues, and organic wastes into several

value streams, including transportation fuels and high-value
chemicals, and are likely to play an important role in future
low-carbon energy systems [1]. The energy accumulated year-
ly in plant biomass on land may, according to one estimate,
provide 20–30% of the world’s energy demand in 2050 [2].
However, for many feedstocks, the inherent resistance to deg-
radation, known as biomass recalcitrance, remains a key bar-
rier to their use in the biorefinery, as more recalcitrant feed-
stocks require larger pretreatment energy inputs in order to
render the substrate amenable to microbial conversion [3]. In
lignocellulosic biomass, recalcitrance is believed to be highly
multifactorial, encompassing both molecular and structural
properties, with many key traits affecting this property primar-
ily relating to cellulose accessibility and lignin composition
[4, 5]. Biomass recalcitrance has attracted large scientific in-
terest (see, e.g., [3–5]) but is most commonly studied using
fungal cellulases in concert with thermochemical pretreatment
(hereafter referred to as enzymatic hydrolysis, EH).
Consequently, recalcitrance as it relates specifically to other
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biological conversion systems, such as anaerobic digestion
(AD) or consolidated bioprocessing (CBP), is less understood.
Moreover, different biomass conversion systems may be dis-
tinguished by properties that could modulate the influence of
certain recalcitrance features. Such properties may include the
type and degree of pretreatment (e.g., hydrothermal pretreat-
ment vs. only comminution) [6, 7], the origin of hydrolytic
enzymes (fungal vs. bacterial) [8], substrate utilization (e.g.,
only hexose sugars or a broader spectrum of compounds), the
presence of metabolically active microorganisms, and process
temperature. These differences make interpolations of recalci-
trance from one system to another difficult.

In AD, substrates are deconstructed by microbial consortia
into an energy-rich gas mixture consisting of methane (CH4)
and carbon dioxide (CO2) and a nutrient-rich digestion residue,
digestate, which can be used as fertilizer [9]. The metabolic
processes occurring in an AD process can be divided into four
steps: hydrolysis, wherein complex polymers are converted into
their monomeric constituents; acidogenesis, metabolizing these
monomers into C2–C6 compounds; acetogenesis, converting the
products of the previous reaction into acetate, CO2, and H2; and
finallymethanogenesis [9]. The kinetics of this processwill differ
depending on the type of substrate used, but for materials such as
lignocellulose, the hydrolysis step is generally considered rate-
limiting [10]. AD has traditionally been utilized as a waste treat-
ment and energy production method, which continues to be its
main use case today [11, 12]. However, recent attention has also
been directed towards harnessing the thorough deconstruction of
biomass that is the hallmark of the AD system, combinedwith its
technological maturity and low costs, for production of high-
v a l u e c h em i c a l s s u c h a s c a r b o x y l a t e s a n d
polyhydroxyalkanoates (PHA) [13–16], hydrogen gas [16], and
cellulosic ethanol [6, 7]. Moreover, grid injection of biomethane
for load balancing can be an important feature of low-carbon
energy systems [12], as an increasing proportion of wind and
solar in the energy mix introduces greater fluctuations in energy
availability and price. In AD, many recalcitrance studies concern
the effect of pretreatments, while there is a dearth of studies
investigating structural and chemical features of the biomass
(for an AD-centric review, see [17]). However, a better under-
standing of how feedstock recalcitrance features specifically re-
late to AD may become more important as the technology is
employed in further contexts.

Aside from the financial benefits of more complete sub-
strate conversion, using lower-recalcitrance feedstocks for
AD will, by definition, reduce the amount of organic matter
in the digestate. Digestate can contain considerable amounts
of volatile solids (reviewed in [18]), and its storage is a major
contributor to unwanted methane emissions from biogas
plants [19]. The use of lower-recalcitrance feedstocks may
decrease the inadvertent release of this potent greenhouse
gas (GHG) by allowing less carbon to pass unconverted
through the digester. Thus, lowering feedstock recalcitrance

for AD may improve the performance of this technology
through the compound action of increased conversion effi-
ciency and reduced post-digestion emissions.

