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Abstract
Agroecosystem models that simulate crop growth as a function of weather conditions

and soil characteristics are among the most promising tools for improving crop yield

and achieving more sustainable agricultural production systems. This study aims at

using spatially distributed crop growth simulations to investigate how field-scale pat-

terns in soil properties obtained using geophysical mapping affect the spatial variabil-

ity of soil water content dynamics and growth of crops at the square kilometer scale.

For this, a geophysics-based soil map was intersected with land use information. Soil

hydraulic parameters were calculated using pedotransfer functions. Simulations of soil

water content dynamics performed with the agroecosystem model AgroC were com-

pared with soil water content measured at two locations, resulting in RMSE of 0.032

and of 0.056 cm3 cm−3, respectively. The AgroC model was then used to simulate the

growth of sugar beet (Beta vulgaris L.), silage maize (Zea mays L.), potato (Solanum
tuberosum L.), winter wheat (Triticum aestivum L.), winter barley (Hordeum vulgare
L.), and winter rapeseed (Brassica napus L.) in the 1- by 1-km study area. It was

found that the simulated leaf area index (LAI) was affected by the magnitude of sim-

ulated water stress, which was a function of both the crop type and soil characteristics.

Simulated LAI was generally consistent with the observed LAI calculated from nor-

malized difference vegetation index (LAINDVI) obtained from RapidEye satellite data.

Finally, maps of simulated agricultural yield were produced for four crops, and it was

found that simulated yield matched well with actual harvest data and literature values.

Therefore, it was concluded that the information obtained from geophysics-based soil

mapping was valuable for practical agricultural applications.

Abbreviations: DM, dry matter; EMI, electromagnetic induction; FVC,
fractional vegetation cover; LAI, leaf area index; NDVI, normalized
difference vegetation index; PTF, pedotransfer function.
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1 INTRODUCTION

In recent years, significant improvements have been made
in data acquisition, management, and modeling to support
more productive and sustainable agriculture, which is vital
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to meet present food security challenges (Antle et al., 2017).
Reductions in crop performance can be directly or indirectly
attributed to a number of factors, such as insufficient nutrient
availability, inadequate crop and soil management practices,
adverse weather conditions, occurrence of pests and diseases,
and water shortage (Baret, Houles, & Guérif, 2007; Foley
et al., 2011; Sánchez, 2010; Slingo, Challinor, Hoskins, &
Wheeler, 2005). Worldwide, agriculture is the largest con-
sumer of freshwater (Brauman, Siebert, & Foley, 2013), with
most crops being produced in rainfed conditions (Rosegrant,
Ringler, & Zhu, 2009). Within this context, water stress
caused by below-average precipitation is considered to be a
severe threat for sustainable crop production in the coming
decades (Anjum et al., 2011). It will therefore be essential to
produce more food per unit of water (Brauman et al., 2013).
Unfortunately, the occurrence of water stress in crops cannot
always be prevented, especially if irrigation infrastructure is
not available (Ceglar, Toreti, Lecerf, Van der Velde, & Den-
tener, 2016; Prasad, Staggenborg, & Ristic, 2008). For most
crops, water stress results in a decrease of leaf production, a
reduction in leaf area index (LAI), an increase in senescence
rate, and finally yield reduction (Baret et al., 2007). In the case
of water stress, actual crop growth and yield are influenced
by factors such as the amount and timing of precipitation,
soil physical properties, and soil horizonation, since all
these factors have an effect on the plant-available soil water
content (Krüger et al., 2013; Lück, Gebbers, Ruehlmann, &
Spangenberg, 2009). Nevertheless, our ability to simulate
within-field variability of water stress and the resulting
reduction in crop growth is still limited (Batchelor, Basso, &
Paz, 2002).

One effective method for estimating crop water stress is the
use of process-oriented crop growth models (Batchelor et al.,
2002). In this approach, the interaction of water stress with
plant growth is simulated with a high temporal resolution, thus
enabling yield predictions in various environments and mete-
orological conditions. Among others, such models have been
successfully applied to determine the effects of the spatial
variability of soil moisture on yield (Batchelor & Paz, 1998;
Paz et al., 1998, 1999), to investigate yield loss in corn (Zea
mays L.) in a cool climate due to abiotic stress (Žydelis, Wei-
hermüller, Herbst, Klosterhalfen, & Lazauskas, 2018), and to
validate management zones derived from satellite-based veg-
etation indices (Basso, Ritchie, Pierce, Braga, & Jones, 2001).
These process-oriented crop growth models typically rely on a
one-dimensional description of water flow in the soil column
(Vereecken et al., 2016) and require a detailed description of
the soil profile characteristics including soil hydraulic prop-
erties (Boenecke, Lueck, Ruehlmann, Gruendling, & Franko,
2018). In general, this information is obtained from general-
purpose maps (Boenecke et al., 2018) that discretize soil in
relatively large polygons. Typically, such maps are consid-
ered to be too coarse for precision agriculture and within-field

Core Ideas
• Quantitative information on soil improves large-

scale agricultural simulations.
• Water stress caused by soil characteristics affected

crop simulations.
• Water stress decreased growth and yield of the

simulated crops.
• Detailed thematic agricultural maps are relevant in

practical agricultural applications.

management (Robert, 1993) because site-specific soil hetero-
geneity is not adequately captured (Gebbers & Adamchuk,
2010; Heuvelink & Webster, 2001). As a result, a more accu-
rate spatial description of soil properties is frequently needed
(Krüger et al., 2013) to perform effective simulations within
an agricultural context.

A possible strategy to address the need for high-resolution
soil information is geophysics-based soil mapping. It has
been shown that a range of geophysical properties provide
useful proxies for soil properties in precision agriculture
(Adamchuk, Hummel, Morgan, & Upadhyaya, 2004; Allred,
Daniels, & Ehsani, 2008; Gebbers & Lück, 2005; Grisso,
Alley, Holshouser, & Thomason, 2005; Vitharana, Van
Meirvenne, Simpson, Cockx, & De Baerdemaeker, 2008).
Geophysical measurements have been particularly useful
in the definition of management zones (Brogi et al., 2019;
Galambošová, Rataj, Prokeinová, & Presinska, 2014; King
et al., 2005; Oldoni & Bassoi, 2016; Taylor, Wood, Earl, &
Godwin, 2003). Krüger et al. (2013) used electromagnetic
induction (EMI) and ground-penetrating radar (GPR) to
characterize site-specific variations in soil properties, which
improved the simulations of soil water dynamics and biomass
production on a 4.4-ha field. Wong and Asseng (2006)
used EMI to map the plant-available water content and
used simulations to illustrate how variations in available
water interacted with the amount and timing of precipitation
and yield variability within a single 70-ha field. Similarly,
Boenecke et al. (2018) used EMI as a basis for simulating
the spatial variability of soil water content and yield at the
farm scale (30 ha). Despite these successful examples, there
is a general lack of studies that link soil maps with modeling
applications at scales larger than a single farm (Krüger et al.,
2013) and for multiple crops. Successful simulations of the
spatial variability of water stress and the associated decrease
in crop productivity within large and complex agricultural
environments could lead to significant improvements in our
knowledge of the soil–plant system, thus providing valuable
support in developing long-term strategies for decisions in
agricultural management (Krüger et al., 2013).
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Within this context, the aims of this study are (a) to set up
and validate a spatially distributed crop growth model for an
agricultural area of 1× 1 km2 composed of 51 fields cultivated
with different crops using the high-resolution geophysics-
based soil map obtained by Brogi et al. (2019), and (b) to
spatially assess simulated yield relative to the yield obtained
with optimal water supply for the given climatic conditions.
For this purpose, the geophysics-based soil map was inter-
sected with land use information to obtain 80 unique soil–
crop combinations. Soil hydraulic parameters were estimated
using pedotransfer functions (PTFs) and used to run the agroe-
cosystem model AgroC to simulate vertical water fluxes and
crop growth for each unique soil–crop combination. Simu-
lations of soil water content were compared with measure-
ments obtained at two locations within the study area to assess
the reliability of the model parameterization. In a next step,
AgroC simulations of the temporal development of the LAI of
sugar beet (Beta vulgaris L.), silage maize, potato (Solanum
tuberosum L.), winter wheat (Triticum aestivum L.), winter
barley (Hordeum vulgare L.), and winter rapeseed (Brassica
napus L.) were compared with LAI calculated from normal-
ized difference vegetation index LAINDVI that was determined
from RapidEye multispectral satellite data acquired between
April and September 2016. Finally, maps of simulated agri-
cultural yield were produced to support decision making in
agricultural management.

2 MATERIALS AND METHODS

2.1 Study area

The study area is located in the Rur catchment near Selhausen,
Germany (50◦51′56″ N 6◦27′03″ E). It is a square area of
∼1 × 1 km (Figure 1). The average annual precipitation is
715 mm and the mean annual temperature is 10.2 ◦C (Rudolph
et al., 2015). The area is composed of 50 fields cultivated in
rotation with silage maize, potato, winter rape, winter wheat,
winter barley, and sugar beet. Occasionally, oat (Avena sativa
L.) is cultivated and some fields are left bare or are cov-
ered with grass. The area is characterized by a heterogeneous
agricultural management, since >20 different landowners are
managing different crop rotations (Brogi et al., 2019).

The shallow geology of the area consists of two main fea-
tures: the eastern upper terrace and the western lower terrace
of a paleo-river system. The upper terrace has an altitude of
∼110–113 m asl, whereas the lower terrace has an altitude
of ∼101–103 m asl. The two terraces are separated by a 10%
slope that dips westbound and is oriented north-northwest to
south-southeast. Both terraces are characterized by quater-
nary sediments. The upper terrace is composed of Pleistocene
sand and gravels (Röhrig, 1996) buried by aeolian sediments
of various thickness (Klostermann, 1992; Patzold et al., 2008;

F I G U R E 1 Satellite image of the study area (DigitalGlobe:
September 2016) showing the Universal Transverse Mercator
coordinates (UTM), the fields that are included in the study and the
locations of the in situ leaf area index (LAI) measurements (green
dots), the water table measurements, the meteorological station, and the
soil water content measurements (points P01 and P02)

Vandenberghe & Van Overmeeren, 1999). The lower terrace
is composed of Pleistocene loess and translocated loess from
the Holocene. Locally, sand and gravels from the Pleistocene
and Holocene are found within 2-m depth below the loess sed-
iments (Brogi et al., 2019; Röhrig, 1996). The dominant refer-
ence soil groups are Cambisols, Luvisols, Planosols, and Stag-
nosols (WRB, 2015). Previous research in this area showed
that crop performance during long periods of water scarcity is
strongly influenced by soil heterogeneity at the field scale and
beyond (Brogi et al., 2019; Rudolph et al., 2015; Stadler et al.,
2015; von Hebel et al., 2018). The study area is part of the
Terrestrial Environmental Observatories (TERENO) network
(Bogena et al., 2018; Schmidt, Reichenau, Fiener, & Schnei-
der, 2012; Simmer et al., 2015). Table 1 provides information
on the available meteorological measurements performed in
field F11 (measurement location shown in Figure 1).

