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Abstract: Background and Objectives: Arbuscular mycorrhizal fungi (AMF) play a crucial role in
individual plant capability and whole ecosystem sustainability. Chinese fir, one of the most widely
planted tree species in southern China, forms associations with AMF. However, it is still unclear what
impacts thinning management applied to Chinese fir plantations has on the structure and diversity of
soil AMF communities. This research attempts to bridge this knowledge gap. Materials and Methods:
A thinning experiment was designed on different slope positions in Chinese fir plantations to examine
the impacts of slope position and thinning intensity on colonization, diversity, and community
composition of AMF. Results: Our research showed that the altitudinal slope position had significant
effects on colonization, diversity, and community composition of AMF in Chinese fir plantations.
In addition, the interaction between slope position and thinning intensity had significant effects
on AMF diversity. Colonization by AMF on the lower slope position was significantly higher than
on the upper slope position, while AMF diversity on the upper slope position was higher than on
the middle and lower slope positions. Glomus was the most abundant genus in all slope positions,
especially on the middle and lower slope positions. The relative abundance of Diversispora was
significantly different among slope positions with absolute dominance on the upper slope position.
Scutellospora was uniquely found on the upper slope position. Furthermore, soil Mg and Mn contents
and soil temperature positively affected AMF community composition at the operational taxonomic
unit (OTU) level. Conclusions: These findings suggested that slope position should be considered
in the management of Chinese fir plantations. Furthermore, both chemical fertilization and AMF
augmentation should be undertaken on upper hill slope positions as part of sustainable management
practices for Chinese fir plantations.

Keywords: slope position; thinning intensity; Chinese fir plantations; arbuscular mycorrhizal fungi
(AMF); soil properties

1. Introduction

Chinese fir (Cunninghamia lanceolata) is one of the most important fast-growing tree species with
high production and outstanding timber quality that has been extensively planted in southern China
to satisfy the increasing requirement for wood production [1]. It is estimated that the total area of
Chinese fir plantations in China is approximately 8.95 million ha [2], and they play a vital role in
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both timber production and ecosystem maintenance. In such production forests, growth has not
been satisfactorily uniform, although the area of the plantations has increased substantially in recent
decades [3,4]. This is because most plantations were initially planted at high density and have not been
efficiently managed with thinning [1,5,6]. In addition, these plantations may exhibit other problems
associated with monocultures [3,7], such as simple community structure, lack of biological stability,
litter decomposition tardiness, and soil nutrient and land fertility losses [4,8,9], which seriously affect
the long-term productivity and sustainable management of the plantations [8,10,11].

Thinning, as an important silvicultural practice, affects forest characteristics directly and indirectly,
such as overstory, understory, soil properties [1,12,13], and microbial communities [14,15]. Several
studies have shown that the development of understory after thinning results in an increasing
proportion of rapidly decomposable litter, which could supplement the available soil nutrients [16–18]
and ultimately affect the soil microorganisms because of the variety of litter, plant roots, and
exudates [12,19–21]. In turn, soil microorganisms may influence the growth of plants by altering
elements in the rhizosphere soil and improving nutrient acquisition by plants [20,22]. Hence, it is
necessary to understand the changes of soil microorganisms and the relational soil factors in forest
thinning practice [15,23–25].

Slope position, as an important topographical factor, is responsible for the heterogeneity of
the microenvironment by changing the light, temperature, and water [26]. Slope position affects
soil structure and development [27,28], soil nutrient redistribution and availability by gravity and
hydraulic power [29,30], and diversity and distribution of vegetation [31–33] and soil microbes [34–36].
Given the significance of slope position to individuals, communities, and ecosystems [30,36,37], the
influence of slope position on growth and community of vegetation and soil properties has been
extensively investigated [27,37–39]. In the hilly areas of southern China, previous studies have
shown that the slope position significantly influences the growth of Chinese fir [40] and vegetation
structure [31,32,41]. However, the impacts of slope position on belowground microbial communities
remain poorly understood.

As a fundamental soil microbial component, arbuscular mycorrhizal fungi (AMF), belonging to
the subphylum Glomeromycotina [42], are the most common type of mycorrhizal fungi and form
mycorrhizal symbioses with 80% of all terrestrial plant species [43–45]. AMF have beneficial impacts on
individual plant capability, including increasing nitrogen (N) and phosphorus (P) acquisition [44,46,47],
improving tolerance to drought [48] and salt stress [49], and enhancing pathogen resistance of host
plants [50,51]. Furthermore, AMF play a crucial role in ecosystem sustainability [51,52] by regulating
the rhizosphere microbial community composition [53], soil structure, and nutrient cycling [54–56].
Given the important role of AMF in individual plants and ecosystem function, several studies
have investigated the spore density, root colonization, abundance, and community of AMF using a
taxon-based approach [45,57–59]. The majority of these studies, however, have focused on agriculture
and grassland systems, and few studies have been undertaken to examine the effects of slope position
on AMF spore density, root colonization, and abundance using a taxon-based approach, especially in
forests [24,26]. The results of these studies are far from unequivocal, and the environmental factors
associated with slope position that influence AMF assemblages have not been identified.