Several recent studies have tried to shed light on the corre-
lations between conversion yields under EH and AD,
highlighting the difficulties in translating measures of recalci-
trance between the two paradigms. In one study comparing
AD biomethanation potential (BMP) with EH yields from
Miscanthus, using only mechanical pretreatment for the AD
samples and hydrothermal pretreatment for EH, essentially no
correlation was found between outputs from the two systems
[20]. On the other hand, Horn et al. [21] reported a near-
perfect correlation between methane yields from AD and EH
yields when using steam-pretreated Salix as the feedstock. A
near-perfect correlation between EH and AD yields was also
reported in four untreated substrates, including herbaceous
biomass and yard waste [22], although in a similar study using
both woody and herbaceous materials, a strong correlation
was only found for the woody biomass, albeit encompassing
only three samples [23]. Holwerda and co-workers compared
three different conversion systems using three different
switchgrass varieties genetically modified for reduced recalci-
trance and found the effect of each modification to be highly
dependent upon the conversion system used [24]. In another
study, three hydrothermally pretreated poplar natural variants
with differing recalcitrance profiles were studied [25]. It was
found that whereas the two low-recalcitrance variants were
deconstructed to a similar degree by both high-dose EH and
Clostridium thermocellum, the latter system was better able to
decompose the high-recalcitrance feedstock. In summary, the
findings reported so far are inconclusive and contradictory,
and multiple methodological differences make comparisons
between studies difficult.

The overall aim of the present study was to characterize
AD recalcitrance in a subset of a population of natural Salix
viminalis accessions, previously characterized for EH recalci-
trance, in order to elucidate relationships between perfor-
mance under the two systems and assess whether this natural
population could potentially serve as a source of genetic ma-
terial for breeding towards improved AD performance of
Salix. Moreover, this study sought to investigate the effects
of certain biomass compositional features, including lignin
composition, on AD methane production yields and rates,
and to assess whether biomass traits previously identified as
potential proxy traits for breeding towards lower EH recalci-
trance might also be used for improving AD performance.

Materials and Methods

Refer to Fig. 1 for an overview of the experimental
procedures.
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Plant Material

Plant material for this study consisted of 2-year-old Salix
viminalis shoots from a previously described population,
consisting of 291 genetically distinct individuals, collected in
the wild in Europe and Russia and planted in a randomized
complete block experiment in Pustnäs, Uppsala, Sweden
(59°48' N, 17°39' E) [26]. EH sugar yields were previously mea-
sured as glucose, xylose, and combined glucose + xylose values
using a miniaturized high-throughput pretreatment and sacchari-
fication assay [27, 28]. A subset of samples from this population
(n= 94, encompassing 71 distinct genotypes) was chosen such as
to reflect the full range of EH recalcitrance, i.e., sugar release
values, with the range of values spanning 0.09–0.45 g/g dry
biomass for combined glucose and xylose release. To ensure fair
comparisons, material for this study was prepared in the same
manner as when it was characterized for EH recalcitrance. In
brief, the longest shoot of each plant was coarsely chipped using
a compost grinder (Viking GE 150, Viking GmbH,
Langkampfen, Austria), dried at 60 °C for 6 hours, and milled
using a Wiley Mini-Mill (Thomas Scientific, Swedesboro, NJ,
USA) to pass through a 20-mesh sieve. Milled biomass samples
were stored in airtight antistatic bags. The biomass properties of
interest for this study, previously determined, were fresh weight
of the main shoot (MSW), whole plant fresh weight (FW), basal
stem diameter (Dia), and wood density (Dens).

Biomethanation Potential Assay

The BMP assay was conducted using inoculum from a wastewa-
ter treatment plant in Uppsala, Sweden. The total solids (TS) and
volatile solids (VS) of the inoculum amounted to 2.9% and 1.9%
of wet weight, respectively. The pH, alkalinity, and ammonium-
nitrogen level was 7.0, 6300mgHCO3

−/l, and 1.2 g/l, respective-
ly (values obtained by the biogas plant operator). Ground wood
material was analyzed in triplicate, and the trial also included
cellulose and inoculum controls, in triplicate. Each treatment
contained 50 g of inoculum, 50 g of tap water, and 0.3 g of dry
biomass (exact weights recorded) in 309-ml glass bottles, giving

an inoculumVS/plant material TS ratio of 3.1:1 and a load of 3 g
TS/l, in accordance with standard protocols for the BMP assay
[29]. Biomass was weighed using an AX204 analytical scale
(Mettler-Toledo, Columbus, OH, USA). Bottles were sealed with
butyl rubber seals and metal caps and incubated at 37 °C. Sample
gas pressures were measured at five occasions using a Greisinger
GMH 3111 pressure gauge (GHM Messtechnik GmbH,
Regenstauf, Germany) over the total duration of 94 days.
Samples were thoroughly mixed by shaking before sampling
for gas composition. Gas composition was measured using gas
chromatography (GC) as previously described [30].