Within the study area, a 2.32-ha field cropped with sugar
beet and a 9.54-ha field cropped with barley were investi-
gated in more detail (fields F01 and F11 in Figure 1). Crop
yield of both fields in 2016 was provided by the respective
farmer. In field F01, the available fresh weight of harvested
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T A B L E 1 Continuous measurements of meteorological parameters performed in 2015 and 2016 on field F11 and sensors used to perform the
measurements

Measured parameter Sensor
Air temperature and relative humidity HMP45C sensor, Vaisala

Precipitation RM-52203 tipping bucket rain gauge, R.M. Young Company

Soil temperature (0.5-cm depth) TCAV temperature thermocouple probe, Campbell Scientific

Global radiation CSAT3 three-dimensional sonic anemometer, Campbell Scientific

Wind speed CSAT3 three-dimensional sonic anemometer, Campbell Scientific

Air pressure LI7500 open-path infrared gas analyzer, LI-COR

beet roots was 61.4 t ha−1. This weight was reduced by 76.8%
to obtain the dry weight of harvested storage organs (FAO,
1999), which thus was 14.25 t ha−1 for field F01. In field F11,
7.90 t ha−1 of barley grains with 13% moisture content were
harvested (i.e., a dry weight of 6.87 t ha−1). Further data on
the average wet weight of sugar beet yield was available for
F11. On average, 83.53 t ha−1 of wet beets were harvested in
2011, 2014, and 2017, which corresponds to a dry weight of
19.38 t ha−1.

Two locations were selected within field F01 (P01 and P02
in Figure 1) to monitor volumetric soil water content from 28
Apr. 2016 to the 18 Oct. 2016. At each location, two SMT-
100 soil water content sensors (Truebner) were installed at
three depths (10, 20, and 50 cm). These sensors were cali-
brated to provide soil dielectric permittivity before installation
(Bogena, Huisman, Schilling, Weuthen, & Vereecken, 2017),
and the volumetric soil water content was obtained using the
equation of Topp, Davis, and Annan (1980).

2.2 Geophysics-based soil map

A geophysics-based soil map that provides detailed soil infor-
mation of the study area (Figure 2a) was generated by Brogi
et al. (2019). This high-resolution soil map was obtained using
multiconfiguration EMI measurements made with a CMD
Mini Explorer, Special Edition (GF Instruments) directly after
harvest of each field in 2016. The EMI survey resulted in six
maps of the apparent electrical conductivity (ECa), each with
a different depth of investigation. First, the six ECa maps with
a resolution of 1 m2 were stacked in a multiband image. In a
following step, 18 soil units were identified using information
contained in the ECa maps, commonly available soil maps,
and expert knowledge from previous studies and field obser-
vations. Following a field-by-field workflow, areas belonging
to a specific soil class were identified in each field (so-called
training areas) and a maximum likelihood was used to assign
each pixel to the most statistically probable class. The appli-
cation of this supervised classification methodology for each
field resulted in a high-resolution map with 18 areas with sim-
ilar EMI response. In a next step, 100 sampling locations were

visited in January 2017. At each location, horizon type and
thickness were recorded. In addition, a total 552 soil samples
were collected for different locations and horizons to obtain
information on the grain size distribution. Finally, all pro-
file descriptions and grain size distributions were averaged to
obtain a representative soil profile with quantitative informa-
tion on soil texture for each of the 18 soil units. A good match
was found when these soil units were compared with patterns
in crop stress visible from satellite in 2015. The 18 soil units
are divided in four groups. Group A (soil units A1a–d) rep-
resents units located in the upper terrace where aeolian sed-
iments of various thickness are found on top of coarse sand
and gravel material. Group B (soul units B1a–b and B2a–c)
represents units located on the slope that divides the upper
and the lower terrace. Group C (soil units C1a–b and C2a–b)
is composed of soils of the lower terrace where only aeolian
sediments are generally found in the top 2 m. These sediments
are locally buried with anthropogenic material (units C2a–b).
Group D (soil units D1a–d and D2a) represents units of the
lower terrace where aeolian sediments of various thickness
are found on top of coarse sand and gravel material. Locally,
anthropogenic material is found within the soil profile (unit
D2a). For more information on the derivation and validation
of this high-resolution soil map based on geophysical mea-
surements, the reader is referred to Brogi et al. (2019).

2.3 Land use and unique soil–crop
combinations

Information on crop type, emergence, and harvest dates was
recorded during 2016. The land use map shown in Figure 2b
was produced by combining field geometries retrieved from
satellite images (ESRI, 2018) with in situ differential global
positioning system (DGPS) measurements (Trimble). The
crops present in 2016 were sugar beet, silage maize, potato,
winter wheat, winter barley, and winter rapeseed. The total
area for each crop is provided in Table 2. A small percentage
of the area was covered with bare soil, oat, and grass. These
fields were excluded from analysis. Different emergence and
harvest dates were recorded in separate fields for the same
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F I G U R E 2 (a) Geophysics-based soil map of the study area provided with soil layering description, (b) land use of the study area in 2016, and
(c) map of the 80 unique soil–crop combinations resulting from the intersection of the 18 soil units of the soil map and the six simulated crops

T A B L E 2 Emergence and harvest dates (with date variability)
and total area of the six main crop types that are present in the study
area

Plant Emergence Harvest Area
ha

Sugar beet 2 May 2016 14 Nov. 2016 26.5

Silage maize 1 and 10 May 2016 20 Oct. 2016 3.5

Potato 15 May 2016 20 Oct. 2016 7.1

Winter wheat 15 Nov. 2015 29 July 2016 26.2

Winter barley 1 and 10 Oct. 2015 25 July 2016 18.2

Winter rapeseed 1 and 10 Nov. 2015 20 July 2016 9.2

crops. However, these differences were rather small (e.g., 3–
10 d for emergence and 1–5 d for harvest dates). Therefore,
it was assumed that each crop type is characterized by a sin-
gle harvest date and a maximum of two different emergence
dates in our simulations (see Table 2). In a next step, the soil
and land use map were intersected. This resulted in 80 unique
soil–crop combinations (Figure 2c).

2.4 Estimation of hydraulic parameters

The PTFs provided by Rawls and Brakensiek (1985) were
used to estimate the hydraulic parameters of each layer of
the soil profiles provided by the geophysics-based soil map.
This PTF uses the fractions of sand, silt, and clay, and the
dry bulk density to estimate the hydraulic parameters. The
dry bulk density of the fine fraction <2 mm (BD

<2) was not
directly determined during soil profile characterization and
sampling for soil texture. In the upper plow layers, a lower
BD

<2 of 1.30 g cm−3 for Ap horizons and a BD
<2 of 1.40 g

cm−3 for AB horizons were assumed due to regular tillage
(Ehlers, Köpke, Hesse, & Böhm, 1983; Unger & Jones, 1998).
For the deeper soil horizons, a BD

<2 of 1.50 g cm−3 was
assumed for fine sediments, and a BD

<2 of 1.60 g cm−3 was
assumed for 2C horizons that contained a lot of coarse mate-
rial. These assumptions were based on results from previous
sampling campaigns conducted on two fields within the study
area (fields F01 and F11 in Figure 1). Because of the high
gravel content of some soils, the bulk density of the fine earth
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fraction was corrected for gravel content according to Brak-
ensiek and Rawls (1994) by

BDt = BD
<2 + 𝐺v

(
BD

>2 − BD
<2
)

(1)

where BDt is the bulk density of the soil, BD
>2 is the bulk

density of gravel, and Gv is the volume of gravel (Flint &
Childs, 1984). The bulk density of gravel was assumed to
be that of solid quartz: BD

>2 = 2.65 g cm−3 (Brakensiek &
Rawls, 1994). The volume of gravel was calculated using

𝐺v = 𝐺w∕
(
2 − 𝐺w

)
(2)

where Gw is the weight fraction of gravel (Flint & Childs,
1984), which was available from the soil texture information
provided by the geophysics-based soil map.

Due to the high gravel content of the 2C horizon (estimated
to be ∼70%), the estimates of the hydraulic properties were
deemed to be less accurate for this horizon. To avoid intro-
ducing variation into the simulation results due to these uncer-
tain hydraulic properties, it was decided to set the hydraulic
parameters of the 2C horizon to the same values for all soils
of the upper terrace (soil units A1a–d) and for all soils of
the lower terrace (soil units D1a–d and D2a). In both cases,
the hydraulic parameters were estimated from the average soil
texture and corrected bulk density obtained from the estima-
tion procedure outlined above. Finally, the estimated saturated
hydraulic conductivity (Ks, cm h−1) of the 2C horizon was
also corrected for gravel content according to Brakensiek and
Rawls (1994):

𝐾b = 𝐾s
[
2
(
1 − 𝐺v

)
∕
(
2 + 𝐺v

)]
(3)

were Kb is the saturated hydraulic conductivity of the bulk
soil (fine earth and gravel) and Ks is the saturated conductiv-
ity of the fine earth fraction estimated by the PTF of Rawls and
Brakensiek (1985). An example of the estimated hydraulic
parameters is shown in Table 3 for soil unit A1a. For com-
parison, the hydraulic parameters of soil unit A1a obtained by
applying the same procedure but using the commonly applied
ROSETTA PTF (Zhang & Schaap, 2017) are also shown and
are used later on for comparison.

2.5 Estimation of leaf area index from
satellite observations

Leaf area index was estimated from RapidEye multispectral
satellite imagery using a logarithmic relationship to calculate
LAINDVI from vegetation indices (Ali et al., 2015). Suc-
cessful applications of this procedure have been published
by Hasan et al. (2014), Montzka et al. (2016), Post et al.
(2018), Reichenau et al. (2016), and Rudolph et al. (2015).
For this study, six RapidEye Level 3A images provided

with radiometric, sensor, and geometric correction and with
a resolution of 5 m were available. The six images were
acquired on the 14 Mar., 20 Apr., 28 May, 9 June, 12 Aug.,
and 8 Sept. 2016 and thus cover the full growing season of
various crops. Further data had to be discarded because of
dense cloud cover and relatively poor illumination conditions
during winter with associated low signal-to-noise ratios.

