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Abstract

Background: Genomic selection (GS) or genomic prediction is considered as a promising approach to accelerate
tree breeding and increase genetic gain by shortening breeding cycle, but the efforts to develop routines for
operational breeding are so far limited. We investigated the predictive ability (PA) of GS based on 484 progeny
trees from 62 half-sib families in Norway spruce (Picea abies (L.) Karst.) for wood density, modulus of elasticity (MOE)
and microfibril angle (MFA) measured with SilviScan, as well as for measurements on standing trees by Pilodyn and
Hitman instruments.

Results: GS predictive abilities were comparable with those based on pedigree-based prediction. Marker-based PAs
were generally 25–30% higher for traits density, MFA and MOE measured with SilviScan than for their respective
standing tree-based method which measured with Pilodyn and Hitman. Prediction accuracy (PC) of the standing
tree-based methods were similar or even higher than increment core-based method. 78–95% of the maximal PAs
of density, MFA and MOE obtained from coring to the pith at high age were reached by using data possible to
obtain by drilling 3–5 rings towards the pith at tree age 10–12.

Conclusions: This study indicates standing tree-based measurements is a cost-effective alternative method for GS.
PA of GS methods were comparable with those pedigree-based prediction. The highest PAs were reached with at
least 80–90% of the dataset used as training set. Selection for trait density could be conducted at an earlier age
than for MFA and MOE. Operational breeding can also be optimized by training the model at an earlier age or using 3
to 5 outermost rings at tree age 10 to 12 years, thereby shortening the cycle and reducing the impact on the tree.

Background
Norway spruce is one of the most important conifer spe-
cies in Europe in relation to economic and ecological as-
pects [1]. Breeding of Norway spruce started in the 1940s
with phenotypic selection of plus-trees, first in natural
populations and later in even-aged plantations [2]. Norway
spruce breeding cycle is approximately 25–30 years long,

of which the production of seeds and the evaluation of the
trees take roughly one-half of that time [3].
Genomic prediction using genome-wide dense

markers or genomic selection (GS) was first introduced
by Meuwissen [4]. The method modelling the effect of
large numbers of DNA markers covering the entire gen-
ome and subsequently predict the genomic value of indi-
viduals that have been genotyped, but not phenotyped.
As compared to the phenotypic mass selection based on
a pedigree-based relationship matrix (A matrix), gen-
omic prediction relies on constructing a marker-based
relationship matrix (G matrix). The superiority of the G-
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matrix is the result of a more precise estimation of gen-
etic similarity based on Mendelian segregation that not
only captures recent pedigree but also the historical
pedigree [5–7], and corrects possible errors in the pedi-
gree [8, 9].
There are multiple factors affecting genomic predic-

tion accuracy such as the extent of linkage disequilib-
rium (LD) between the marker loci and the quantitative
trait loci (QTL), which is determined by the density of
markers and the effective population size (Ne). Increased
accuracy with higher marker density has been reported
in simulation [10] and empirical studies in multiple for-
est tree species including Norway spruce [11–14], and
SNP position showed no significant effect [15–17].
Simulation [10] and empirical [18] studies also agree on
the need of a high marker density in populations with
larger effective size (Ne) in order to cover more QTLs
under low LD in contributing to the phenotypic
variance.
In forest tree species the accuracy of the genomic pre-

diction model has been mainly tested in cross-validation
designs where full-sibs and/or half-sibs progenies within
a single generation are subdivided into training and val-
idation sets [10, 19–22]. Model accuracy was reported to
increase with larger training to validation set ratios [11,
17, 23], while the level of relatedness between the two
sets is considered as a major factor [10, 15–17, 19, 24].
When genomic prediction is conducted across environ-
ments, the level of genotype by environment interaction
(GxE) of the trait determines its efficiency [11, 20, 21,
25]. The number of families and progeny size have also
been shown to affect model accuracy [11, 15].
As compared to the previously described factors, trait

heritability and specially trait genetic architecture are in-
trinsic characteristics to the studied trait in a given
population. Those two factors can also be addressed by
choosing an adequate statistical model depending on the
expected distribution of the marker effects [26]. Despite
theory and some results indicate that complex genetic
structures obtain better fit with models that assume
equal contribution of all markers to the observed vari-
ation, traits like disease-resistance are better predicted
with methods where markers are assumed to have differ-
ent variances [13, 20, 22, 27, 28]. However, results in for-
estry so far indicate that statistical models have little
impact on the GS efficiency [12, 17, 29].
In this study, we conducted a genomic prediction study

for solid wood properties based on data from 23-year old
trees from open-pollinated (OP) families of Norway spruce.
We focused on wood density, microfibril angle (MFA) and
modulus of elasticity/wood stiffness (MOE) measured both
with SilviScan in the lab, on standing trees of Pilodyn pene-
tration depth and Hitman velocity of sound. The measure-
ment methods are detailed in the next section.