Chinese fir has been reported to form associations with AMF [60,61]. However, research on AMF
in Chinese fir plantations is extremely scarce. It is still unclear what impacts thinning management
has on the colonization, diversity, and community composition of AMF in Chinese fir on different
slope positions and thinning intensities, especially in hilly areas. Colonization by AMF would promote
nutrient absorption of Chinese fir, thereby improving growth [61,62]. In addition, different AMF species
and community composition play important roles in the performance of host plants, enriching soil
microbial communities, promoting nutrient cycling, and improving the function of ecosystems. Thus,
in this study, we chose Chinese fir plantations located in southeastern China to examine the impacts of
slope position and thinning intensity on the occurrence, diversity, and community composition of AMF.
We hypothesized that both slope position and thinning intensity would affect the colonization, diversity,
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and community composition of AMF, which would be closely related to changing microclimate and
edaphic factors. In order to test this hypothesis, the thinning experiment was designed across a
gradient of slope positions to determine AMF community composition. Our specific aims were as
follows: (1) test the effects of slope position and thinning intensity on AMF colonization and diversity;
(2) evaluate AMF community composition and distribution pattern among different slope positions and
thinning intensities; and (3) discover the most important topographical and edaphic factors affecting
the AMF community compositions and distributions.

2. Materials and Methods

2.1. Study Area and Site Description

The study area (26◦26′–27◦04′ N, 117◦05′–117◦40′ E) is located in the Jiangle National Forest
Farm in Jiangle County, Fujian Province, Southeast China (Figure 1). The climate in this region is a
subtropical monsoon climate. The annual average temperature is 19.5 ◦C and the annual average
precipitation is 1665 mm. This region is dominated by low-mountain hilly terrain with an altitude
ranging between 200 and 800 m, and the soil is identified as an Ultisols (commonly known as red clay
soils) following the USDA Soil Taxonomy. The dominant tree species are Chinese fir (C. lanceolata) and
Masson pine (Pinus massoniana). The prominent understory species include beautyberry (Callicarpa
giraldii), Ficus simplicissima (Ficus hirta), Blechnoid (Blechnum orientale), Stenoloma chusana (Stenoloma
chusanum), Dicranopteris pedata (Dicranopteris dichotoma), and chain fern (Woodwardia japonica).

The study area is dominated by Chinese fir plantations planted in 2005, and the total area is 3 ha
with similar site quality. Before thinning, the average diameters at breast height (DBH) and tree height
were 12.83 cm and 8 m, respectively. The average tree density was 2967 stem ha−1, the stand basal area
was 38.00 m2 ha−1, and the stand volume was 198.07 m3 ha−1. The thinning experiments were initially
established in May 2013 when the trees were 8 years old. Five thinning treatments were conducted
with the removal of approximately 0 (control), 20%, 25%, 33%, and 50% of trees, respectively. After
thinning, the average DBH and tree height were 13.08 cm and 9.1 m, respectively, the average residual
density ranged between 1600 and 2967 stem ha−1, the stand basal area was 29.96 m2 ha−1, and the stand
volume was 169.93 m3 ha−1. Three replicate plots were established within each thinning intensity in
the upper (US), middle (MS), and lower (LS) slope positions in August 2013 (Figure 1, Table 1).
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Table 1. Basic conditions of plots.

Plots
Plot
Area
(m2)

Slope
Position Aspect Slope Altitude

(m)
Thinning
Intensity

Reserved
Tree Density
(Stem ha−1)

Mean
DBH
(cm)

Mean
Tree

Height
(m)

Canopy
Density

(%)

US1 15 × 20 Upper 247◦ 34◦ 261.6 25% 2300 12.4 9.5 70
US2 15 × 20 Upper 296◦ 31◦ 265.1 50% 1500 12.1 8.5 50
US3 15 × 20 Upper 311◦ 32◦ 271.5 0% 2900 11.8 10.0 88
US4 15 × 20 Upper 295◦ 30◦ 268.2 33% 1933 14.0 8.8 58
US5 15 × 20 Upper 304◦ 35◦ 261.8 20% 2467 13.3 9.6 74
MS1 15 × 20 Middle 314◦ 31◦ 240.5 25% 2267 13.9 9.0 69
MS2 15 × 20 Middle 303◦ 39◦ 242.5 50% 1667 13.4 8.5 52
MS3 15 × 20 Middle 310◦ 31◦ 241.8 0% 2933 12.8 9.9 89
MS4 15 × 20 Middle 300◦ 33◦ 242.6 33% 2033 12.9 9.4 65
MS5 15 × 20 Middle 346◦ 32◦ 238.4 20% 2500 12.2 8.8 73
LS1 15 × 20 Lower 292◦ 32◦ 217.5 25% 2333 14.0 9.2 68
LS2 15 × 20 Lower 318◦ 31◦ 212.4 50% 1633 13.1 7.9 50
LS3 15 × 20 Lower 303◦ 34◦ 206.3 0% 3067 13.2 9.0 90
LS4 20 × 20 Lower 296◦ 33◦ 202.3 33% 2125 13.6 9.9 65
LS5 20 × 20 Lower 292◦ 31◦ 202.9 20% 2375 13.2 8.2 70

US: upper slope position; MS: middle slope position; LS: lower slope position; DBH: diameter at breast height.