In a first step, the normalized difference vegetation index
(NDVI) was calculated for each image pixel. Then, the frac-
tional vegetation cover (FVCNDVI) was calculated from NDVI
using the method proposed by Ali et al. (2015). A detailed
description of this process is presented in Appendix A.
Finally, the LAINDVI was calculated using

LAINDVI =
− log

(
1 − FVCNDVI

)
𝑘 (θ)

(4)

where k(θ) is the light extinction coefficient for a given solar
zenith angle (θ). This coefficient is a measure of attenuation
of radiation in the canopy and depends on factors such as the
latitude, date, solar elevation and declination, terrain geom-
etry, as well as canopy structure and architecture (Campbell,
1986; Norman & Campbell, 1989; Propastin & Erasmi, 2010;
Ross, 2012). The k(θ) is challenging to measure in the field
and is generally assumed to be constant in most biogeochem-
ical models due to a lack of in situ measurements (Zhang,
Hu, Fan, Zhou, & Tang, 2014). For this reason, k(θ) is gener-
ally obtained from literature values or retrieved inversely by
comparing satellite observations with in situ LAI measure-
ments (Propastin & Erasmi, 2010). In this study, k(θ) was cal-
ibrated to match RapidEye observations with in situ destruc-
tive LAI measurements of winter wheat, winter barley, and
sugar beet collected throughout the growing season. For this,
a set of 45 in situ destructive LAI measurements obtained
between 22 Mar. and 7 Sept. 2016 was used. The fields
in which these measurements were performed are shown in
Figure 1a. At each sampling location, destructive measure-
ments of LAI were performed by sampling 0.5 m of plants
from three adjacent rows in wheat and barley. For sugar
beet, three individual plants were collected and crop den-
sity was determined in the field. Subsequently, the leaf area
was measured in the laboratory by using a flatbed scanner
(Epson GT-15000, Seiko Epson Corporation) and a public-
domain image analysis software (ImageJ, National Institute of
Health). Upscaling to a square meter was performed based on
the harvested area. These in situ LAI values were compared
with the respective FVCNDVI values to obtain an estimate of
k(θ) used in the calculation of LAINDVI. In this process, only
in situ measurements that were performed 8 d or less before or
after the acquisition date of a satellite record were used. The
number of in situ measurements, the R2 between FVCNDVI
and in situ LAI, and the k(θ) of each crop are shown in Table 4.
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T A B L E 3 Hydraulic parameters of soil unit A1d estimated using the Rawls and Brakensiek (Ra. & Br.) pedotransfer function (PTF) (Rawls &
Brakensiek, 1985a) and the Rosetta PTF (Zhang & Schaap, 2017)

PTF Horizon 𝛉s
a 𝛉r

b 𝛂c nd Ks
e

——— cm3 cm−3 ——— cm−1 cm h−1

Ra. & Br. Ap (loess) 0.416 0.055 0.0233 1.348 0.2605

Ra. & Br. AB (loess) 0.401 0.054 0.0216 1.349 0.2099

Ra. & Br. Bg (loess) 0.372 0.064 0.0150 1.322 0.0914

Ra & Br. 2C (coarse) 0.165 0.052 0.0087 2.000 0.0020

Rosetta Ap (loess) 0.399 0.070 0.0042 1.558 1.0387

Rosetta AB (loess) 0.389 0.069 0.0044 1.546 0.8535

Rosetta Bg (loess) 0.395 0.081 0.0041 1.516 0.0807

Rosetta 2C (coarse) 0.245 0.053 0.0087 2.000 0.0105

aθs, saturated water content.
bθr, residual water content.
cα, inverse of the air entry pressure.
dn, dimensionless parameter related to the pore size distribution.
eKs, saturated hydraulic conductivity.

T A B L E 4 Number of in situ leaf area index (LAI) measurements
for each crop, R2 between fractional vegetation cover calculated from
normalized difference vegetation index (FVCNDVI) obtained from
RapidEye images and in situ LAI, and estimated k(θ) coefficients (light
extinction coefficient for a given solar zenith angle (θ). Two sets of
records are shown when two k(θ) coefficients where calculated for the
same crop

Plant No. of measurements R2 k(𝛉)
Sugar beet 13/6 .79/.74 0.33/0.49

Silage maize NAa NA 0.25

Potato NA NA 0.25

Winter wheat 14/4 .90/.98 0.60/0.35

Winter barley 8 .75 0.65

Winter rapeseed NA NA 0.25

aNA, not applicable.

In sugar beet, the initial R2 between in situ measurements
and calculated LAINDVI after calibrating k(θ) was rather
low at .29. Therefore, in this study, two different values of
k(θ) were used to optimize the correlation between LAINDVI
and in situ LAI: one value for RapidEye data from March
to August, and one value for September (Table 4). This
improved the resulting R2 considerably to .79 (May–August)
and .74 (September). The use of two different k(θ) values
within the growing season can be justified by (a) the fact that
the relationship between NDVI and LAI saturates at high LAI
values once leaves completely cover the soil towards the end
of the growing season, and (b) a change in the geometry and
in the greenness of the leaves, and therefore in NDVI, that can
occur towards the end of the growing season and/or during
water scarcity. In fact, nonirrigated sugar beet generally suf-
fers from water stress (Hoffmann & Kenter, 2018), which is
known to have an immediate effect on leaf greenness, geom-
etry, and other plant characteristics (De Costa & Dennett,

1992) affecting NDVI and therefore LAINDVI. Late-summer
water stress in sugar beet was reported in previous studies
within the study area (Brogi et al., 2019; Rudolph et al., 2015;
Stadler et al., 2015). Similarly, two k(θ) values were used
in winter wheat, since the R2 obtained using all available
measurements was only .6. When two different values of k(θ)
were used in March–April and in May–July, much improved
R2 values of .90 and .98 were obtained. On the contrary,
barley showed an overall higher R2 of .75 when all available
LAI measurements were used to calibrate k(θ). In the case of
maize, potato, and winter rapeseed, k(θ) was set to .25, since
no ground-based LAI measurements were available for cali-
bration. This value was suggested by Ali et al. (2015) to obtain
LAINDVI maps from RapidEye satellite data in this area.

2.6 The AgroC model and simulation setup

AgroC is an agroecosystem model that couples (a) the
SOILCO2 module (Šimůnek & Suarez, 1993; Šimůnek,
Suarez, & Šejna, 1996) for simulating vertical water, heat,
and CO2 fluxes in a soil column, (b) the RothC module for
simulating the turnover of organic C (Coleman & Jenkin-
son, 1996), and (c) the SUCROS module for simulating crop
growth and organ-specific dry matter (DM) accumulation in
crops (Spitters, van Keulen, & van Kraalingen, 1989). The
coupling and validation of the SOILCO2 and the RothC mod-
ule is reported by Herbst et al. (2008). The development
and validation of the AgroC model is described in detail in
Klosterhalfen et al. (2017). A short overview of the key com-
ponents of the AgroC model relevant for this work is provided
in Appendix B.

In the SUCROS module, a root water uptake stress factor
φ(h) reduces the potential root water uptake in dry and wet
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soil conditions. This reduction factor is calculated according
to Feddes, Kowalik, and Zaradny (1978):

φ (ℎ)
⎧⎪⎨⎪⎩

ℎ0−ℎ
ℎ0−ℎ1
1

10
ℎ2−ℎ
ℎ3

for
ℎ0 ≤ ℎ ≤ ℎ1
ℎ1 ≤ ℎ ≤ ℎ2
ℎ2 ≤ ℎ ≤ ℎ3

(5)

where h0, h1, h2, and h3 (cm) are prescribed threshold pressure
heads. In this study, the threshold pressure head values were
set to h0 = 0, h1 = −20, h2 = −5,000, and h3 = −16,000 cm
according to Vanclooster, Viaene, and Diels (1995). The
simulation of root water uptake stress affects estimated C
assimilation and biomass production as described in detail in
Appendix B.

The soil column for the AgroC simulations was discretized
with a maximum node spacing of 1 cm for the deeper soil
and a finer spacing near the soil surface (0.1 cm). In general,
two different setups were used. The first setup was used for
soil profiles that have a coarse 2C horizon at the bottom of
the soil profile. This includes all soils of the upper terrace
and some soils of the lower terrace (i.e., soil units A1a–d,
D1a–d, and D2a in Figure 1). This coarse and less conductive
layer is known to have a strong influence on water flow and
crop growth (Brogi et al., 2019; von Hebel et al., 2018). For
these soils, the depth of the simulation domain was defined
to be from the surface down to a depth of 3 cm into the C2
horizon. This resulted in different depths for the simulation
domains that ranged from 52 to 137 cm depending on the soil
profile description. The lower boundary condition was set to
free drainage for these profiles. This setup and selection of
boundary conditions was required to avoid unrealistic upward
water flow from the C2 horizon that occurred for deeper soil
profiles. The second setup was used for soil profiles where
fine sediments were present at depth. In this case, the simu-
lation domain extended from the surface down to a depth of
2.0 m. A water table with variable depth was used to define a
variable pressure head as the lower boundary. The maximum
and minimum water table depth was obtained from a CTD-5
sensor (Decagon Devices) installed in a well in the western
part of field F10 (Figure 1). In 2015 and 2016, the water table
depth varied periodically over the year. The minimum depth
was 2.0 m on ∼15 January and the maximum depth was 2.6 m
on ∼15 July.

Crop-specific input parameters required for AgroC were
mainly obtained from literature values (Allen, Pereira, Raes,
& Smith, 1998; Bolinder, Angers, & Dubuc, 1997; Boons-
Prins, De Koning, & Van Diepen, 1993; Borg & Grimes,
1986; Penning de Vries, Jansen, ten Berge, & Bakema, 1989;
Spitters et al., 1989; Van Heemst, 1988; Vanclooster et al.,
1995). For each crop, a specific maximum rooting depth was
set: 150 cm for sugar beet and silage maize, 140 cm for rape-
seed, 120 cm for barley, and 100 cm for wheat and potato. The

root distribution with depth was calculated using the method
of Schamschula, Barmes, Keyes, & Gulbinat (1974). Due to
the high bulk density of the 2C horizons, it is assumed that
roots cannot grow into this layer due to high penetration resis-
tance (Daddow & Warrington, 1983). Therefore, the rooting
depth was reduced when a coarse 2C horizon was present
within the rooting depth. In such a case, the root distribution
between the surface and the 2C horizon was extracted from the
distribution that was calculated with the crop-specific maxi-
mum rooting depth (i.e., a truncated root length distribution).

Meteorological data for 2015 and 2016 were used to define
the upper atmospheric boundary condition using precipita-
tion and calculated potential grass reference evapotranspira-
tion according to the Penman–Monteith approach (Allen et al.,
1998). All simulations started on 1 July 2015 and ended on the
31 Dec. 2016, thus allowing simulation of both summer and
winter crops. Two strategies were again used to define the ini-
tial pressure heads within each soil profile. The first strategy
was applied to soil profiles where a water table with variable
depth was used as lower boundary condition. Here, a spin-up
simulation was used by repeatedly running a period of two
years (1 Jan. 2015 to 31 Dec. 2016) until the pressure head
within the soil column did not change between subsequent
simulations. This spin-up strategy resulted in very low water
content within the soil column when simulating soil profiles
with a free drainage boundary at the bottom. To avoid such
unrealistically low initial water contents in these soil profiles,
the pressure head of the underlying 2C horizon was set to
−1 cm and hydrostatic equilibrium was assumed for the rest
of the profile for initialization.