Normalized gas volumes (273 K, 1 atm) were calculated
using the equation

VN ¼ P� VH � TN

PN � T

where VN is the normalized gas volume in ml, P is the mea-
sured pressure in bar, PN is 1 atm expressed in bar, VH is the
headspace volume in ml, TN is 273 K, and T is the sample
temperature (310 K). Normalized methane values were ob-
tained by multiplying the normalized gas volume by the rela-
tive methane content as determined by GC. Gas volumes are
expressed as ml CH4/g dry biomass in order to facilitate com-
parisons with previously obtained sugar release values
(expressed as g sugar/g dry biomass).

Methane production rates were calculated according to the
following formula

Δn ¼ Mn−Mp

n−p

where Δn is the average daily rate of methane production
between timepoints p (the preceding timepoint) and n, and
Mn and Mp are the cumulative methane productions by
timepoints n and p.

Pyrolysis–Mass Spectrometry

To evaluate chemical composition of the samples, each
unextracted sample was processed in duplicate using

Fig. 1 Overview of the
experimental procedures
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pyrolysis—molecular beam mass spectrometry (py-MBMS)
according to previously published methods [31]. Helium at a
flow rate of 0.9 l/min was used as the carrier gas, with furnace
and interface temperatures of 500 and 350 °C, respectively.
Mass-to-charge (m/z) values were collected from 30–450.
Each ion abundance in a spectrum was normalized to the
sum of the total ion count for that spectrum.

Influence of spectral components on AD methane produc-
tion and EH sugar release was evaluated using two separate
methods. In order to assess general influences, Pearson’s cor-
relations were calculated for each peak–trait pair.

For elucidating the distinguishing features of very low
methane potential samples, outlier samples were defined as
having a methane potential lower than Q1 − 1.5 × IQR (where
Q1 represents the first quartile of methane potential and IQR is
the interquartile range |Q3 −Q1|). Difference spectra were cre-
ated by subtracting the mean spectrum of non-outlier samples
from the mean spectrum of outlier samples. In the resulting
difference spectrum, positive peaks are interpreted as being
more abundant in outlier samples, whereas negative peaks
are more abundant in non-outlier samples.

Software

All calculations were performed using R version 3.5.2 [32].
Data was visualized using the R packages ggplot2 version
3.1.0 [33] and corrplot version 0.84 [34].

Results

Methane Production, Rates, and Potentials

The BMP assay was concluded after 94 days, and meth-
ane production was evaluated at five timepoints during
this period (Fig. 2a). Final methane potentials (M94), after
subtracting background production, were 198.0 Nml CH4/
g dry biomass (18.5% coefficient of variation, CV), with a
range of 28.6–245.9 Nml CH4/g dry biomass (Fig. 2a,
Table 1). At days 20 and 42, mean accumulated methane
production reached 42.0% (18.3% CV) and 73.0% (10.9%
CV) of the final potential, respectively. Accumulated
methane production values at days 20–94 (M20–M94)
exhibited skewed normal distributions with long left tails,
as opposed to the flat distribution of the sugar release
values (Fig. 2b, c). Methane potentials at day 5 (M5) were
very low and will be disregarded for brevity.

The methane production rates were 5.1 Nml/g biomass/
day between days 5 and 20 (Δ20; 21.8% CV), and 2.8
Nml/g biomass/day between days 20 and 42 (Δ42;
19.2% CV). After day 42, rates were markedly reduced
(Fig, 2a; Table 1). Cellulose controls generated 368.2
(2.8% CV) Nml CH4/g VS, indicating a well-functioning

inoculum [35], and the methane production of the inocu-
lum controls was 54.0 (15.7% CV) Nml CH4.