2.2. Plot Investigation and Sampling

Surveys were carried out in each plot and tracked every year after thinning. The DBH of individual
trees was measured with a DBH tape. Individual tree volume was calculated using the following
equation [63]:

V = 0.0000872 DBH1.785388607
∗ [92.856− 10186.041/(DBH + 107.907)]0.9313923697.

The stand volume of each plot was calculated as the sum of all individual trees. The average
annual increment for stands in each plot was calculated using the following formula:

Z = (yt − yt−n)/n

where Z is the average annual increment, n is the number of years between measurements, yt is the
measure (quadratic mean diameter or volume) in years t, and yt−n is the measure in years t–n.

Intensive surveys were conducted in May 2015. Six sample trees were chosen randomly as the
research objects in each plot, and 90 trees were finally selected. The fine roots with potential AMF
and rhizosphere soil (at 10 cm depth) were collected for each sample tree from four directions (east,
south, west, and north), and then mixed for subsequent analysis. Finally, 90 root samples and 90 soil
samples were obtained. After collection, the root samples were stored at −20 ◦C for later colonization
measurement and DNA extraction of AMF. The soil samples were transported to the laboratory for
further processing.

2.3. Mycorrhizal Colonization Measurement

Roots were cut into 1–2 cm length segments and washed carefully with distilled water. The root
segments were bleached by 10% KOH solution with a few drops of H2O2 and water-bath heating
at 90 ◦C for 2 h, acidified with 1% HCl for 15 min, and stained in Trypan blue (0.05% in 5:1:1 lactic
acid/glycerol/distilled water) at 90 ◦C for 15 min using the method described by Zhang et al. [64].
Stained roots were then rinsed and decolorized by soaking in clean water overnight. To identify
root colonization, root segments were prepared on glass slides, pressed lightly, and observed under
the microscope at 200×magnification using the magnified intersection method [65]. In total, 10 root
segments were randomly chosen per root sample and 10 fields of view of the microscope were observed
for each root segment. Therefore, 100 intersects were measured to note whether the root was colonized
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by AMF at each intersection between the microscope vertical eyepiece crosshair and the roots. The AMF
colonization rate was estimated as the percentage of root colonized.

2.4. DNA Extraction, PCR Amplification, and Illumina Sequencing

We chose 20 root segments from each root sample, which were cut into 1 cm length
and washed carefully with distilled water. DNA was extracted from each root sample by the
hexadecyltrimethylammonium bromide (CTAB) method [66]. We extracted a total of 90 genomic
DNA samples in this study. Specifically, the mycorrhizal roots were ground with 300 µL of 65 ◦C
2 × CTAB extracting solution and moderately sterilized quartz sand. Next, samples were incubated
in a 65 ◦C water bath for 1 h, shaking (once every 15 min) to fully dissolve the samples. Afterward,
chloroform/isoamyl alcohol (24:1) solution was added and vortexed, and then the mixture was
centrifuged at 12,000× g at 25 ◦C for 15 min. The supernatant was then transferred to a new centrifuge
tube carefully and centrifuged with chloroform/isoamyl alcohol (24:1) solution at 12,000× g at 4 ◦C for
15 min. Then, the supernatant was transferred to a new centrifuge tube, and 30 µL 5 M potassium
acetate (KAC) and 200 µL of isopropyl alcohol were added and vortexed. After being kept overnight at
−20 ◦C, the samples were centrifuged at 9200× g for 2 min at 4 ◦C, and the liquid phase was discarded.
The DNA pellet was washed with 70% ethanol twice and dried using a SpeedVac®device (AES 1010;
Savant, Holbrook, NY, USA). Finally, a 65 µL amount of deionized sterile water was added to dissolve
the DNA sample at room temperature, and samples were stored at −20 ◦C.

The partial small subunit (SSU) region of 18S rRNA was amplified by nested PCR [67]. GeoA2
(5’CCAGTAGTCATATGCTTGTCTC3’) [68] and AML2 (5’GAACCCAAACACTTTGGTTTCC3’) [69]
were used as the primers in the first amplification, whereas NS31 (5’TTGGAGGGCAAGTCTGGT-
GCC3’) [70] and AMDGR (5′CCCAACTATCCCTATTAATCAT3′) [71] were used in the second
amplification. A 12 bp unique barcode was added at the 5′-end of NS31 in each sample; therefore, each
sample has a unique identification (Table S1, Supplementary Materials). The first amplification was
mixed with 12.5 µL PCR MasterMix, 1 µL GeoA2, 1 µL AML2, and 2 µL 1/20 × DNA, finally forming a
25 µL reaction solution. The reaction started with a pre-denaturation at 94 ◦C for 3 min, and then 29
cycles of denaturation at 94 ◦C for 30 s, annealing at 48 ◦C for 1 min, extension at 72 ◦C for 3 min, and
final extension at 72 ◦C for 10 min. The first amplification product was diluted 1/100 with sterilized
deionized water. The second amplification was performed according to the following cycling: 94 ◦C
for 3 min, 29 cycles at 94 ◦C for 45 s, annealing at 45 ◦C for 45 s, 72 ◦C for 1 min, and 72 ◦C for 10 min.