3 RESULTS AND DISCUSSION

3.1 Water content simulations for field F01

Figure 3 shows the comparison between measured and sim-
ulated soil water content dynamics at locations P01 and
P02 (see Figure 1). For this, horizonation and soil texture
were obtained from the geophysics-based soil map, whereas
bulk density was obtained from literature values and from
previous unpublished soil sampling in the area. All these
data were than propagated through two PTFs to obtain the
soil hydraulic parameters used in the AgroC simulation. In
Figures 3a–3b, the soil water content measured at P01 and
P02 is compared with the soil water content for soil units A1a
and A1d simulated with AgroC by using the PTF provided
by Rawls and Brakensiek (1985). In general, the simulated
and measured soil water content showed a similar response to
atmospheric forcing in both locations with increasing water
content after precipitation events followed by a dry-down in
periods without precipitation. For the location P01 in soil
type A1a (Figure 3a), the average RMSE between measured
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F I G U R E 3 (a) Simulated and measured soil water contents (WC, cm3 cm−3) for sugar beet grown in soil unit A1a at P01, (b) simulated and
measured soil water contents (cm3 cm−3) for sugar beet grown in soil unit A1d at P02 based on the hydraulic parameters estimated by the
pedotransfer function (PTF) of Rawls and Brakensiek (1985b), simulation performed for sugar beet grown (c) in unit A1a at P01, and (d) in unit A1d
and P02 based on the ROSETTA PTF

and simulated water content for all three soil depths was
0.056 cm3 cm−3. In general, the simulated water content
was very similar for all three depths, whereas the measured
water content considerably increased with depth and showed
a stronger response to atmospheric forcing. For location P02
in soil type A1d (Figure 3b), the average RMSE between mea-
sured and simulated water content for all three soil depths
was considerably lower at 0.032 cm3 cm−3. However, differ-
ences between measured and simulated water content were
also clearly present. For example, two peaks in measured soil
water content at 10-cm depth in August were not well captured
by the model. Also, the measured soil water content at 50 cm
was overestimated during the dry period from August onward.

This difference in performance for the two locations is
related to discrepancies between the actual soil profile and
the average soil profile of the two soil units obtained from
the geophysics-based soil map. In general, the actual horizon
depths at point P02 were similar to the horizon depths of the
soil profile of soil unit A1d. At this location, a rather thin layer
of loess sediment was deposited on a coarse sand and gravel

layer. The actual depth of the loess layer was 47 cm, whereas
it was 49 cm in soil unit A1d of the soil map. Therefore, there
was a good match between measured and simulated water con-
tent. For point P01 in soil unit A1a, a larger mismatch between
the actual and the average soil profile was observed. In partic-
ular, the actual thickness the loess layer at P01 was 160 cm,
whereas the average thickness of this layer was only 87 cm in
soil unit A1a. The differences in soil profile description are a
likely explanation for the mismatch between the simulated and
the measured water content at this location. Obviously, these
differences are due to the scale mismatch between the point
measurements and the geophysics-based soil map. This soil
map is expected to capture the main variability in soil prop-
erties at the 1-km2 scale but is not expected to capture small-
scale variabilities in profile depth and description within one
soil unit. Apparently, P01 was not a representative location for
the soil unit A1a, and therefore it could not be simulated with
the same accuracy as P02.

To investigate the sensitivity of the AgroC simulations to
the choice of the PTF, the simulations for locations P01 and
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P02 were repeated with soil hydraulic parameters estimated
from the widely used ROSETTA PTF (Figures 3c–3d). This
resulted in a stronger mismatch between measured and simu-
lated water content. In particular, the RMSE increased from
0.056 to 0.134 cm3 cm−3 for soil type A1a, and from 0.032 to
0.072 cm3 cm−3 for soil type A1d. Also, the simulated water
content obtained with the ROSETTA PTF seemed unrealisti-
cally low for both soil units. The estimated hydraulic param-
eters of soil unit A1d using the Rawls and Brakensiek as well
as the ROSETTA PTF are given in Table 3. As expected, all
soil hydraulic parameters showed differences when estimated
by the two PTFs (Table 3), whereby the largest differences
were obtained for Ks (up to five times higher Ks estimated by
the ROSETTA PTF). This higher Ks likely explains the low
simulated water contents based on the ROSETTA PTF and
therefore the increase in the mismatch between measurements
and simulation. Since the unrealistically low simulated water
content was observed for all soil units, it was preferred to use
the Rawls and Brakensiek PTF in this study. Overall, it is con-
cluded that the presented parameterization strategy provides
reasonable predictions of soil water content dynamics con-
sidering that the soil profiles were obtained from a soil map
and no calibration was used to improve the fit between mea-
sured and modeled soil water content. Alternative method-
ologies could be implemented in future research to improve
automatization in the estimation the soil hydraulic param-
eters (e.g., by using inversion strategies). However, such a
methodology was not pursued in this large-scale study since
continuous measurements of soil water content were only
available at two locations and were representative for only
two soil units, thus preventing the parametrization of the
other 16 units of the geophysics-based soil map using model
inversion.

3.2 Validation of leaf area index and yield
simulations

In a next step, the results of the AgroC simulations at the
square kilometre scale were evaluated using LAINDVI derived
from satellite remote sensing. When available, yield infor-
mation was also used for model evaluation. The results will
be presented for three groups of units: (a) the soils of the
upper terrace (units A1a–d), (b) the soils of the lower terrace
with underlying fine layers (soil units B1a–b, B2a–c, C1a–
b, and C2a–b), and (c) the soils of the lower terrace with
underlying coarse layers (soil units D1a–d and D2a). For sim-
plicity, we will refer to the second group as BC soil units.
Below, we present results for the summer crops that are gen-
erally more prone to water stress (sugar beet, silage maize,
and potato), followed by the winter crops (wheat, barley, and
rapeseeds).

3.2.1 Simulation of sugar beet

Figures 4a–4c shows the simulated and observed LAINDVI for
all soil units grown with sugar beet. The observed LAINDVI
was obtained by averaging all LAINDVI values within each
unique soil–crop combination. High LAINDVI was observed
for all BC soil units, which indicates that the crops in this area
did not suffer from water stress. A reduction in LAINDVI was
observed in soil units A1a–d and D1a–d, and the reduction
appears to be proportional to the depth of the coarse layer. In
order to capture these differences in LAI between the three
groups of soil units with the AgroC model, it was necessary to
use three different crop parameterizations. In fact, the water
stress factor simulated with AgroC reduced the accumulation
of new dry mass but had less influence on the simulated
green LAI, which was accumulated before the occurrence
of prolonged periods of water stress in July and August
(Figure 4d). Additional reduction in LAINDVI during periods
of water stress might be caused by curling and wilting of
leaves, an aspect that is also not implemented in AgroC. In
order to match the differences in observed LAI between the
three groups of soil units, the death rate of the leaves was
calibrated by increasing this rate in soil units A1a–d and
D1a–d until a meaningful drop in simulated LAI in August–
September was obtained. In the final set of simulations, three
different rates were used (one in each group of soil units). The
death rate of the leaves was highest in soil units A1a–d, inter-
mediate in D1a–d, and lowest in the BC units (see Appendix
C for a detailed description of the input parameters). Since the
death rate of the leaves was the same within each group of soil
units and all other plant parameters were identical in all sim-
ulations, the differences in LAI shown within each group of
soil units are solely due to differences in soil parameterization
in terms of layering and hydraulic properties.

In soil units A1a–d (Figure 4a), the LAINDVI was similar
for all four soil units early in the growing season (May–June).
This was well reproduced by the model simulations, despite
the strong water stress factor in this period (Figure 4d). Appar-
ently, this stress period did not strongly affect the simulated
accumulation of aboveground biomass at this initial stage of
crop development. In the second half of June and July, there
was a period with no water stress where the simulated LAI
increased rapidly. Afterwards, the absence of rain resulted in
water stress and an associated reduction of LAI in August and
September. Here, the simulated LAI was lower in soil units
with higher water stress and matched well with both the maxi-
mum value and the decrease of observed LAINDVI in response
to water stress.

In soil units BC (Figure 4b), simulated LAI and observed
LAINDVI generally matched well, but only showed limited
variability between simulations of different soil units. This
is explained by the lack of simulated water stress in this
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F I G U R E 4 Simulations for sugar beet. Simulated leaf area index (LAI, lines) and observed LAI calculated from normalized difference
vegetation index (LAINDVI, points) (a) in soil units A1a–d, (b) in soil units BC, and (c) in soil units D1a–d (confidence interval of LAINDVI shown
with whiskers bars). Simulated water stress factor (d) in soil units A1a–d, and (f) in soil units D1a–d. Note that a water stress factor of 1 does not
produce a reduction of biomass accumulation (no water stress), whereas a factor of 0 represents the strongest simulated water stress. (e) Simulated
mass of storage organs in soil units A1a–d and BC. Letters along the x axis represent months of the year, from March to November. Non-str.,
nonstressed

area. A mismatch can be observed on 9 June where simula-
tions matched the LAINDVI of soil units C1a–b and C2a–b
(LAI = 1.1–1.4) but did not match the LAINDVI of the soil
units B2a–b and B2a–c (LAI = 2.2–2.6). This is attributed
to differences in seeding and emergence dates between soil
units that are not captured in the model. This is supported
by the fact that the two groups of soil units are located
in separate fields with different owners (units B1a–b or
B2a–c in field F47 and units C1a–b or C2a–b in fields
F12 and F50).

In soil units D1a–d (Figure 4c), a general decrease in LAI
proportional to the intensity of simulated water stress fac-
tor was observed in the second half of the growing season
(similar to the soil units A1a–d). However, the simulated
stress in D1a–d is generally lower than in A1a–d since the
coarse layers are generally deeper in D1a–d and have dif-
ferent soil hydraulic parameters (Figure 4f). Again, simu-
lated LAI and observed LAINDVI matched well. Until August,
the simulated LAI for soil units D1a–c was very similar. A
considerable difference between soil units was simulated on
8 September because water stress reduced the LAI of soil
units D1a–c. This simulated behavior is well supported by the
observed LAINDVI. On the contrary, the simulations for soil
unit D1d underestimated LAINDVI, likely because water stress
was overestimated. However, this underestimation occurred
in a small portion of the total area cropped with sugar beet in
2016, since soil unit D1d represented only 0.3 ha from a total
of 26.5 ha.

The simulated dry weight of storage organs of sugar beet
expressed in tons per hectare is shown in Figure 4e for selected
soil units. The simulated weight of storage organs at harvest
of the soil units A1a–d ranged from 12.0 to 15.9 t ha−1 and
was well below the simulated weight of storage organs of soil
units BC (20.7 t ha−1). Here, a reduction in the mass allocated
to the storage organs is apparent from July until the end of
the growing season, which was proportional to the magnitude
of water stress. The simulated yield of soil units A1a–d was
compared with the actual yield at harvest of field F01 in 2016.
The area-weighted average simulated yield for soil units A1a–
d in field F01 was 14.3 t ha−1 and well matched the actual
yield of 14.2 t ha−1. The simulated weight of storage organs
at harvest of soil units BC and D1a–d was compared with the
average yield at harvest of field F11 in 2011, 2014, and 2017.
Again, the average simulated yield of 19.7 t ha−1 in 2016 was
similar to the average observed yield of 19.3 t ha−1.