Correlations Between Methane Production, Biomass
Traits, and Sugar Yields

EH yields correlated strongly with the biomass yield traits
whole plant fresh weight (FW), main shoot diameter
(Dia), and main shoot weight (MSW; r = 0.65–0.80;
Fig. 3), in line with what was observed in the main pop-
ulation [28]. Correlations between methane production
(M20–M94) and these biomass traits were weaker (r =
0.24–0.51). Correlations between methane production
and sugar release ranged from 0.43 to 0.66 (Fig. 3).
Clear distinctions were seen when comparing correlations
between sugar release and accumulated methane produc-
tion at different timepoints (Fig. 3). Sugar release and
biomass yield traits were generally moderately strongly
correlated with M20 and M42, with weaker correlations
observed at the later timepoints. Notably, wood density
was equally positively correlated with methane production
at all timepoints (r = 0.26–0.29).

Py-MBMS Spectral Features

Py-MBMS spectral features (Fig. 4) exhibited similar cor-
relation patterns for sugar release, early-stage methane pro-
duction (M20), and early methane rate (Δ20), with several
peaks indicative of C6 sugars (e.g.,m/z 57, 60, 73, 114) and
syringyl lignin (m/z 154, 167, 180, 194, 208, 210) being
positively correlated with both sugar release and methane
production. Negative correlations were found for peaks di-
agnostic for guaiacyl lignin (m/z 124, but not 137), p-
coumaric acid/coumaryl (H) lignin (m/z 120), and ferulic
acid (m/z 150 and 164, also derived from G lignin). Peaks
atm/z 272, 302, and 332, suggested to be indicative of lignin
dimers of increasing degree of methoxylation (e.g., G–G,
G–S, and S–S dimers, respectively) [36], were correlated
wi th conve r s ion y ie lds accord ing to deg ree o f
methoxylation, with m/z 272 (consistent with guaiacyl
monomers) being negatively and m/z 332 (consistent with
syringyl monomers) positively correlated with yields under
both systems. Negative correlations were also found for
several peaks indicative of phenolic compounds (m/z 81,
91, 92, 94, 107, 110). These peaks are not otherwised anno-
tated due to their ambiguous and multiple sourcing and are
highly overlapping with all lignin-based phenolics, some
sugars, and secondary metabolites, and thus not necessarily
attributable to the presence of an individual biopolymer or
component. Notably, peaks indicative of C5 sugars (e.g., m/
z 85, 114) were often neutral for final methane potential,
while being positively correlated with sugar release and
with early methane production and rate (M20, Δ20).
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Difference spectra, constructed by subtracting mean
pyrolysis mass spectra of one group of samples from
another, were used to investigate characteristics
distinguishing low methane potential outliers from the
mean (Fig. 5). The outlier samples (see Methods section)
with low BMP were found to produce lower amounts of

S lignin-derived ions, higher amounts of G lignin or
ferulic acid-derived ions (particularly m/z 164), and lower
amounts of carbohydrate-derived ions compared to the
average sample. However, these samples were also found
to contain higher amounts of peaks with m/z values of
81, 91, 94, 107, and 110, discussed above.

a

b c

Fig. 2 a Cumulative methane production (Nml CH4/g biomass). Top and
bottom edges of boxes indicate third and first quartile, respectively.
Whiskers extend at most 1.5 IQR and dots indicate outliers. b

Histogram showing distribution of methane production at timepoints
20, 42, and 94 days. c Histogram showing distribution of sugar release
values

Table 1 Descriptive statistics for
methane production and rates at
each timepoint

Days
elapsed

Methane
production
(Nml CH4/g)

±CV
(%)

Methane
content
(%)

±CV
(%)

Ratea

(Nml CH4/
g/day)

±CV
(%)

Percentage of
final potential
(%)

±CV
(%)

5 5.1 45.2 6.5 20.3 1.0 45.2 2.4 91.8

20 82.1 21.3 29.0 5.7 5.1 21.8 42.0 18.3

42 143.1 18.3 38.7 4.7 2.8 19.2 73.0 10.9

69 175.1 18.5 43.9 3.8 1.2 26.3 88.7 5.1

94 198.0 18.5 45.9 4.6 0.9 37.7 100.0 0.0

a The rate reflects the average rate of methane production during each period beginning at the previous timepoint
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Discussion