The PCR products (around 280 bp) were run on 1% agarose gel with 1.0 × TAE buffer using gel
electrophoresis, and visualized using GelRedTM (Biotium) Stain on a UV transilluminator (WD-9406,
Beijing Liuyi Biotechnology, Beijing, China). Two PCR products (50 µL) were pooled together for
purifying to reduce potential early-round PCR errors, purified using an Axygen PCR Product Gel
Purification Kit (Axygen, Union City, CA, USA) and quantified using a NanoDrop 8000 (Thermo
Scientific, Wilmington, DE, USA). The purified products were mixed at equimolar concentrations to
ensure that all samples were sequenced at the same level and then sequenced on an Illumina MiSeq
platform (Illumina, San Diego, CA, USA) at the Environmental Genome Platform of the Chengdu
Institute of Biology.

2.5. Sequence Data Processing

After sequencing, the paired-end reads were assembled by FLASH (version 1.2.8) [72]. All reads
were assembled to each sample based on the unique barcodes. Sequences that did not contain the
PCR primers, were longer than 300 bp, and had an average quality score >30 were retained for
further analysis [67]. FASTA files were spliced and quality-filtered, and chimeras were removed using
QIIME (version 1.17) [73]. The remaining non-chimera sequences were clustered into operational
taxonomic units (OTUs) with UPARSE at a 97% identity threshold [74] using the MaarjAM database
as the reference [75]. The representative sequences were uploaded to the NCBI (National Center
for Biotechnology Information) database and assigned by blasting against the SILVA database [76]
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according to a 97% sequence similarity. OTUs are presumed to be the level of “species”. The OTUs not
labeled as “Glomeromycotina” and with <5 reads were removed to reduce the risk of sequencing errors.
The Glomeromycotina sequences were resampled to eliminate the effects of different read numbers.
Afterward, to further confirm the remaining OTUs belonging to AM fungi, a phylogenetic tree was
constructed in MEGA v7 (Kumar, Stecher, Li, Knyaz, and Tamura 2018) using the Kimura 2 parameter
model with 1000 replicates, according to the representative sequences and reference sequences of
Glomeromycotina downloaded from GenBank and MaarjAM [64]. Similar OTUs were merged and
renumbered to produce a final OTU table for subsequent ecological analysis. The references were
chosen only if they met the following criteria: BLAST score >250, query coverage >97%, and similarity
between OTU and reference >97%.

2.6. Soil Chemical Property Measurement

All soil samples were air-dried and sieved (less than 2 mm) to measure the soil chemical properties
according to the method described by Bao [77]. The soil/water (1:5 w/v) suspensions were stirred
for 30 min to measure soil pH utilizing a pH meter (PHS-2F, LEICI, Shanghai, China). Soil organic
carbon (SOC) was estimated using an elemental analyzer (FLASH 2000 CHNS/O, Thermo Scientific,
Wilmington, DE, USA). Soil total nitrogen (TN) and total phosphorus (TP) were determined using an
AA3 continuous flow analytical system (AA3, SEAL, Norderstedt, Germany) after wet digestion with
HClO4-H2SO4. Soil total magnesium (Mg) and manganese (Mn) contents were measured by an atomic
absorption spectrometer (TAS-990AFG, Beijing Purkinje General, Beijing, China) after digesting with
HNO3-HClO4. Soil available nitrogen (AN) was determined using the alkali solution diffusion method.
Soil available phosphorus (AP) and available potassium (AK) were determined by a spectrophotometer
(UV-2600, SHIMADZU, Kyoto, Japan) after HCl-NH4F extraction and ammonium acetate extraction,
respectively. Soil temperature was measured by a digital thermometer (DT-131, CEM, Shenzhen,
China) in the field.

2.7. Statistical Analysis

A two-way analysis of variance (ANOVA) was used to assess the differences of AMF colonization
and diversity (including richness, Shannon–Wiener index, and Faith’s phylogenetic diversity) among
different slope positions (three levels) and thinning intensities (five levels) as well as their interaction,
with the multiple comparisons of Tukey’s HSD test at p < 0.05. AMF richness referred to the number of
OTUs per sample. The Shannon–Wiener index was calculated from the OTU relative abundances [78].
Richness and the Shannon–Wiener index were calculated using the “vegan” package in R, and
Faith’s phylogenetic diversity was calculated using the “picante” package in R. Before the two-way
ANOVA, the Shapiro–Wilk test was used to test normal distribution and Levene’s test was used to test
homogeneity of variance. All data satisfied the assumptions of a two-way ANOVA. All analyses and
tests were performed in R 3.5.3 software (R Core Team, Vienna, Austria) and the figures were finished
using Origin 2019 (OriginLab Corporation, Northampton, MA, USA).