3.2.2 Simulation of silage maize

The observed LAINDVI for silage maize in soil units A1a–
d (Figure 5a) showed rather homogeneous values on 28
May (LAI ∼ 0.4) and on 9 June (LAI ∼ 1.6). In contrast,
the observed LAINDVI for soil units D1a–d (Figure 5c) was
more variable on 28 May (ranging from 0.3 to 0.8). This
suggested a spatially heterogeneous presence of additional
plants such as weeds within soil units D1a–d, which are not
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F I G U R E 5 Simulations for silage maize. Simulated leaf area index (LAI, lines) and observed LAI calculated from normalized difference
vegetation index (LAINDVI, points) (a) in soil units A1a–d, (b) in soil units C1a, and (c) in soil units D1a–d (confidence interval of LAINDVI shown
with whiskers bars). Simulated water stress factor (d) in soil units A1a–d, and (f) in soil units D1a–d. Note that a water stress factor of 1 does not
produce a reduction of biomass accumulation (no water stress), whereas a factor of 0 represents the strongest simulated water stress. (e) Simulated
mass of above surface organs in soil units A1a–d and D1a. Letters along the x axis represent months of the year, from March to November. Non-str.,
nonstressed

simulated in AgroC. Afterwards, the observed LAINDVI on
9 June (LAI ∼ 0.6) was lower than in May and also lower
than that of the soil units A1a–d. This suggested the pres-
ence in units D1a–d of juvenile silage maize crops that
were not present in May and that are in an earlier growth
stage than those of soil units A1a–d. Therefore, simulations
were performed using the same crop parameterization but
with different emergence dates. The emergence date was
set to 1 May for soil units A1a–d and to 10 May for soil
units D1a–d.

The simulated LAI for soil units A1a–d (Figure 5a) sug-
gested homogeneous growth until late May. Afterwards, the
simulated LAI of these four soil units diverged and showed
considerable differences from June to August. The simulated
LAI matched the observed LAINDVI well, in general, although
the simulated LAI of soil units A1b–c somewhat underesti-
mated LAINDVI. Since water stress was relatively low in June
compared with the second part of the growing season, this
variability in simulated LAI was attributed to the combina-
tion of the early stress period in May with later stress in July
and August. The following abrupt decrease in LAINDVI was
due to the senescence stage of maize development. Interest-
ingly, differences in LAINDVI due to water stress were still
present at this development stage. In the AgroC model, senes-
cence in silage maize starts when a certain value of crop
development stage is reached. In order to match the observed
variation in LAINDVI on 8 September, four different devel-
opment stages were used to start senescence at four different

times in the soil units A1a–d. Earlier senescence was assumed
in soil units where stronger water stress was observed,
since it was apparent from field observations how stronger
stress resulted in smaller crops and early senescence. This
required a modification of the model code that is described in
Appendix C.

The simulated LAI for soil units D1a–c (Figure 5c) showed
similar development throughout the growing season. This is
consistent with the observed values of LAINDVI. In contrast
with soil units A1a–d, the water stress simulated in May was
rather low for these three soil units (see water stress factor in
Figure 5f) and did not affect the simulated LAI in the follow-
ing months. Possibly, the later emergence date for soil units
D1a–c prevented water stress from strongly affecting LAI in
the early stage of maize growth. To corroborate this hypoth-
esis, we performed the same simulation on soil unit C1a that
typically does not show water stress. The simulated LAI of
silage maize grown on this soil unit is shown in Figure 5b and
matched well with the simulated LAI of soil units D1a–c. This
confirms that the water stress factor in the early growth stage
of silage maize has a strong influence on simulated LAI. In
the case of soil unit D1d, simulated LAI was strongly reduced
by water stress and did not match LAINDVI values. Again, this
is was attributed to the very small area of this soil–crop com-
bination (0.05 ha).

Figure 5e shows the simulated aboveground biomass of
silage maize in soil units A1a–d and C1a, which is used
as a measure of agricultural yield, since silage maize is
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F I G U R E 6 Simulations for potato. Simulated leaf area index (LAI, lines) and observed LAI calculated from normalized difference vegetation
index (LAINDVI, points) (a) in soil units A1a–d (no data since no potatoes were cropped), (b) in soil units BC, and (c) in soil units D1a–d (confidence
interval of LAINDVI shown with whiskers bars). Simulated water stress factor (d) in soil units A1a–d (no data since no potatoes were cropped), and
(f) in soil units D1a–d. Note that a water stress factor of 1 does not produce a reduction of biomass accumulation (no water stress), whereas a factor
of 0 represents the strongest simulated water stress. (e) Simulated mass of above surface organs in soil unit BC and D1a–d. Letters along the x axis
represent months of the year, from March to November. Non-str., nonstressed

used for livestock feeding in this area. The simulated yield
ranged from 12.5 to 17.1 t ha−1 in soil units A1a–d and was
18.7 t ha−1 in soil unit C1a. These simulated yield values are in
good agreement with the results of Žydelis et al. (2018), who
used a comparable methodology and found similar measured
and simulated yield: ∼18.7 t ha−1 in healthy silage maize and
∼14.8 t ha−1 in stressed maize. It has to be noted that the
lower observed and simulated yield in Žydelis et al. (2018)
was caused not only by water stress, but also by lower average
air temperatures.

3.2.3 Simulation of potato

Figures 6b–6c show the simulated LAI and the observed
LAINDVI of potato in soil units C1a–b, C2a–b, and D1a–d.
The observed LAINDVI only showed small variations, except
on 12 August where moderate differences between soil
units C1a–b or C2a–b (from ∼4.4 to ∼4.7) and soil units
D1a–d (from ∼3.8 to ∼4.3) were observed. Overall, the
AgroC model was able to capture LAI development of potato
fairly well. However, Figure 6f shows that the simulated
water stress factor in soil units D1a–d was rather strong and
affected the simulated LAI (Figure 6c) and the simulated dry
aboveground biomass (Figure 6e), to some extent. However,
no clear correlation between variations in simulated LAI and
LAINDVI due to water stress was observed. This is attributed

to irrigation of the potato field cropped in 2016. Regrettably,
detailed information on the amount, timing, and location of
this irrigation was not available. Therefore, it was not possible
to meaningfully implement irrigation in our simulations. It
is expected that irrigation increased the LAINDVI in soil units
where strong water stress was simulated with AgroC, thus pre-
venting a clear expression of water stress factor in LAINDVI.

3.2.4 Simulation of winter wheat

The AgroC simulations for winter wheat are shown in
Figure 7. Similar to sugar beet, three different crop parame-
terizations were used. In order to capture observed difference
in maximum LAINDVI, it was necessary to calibrate the par-
titioning of the mass allocated to the stem and to the leaf as
described in detail in Appendix C. As in the case of sugar beet,
one parameterization was used for each group of soil units
shown in Figures 7a–7c. Thus, the variability in simulated
LAI between soil units A1a–d and between soil units D1a–d
can only be the results of different soil parameterizations. As
shown in Figure 7, water stress was rather low throughout
the growing season for winter wheat and was limited to
three distinct periods: late February and March, May, and
finally July. It is important to note that the simulated stress
factor in February and March is caused by high water content
(saturation).
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F I G U R E 7 Simulations for winter wheat. Simulated leaf area index (LAI, lines) and observed LAI calculated from normalized difference
vegetation index (LAINDVI, points) (a) in soil units A1a–d, (b) in soil units BC, and (c) in soil units D1a–d (confidence interval of LAINDVI shown
with whiskers bars). Simulated water stress factor (d) in soil units A1a–d, and (f) in soil units D1a–d. Note that a water stress factor of 1 does not
produce a reduction of biomass accumulation (no water stress), whereas a factor of 0 represents the strongest simulated water stress. (e) Simulated
crop yield in soil unit A1a, A1d, BC, D1a, and D1d. Letters along the x axis represent months of the year, from November to August. Non-str.,
nonstressed

In soil units A1a–d (Figure 7a), simulated LAI is consistent
with observed LAINDVI. Both simulated and observed LAI
showed little variation between soil units A1a–c, and lower
values for soil unit A1d on 28 May and 9 June. In soil units
BC (Figure 7b), the observed LAINDVI was generally higher
than in the other soil units. Here, the LAINDVI values between
all soil units were rather similar throughout the year, and the
simulated LAI matched the observed LAINDVI well. A sim-
ilar result was obtained for soil units D1a–d, although the
variability between soil units was somewhat higher than in
the BC soil units. In the simulations, the variability between
soil units D1a–c and D2a was not clearly reproduced (Fig-
ure 7c) because of low simulated water stress. On the con-
trary, soil unit D1d showed lower simulated LAI and observed
LAINDVI on 28 May and 9 June compared with the other
soil units.

Despite the lower magnitude compared with summer
crops, water stress affected simulated dry mass of wheat
grains at harvest for the different soil units (Figure 7e). This
is due to the fact that the storage organs grow closer to the
end of the growing season (June and July) and are thus more
influenced by water stress than by LAI (Steduto, Hsaio,
Fereres, & Raes, 2012). Here, nonstressed soil units produced
7.7 t ha−1 of dry grains, whereas the most stressed soil
unit produced only 6.6 t ha−1. These values are comparable
with actual yields observed in other studies (Han & Yan,
2017; Káš, Mühlbachova, & Kusá, 2018; Liu, Ren, Gao,
Yan, & Li, 2017) for winter wheat growing under no- and
low-water-stress conditions.

3.2.5 Simulation of winter barley

The simulated and observed LAI for winter barley are shown
in Figures 8a–8c. Here, the same crop parameterization was
used for all simulations except for the emergence date, which
was set to 10 December for soil units A1a–d and to 1 Decem-
ber for the BC soil units and for soil units D1a–d. These dif-
ferent emergence dates resulted in lower simulated LAI for
soil units A1a–d compared with D1a–d on 20 March, which
is consistent with the observed LAINDVI. Throughout the rest
of the growing season, the variability in LAINDVI between the
soil units was rather strong but obviously not related to simu-
lated water stress in soil units A1a–d and D1a–d (Figures 8d
and 8f) or to the specific characteristics of each soil unit in BC.
In summary, the simulated LAI of winter barley did not match
the observed LAINDVI as well as in the simulation of other
crops but reproduced the general trend of LAINDVI develop-
ment after selecting appropriate emergence dates. One reason
for this is that LAINDVI showed differences between soil units,
which are probably correlated to other factors than water stress
such as crop management.