The specific aims of the study were: (i) to compare
narrow-sense heritability (h2) estimation, predictive abil-
ity (PA) and prediction accuracy (PC) of the pedigree-
based (ABLUP) models with marker-based models based
on data from measurements with SilviScan on increment
cores and from Pilodyn and Hitman measurements on
standing trees, (ii) to examine the effects on model PA
and PC of different training-to-validation set ratios and
different statistical methods, (iii) to compare some prac-
tical alternatives to implement early training of genomic
prediction model into operational breeding.

Result
Narrow-sense heritability (h2) of the phenotypic traits,
predictive ability (PA) and predictive accuracy (PC) based
on pedigree and maker data
In Table 1, narrow sense heritabilities (h2) and Prediction
Abilities (PA) based on ABLUP and GBLUP are compared
for density, MFA and MOE based on cross-sectional aver-
ages at age 19 years, and for Pilodyn, Velocity and MOEind
based on measurements with the bark at age 22 and 24
years, respectively. For density, MOE and Pilodyn, h2 did
not differ significantly between estimates based on the pedi-
gree (ABLUP) and marker-based (GBLUP) methods taking
standard error into account. For MFA, the pedigree-based
h2 was lower than the GBLUP estimate while for Velocity
and MOEind, the pedigree-based h2 was higher.
When using pedigree, the order of the traits by h2 agrees

with their order by PA estimates. Traits with higher h2

tended to show also high PA estimates irrespective of the
method. The ABLUP PA estimates were similar to the
GBLUP estimates for density and Pilodyn, while for the rest
of the traits GBLUP delivered slightly higher PA estimates,
and significantly higher for MFA. The relative performances
of ABLUP compared to GBLUP differed for MOE, Velocity
and MOEind. The h2 estimates for MOE were similar for
both methods, while the PA estimate was higher for GBLUP.
In the case of Velocity and MOEind, a higher h2 based on
pedigree contrasted with a slightly higher PA estimates based
on marker data. Standardization of the PAs with the h values
did not change the conclusions on the relative efficiencies of
pedigree versus marker data-based estimates.

Marker-based PA and PC between increment core-based
and standing-base wood quality traits
The marker-based PAs were generally 25–30% higher for
traits density, MFA and MOE measured with SilviScan than
for their respective standing tree-based method which mea-
sured with Pilodyn and Hitman. Concordantly, the h2

values were 46, 65 and 55% higher based on Silviscan
methods, respectively. However, if we compare PC of the
increment core- and standing tree-based methods, they
were similar, and PC of MOEind was even higher than that
for MOE using GBLUP.
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Effects on PAs of the GS models ratios between the
training and validation sets, and from the statistical
method used
Figure 1 shows how the PA estimates change with in-
creasing percentage of data used for training of the GS
model (training set), and as a consequence decreasing

validation set, on use of the five studied statistical
methods: one based on pedigree data and four on
marker information. For most of the traits, PA estimates
showed a moderate increase with increasing training set,
irrespective of the statistical method. Exceptions were
observed for MFA and MOE with less clear trends and

Table 1 Trait heritability, predictive ability (PA) and predictive accuracy (PC) Predictive accuracy (PC) for density, MFA and MOE
cross-sectional averages at tree age 19 years, for their proxies on the stems without removing the bark at tree ages 21 and 22 years.
Standard errors are shown in within parenthesis

Narrow-sense heritability (standard error)
(h2)

Predictive ability
(standard error)
(PA)

Predictive Accuracy
(PA/h)

Trait ABLUP GBLUP ABLUP GBLUP ABLUP GBLUP

density 0.70 (0.18) 0.69 (0.15) 0.30 (0.01) 0.29 (0.03) 0.36 0.35

MFA 0.04 (0.08) 0.17 (0.13) 0.04 (0.01) 0.16 (0.02) 0.20 0.39

MOE 0.27 (0.14) 0.31 (0.15) 0.15 (0.01) 0.22 (0.02) 0.29 0.39

Pilodyn 0.35 (0.15) 0.32 (0.14) 0.22 (0.01) 0.20 (0.01) 0.37 0.35

Velocity 0.16 (0.12) 0.11 (0.10) 0.10 (0.01) 0.13 (0.01) 0.25 0.39

MOEind 0.31(0.14) 0.17 (0.13) 0.17 (0.01) 0.19 (0.01) 0.31 0.46

ABLUP pedigree-based Best Linear Unbiased Predictor (BLUP); GBLUP genomic-based BLUP