A structural equation model (SEM) was performed to infer the potential effects of environmental
factors (slope position and soil properties) on AMF colonization and diversity. The interrelationships
among the above variables were discovered by correlation analysis before the SEM procedure. Variables
significantly associated with at least one other variable in correlation analysis were eligible for the
subsequent SEM procedure [57]. SEM were constructed using AMOS 21 (IBM SPSS, Chicago, IL, USA).

The community composition of AMF refers to species abundance of each species in each plot,
which is a multivariate dataset. The matrix-based dissimilarity assessment provides greater change of
community composition than richness and the diversity index. Therefore, non-metric multi-dimensional
scaling (NMDS) with the Bray–Curtis dissimilarity measurement and analysis of similarities (ANOSIM)
(999 permutations, non-parametric) were used to examine the dissimilarities of the AMF community
compositions among the plots [79]. Before the analysis of the AMF community composition, the
abundance of OTUs was Hellinger-transformed to reduce the impact of rare OTUs [80]. The NMDS
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and ANOSIM were performed using the “vegan” statistical package in R 3.5.3. In addition, Venn
diagrams were used to depict particular species and common species on different slope positions.

The Mantel test or partial Mantel test was used to detect the Mantel statistic as a matrix correlation
between two dissimilarity matrices, namely community composition matrix and environmental
factor matrix (999 permutations) [81]. Redundancy analysis (RDA) and canonical correspondence
analysis (CCA) were used to investigate the relationships between the environmental factors and
AMF community composition and to probe the principal environmental factors impacting the AMF
community composition. Before RDA or CCA, detrended correspondence analysis (DAC) was
performed to determine whether RDA or CCA should be chosen. If the axis length was bigger than
4, CCA should be performed; otherwise, RDA. The Mantel test and RDA were performed using the
“vegan” statistical package in R 3.5.3. Prior to the above analysis, upper, middle, and lower slope
positions were converted to the numerical values of 1, 2, and 3, respectively. Aspect was transformed
from the 0◦ to 360◦ compass scale to a value between 0 and 1, with 0 indicating north–northeast
directions and 1 indicating south–southwest directions [82]. The conversion was performed using the
following formula:

TRASP =
{
1− cos[(π/180) ∗ (aspect− 30)]

}
/2.

3. Results

3.1. Sequencing Analysis and Identification of the AMF

After quality filtering and chimera removal, 1,670,493 fungal sequences were acquired from a
total of 90 samples in this study. These sequences were clustered into 174 OTUs. Of these, 1,606,992
sequences belonged to Glomeromycotina (corresponding to 96.2% of the total), which were clustered
into 83 OTUs. After seven OTUs (<10 reads) were removed from the dataset, 1,606,919 sequences
remained. Finally, 76 OTUs were found representing AMF taxa. Rarefaction curves were constructed
showing the amplicon sequencing depths in all samples. All of the rarefaction curves showed near
saturation when the rarefaction reached 5362, indicating that the amount of sampling was sufficient to
explore the majority of the sequence types (Figure 2). Among the final 76 AMF OTUs, 46 belonged to
Glomus (frequency of 61%), 14 belonged to Archaeospora (frequency of 19%), 13 belonged to Acaulospora
(frequency of 17%), and one belonged to each of Diversispora, Gigaspora, and Scutellospora (Figure
S1, Supplementary Materials). The representative sequences were submitted to GenBank with the
accession numbers MK841334-MK841409.
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Acaulospora (frequency of 17%), and one belonged to each of Diversispora, Gigaspora, and Scutellospora 
(Figure S1, Supplementary Materials). The representative sequences were submitted to GenBank 
with the accession numbers MK841334-MK841409. 
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Figure 2. Rarefaction curves showing the amplicon sequencing depths in all samples. The number
of observed operational taxonomic units (OTUs) was compared across samples when samples were
rarefied at 5362 sequences.
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3.2. AMF Colonization, Diversity, and Relational Environmental Factors

There were significant differences in AMF colonization among different slope positions (Table 2).
AMF colonization on the lower slope position was significantly higher than on the upper slope position
(Figure 3), indicating there were more roots infected by AMF on the lower slope position than the upper.