As discussed in the case of wheat, barley yield is more
sensitive to changes in growing conditions during the period
when the grain number is set (Steduto et al., 2012). For this
reason, the water stress simulated in May had an influence on
the final grain yield (Figure 8e). The simulated dry weight of
barley grains in soil units D1a–d and BC in field F11 was 6.9
t ha−1. This simulated value for field F11 was identical to the
harvest reported by the field owner in 2016.
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F I G U R E 8 Simulations for winter barley. Simulated leaf area index (LAI, lines) and observed LAI calculated from normalized difference
vegetation index (LAINDVI, points) (a) in soil units A1a–d, (b) in soil units BC, and (c) in soil units D1a–d (confidence interval of LAINDVI shown
with whiskers bars). Simulated water stress factor (d) in soil units A1a–d, and (f) in soil units D1a–d. Note that a water stress factor of 1 does not
produce a reduction of biomass accumulation (no water stress), whereas a factor of 0 represents the strongest simulated water stress. (e) Simulated
crop yield in soil units BC, and Da–d. Letters along the x axis represent months of the year, from November to August. Non-str., nonstressed

F I G U R E 9 Simulations for winter rapeseed. Simulated leaf area index (LAI, lines) and observed LAI calculated from normalized difference
vegetation index (LAINDVI, points) (a) in soil units A1a–d, (b) in soil units BC, and (c) in soil units D1a–d (confidence interval of LAINDVI shown
with whiskers bars). Simulated water stress factor (d) in soil units A1a–d, and (f) in soil units D1a–d. Note that a water stress factor of 1 does not
produce a reduction of biomass accumulation (no water stress), whereas a factor of 0 represents the strongest simulated water stress. (e) Simulated
crop yield in soil unit A1a–d and BC. Letters along the x axis represent months of the year, from November to August. Non-str., nonstressed

3.2.6 Simulation of winter rapeseed

Simulations for winter rapeseed were performed using a
single crop parameterization, but the emergence date was
set to 10 November for soil units A1a–d and to 1 November
for soil units BC and D1a–d based on observed LAINDVI.
Figures 9a–9c shows the simulated LAI and the LAINDVI of

winter rapeseed, whereas Figures 9d and 9f show the water
stress factor simulated in soil units A1a–d and D1a–d. A
single peak of water stress was present in May, and no other
stress was obtained throughout the rest of the simulation. In
the absence of extended periods of water stress, only small
differences in simulated LAI were observed between different
soil units. In contrast, some differences in observed LAINDVI



16 of 24 BROGI ET AL.Vadose Zone Journal

was found between soil units A1a–d, especially for 14 March
and 20 April (Figure 9a). It must be noted that the simulated
LAI in May shows variations that are in agreement with the
observed LAINDVI of March and April. Nevertheless, these
results suggest that the simulations underestimate the vari-
ability observed in the LAINDVI. From 9 June, both simulated
and observed LAI did not vary substantially between soil
units A1a–d and showed a similar value (LAI ∼ 6.1).

The simulated LAI for soil units C1a–b, C2a–b, and D1a–d
(Figures 9b–9c) did not match the observed LAINDVI at all
times. Obvious differences between simulated and observed
LAI were present at 14 March and at 20 April. In March, the
LAINDVI of soil units D1a–d showed considerable differences
with LAINDVI values ranging from 3.8 for soil unit D1a to
4.9 for soil unit D1c. This variability was not captured by the
LAI simulations. The reason for this difference in LAINDVI
may be associated with factors that are not considered
in our modeling approach (e.g., fertilization or different
management of separated fields). In April, the simulated LAI
considerably overestimated the observed LAINDVI. Here,
the low observed LAINDVI may have been influenced by the
blooming of winter rapeseed that occurs in April or May,
which reduces crop greenness and chlorophyll concentration.
This has an influence on the NDVI estimated from satellite
remote sensing and may have resulted in lower LAINDVI
values. It is possible that the LAINDVI values of soil units
A1a–d were not affected by this because the late emergence
date may have delayed the blooming stage. Overall, it is
important to note that the simulated water stress factor had a
rather low impact on winter rapeseed growth.

3.2.7 Leaf area index simulations at the
square kilometer scale

Figure 10 compares the simulated LAI of the 80 unique
soil–crop combinations with the LAINDVI derived from the
six RapidEye observations. Generally, the spatial pattern in
the observed LAINDVI is well reproduced and the simulated
emergence, growth, and senescence of each crop are well
timed. However, a closer inspection allows to identify several
discrepancies. For example, differences in simulated LAI
and observed LAINDVI of silage maize (fields F13b, F41, and
F42 in Figure 10) and sugar beet (fields F01, F05, F12, F13a,
F44, and F46–51 in Figure 10) can be observed in August
and September (Figures 10e–10f). In this case, the general
average of each soil–crop combination is well captured
(Figures 4a–4c and 5a–5c). However, a lower spatial vari-
ability in simulated LAI was found compared with the
observations. As mentioned above, the geophysics-based
soil map successfully captured the main spatial variability
in soil properties at the square kilometer scale, and thus the
main patterns in soil-controlled water stress and the resulting

differences in crop development. However, due to the concept
of soil units, it is not expected that the geophysics-based soil
map can reproduce pixel-scale variability of LAINDVI that
occurs within a single soil–crop unit. A lower spatial vari-
ability of simulated LAI compared with observed LAINDVI at
the early growth stage of winter rapeseed was also observed
(Figure 10a). This might be caused by the absence of early
water stress in the simulation of winter rapeseed (Figure 9a),
but it may also be related to different management of adjacent
fields that is not considered in the methodology. The effects
of local management are considered to be of secondary
importance at the square kilometer scale and cannot be mean-
ingfully simulated with typically available information. Simi-
lar considerations apply to the case of within-field variability
associated with soil compaction and tractors lines, which was
evident in the fields cropped with potato (F40 in Figure 10)
and locally in sugar beet (fields F01, F05, F12, F13a, F44, and
F46–51 in Figure 10). Overall, the agroecosystem simulations
for the growing season 2016 were capable of reproducing the
growth of the six investigated crops, and the simulated LAI is
generally consistent with the LAINDVI observed from space.

3.3 Crop yield simulations at the square
kilometer scale

The simulated yield at harvest for each soil–crop combina-
tion of sugar beet, silage maize, winter wheat, and winter bar-
ley is shown in Figure 11. In these maps, a value of 100%
represents crops that have grown under optimal water supply
(potential yield) for the entire growing season. Lower percent-
ages are shown in the case of water-limited growth and corre-
spond with a lower dry weight at harvest of storage organs (or
aboveground biomass in the case of silage maize) relative to
optimal water supply. All four crops achieved a 100% yield for
the simulations of the BC soil units (except maize, which was
not grown on units BC). For these soils, crops did not expe-
rience water stress, since the shallow ground water table pro-
vided sufficient water to guarantee optimal growth in 2016.
On the contrary, a lower simulated yield was apparent for the
soil units with underlying coarse layers. In this case, the yield
of each crop showed a reduction that is largely proportional to
the intensity of water stress. The lowest yield was commonly
observed for soils with a shallow 2C layer with a large amount
of gravels.

The simulated dry weight of storage organs in sugar beet
was strongly influenced by soil type and ranged between
58 and 77% in soil units A1a–d, and between 62 and 92%
in soil units D1a–d (Figure 11a). Silage maize simulated
in soil units A1a–d (Figure 11b) had a similar range but
higher average yield compared with sugar beet (from 67 to
89%). Interestingly, the relative silage maize yield was much
higher than that of sugar beet in soil units D1a–c and showed
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F I G U R E 10 Comparison between observed LAI calculated from normalized difference vegetation index (LAINDVI, above) and simulated leaf
area index (LAI, below) on (a) 14 Mar., (b) 20 Apr., (c) 28 May, (d) 9 June, (e) 12 Aug., and (f) 8 Sept. 2016. Field codes are colored according to the
crop type (blue for sugar beet, purple for maize, brown for potato, and yellow for winter rapeseed). Fields are shown in gray when the simulated crop
is not yet cropped or has already been harvested
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F I G U R E 11 Maps of the simulated agricultural yield in 2016 of (a) sugar beet, (b) silage maize, (c) winter wheat, and (d) winter barley

much lower variability (from 99 to 100%). For the winter
crops, simulated yield was still influenced by soil type, but
the impact was generally lower, as evidenced by the higher
average relative yield as compared with the summer crops. In
particular, the simulated yield ranged from 86 to 94% for win-
ter wheat (Figure 11c) and from 81 to 98% for winter barley
(Figure 11d).

The maps presented in Figure 11 have valuable practical
applications in the maximization of agricultural productivity.
For example, the selection of a specific crop type could be
based on the characteristics of the soils that are found in a
given field. Furthermore, the seeding date of specific crops
could be selected after investigating the precipitation recorded
in the previous weeks and the forecasted meteorological con-
ditions. Moreover, the proposed maps and simulation strategy
could provide valuable information on the amount and timing

of irrigation that is needed to reduce water stress and maxi-
mize crop yield.

4 SUMMARY AND CONCLUSIONS

In this study, the growth of six crops in 2016 within a
1-km × 1-km area was simulated using the agroecosystem
model AgroC using data from a high-resolution geophysics-
based soil map. Soil hydraulic parameters were estimated
from soil texture and bulk density using the PTF of Rawls and
Brakensiek (1985). First, simulated water content of two soil
units was compared with measured soil water content at three
depths. A low RMSE of 0.032 cm3 cm−3 was obtained when
the soil profile provided by the geophysics-based soil map
well represented the actual soil profile. Additional simulations
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performed using soil hydraulic parameters estimated using
the ROSETTA PTF resulted in a much higher RMSE between
measured and simulated water content, which was attributed
to the higher estimated values of the saturated hydraulic con-
ductivity. Future research could explore the use of more auto-
mated methodologies for the estimation of hydraulic param-
eters (e.g., inversion strategies), as well as the analysis of
uncertainty in the simulation of soil water content dynamics.

In a next step, agroecosystem simulations were performed
for six crops: sugar beet, silage maize, potato, winter wheat,
winter barley, and winter rapeseed. In general, it was found
that the magnitude of simulated water stress was a function
of the crop type and of the soil characteristics. Higher water
stress occurred in coarser soils and summer crops. Overall,
the simulated LAI was found to be consistent with six maps of
observed LAINDVI, which were derived from RapidEye satel-
lite data by using vegetation indices and ground truth informa-
tion. Inconsistencies between simulations and observations
were locally present (e.g., during the blooming of winter rape-
seed, in the case of irrigation, or when the effect of field-scale
management was not reproduced).

Water stress had an impact on the simulated yield at harvest
for each of the investigated crops. Simulated yield of sugar
beet and winter barley matched the actual harvest in 2016 in
two fields within the study area, and the simulated yield of
silage maize and winter wheat corresponded to literature val-
ues. Maps of the simulated yield were produced for these four
crops, which showed an expected agricultural yield of 100% in
soil units with a shallow ground water table. In soil units with
underlying coarse soil texture layers, simulated yield showed
a reduction that was largely proportional to the intensity of
water stress. The simulated yield ranged between 59 and 92%
for sugar beet, between 67 and 99% for silage maize, between
86 and 94% for winter wheat, and between 81 and 98% for
winter barley.