Pilodyn Velocity MOE_ind
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Fig. 1 Predictive ability obtained with different ratios of training set and validation set, using different statistical methods
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the highest PA estimates at 80% of the trees in the train-
ing set. Figure 1 also shows that the PAs were consist-
ently about 25–30% higher for density, MFA and MOE
compared to their proxies-based om measurements with
Pilodyn and Hitman: approximately 0.28 versus 0.18,
0.17 versus 0.13 and 0.25 versus 0.18, respectively.
For density and Pilodyn, all five methods resulted in

very similar PA estimates across the ratios, while rrBLUP
and GBLUP seemed superior for the rest of the traits,
and mostly so for Velocity and MOE (Fig. 1). The rest of
the analysis were conducted based on the GBLUP mod-
elling method.

PAs on estimation of traits at reference age with models
trained on data available at earlier ages
Figure 2 shows how well the cross-sectional averages of
the different traits at the reference age 19 years were
predicted by models trained based on data from the
rings between pith and bark at increasing ages, using the
GBLUP method. The calculations were performed with
two representations of age: 1) Tree age counted from
the establishment of the trial (calendar age) and 2) cam-
bial age (ring number). In a plantation, the tree age of a
planted tree is normally known but not the cambial age
at breast height, as it depends on when the tree reached
the breast height. For the trees originally accessed, al-
most 6000 trees from the two trials, this age ranged
from tree age 2 to 15 years [30]. Among the 484 trees in-
vestigated in the current study, only 60 trees represent-
ing 33 families had reached breast height at tree age 3
years, 248 trees at 4 years and 410 at age 5 years (Fig. 2).
This means that for tree age, data are only available from
year 3, and then for only 12% of the trees. Those trees
being identified based on fast longitudinal growth but
also typically fast-growing radially. It was previously de-
scribed a positive correlation of R2 = 0.67 familywise be-
tween radial and height grown across almost 6000 trees
[30]. Thereafter, the number of trees increased and
reached the full number some years later. When study-
ing the trees based on cambial age, the pattern is adverse
with data for all trees at ring 1 but decreasing numbers
when approaching the tree age of sampling. The number
of trees included in this work at each tree and cambial
age are shown with grey bars in Fig. 2.
For density, the estimated PAs showed a rising trend

within a span of about 0.25–0.30 for the models based
on both age types, after the first years. But the year-to-
year fluctuations were more intense for models based on
data organized on tree age. As MFA typically develops
from high values at the lowest cambial ages via a rapid
decrease to lower and more stable values from cambial
age 8–12 years and on, one may expect that models
trained on data from only low ages would have difficul-
ties to predict properties at age 19 years. This was also

confirmed. We even obtained some negative PA values
at early ages, such as years 1995 and 1996, and the PAs
for cambial age-based models started from very low
values, then increasing. The curves for MOE showed
PAs developing at values in between those for density
and MFA. This is logical, as MOE is influenced by both
density and MFA, with particularly negative effects from
the high MFAs at low cambial ages. At cambial age 13,
MFA and MOE showed a drop in the cambial age-based
PA estimates. Generally, the Figure indicates that gen-
omic selection for density could be conducted at an earl-
ier age than for MFA and MOE.

Search for optimal sampling and data for training of GS
prediction models
Figure 2 showed estimated PAs of models trained on
data from sampling different years, using data from all
rings available at that age (except for the innermost
ring). In this section instead of estimating PAs with the
whole increment core from bark to pith, we estimated
PAs with partial cores with different shorter depths to
reduce the injury to the tree, as showed in Fig. 3a-d.
This analysis was preformed based on tree age data only,
as the cambial age of a ring can only be precisely known
if the core is drilled to the pith which allowing all rings
to be counted.
Each row of the figures represents a tree age when

cores are samples, starting at age 3 years when the first
60 trees formed a ring at breast height, ending at the
bottom with the reference age 19 years with17 rings.
Each column represents a depth of coring, counted in
numbers of rings. As one more ring is added each year,
thus also to the maximum possible depth on coring, the
tables are diagonal. The uppermost diagonal represents
models trained on data from the 60 (12%) trees which
had reached breast height at age 3. The diagonal next
below represents models based on the 243 (51%) trees
with rings at age 4, etc. The PAs shown below the three
uppermost diagonals represent models trained of data
from more than 90% of the trees. The PAs were calcu-
lated from the cross-validation, based on data from the
trees on which the respective models were trained. This
means that the PAs of the three uppermost diagonals
are based only on fast-growing trees not fully represen-
tative for the trials. Many of the highest PAs found
occur along these diagonals. Due to their trees’ special
growth, only PAs based on more than 90% of the trees
will be further commented.
For wood density, Fig. 3b, the variations in predictabil-