Anerobic Digestion Performance and Relation
to Enzymatic Hydrolysis Yields

Whereas recalcitrance under the EH paradigm primarily re-
lates to yields, e.g., amount sugar released per g biomass,
recalcitrance under the AD paradigm is clearly a more

complex phenotype, encompassing both yields and rates.
For woody biomass, which is degraded slowly in the AD
process [37], initial conversion rates may be a more important
measure than final methane potentials, due to the retention
time of the typical AD process being less than what is required
for complete degradation of the material. EH yields were pos-
itively correlated with methane production, driven by the con-
version of carbohydrate to methane during the early stages of

Fig. 3 Pearson’s correlations,
significant at the p < 0.001 level,
of EH and AD yields and biomass
traits. Legend: M20–M94,
methane production at days 20–
94; Δ20–Δ94, methane
production rates at days 20–94;
Glu, glucose release; Xyl, xylose
release; G + X, glucose + xylose
release; S/G, S/G ratio; Dia, main
shoot diameter; MSW, main shoot
weight; FW, whole plant fresh
weight; Dens, wood density

Fig. 4 Mean spectrogram of peaks withm/z values 30–450. Certain peaks
are marked by origin: carbohydrate (C), guaiacyl lignin (G), syringyl
lignin (S), p-coumaric acid (pC; also from H lignin), ferulic acid (F;
also from G lignin), and tentatively assigned lignin dimers (G–G, G–S,
and S–S). The heatmap shows each peak’s Pearson’s correlation

coefficient (indicated by the legend) for the traits glucose + xylose
release (G + X), methane production at 20 days (M20), methane
production at 94 days (M94), and daily rate of methane production at
day 20, 42, and 94 (Δ20–Δ94).
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the process. For glucose release, the correlation coefficient
was 0.69 when comparing EH yields with average methane
production rate between days 5 and 20 (Δ20), although the
correlation strength deteriorated quickly during the process,
becoming –0.03 for late stage rates (Δ94). The same pattern
of diminishing correlation strength was seen for carbohydrate-
derived py-MBMS peaks. On the other hand, many spectral
features of highm/zwere mostly weakly negatively correlated
with early and mid-stage methane production and rates and
with EH yields but positively correlated with late-stage meth-
ane production rates (Fig. 4). This indicates that carbohydrate
polymer recalcitrance determines the conversion rate during
the early stages, but that other biomass components play a
larger role later in the process. Taken together, these findings
suggest that EH yields and initial AD rates and yields are
influenced by the same structural and compositional recalci-
trance features, whereas at the later stage of AD, other factors,
perhaps related to ultrastructural features of the biomass or to
the level and character of non-carbohydrate substrate compo-
nents, dictate degradation performance.

Interestingly, although the samples used for the present
study represented the full spectrum of sugar release from very
low to very high, methane production rather exhibited a
skewed normal distribution with several outliers (Fig. 2b, c).
Excluding the outliers (i.e., the five lowest BMP samples at
day 94, discussed below), the highest producing samples had
less than a twofold increase of methane potential over the
lowest samples, whereas the range for sugar release spanned
almost fivefolds from lowest to highest. This finding is likely
indicative of the great degrading capacity of the AD consor-
tium, combined with its metabolic versatility (i.e., its ability to
utilize compounds other than sugars).

Although the BMP test is a standard method, its results can
vary depending on several parameters including inoculum

source, inoculum/substrate ratio, incubation conditions, and
duration [29], which affect how thoroughly the substrate can
be decomposed. Accordingly, the deterioration of correlation
strength between EH and AD yields over time suggests that
the degree of substrate degradation is an important confounder
when comparing EH and AD using the BMP test. Thus, it
follows that if a BMP test is performed using conditions that
allow a more thorough decomposition of the feedstock, the
results are less likely to correlate well with EH sugar yields.
Although a complex issue, this may offer an explanation for
the inconsistent results reported in the literature.