Overall, this study showed that quantitative spatial infor-
mation on soil heterogeneity derived from geophysics-based
soil mapping allowed precise agroecosystem simulations of
multiple crops on a large 1-km × 1-km area where water stress
is strongly influenced by soil characteristics. Future studies
could be focused on the quantification of the added value of
geophysics-based soil mapping in comparison, for example,
with commonly available and general-purpose soil maps. The
thematic maps produced with the results of these simulations
are relevant in practical agricultural applications, such as the
selection of a specific crop type for a given soil or the selection
of the best seeding date for crops that are particularly suscep-
tible to water stress in the early growth stage. For this, addi-
tional information could be obtained by considering precipi-
tation recorded in previous weeks or precipitation forecasted
by weather models. By extending the simulation period (e.g.,
30 yr), the proposed strategy could also allow the evaluation of
the cost–benefit ratio of long-term strategies such as the most

suitable crop rotation. Finally, the proposed maps and simula-
tion strategy might provide valuable insights about irrigation
scheduling and quantity by implementing information from
forecasted precipitation.
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hermüller, L., … Vereecken, H. (2008). Multiyear heterotrophic
soil respiration: Evaluation of a coupled CO2 transport and carbon
turnover model. Ecological Modelling, 214, 271–283. https://doi.org/
10.1016/j.ecolmodel.2008.02.007

https://doi.org/10.1016/S1161-0301\05002\05100101-6
https://doi.org/10.1016/j.rse.2005.10.021
https://doi.org/10.1016/S0022-1694\05001\05100464-4
https://doi.org/10.3390/s17010208
https://doi.org/10.2136/vzj2018.03.0055
https://doi.org/10.1016/S0167-8809\05096\05101121-8
https://doi.org/10.13031/2013.30125
https://doi.org/10.1016/0341-8162\05094\05190056-6
https://doi.org/10.1016/0341-8162\05094\05190056-6
https://doi.org/10.1088/1748-9326/8/2/024030
https://doi.org/10.1016/j.geoderma.2018.08.001
https://doi.org/10.1016/j.geoderma.2018.08.001
https://doi.org/10.1016/0168-1923\05086\05190010-9
https://doi.org/10.1016/j.agrformet.2015.10.004
https://doi.org/10.1016/0167-1987\05083\05190027-2
https://doi.org/10.1016/0167-1987\05083\05190027-2
https://doi.org/10.2136/sssaspecpub13.c10
https://doi.org/10.1038/nature10452
https://doi.org/10.1038/nature10452
https://doi.org/10.17221/34/2013-RAE
https://doi.org/10.1126/science.1182768
https://doi.org/10.1126/science.1182768
https://doi.org/10.9755/ejfa.2017.v29.i12.1567
https://doi.org/10.1016/j.isprsjprs.2014.02.005
https://doi.org/10.1016/j.ecolmodel.2008.02.007
https://doi.org/10.1016/j.ecolmodel.2008.02.007


BROGI ET AL. 21 of 24Vadose Zone Journal

Heuvelink, G., & Webster, R. (2001). Modelling soil variation:
Past, present, and future. Geoderma, 100, 269–301. https://doi.org/
10.1016/S0016-7061(01)00025-8

Hoffmann, C. M., & Kenter, C. (2018). Yield potential of sugar beet:
Have we hit the ceiling? Frontiers in Plant Science, 9. https://doi.
org/10.3389/fpls.2018.00289

Káš, M., Mühlbachova, G., & Kusá, H. (2018). Winter wheat
yields under different soil-climatic conditions in a long-term field
trial. Plant, Soil and Environment, 65, 27–34. https://doi.org/
10.17221/606/2018-PSE

King, J., Dampney, P., Lark, R., Wheeler, H., Bradley, R., & Mayr, T.
(2005). Mapping potential crop management zones within fields: Use
of yield-map series and patterns of soil physical properties identified
by electromagnetic induction sensing. Precision Agriculture, 6, 167–
181. https://doi.org/10.1007/s11119-005-1033-4

Klosterhalfen, A., Herbst, M., Weihermüller, L., Graf, A., Schmidt,
M., Stadler, A., … Vereecken, H. (2017). Multi-site calibration
and validation of a net ecosystem carbon exchange model for
croplands. Ecological Modelling, 363, 137–156. https://doi.org/10.
1016/j.ecolmodel.2017.07.028

Klostermann, J. (1992). Das Quartär der Niederrheinischen Bucht:
Ablagerungen der letzten Eiszeit am Niederrhein. Krefeld, Germany:
Geologisches Landesamt Nordrhein-Westfalen.

Krüger, J., Franko, U., Fank, J., Stelzl, E., Dietrich, P., Pohle, M., &
Werban, U. (2013). Linking geophysics and soil function modeling:
An application study for biomass production. Vadose Zone Journal,
12(4). https://doi.org/10.2136/vzj2013.01.0015

Liu, X., Ren, Y., Gao, C., Yan, Z., & Li, Q. (2017). Compensation effect
of winter wheat grain yield reduction under straw mulching in wide-
precision planting in the North China Plain. Scientific Reports, 7(1).
https://doi.org/10.1038/s41598-017-00391-6

Lück, E., Gebbers, R., Ruehlmann, J., & Spangenberg, U. (2009). Elec-
trical conductivity mapping for precision farming. Near Surface Geo-
physics, 7, 15–25. https://doi.org/10.3997/1873-0604.2008031

Montzka, C., Jagdhuber, T., Horn, R., Bogena, H. R., Hajnsek, I., Reig-
ber, A., & Vereecken, H. (2016). Investigation of SMAP fusion algo-
rithms with airborne active and passive L-band microwave remote
sensing. IEEE Transactions on Geoscience and Remote Sensing, 54,
3878–3889. https://doi.org/10.1109/TGRS.2016.2529659

Norman, J. M., & Campbell, G. S. (1989). Canopy structure. In R. W.
Pearcy, J. R. Ehleringer, H. A. Mooney, & P. W. Rundel (Eds.),
Plant physiological ecology (pp. 301–325). Dordrecht, the Nether-
lands: Springer. https://doi.org/10.1007/978-94-010-9013-1_14

Oldoni, H., & Bassoi, L. H. (2016). Delineation of irrigation manage-
ment zones in a Quartzipsamment of the Brazilian semiarid region.
Pesquisa Agropecuária Brasileira, 51, 1283–1294. https://doi.
org/10.1590/S0100-204X2016000900028

Patzold, S., Mertens, F., Bornemann, L., Koleczek, B., Franke, J., Feil-
hauer, H., & Welp, G. (2008). Soil heterogeneity at the field scale:
A challenge for precision crop protection. Precision Agriculture, 9,
367–390. https://doi.org/10.1007/s11119-008-9077-x

Paz, J., Batchelor, W., Colvin, T., Logsdon, S., Kaspar, T., & Karlen,
D. (1998). Analysis of water stress effects causing spatial yield
variability in soybeans. Transactions of the ASAE, 41, 1527–1534.
https://doi.org/10.13031/2013.17284

Paz, J., Batchelor, W., Colvin, T., Logsdon, S., Kaspar, T., Karlen, D.,
… Pautsch, G. (1999). Model-based technique to determine vari-
able rate nitrogen for corn. Agricultural Sysyems, 69–75. https://doi.
org/10.1016/S0308-521X(99)00035-9

Penning de Vries, F., Jansen, D., ten Berge, H., & Bakema, A. (1989).
Simulation of ecophysiological processes of growth in several annual
crops. Wageningen, the Netherlands: Pudoc.

Post, H., Hendricks Franssen, H.-J., Han, X., Baatz, R., Montzka, C.,
Schmidt, M., & Vereecken, H. (2018). Evaluation and uncertainty
analysis of regional-scale CLM4. 5 net carbon flux estimates. Bio-
geosciences, 15, 187–208. https://doi.org/10.5194/bg-15-187-2018

Prasad, P., Staggenborg, S., & Ristic, Z. (2008). Impacts of drought
and/or heat stress on physiological, developmental, growth, and
yield processes of crop plants In L. R. Ahuja, V. R. Reddy, S. A.
Saseendran, & Q. Yu (Eds.), Response of crops to limited water:
Understanding and modeling water stress effects on plant growth
processes (pp. 301–355). Madison, WI: ASA, CSSA, and SSSA.
https://doi.org/10.2134/advagricsystmodel1.c11

Propastin, P., & Erasmi, S. (2010). A physically based approach to model
LAI from MODIS 250 m data in a tropical region. International Jour-
nal of Applied Earth Observation and Geoinformation, 12, 47–59.
https://doi.org/10.1016/j.jag.2009.09.013.

Rawls, W. J., & Brakensiek, D. (1985). Prediction of soil water prop-
erties for hydrologic modeling. In E. B. Jones & T. J. Ward (Eds.),
Watershed management in the eighties (pp. 293–299). Reston, VA:
American Society of Civil Engineers.

Reichenau, T. G., Korres, W., Montzka, C., Fiener, P., Wilken, F.,
Stadler, A., … Schneider, K. (2016). Spatial heterogeneity of leaf
area index (LAI) and its temporal course on arable land: Com-
bining field measurements, remote sensing and simulation in a
comprehensive data analysis approach (CDAA). PLoS ONE, 11(7).
https://doi.org/10.1371/journal.pone.0158451

Robert, P. (1993). Characterization of soil conditions at the field
level for soil specific management. Geoderma, 60, 57–72.
https://doi.org/10.1016/0016-7061(93)90018-G

Röhrig, W. (1996). Bodenkarte 1:5000 zur landwirtschaftlichen Stan-
dorterkundung (BK5ÖL). Krefeld, Germany: Geologischen Lan-
desamt Nordrhein-Westfalien.

Rosegrant, M. W., Ringler, C., & Zhu, T. (2009). Water for agri-
culture: Maintaining food security under growing scarcity. Annual
Review of Environment and Resources, 34, 205–222. https://doi.
org/10.1146/annurev.environ.030308.090351

Ross, J. (2012). The radiation regime and architecture of plant stands.
Dordrecht, the Netherlands: Springer Science & Business Media.

Rudolph, S., van der Kruk, J., Von Hebel, C., Ali, M., Herbst, M.,
Montzka, C., … Weihermüller, L. (2015). Linking satellite derived
LAI patterns with subsoil heterogeneity using large-scale ground-
based electromagnetic induction measurements. Geoderma, 241,
262–271. https://doi.org/10.1016/j.geoderma.2014.11.015

Sánchez, P. A. (2010). Tripling crop yields in tropical Africa. Nature
Geoscience, 3, 299–300. https://doi.org/10.1038/ngeo853

Schamschula, R. G., Barmes, D. E., Keyes, P. H., & Gulbinat,
W. (1974). Prevalence and interrelationships of root. Community
Dentistry and Oral Epidemiology, 2, 295–304. https://doi.org/10.
1111/j.1600-0528.1974.tb01800.x

Schmidt, M., Reichenau, T. G., Fiener, P., & Schneider, K. (2012).
The carbon budget of a winter wheat field: An eddy covari-
ance analysis of seasonal and inter-annual variability. Agricul-
tural and Forest Meteorology, 165, 114–126. https://doi.org/10.1016/
j.agrformet.2012.05.012