ity show an expected general pattern: The PAs increased
with the increase of tree age on coring, and also with the
increase of depth, the increase of number of rings from
which the cross-sectional averages were calculated and
exploited on training of the prediction models. The
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highest values, 0.29, are obtained at age 19 years, but
then also data from the reference year are included on
training the prediction model. An example of quite high
PAs at lower ages and depths: For coring at tree ages
10–12 years and using data from the 3–5 outermost
rings, all alternatives gave PA values of 0.26–0.29.
For MFA, a trait with low heritability, the PA values

are low as already shown in Fig. 2 and the pattern in Fig.

3c is not easy to interpret. Here, the same set of alterna-
tives of samples at tree ages 10–12 and depths 3–5
outermost rings gave PA values of 0.15–0.18, compared
to the maximum of 0.19 among all alternatives using
90% of the trees. The values are lower at the highest
ages. Streaks of higher and lower values can be imagined
along the diagonals. The pattern for MOE in Fig. 3d is
similar to that of MFA, but on higher level. Training on

Fig. 2 Estimated Predictive abilities (PA) for prediction of cross-sectional averages at tree age 19 years, based on cross-sectional averages at
different tree ages (upper graphs) and cambial ages (lower graphs) from pith to bark
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data from coring at ages and to depths as above gave PA
values of 0.20–0.23, compared to the corresponding
maximum of 0.25.

Discussion
We have conducted a genomic prediction study for solid
wood properties assessed on increment cores from
Norway spruce trees with SilviScan derived data from
pith to bark, using properties of annual rings formed up
to tree age 19 years as the reference age.
On Norway spruce operational breeding, the use of

OP families is preferable because it does not require ex-
pensive control crosses. The only action required is to
collect cones where progenies are typically assumed to
be half-sibs. Thus, OP families permit the evaluation of
large numbers of trees at lower costs and efforts than
structured crossing designs. We investigated narrow-

sense heritability estimation with ABLUP and marker-
based GBLUP and the effect on PA from using different
training-to-validation set ratios, as well as different stat-
istical methods. Further, we investigated what level of
precision can be reached when training the models with
data from trees at different ages, and 5also compared re-
sults for the solid wood properties with those for their
proxies. We also estimated the level of PAs reached
when coring to different depths from the bark at differ-
ent tree ages. The motivation was to find cost-effective
methods for GS with minimum impact on the trees dur-
ing the acquisition of data for training the prediction
models.

Narrow-sense heritability (h2)
In our study, PA estimates for both pedigree and
marker-based methods were consistent with their
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respective h2 estimates. A conifer literature review indi-
cates that the level of consistency varies across studies
[8, 18–20]. In our study, h2 estimation of density, MOE
and Pilodyn were similar for ABLUP and GBLUP; for
Velocity and MOEind, ABLUP had higher h2 estimation
and for MFA, GBLUP achieved higher h2 estimation. In
a previous study conducted on full-sib progenies in
Norway spruce, however, the ABLUP-based h2 were re-
ported higher in all three standing-tree-based measure-
ments [11]. Instead, other conifer studies based on full-
or half-sib progenies reported a comparable performance
of A-matrix and G-matrix based methods in Pinus taeda
[18, 23], Douglas-fir [29] and Picea mariana [15] for
growth related traits and wood properties. Moreover,
ABLUP accuracies were lower for growth, form and
wood quality in Eucalyptus nitens [24]. Experimental de-
sign factors such as number of progenies and their level
of coancestry, statistical method and the traits and pedi-
gree errors under study may account for the apparent
inconsistence in the relative performance of both
methods [31].
Our results indicate that for more heritable traits

ABLUP and GBLUP capture similar levels of additive
variance, whereas for traits with very low heritability
using ABLUP, such as MFA, the markers are able to
capture additional genetic variance probably in the form
of historical pedigree reflected in the G matrix. Less ob-
vious is the case for Velocity and MOEind where GBLUP
seems to capture lower values of additive variance. It is
possible that at intermediate values of h2 the benefits of
capturing historical consanguinity is overcome by pos-
sible confounding effects caused by markers which are
identical by state (IBS) or simply due to genotyping er-
rors. The h2 values obtained with ABLUP and GBLUP is
the result of a balance between multiple factors such as
the genetic structure of the trait, the historical pedigree,
and the possible model overfitting to spurious effects or
genotyping errors.