BMP values for the material in this study averaged 198.0
Nml CH4/g biomass, with the highest BMP samples yielding
almost 250 Nml CH4/g. A similar maximum value, albeit with
a slightly lower mean of 149.7 Nml CH4/g VS, was found by
Pawar et al. [38], using non-pretreated Salix milled to the
approximate particle size of the present study and using con-
tinuous stirring during incubation. Slightly higher values
(mean 250, maximum 320 Nml CH4/g VS) were found in a
study evaluating several Salix and Populus species [37].
Although comparisons between BMP values found in litera-
ture are complicated due to variations in methodology, taken
together, the results of the aforementioned studies and the
present one suggest that the BMP of high-performing Salix
clones is at least 250 Nml CH4/g. It is worth noting that the
BMP of steam pretreated Salix can be in excess of 400 Nml
CH4/g VS [21].

Influence of Lignin Composition

Certain lignin compositional factors could be attributed to
positive and negative influences on both EH and AD. S
lignin-derived py-MBMS ions were relatively strongly asso-
ciated with EH yields in the positive direction and displayed

Fig. 5 Difference spectrum, showing the m/z range 30–250, of the five outlier low BMP samples vs all other samples. Certain peaks, indicative of
phenolic compounds but not otherwise annotated due to ambiguous and multiple sourcing, are marked in red.
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similar correlations with early AD methane production and
rate (M20 and Δ20). Similarly, py-MBMS peaks derived from
G, H, and p-coumaric acid lignin were negatively correlated
with EH yields as well as with methane production and rates,
again primarily during the early stage. Peaks at m/z 150 and
164, which may be attributed to either G lignin or ferulic acid,
negatively correlated with yields under both systems but were
more strongly correlated with methane production and rates
than EH yields, an uncommon finding in this dataset. This
finding suggests that either ferulic acid, a lignin moiety linked
to increased recalcitrance [39], or guaiacyl moieties, when
incorporated into lignin, create structures that are either espe-
cially recalcitrant to the AD process or that are facilitated by
hydrothermal pretreatment in their degradation.

Py-MBMS peaks ofm/z 272, 302, and 332 were correlated
with both EH and AD yields. These peaks have previously
been ascribed to dimeric, possibly stilbene-type, lignin struc-
tures of increasing methoxylation (i.e., 272 represents a G–G
dimer whereas 332 represents an S–S dimer; see [40] for a
more in-depth discussion). The direction of the observed cor-
relations was dependent on the degree of methoxylation, with
m/z 272 being negatively and m/z 332 positively correlated
with yields under both systems, consistent with the corre-
sponding monomers’ correlations with AD/BMP. Although
the structures of the sources of these ions are still hypothetical,
it is quite possible that the presence of the peaks 272 and 332
emerges from linkage patterns within the lignin polymer that
are especially important to recalcitrance; however, more data
would be required to ascertain whether this is the case.

Although lignin S/G ratio has been shown to impact the
susceptibility of biomass to certain pretreatments, its influence
as reported in the literature is highly variable. Moreover, only
a few studies have evaluated the influence of S/G ratio on non-
pretreated biomass and on AD performance. In several stud-
ies, S/G ratio has been demonstrated to be negatively correlat-
ed with EH yields of untreated material [41, 42]. On the other
hand, in a study using organosolv, kraft, and synthetic lignins
as well as lignosulfonate, Barakat et al. [43] found that the
main predictor of lignin degradability under AD was the S/G
ratio, which exhibited a strong positive correlation. Similarly,
it was found that AD degradation of birch hydrolysis lignin
drastically reduced the S/G ratio of the material, indicating
preferential degradation of syringyl units [44]. Positive corre-
lations between S/G ratio and AD performance in degradation
of lignocellulosic materials have generally been reported, for
example, in Populus biomass using C. thermocellum [45], in
AD of herbaceous material [46], as well as in the present
study. However, in a study on non-pretreated Salix, evaluating
correlations between methane potentials and rates and FT-IR
spectral features [38], some G lignin-assigned wavenumbers
were positively correlated with both potentials and rates, al-
though this finding was confounded by positive correlations
between these wavenumbers and carbohydrate content. Taken

together, the results may point to a difference in the effect of S/
G ratio on deconstruction of non-pretreated material that is
dependent on the origin of the cellulolytic enzymes (fungal
vs. bacterial).