There were significant differences in AMF diversity among slope positions (Table 2). The AMF
richness, Shannon–Wiener index, and phylogenetic diversity on the upper slope position were
significantly higher than on the middle and lower slope positions (Figure 3). In addition, phylogenetic
diversity significantly differed among different thinning intensities, especially between 25% and 33%
(Table 2, Figure 3). There was also an interaction effect on AMF richness, Shannon–Wiener index, and
phylogenetic diversity with thinning intensity (Table 2). The differences in richness and phylogenetic
diversity between the upper slope and the middle and lower slopes were greater on 25% and 33%
thinning intensity than others (Figure 3). The difference in Shannon–Wiener index between the upper
slope and the middle and lower slopes was greater on 25% thinning intensity than others (Figure 3).
Hence, AMF diversity in the low or high thinning intensities was rather similar among different slope
positions, whereas in the middle thinning intensity (25–33%) AMF diversity was higher on the upper
slope. Thinning intensity had no effect on AMF diversity (Table 2).

Table 2. Summary statistics of two-way ANOVA examining the effects of thinning intensity and slope
position as well as their interaction on arbuscular mycorrhizal fungi (AMF) colonization and diversity.

Variables Colonization Richness Shannon–Wiener
Index

Phylogenetic
Diversity

Thinning intensity F 1.824 1.143 0.735 2.881
P 0.133 0.343 0.571 0.028 *

Slope position F 33.914 29.554 11.870 36.695
P <0.001 *** <0.001 *** <0.001 *** <0.001 ***

Thinning intensity × slope position F 0.538 2.515 3.859 2.376
P 0.789 0.018 * 0.001 ** 0.024 *
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Figure 3. Differences of AMF colonization, richness, and diversity among slope positions and 
thinning intensities. Values are means ± standard errors. Different letters indicate significant 
interactions or slope position main effects (p ˂ 0.05) based on a two-way ANOVA followed by a 
Tukey’s HSD multiple comparison test. 

Soil properties among different slope positions and thinning intensities are shown in Table S2 
(Supplementary Materials). Structural equation model (SEM) results allowed us to infer the possibly 
direct and indirect influences of slope position and soil properties on AMF colonization and diversity 
(Figure 4). Specifically, AMF colonization was positively correlated with slope position (path 
coefficient = 0.684), and slope position significantly changed soil AK content (path coefficient = 0.225), 
which had a substantial influence on AMF colonization (path coefficient = 0.252). Furthermore, the 
slope position was the most considerable factor that directly affected AMF diversity (path coefficient 
= –0.525). 

Figure 3. Differences of AMF colonization, richness, and diversity among slope positions and thinning
intensities. Values are means ± standard errors. Different letters indicate significant interactions or
slope position main effects (p < 0.05) based on a two-way ANOVA followed by a Tukey’s HSD multiple
comparison test.

Soil properties among different slope positions and thinning intensities are shown in Table
S2 (Supplementary Materials). Structural equation model (SEM) results allowed us to infer the
possibly direct and indirect influences of slope position and soil properties on AMF colonization and
diversity (Figure 4). Specifically, AMF colonization was positively correlated with slope position (path
coefficient = 0.684), and slope position significantly changed soil AK content (path coefficient = 0.225),
which had a substantial influence on AMF colonization (path coefficient = 0.252). Furthermore, the slope
position was the most considerable factor that directly affected AMF diversity (path coefficient =−0.525).
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3.3. AMF Community Composition 

NMDS ordination showed that the community composition of AMF was significantly different 
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significant (p = 0.016). In addition, unobvious separation of AMF communities from the different 
thinning intensities was observed, which indicated AMF communities were similar despite different 
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Figure 4. Structural equation model (SEM) results allow us to infer the plausible causal effects of slope
position and soil factors on (a) AMF colonization and (b) diversity. Bold and dashed lines indicate
significant and non-significant pathways, respectively. The final model fit the data well: (a) χ2 = 13.676,
df = 6, p = 0.033; AIC = 43.676; RMSE = 0.120. (b) χ2 = 13.282, df = 3, p = 0.004; AIC = 37.28;
RMSE = 0.196.

3.3. AMF Community Composition

NMDS ordination showed that the community composition of AMF was significantly different
among different slope positions, especially between the upper and middle slopes and between the
upper and lower slopes (Figure 5). Furthermore, the ANOSIM similarly showed that the differences
between the upper and middle slope positions and between the upper and lower slope positions were
highly significant (p = 0.001; p = 0.001), whereas those of the middle and lower slopes position were
significant (p = 0.016). In addition, unobvious separation of AMF communities from the different
thinning intensities was observed, which indicated AMF communities were similar despite different
thinning intensities (Figure 5).
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Figure 5. Non-metric multi-dimensional scaling (NMDS) ordinations of dissimilarities of AMF
communities on different plots with the data of OTU composition (Bray–Curtis distance). Values are
means ± standard errors.