Effects on GS model predictive ability (PA) of training-to-
validation sets ratios and statistical methods
In conifers and Eucalyptus cross-validation is often per-
formed on 9/1 training to validation sets ratio [8, 12, 15,
16, 28]. This coincide with the general conclusion from
the present study, with the exception of MFA and MOE,
for which the best results were obtained at ratio 8/2. It has
been suggested that when the trait has large standard de-
viation, more training data is needed to cover the variance
in order to get high predictive ability [32]. Therefore, for
density, Pilodyn and Velocity, PA kept increasing with the
size of the training set increased. But for other traits with
smaller standard deviation, (4.44 and 2.28 for MFA and
MOE), PA decreased when increasing the training set

from 80 to 90%, which may indicate that too much noise
was introduced during model training.
The fact that the estimated PAs for all the solid wood

properties as measured by SiliviScan are 25–30% higher
than their proxies estimated from measurements of pene-
tration depths and sound velocity at the bark may reflect
the indirect nature of their proxies: the correlations calcu-
lated for the almost 6000 trees initially sampled were −
0.62 between Pilodyn and density, − 0.4 between Velocity
and MFA and 0.53 between MOEind and MOE [33].
In the conifer literature it has more often been re-

ported similar performance of different marker-based
statistical models for wood properties [11, 12, 18, 28,
34]. This general conclusion agrees with our findings for
all our traits with the exception of Velocity and to a less
extent of MOEind. For these two traits, GBLUP and
rrBLUP performed better than the other GS methods,
which could be the result of a highly complex genetic
structure where a large number of genes of similar and
low effect are responsible for controlling of the trait. For
traits affected by major genes the variable selection
methods, for example BayesB or LASSO, have been re-
ported to perform better [18], whereas for additive traits
the use of nonparametric models may not yield the ex-
pected accuracy [35].

Comparison of PA and PC from methods based on
pedigree and markers
Generally, pedigree-based PA estimates in conifer spe-
cies have been reported to be higher or comparable to
marker-based models [11, 15, 16, 19, 20, 23], but there
are also some studies reporting marker-based PA esti-
mates to be higher [13, 24, 36]. Our results for density
and Pilodyn follow the general finding in forest trees,
whereas for MFA, a low heritability trait, the PA estima-
tion based on GBLUP model is substantially higher
(0.16) compared to the ABLUP model (0.04). When PA
is standardized with h, the predictive accuracies of the
methods become more similar across traits, indicating
that proportionally similar response to GS can be ex-
pected for all traits.

Use of tree age versus cambial age (ring number)
From a quick look at Fig. 2, one may get the impression
that breeding based on cambial age data allows earlier
selection than using tree age data. That would however
be a too rushed conclusion. At tree age 3 years, after the
vegetation period of 1993, only 12.5% of the trees had
formed the first annual ring at breast height. Not until
tree age 6 years, more than 90% of the trees had done
so. But if aiming for 90% representation, one must wait
several years more until more rings are formed at breast
height, i.e., from 1993 to end of growth season 1996 at
tree age 6. And to train models based on data from 90%
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of the trees for cambial age say, age 6 at breast height,
samples cannot be collected until the end of growth sea-
son at tree age 11 years, or if a representation of 80% is
judged as satisfactory, at tree age 10 years. This has to be
considered if selection efficiencies are calculated based
on cambial age data, which is common. Such results
have for instance been published based on the almost
6000 trees sampled at 2011 and 2012 [37].
Correctly compared based on minimum 90% of the

trees, the estimated PAs shown in Fig. 2 are similar be-
tween the age alternatives, or slightly better for use of
tree age. For example, the PA for MOE using cambial
age data shows a smooth increase, reaching above 0.2 at
cambial age (ring number) 7, which needs data from the
tree of age 12. The corresponding curve from using tree
age passed above 0.2 already at age 8 years. However,
curves based on tree age often show larger year-to-year
variation. This is most likely an effect of the fact that the
rings of same cambial age represent wood formed across
a span of years with different weather. Thus, cambial age
data reflect annual weather across a range of years,
which does not happen when using tree age data. On
the other hand, from a practical point of view, methods
based on using tree age may be easier to apply in oper-
ational breeding, especially as light color results in Fig.
3b-d, indicating that high PAs can be reached without
coring all the way to the pith. To number the rings for
precise cambial age, you need to find the innermost ring
at the pith, but that may not be necessary for good
results.