Presence of Inhibitory Substances in Biomass

A possibly confounding factor when sugar release and meth-
ane production are used as markers for biomass recalcitrance
is the presence of inhibitors. Although purely enzymatic sys-
tems can indeed be sensitive to certain inhibitors (e.g., see
[47]), an ADmicrobial consortiummay present further targets
of inhibition due to requiring a functioning metabolism and
cooperation between its diverse microbial members (see [48]
for a review on the subject). To assess whether the several low
BMP outlier samples (Fig. 1a) observed in this study
contained inhibitors compromising the function of the AD
consortium, these samples were compared against all other
samples using a py-MBMS difference spectrum, revealing
several distinct features (Fig. 5). Low BMP outlier samples
were lower in carbohydrate and S lignin and had markedly
higher levels of G lignin and ferulic acid-derived ions, as
would be expected for more recalcitrant samples. However,
several less diagnostic peaks were also more abundant in out-
lier samples: peaks at m/z 81, 91, 92, 94, 107, and 110. These
peaks are indicative of phenolic compounds, although their
original sources, from biopolymers, metabolites, or otherwise,
are not clear as they likely represent fragments/rearrangements
formed from pyrolysis of many lignin, other phenolic-derived
species, or even sugars to some degree. Nonetheless, the in-
creased production of these ions from the low BMP outliers
does not necessarily correlate with increased abundance of
other lignin-derived ions. Therefore, the source of these ions
may be more closely related to the presence of phenolic me-
tabolites, although future studies would be needed to elucidate
the metabolomic profiles of this population to make such a
correlation and extend it to BMP and sugar release potential.

Many phenolic compounds have been shown to be inhib-
itory to the AD process [49, 50], and the nature of these com-
pounds may merit further study. Phenolic metabolites are
commonly found in bark of species from the Salicaceae fam-
ily, as demonstrated in the commercial willow hybrid Karin
[51], in S. hulteni [52], and in several Salix and Populus spp.
[53, 54]. The types and levels of secondary metabolites differ
widely between species, vary according to season [54], and
are heritable with significant genotype × environment effects
[55]. Given that larger shoots contain relatively less bark and
that shoot weight was only weakly correlated with methane
potential, it is most likely that bark composition, not propor-
tion, dictates its influence on AD performance, highlighting
the importance of clone choice for use of Salix as feedstock for
AD. In this study, the material used originated from a study
population consisting of material of similar age which was
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harvested at the same time. Thus, the differences observed
would be primarily due to genotype or genotype × environ-
ment, although purely environmental influences cannot be
entirely ruled out.

Implications for Breeding

Biomass yield traits (shoot weight and diameter) and lignin S/G
ratio were previously identified as potential proxy traits for EH
sugar release screening in recurrent selection breeding pro-
grams in S. viminalis, in a characterization of the current study
population [28]. Here, we find the same to hold true for meth-
ane production in this population subset, primarily driven by
early methane production rates, with attenuation at the later
stages. The same pattern of attenuated correlations was ob-
served for all methane production/biomass trait pairs except
for wood density (Fig. 3). As there were also strong correlations
between early methane conversion rates and sugar release,
breeding for reduced EH recalcitrance will benefit AD primar-
ily through increased initial conversion rates, arguably the most
important measure of recalcitrance for woody material in AD.
Natural populations of Salix harbor variation that can be used
for breeding towards this goal. However, it is likely that the
relative improvements in AD performance from an EH-
focused breeding program will be smaller than those for EH
itself. Moreover, the presence of secondary metabolites acting
as inhibitors of the AD process should be taken into account
during the breeding process. Given that the presence of many
secondary metabolites may confer other desirable traits, such as
herbivore deterrence, it is warranted to more closely evaluate
the influence of specific metabolites on the AD process to tailor
breeding programs towards biorefinery-use varieties.

Conclusions

In this study of biomass recalcitrance in Salix viminalis under
two separate biological conversion paradigms, enzymatic hy-
drolysis and anaerobic digestion, we find that reducing recal-
citrance towards enzymatic hydrolysis is likely to translate to
improved performance under anaerobic digestion, primarily
manifested as higher early conversion rates. Early conversion
rates were positively correlated with lignin S/G ratio, a param-
eter that was found to positively affect enzymatic hydrolysis
yields in this population, and with other biomass traits previ-
ously identified as possible proxy traits for breeding towards
reduced enzymatic hydrolysis recalcitrance. Furthermore, py-
MBMS difference spectra highlighted several important peaks
and spectral patterns with negative influence on AD degrada-
tion, warranting further investigation.
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