Further analysis on the community composition of AMF among different slope positions (Figure 6)
showed that the genera Glomus, Archaeospora, Acaulospora, and Gigaspora appeared on all slope positions
without significant differences (p > 0.05). Glomus was the most abundant genus of all slope positions,
especially on the middle and lower slope positions with more than 80% relative abundance. The relative
abundance of Diversispora was significantly different among slope positions (p = 0.028), with absolute
dominance on the upper slope position. Scutellospora was the unique genus only presented on the
upper slope position. Similarly, at the OTU level, there were four, none, and one unique taxa on the
upper, middle, and lower slope positions, respectively (Figure 7). In addition, there were six and three
common taxa on the upper and middle slope positions and on the middle and lower slope positions,
respectively, whereas no common taxa occurred on the upper and lower slope positions (Figure 7).
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3.4. Relationship between AMF Community Structure and Environmental Factors

Partial Mantel test results confirmed that soil Mg content, soil Mn content, and soil temperature
had a significantly positive correlation with AMF community composition at the OTU level (Table 3).
CCA on the relative abundance of OTUs showed that these variables explained a total of 10.9% of the
variance in the composition of AMF communities among plots, with Axis 1 explaining 9.2% and Axis 2
explaining 1.7% of the total variation (Figure 8a). When controlling other environmental factors, soil
Mg content showed the strongest effect on AMF community composition (p = 0.001), whereas soil
Mn content and soil temperature showed fewer but significant influences (Table 3). Soil Mg and Mn
contents were the prominent factors which contributed to the AMF community distributions among
the three slope positions, and the AMF community compositions on the middle and lower slopes were
more relevant to soil temperature than on the upper slope (Figure 8a).

In addition, the RDA of AMF genera with edaphic factors showed that the variables explained
10.4% of the total variance, with Axis 1 explaining 8.3% and Axis 2 explaining 2.1% (Figure 8b).
Figure 8b showed that soil pH and total N content significantly positively related to Glomus, whereas
pH and Mg content negatively related to Archaeospora. Slope position and soil Mn content significantly
positively related to Acaulospora, whereas negatively related to Gigaspora. Soil available P was positively
related to Diversispora.

Table 3. Relationships between AMF community compositions and environmental factors, as revealed
by the partial Mantel test.

Explanatory Variables
OTU Level

R P

Soil pH 0.036 0.162
Soil organic carbon (g kg−1) 0.061 0.080

Soil total N (g kg−1) 0.043 0.130
Soil total P (g kg−1) 0.053 0.108

Soil available N (mg kg−1) −0.054 0.910
Soil available P (mg kg−1) 0.032 0.189
Soil available K (mg kg−1) −0.056 0.917

Soil Mg (mg kg−1) 0.147 0.001 ***
Soil Mn (mg kg−1) 0.076 0.012 *

Soil temperature (◦C) 0.073 0.030 *
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3.5. Relationship between AMF and Tree Growth

Correlation analysis indicated that thinning intensity was positively correlated with the mean
increment of individual DBH (r = 0.415; p < 0.001).

4. Discussion

Our research found that the slope position, but not thinning, had significant effects on the
colonization, diversity, and community composition of AMF in Chinese fir plantations, as well as had
interaction with thinning intensity on diversity. Moreover, thinning practice was found to be capable
of enhancing the growth of Chinese fir. These findings have practical relevance for forest management,
particularly for optimizing silviculture and fertilization, in Chinese fir plantations.

Our findings highlight that AMF colonization on the lower slope position was significantly higher
than on the upper slope position (Figure 3). This may be due to differences of edaphic factors among
slope positions. P was regarded as the closest soil nutrients associated with mycorrhizal formation,
playing an important role in regulating the colonization of AMF. Many studies have reported that
colonization was potentially higher in the soils where the soil available phosphorus was lower, because
host plants need more AMF uptake the nutrients from soil [23,46,83,84]. However, in this study, the
influence of P was not recorded. Previous studies also found that P application had no or little effect
on AMF root colonization [85,86], which is in agreement with our findings. The possible explanation
is that AMF colonization is closely associated with the N or other nutrients [86]. In this study, the
correlation between AMF colonization and soil phosphorus content was negligible, whereas the
correlation between AMF colonization and available K was significant. Moreover, phosphorus is
generally deficient in our study area, so it could be ecologically significant to acquire phosphorus
through more AMF colonization for Chinese fir and, consequently, for the optimization of fertilization.
In our study, soil available K was a significant factor that increased AMF colonization. This result
was found to be in good agreement with a previous related study, in which a significant and positive
correlation was observed between AMF colonization and soil K [87]. However, its underlying reason
needs further research. In addition, our study also found that AMF colonization was directly positively
affected by slope position. The reasons may be with regard to spore density, soil moisture content, or
other potential factors [24,83,88].

Our study revealed that AMF diversity was higher on the upper slope position than on the middle
and lower slope positions (Figure 3). The reason underlying this observation may be due to the fact
that there was more sufficient light on the upper slope, which improves photosynthesis of plants and
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carbohydrate allocation to AMF [89,90], thereby promoting more species to survive and subsequently
increasing the diversity on the upper slope. Moreover, there was also an interaction between slope
position and thinning intensity on AMF diversity. AMF diversity in the low or high thinning intensities
was rather similar among different slope position, whereas in the middle thinning intensity it was
higher on the upper slope (Figure 3). The intermediate disturbance hypothesis could explain this, that
is, the maximum species richness is found at intermediate levels of disturbance [91].