Implementation of GS for solid wood into operational
breeding
The results indicate that GS can result in similar early
selection efficiency or even higher than traditional
pedigree-based breeding and offers further possibilities.
Previously, in loblolly pine it was reported that models
developed for diameter at breast height (DBH) and
height with data collected on 1 to 4-year old trees
had limited accuracy in predicting phenotypes at age
6-year old [21]. In British Columbia Interior spruce,
the predictive accuracy for tree height of models
trained at ages 3 to 40 years, at certain intervals, and
validated at 40 years revealed less opportunities for
early model training, since the plateau was not
reached until 30 years [28].
In our study, the highest PA values (on the diagonals

in Fig. 3b-d) were obtained for the subsets of fast-
growing trees which had reached breast height already at
tree age 3 and 4 years, 12 and 51% of the total number
of trees, representing a limited number of the OP fam-
ilies included in the analysis. Trees in this subgroup are
affected by high intensity of selection for alleles acceler-
ating growth within each OP family. Also, on cross-

validation the prediction abilities for this group were cal-
culated based on the trees within the same group. In this
elite group different factors could account for a higher
PA value, such as lower phenotypic variance, decreased
number of alleles of minor effect could also facilitate
identification of major effects and/or higher consanguin-
ity between those families which may share alleles for
growth. These models are shown for completeness, but
as they cannot be used for operational breeding they are
not further discussed.
Models for genetic selection are useful in different

steps of a breeding program. One type of prediction
models, here illustrated with Table 1, can be trained
from existing trials, preferably based on trees of as old
age as available. Since the aim of breeding is to predict
tree qualities at age of harvesting when the major part of
the stem will be dominated by mature wood. Training
the models in older trees for wood properties also allows
considering other properties which cannot be easily ob-
served from trees of very young age, such as stem
straightness and health. For wood density, the results in-
dicate that models can be built without coring very deep
into the stem. It may be expected that this is valid also
for instance for tracheid dimensions which in combin-
ation determines the wood density [30].
As illustrated in this work, two aspects of incorporat-

ing wood properties into operational GS breeding pro-
grams can be addressed with the same set of data.
Firstly, as mentioned above, models for cost-effective se-
lection based on genomic information from existing
trees. In that case, models from data at old ages would
normally be preferred, for example for wood density
some model at bottom line of Fig. 3b. Secondly, models
providing guidance on at what age it is reasonable to ap-
proach young trees for training of GS models for specific
traits: a) trees in existing juvenile trials, or b) trees of
new generations with different pools of genetics. As an
example, the same Fig. 3b for wood density suggests GS
model training at tree ages 10 to 12 on the third to fifth
outermost rings to reduce costs and the negative impact
on the tree.

Conclusions

1) In comparison with phenotypic selection, Genomic
selection methods showed similar to higher
prediction abilities (PAs) for both increment core-
and standing tree-based phenotyping methods. This
indicates that the standing tree-based measure-
ments may be a cost-effective alternative method
for GS, but higher PAs were obtained based on in-
crement core-based wood analyses.

2) Different genomic prediction statistical methods
provided similar PA. At least 80% data should be
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included in the training set in order to reach the
highest levels of PA

3) This study represents the first published
investigation of the efficiency of GS with prediction
models trained on data acquired from sampling/
coring trees at different ages, combined with
sampling/coring to different depths, to optimize the
operational breeding for the combination of length
of breeding cycle, cost and impact on the trees. The
results indicate that similar efficiency can be
obtained at tree age 10–12 with 3–5 outermost
rings.

Methods
Plant material
The study was conducted on two OP progeny trials:
S21F9021146 (F1146) (Höreda, Eksjö, Sweden) and
S21F9021147 (F1147) (Erikstorp, Tollarp, Sweden). Both
trials were established in 1990 with a spacing 1.4 m × 1.4
m. Originally, the experiments contained more than 18
progenies from 524 families at each of site, but after
thinning activities in Höreda and Erikstorp in 2010 and
2008, respectively, about 12 progenies per family were
left. In 2011 and 2012, six trees per site (524 * 12 ~ 6000
trees) were phenotyped [37]. Standing tree-based mea-
surements with Pilodyn and Hitman were performed on
the same trees in 2011 and 2013, respectively, after
which further thinning was performed. For this study, in
2018, we generated genomic (SNP) data from 484
remaining progeny trees after thinning which belonged
to 62 of the OP families (out of the original 524 families)
and on average eight progenies per family. This geno-
typic data was combined with available phenotypic data
for the same trees that were used.

Phenotypic data
The phenotypic data was previously described in Zhou
et al., 2019 [38]. Increment cores of 12 mm diameter
from pith to bark were collected from the progenies in
2011 and in 2012. These samples were analyzed for pith
to bark variations in many woods and fiber traits with a
SilviScan [39] instrument at Innventia (now RISE),
Stockholm, Sweden. This data is referred as increment
core-based measurements through the text. The annual
rings of all samples were identified, as well as their parts
of earlywood, transition wood and latewood, averages
were calculated for all rings, as well as their parts and
dated with year of wood formation [30].
The aim of breeding is not for properties of individual

rings, but properties of the stem at harvesting target age.
Therefore, this study focused on predictions of averages
for stem cross-sections, and we chose tree age 19 years
as the reference age, with models trained on trait aver-
ages for all rings formed up to different younger ages.

Three types of averages were calculated and predictions
compared for density, MFA and MOE: 1) area-weighted
averages, relating to the cross-section of the stem, 2)
width-weighted, relating to a radius or an increment
core, and 3) arithmetic averages, where all ring averages
are weighted with same weight. For the calculation of
area-weighted average we assumed that each growth ring
is a circular around the pith, calculated the area of each
annual ring from its inner and outer radii, and when cal-
culating the average at a certain age, the trait average for
each ring was weighted with the ring’s proportion of the
total cross-sectional area at that age. Similarly, for the
calculation of the width-weighted average, the trait aver-
age for each ring was weighted with the ring’s propor-
tion of the total radius from pith to bark at that age.
Similar results were obtained with the three average
methods. For this reason, only the estimates based on
the area-weighted method (the most relevant for breed-
ing) are shown. Tree age 19 years was used as the refer-
ence age. Thus, all the selection methods investigated
for density, MFA and MOE, phenotypic and genetic,
were compared based on how well they predicted the
cross-sectional averages of the trees at this age, with
their last ring formed during the vegetation period of
2009.
In addition, estimates of the three solid wood traits

were calculated based on data from Pilodyn and Hitman
instruments, measured on the standing trees without re-
moving the bark at age 22 and age 24 years, respectively.
Pilodyn measures the penetration depth with a needle
pressed into the stem, which is inversely correlated with
wood density. Hitman measures the velocity of sound
in the stem, which correlates with microfibril angle,
MFA [40, 41]. MOE is related to wood density and
velocity of sound [42–44] and can therefore be esti-
mated by combining the Pilodyn and Velocity data,
which estimates we here name MOEind (for standing-
tree based). Further details on how this was per-
formed in our study are given in Chen et al. 2015
[33]. The references show that these standing-tree-
based measurements provide useful information and
are very time and cost-efficient. However, they do not
allow calculation of properties of the tree at younger
ages. Therefore, we were not able to investigate from
what early ages such data can be uses within genomic
selection.

Genotypic data
Genomic DNA was extracted from buds or needles
when buds were not available. Qiagen Plant DNA ex-
traction protocol was utilized for DNA extraction and
purification and DNA quantification performed using
the Qubit® ds DNA Broad Range (BR) Assay Kit (Ore-
gon, USA). Genotyping was conducted at Rapid
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Genomics, USA, using exom capture methodology same
as the method used in Baison et al. 2019 [45]. Sequence
capture was performed using the 40,018 diploid probes
previously designed and evaluated for P. abies [46] and
samples were sequenced to an average depth of 15x
using an Illumina HiSeq 2500 (San Diego, USA) [45].
Variant calling was performed using the Genome Ana-
lysis Toolkit (GATK) HaplotypeCaller v3.6 [47] in Gen-
ome Variant Call Format (gVCF) output format. After
that, the following steps were performed for filtering: 1)
removing indels; 2) keeping only biallelic loci; 3) remov-
ing variant call rate (“missingness”) < 90%; 4) removing
minor allele frequency (MAF) < 0.01. Beagle v4.0 [48]
was used for missing data imputation. After these steps,
130,269 SNPs were used for downstream analysis.

Population structure
As a first step, we conducted a principal component
analysis to determine the presence of structure in our
population. The spectral decomposition of the marker
matrix revealed that only about 2% of the variation was
captured by the first eigenvector, indicating low popula-
tion structure. Additionally, in previous study, low geno-
type by environment (GxE) interaction was detected for
wood quality traits on these two trials [37]. Therefore,
population structure was not considered in the design of
cross-validation sets (see Modelling and cross-validation
chapter for further details on the cross-validation sets
design).