Our findings indicated that AMF community compositions on different slope positions were
distinct (Figure 5). Generally, local-scale AMF community compositions were determined by edaphic
conditions and the differential survival strategies of AMF [24,92]. Thus, altered habitat and resource
allocation may influence AMF community composition [93]. In our study, soil Mg and Mn contents
were the prominent factor which contributed to the AMF community distributions among the three
slope positions (Table 3, Figure 8a). The explanation may be that soil Mg and Mn contents were higher
on the lower slope position than on the upper slope position, and higher soil nutrients should enable
the occurrence of more AMF species on the lower slope position because only some species with higher
competitive strategy can survive on the soil with low nutrients [94,95]. In addition, soil temperature
significantly affected the community compositions of AMF by stimulating the supply of plant carbon
for AMF, that is, lower temperatures restricting the allocation of plant carbon to fungi and species with
a competitive strategy appearing in the soils with lower temperature [96–98].

Furthermore, different effects of the edaphic factors on AMF genera may be the differential survival
strategies of the particular AMF genus. For example, the genera Gigaspora and Archaeospora show traits
associated with a competitive strategy, namely the higher carbon acquisition from their host plants and
higher nutrient acquisition from the soil, whereas the genera Glomus and Acaulospora are known to
have a ruderal strategy or stress-tolerant strategy with low carbon and nutrient acquisition [99], which
explains the opposite influences of soil available nutrient contents on them (Figure 8b). We also found
that soil pH had a positive influence on Glomus and a negative influence on Archaeospora. Previous
studies have shown that in acidic (low pH) soils higher pH promotes the availability of various soil
nutrients [92,100], thereby having a positive or negative influence on either Glomus or Archaeospora
associated with different strategies in our study area (pH was between 4.2 and 4.5).

Our research showed that thinning intensity had no significant effects on the colonization, diversity,
and community compositions of AMF in Chinese fir plantations (Table 2). Previous studies have
proven that thinning could enhance the growth of reserved trees by improving growth space and
light transmittance in stands, as well as the development of the understory, which increases litter
decomposition, available soil nutrients, and soil microorganisms [12,18,19]. However, thinning may
affect soil properties in the long term due to changes in litter decomposition and nutrient status [1,15].
Hence, in our study, changes in soil properties over a short time (two years after thinning) were not
significant and resulted in quite similar AMF despite the thinning intensity used. The impacts of
thinning on AMF in the short term may not be as important as thinning in the management of Chinese
fir plantations; however, the longer-term effects of thinning on AMF may require further research.

In our study, there was one plot of each thinning intensity on each slope position without replicated
plots. Thus, the study serves as a specific case for Chinese fir and replicated studies could infer results
across a larger landscape scale. Despite this, the results are consistent among repeated sampling of
root samples from several trees, that is, there were six repetitions from each plot (thinning intensity
and slope position). Although this study was conducted on one slope and in a small area during only
one year, the results are instructive for forestry researchers and managers to understand that slope
position should be considered in the management of Chinese fir plantations in hilly areas. For instance,
adding AMF might be an alternative approach to chemical fertilization, promoting the growth of trees
and reducing the environmental pollution caused by chemical fertilization. In addition, both chemical
fertilization and the addition of AMF should be targeted to plantations on upper slopes because of
fewer AMF spores and lower AMF colonization in those positions. Future research should focus on
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long-term continuous observations and be conducted in more numerous and wider areas and include
other commercially important tree species.

5. Conclusions

This is the first study to explore AMF community composition at both the taxonomic unit level and
the genus level on different slope positions in southern China. Our research showed that altitudinal
slope position had significant effects on the colonization, diversity, and community composition of
AMF in Chinese fir plantations. In addition, the interaction between slope position and thinning
intensity had significant effects on AMF diversity. Moreover, thinning practice was found to enhance
the growth of Chinese fir. Colonization of AMF had a significant increase from the top to the bottom of
the slope, while AMF diversity on the upper slope position was obviously higher than on the lower
slope position. Glomus was the most abundant genus in all slope positions, especially on the middle
and lower slope positions. The relative abundance of Diversispora differed among slope positions,
having absolute dominance on the upper slope position. Scutellospora was uniquely found on the
upper slope position. Furthermore, soil Mg and Mn contents and soil temperature positively affected
AMF community composition at the OTU level. These findings suggested that slope position should
be considered in the management of Chinese fir plantations in hilly areas, and it may be an important
consideration for forest management activities, especially when the optimization of silviculture and
fertilization is concerned. For instance, adding AMF might replace chemical fertilization, promoting the
growth of trees and reducing the environmental pollution caused by chemical fertilization. In addition,
both chemical fertilization and the addition of AMF should be conducted more strongly on the upper
slope position.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/3/273/s1,
Figure S1: Phylogenetic tree created by representative sequences of each AMF OTU identified from this study and
referenced sequences from the GenBank database. Table S1: Description of the barcode sequences. Table S2: Soil
properties on different plots.
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