Narrow-sense heritability (h2) estimation
For each trait, an individual tree model was fitted in
order to estimate additive variance and breeding values:

y ¼ Xβþ ZuþWbþ e: ð1Þ
where y is a vector of measured data of a single trait, β

is a vector of fixed effects including a grand mean, prov-
enance and site effect, b is a vector of post-block effects
and u is a vector of random additive (family) effects
which follow a normal distribution u ~N(0,Aσ2u) and e
is the error term with normal distribution N(0,Iσ2e). X, Z
and W are incidence matrices, A is the additive genetic
relationship matrix and I is the identity matrix. σ2u
equals to σa

2 (pedigree-based additive variance) when
random effect in eq. 1 is pedigree-based in which case u
~N(0,Aσ2u), and σ2u equals to σg

2 (marker-based addi-
tive variance) when random effect in eq. 1 is marker-
based in which case u ~N(0,Gσ2u). The G matrix is cal-

culated as G ¼ ðM−PÞðM−PÞT
2
Pq

i¼1
pið1−piÞ , where M is the matrix of

samples with SNPs encoded as 0, 1, 2 (i.e., the number
of minor alleles), P is the matrix of allele frequencies
with the ith column given by 2(pi − 0.5), where pi is the
observed allele frequency of all genotyped samples.

Pedigree-based individual narrow-sense heritability (h2a

) and marker-based individual narrow-sense heritability

(hg
2) were calculated as.

h2a ¼ σ2
a

σ2pa
; h2g ¼ σ2g

σ2pg

respectively, σ2pa and σ2pg are phenotypic variances for
pedigree-based and marker-based models, respectively.

Selection of the optimal training and validation sets ratio
Cross-validation was conducted after dividing randomly
the whole dataset into a training and a validation set. To
find the most suitable ratio between the two, we divided
the data into sets with five different ratios between the
training and the validation sets: 50, 60, 70, 80 and 90%.
100 replicate iterations were carried out for each tested
ratio and trait.

Statistical method for model development
In the same context we aimed to find optimal methods.
Several statistical methods were compared: pedigree-
based best linear unbiased predictions (ABLUP), and
four GS methods: genomic best linear unbiased predic-
tions (GBLUP) [49], random regression-best linear un-
biased predictions (rrBLUP) [4, 50], BayesB [4], and
reproducing kernel Hilbert space (RKHS).
rrBLUP used a shrinkage parameter lamda in a mixed

model and assumes that all markers have a common
variance. In BayesB the assumption of common variance
across marker effects was relaxed by adding more flexi-
bility in the model. RKHS does not assume linearity so it
could potentially capture nonadditive relationships [51].
R package rrBLUP [52] was used for GBLUP and
rrBLUP, package BGLR [53] was used for BayesB and
RKHS. The pedigree-based relationship matrix was ob-
tained with the R package pedigree [54].

PA and accuracy estimation
The adjusted phenotypes y’ = y-Xβ were used as model
response in the genomic prediction models. Model qual-
ity was evaluated by predictive ability (PA), which is the
mean of the correlation between the adjusted phenotype
and the model predicted phenotypes, r(y’,yhat) from 100
times CV. Prediction accuracy (PC) was defined as PA/
√ (h2) [15, 55]. In order to investigate whether GS model
training can be conducted at earlier age, PA at each tree
calendar age and cambial age were estimated. In this
case, cross validation was conducted only using area-
weighted values at each age, then the trait values at each
age were estimated. PA at a specific age was calculated
as the correlation between estimated trait values at that
age and area-weighted values from pith to the last ring
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(for cambial age) and last year (for calendar age),
respectively.
Genomic selection for well-performing trees with the

use of marker information (G matrix) requires access to
previously trained GS models. Thus, model training is a
necessary part of GS integration into operational breed-
ing. Model training can be conducted in already existing
plantations with trees of relatively high ages, as illus-
trated in this work. It is, however, expected and desired
that such model training can be conducted with high
PAs also for younger trees. This would be especially use-
ful if maturity (flower production) can be accelerated, to
shorten the total breeding cycle.
Operationally, it is also important to develop protocols

to assess wood quality in resources at minimum cost
and time, and with minimal impact on the trees. There-
fore, on coring, it is not only important to know the
minimum age at which useful information can be ob-
tained, but also from how many rings from the bark to-
wards the pith information is required to train models
with high predictive ability. To address these two prac-
tical questions for operational breeding, we trained pre-
diction models based on data from different sets of
rings, in order to mimic and compare PAs obtained
when coring at different ages of the trees to different
depths into the stem, or more precisely, using data from
different numbers of rings, starting next to the bark. All
the models were judged on, compared by their ability to
predict the cross-sectional average of the trait at age 19
years across all trees in the validation set.
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