Simmer, C., Thiele-Eich, I., Masbou, M., Amelung, W., Bogena, H.,
Crewell, S., … Huisman, J. A. (2015). Monitoring and modeling the
terrestrial system from pores to catchments: The transregional collab-

https://doi.org/10.1016/S0016-7061\05001\05100025-8
https://doi.org/10.1016/S0016-7061\05001\05100025-8
https://doi.org/10.3389/fpls.2018.00289
https://doi.org/10.3389/fpls.2018.00289
https://doi.org/10.17221/606/2018-PSE
https://doi.org/10.17221/606/2018-PSE
https://doi.org/10.1007/s11119-005-1033-4
https://doi.org/10.1016/j.ecolmodel.2017.07.028
https://doi.org/10.1016/j.ecolmodel.2017.07.028
https://doi.org/10.2136/vzj2013.01.0015
https://doi.org/10.1038/s41598-017-00391-6
https://doi.org/10.3997/1873-0604.2008031
https://doi.org/10.1109/TGRS.2016.2529659
https://doi.org/10.1007/978-94-010-9013-1_14
https://doi.org/10.1590/S0100-204X2016000900028
https://doi.org/10.1590/S0100-204X2016000900028
https://doi.org/10.1007/s11119-008-9077-x
https://doi.org/10.13031/2013.17284
https://doi.org/10.1016/S0308-521X\05099\05100035-9
https://doi.org/10.1016/S0308-521X\05099\05100035-9
https://doi.org/10.5194/bg-15-187-2018
https://doi.org/10.2134/advagricsystmodel1.c11
https://doi.org/10.1016/j.jag.2009.09.013
https://doi.org/10.1371/journal.pone.0158451
https://doi.org/10.1016/0016-7061\05093\05190018-G
https://doi.org/10.1146/annurev.environ.030308.090351
https://doi.org/10.1146/annurev.environ.030308.090351
https://doi.org/10.1016/j.geoderma.2014.11.015
https://doi.org/10.1038/ngeo853
https://doi.org/10.1111/j.1600-0528.1974.tb01800.x
https://doi.org/10.1111/j.1600-0528.1974.tb01800.x
https://doi.org/10.1016/j.agrformet.2012.05.012
https://doi.org/10.1016/j.agrformet.2012.05.012


22 of 24 BROGI ET AL.Vadose Zone Journal

orative research center on patterns in the soil–vegetation–atmosphere
system. Bulletin of the American Meteorological Society, 96, 1765–
1787. https://doi.org/10.1175/BAMS-D-13-00134.1
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where NIR is the near-infrared (760–850 nm) and RED is the
red spectral band (630–685 nm). In a next step, the FVCNDVI
of each image was calculated using

FVCNDVI =
NDVI − NDVIs
NDVIv − NDVIs

(A2)

where NDVIs is the NDVI for bare soil and NDVIv is the
value at the fully vegetated state (Beck, Atzberger, Høgda,
Johansen, & Skidmore, 2006; Xiao & Moody, 2005; Zeng,
Rao, DeFries, & Hansen, 2003). The values of NDVIs
and NDVIv were estimated through histogram evaluation
(NDVIs = −0.05 and NDVIv = 0.81).

APPENDIX B
In this appendix, a short description of the agroecosys-
tem model AgroC is provided. This model couples (a) the
SOILCO2 module (Šimůnek & Suarez, 1993; Šimůnek et al.,
1996), (b) the RothC module (Coleman & Jenkinson, 1996),
and (C) the SUCROS module (Spitters et al., 1989). The
SOILCO2 module solves the one-dimensional Richard’s
equation that describes water flow in a given soil profile:

∂θw
∂𝑡

= ∂
∂𝑧

[
𝐾 (ℎ)

(∂ℎ
∂𝑧

− 1
)]

−𝑄 (B1)

where h (cm) is the pressure head, θw (cm3 cm−3) is the vol-
umetric water content, K(h) (cm h−1) is the hydraulic con-
ductivity as a function of pressure head, t is time (h), z is
the vertical coordinate (cm), and Q (cm3 cm−3 h−1) is the
source–sink term accounting for water uptake by plant roots.
The water retention and the unsaturated hydraulic properties
as a function of pressure head are described by the Mualem–
van Genuchten (van Genuchten, 1980) model:

θw (ℎ) = θr +
θs − θr(

1 + |αℎ|𝑛)𝑚 (B2)

and

𝐾 (ℎ) = 𝐾s𝑆
1∕2
e

[
1 −

(
1 − 𝑆

1∕𝑚
e

)𝑚]2
(B3)

where θr and θs (cm3 cm−3) are the residual and saturated
water content, respectively, Ks is the saturated hydraulic con-
ductivity (cm h−1), Se is the relative saturation (dimension-
less), α is the inverse of the air entry pressure (cm−1), n is a
dimensionless parameter related to the pore size distribution,
and the parameter m is set equal to 1 − 1/n.

In the SUCROS module, potential evapotranspiration of a
crop (ETp,crop) growing under optimal conditions is calculated
by multiplying the potential grass reference evapotranspira-
tion with a crop-specific coefficient Kc. Here, the potential
grass reference evapotranspiration is calculated from meteo-
rological data using the Penman–Monteith approach (Allen

et al., 1998). The value of the Kc coefficient varies through-
out the growing season with crop development stage. Then,
ETp,crop is split into potential soil evaporation Ep (cm h−1)
and potential transpiration Tp (cm h−1) according to Beer’s
law:

𝐸p = ETp,crop × exp(−0.6LAI) (B4)

𝑇p = ETp,crop − 𝐸p − 𝐸i (B5)

where LAI is the green leaf area index and Ei (cm h−1) is
the water removed by evaporation of intercepted rainfall. The
latter is calculated using

𝐸i =
(
ETp,crop − 𝐸p

) 𝐶i
𝑆i

(B6)

where Ci (cm) is the interception storage at a specific time
step and Si (cm) is the canopy interception storage capacity
that is assumed to be proportional to the LAI.

The potential root water uptake Sp (cm3 cm−3 h−1) is a
function of the potential transpiration Tp over depth z accord-
ing to the relative root density distribution. Actual root water
uptake is calculated from the potential root water uptake using

𝑄 (𝑧, ℎ) = φ (ℎ)𝑆p (𝑧) (B7)

where φ (–) is a root water uptake stress factor that reduces
the potential root water uptake in dry and wet soil conditions.
This reduction factor is calculated using Equation 5 (Feddes
et al., 1978). Finally, the actual transpiration is provided by
the integration of the actual root water uptake over depth:

𝑇a = ∫
𝐿r

0
𝑄 (𝑧, ℎ) d𝑧 (B8)

where Lr is the rooting depth (cm). At crop emergence, an
initial rooting depth is specified for each crop. Thereafter,
rooting depth increases in dependence of solar radiation, tem-
perature, biomass production, and partitioning to the rooting
system until the maximum rooting depth is reached. The root
length density distribution with depth was calculated from a
dimensionless weighting factor specified for relative rooting
depths (Schamschula et al., 1974).

Biomass production is estimated from the C assimilated by
the plant, which mainly depends on temperature and solar irra-
diation. Here, the potential assimilation is scaled by the ratio
Ta/Tp to also account for water stress. The glucose assimila-
tion rate Ag (kg CH2O m−2 h−1) is equal to about 30/44 of
the total CO2 assimilation rate A (kg CO2 m−2 h−1), which
is obtained by integrating the total instantaneous assimilation
rate AL,T (kg CO2 m−2 leaf surface h−1) over the leaf area. In
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a second step, the net growth rate of DM per unit area (GWT,
kg DM m−2 h−1) is calculated using

GWT =
𝐴g −𝑅m

ASRQ
(B9)

where ASRQ (kg DM kg−1 h−1) is a coefficient that repre-
sents the organic-specific conversion efficiency from glucose
to DM. The Rm (kg CH2O m−2 h−1) is the total maintenance
respiration demand, which is controlled by plant senescence
and temperature. After determining the net growth, the pro-
duced biomass is partitioned to the crop organs to describe
DM accumulation in the roots, storage organs, stems, and
leaves. This partitioning is crop specific and a function of
development stage.

During the crop juvenile stage, the development of LAI is
driven by temperature. At later stages, the DM growth rate of
green leaves (GWLV𝑡

G, kg DM m−2 soil h−1) at a specific time
step (t) is limited by the supply of assimilates. Therefore, the
green LAI growth rate (GLAI𝑡G, m2 leaf m−2 soil h−1) is

GLAI𝑡G = GWLV𝑡

G × SLA (B10)

where SLA (m2 leaf kg−1 DM) is the specific leaf area. The
leaf area growth rate decreases during the season because of
senescence and self-shading. In the model, a dead LAI growth
rate is calculated for different crops and is then subtracted
from the GLAI𝑡G to describe this reduction in the growth rate.

APPENDIX C
In this appendix, additional information regarding the param-
eterization of sugar beet, silage maize, and winter wheat is
provided. In sugar beet, a strong reduction of LAINDVI in
soil units A1a–d and in D1a–d was observed in August and
September 2016 (Figure 4). At this stage, the AgroC simu-
lations for LAI already reached their highest possible value,
which was similar in all soil units. Here, the water stress sim-
ulated in May was not able to influence simulated LAI, since
temperature is the main driver of LAI accumulation in the
juvenile stage. At the same time, there was no possibility to
reduce LAI in August and September by water stress because
the simulated water stress does not feed back to the simula-
tion of the death rate of leaves or senescence in the current
AgroC model. However, the observed LAIs indicated the exis-
tence of this feedback mechanism. Therefore, it was decided
to reproduce the LAI reduction in the late growing season by
using three specific death rates of leaves (m2 leaf m−2 soil ◦C
d−1). The adopted death rate of leaves was generally higher in
soil units A1a–d, intermediate in D1a–d, and lowest in D1a–
d (Table A1). This calibration influenced the simulated LAI
in a way that it improved the simulation of the differences in
observed LAI between subareas A, BC, and D. Since all other
plant parameters and boundary conditions were identical in all
simulations for sugar beet, the differences in simulated LAI

T A B L E A 1 Values of death rates of leaves used in the three
groups of sugar beet simulations as a function of the temperature sum

Death rate of leaves
Temp. sum A1a–d BC D1a–d
◦C —————— m2 m−2 ◦C d−1 ——————

0 0.000 0.000 0.000

300 0.000 0.000 0.000

600 0.006 0.005 0.005

900 0.011 0.006 0.008

1,200 0.022 0.007 0.008

1,500 0.036 0.017 0.015

2,000 0.060 0.036 0.045

2,500 0.005 0.005 0.005

3,000 0.001 0.001 0.001

T A B L E A 2 Partitioning of aboveground biomass allocated to
the stem and the leaves in the three groups of winter wheat simulations
as a function of development stage (DVS)

A1a–d BC D1a–d
DVS Leaf Stem Leaf Stem Leaf Stem
0.00 0.55 0.45 0.60 0.40 0.70 0.30

0.10 0.50 0.50 0.60 0.40 0.70 0.30

0.25 0.45 0.65 0.55 0.45 0.70 0.30

0.50 0.29 0.71 0.44 0.56 0.33 0.77

0.70 0.25 0.75 0.28 0.72 0.15 0.85

0.95 0.05 0.95 0.10 0.90 0.05 0.95

1.05 0.05 0.00 0.05 0.00 0.05 0.00

2.00 0.00 0.00 0.00 0.00 0.00 0.00

within each subarea are solely due to the magnitude and tim-
ing of simulated water stress.

In silage maize, the abrupt decrease in LAI that occurred in
soil units A1a–d in September is due to the start of the senes-
cence stage. Since the senescence stage can be affected by
water stress (Baret et al., 2007), we assumed that crops sub-
jected to greater water stress showed earlier senescence. This
assumption was corroborated by field observations. In the
AgroC model, senescence of silage maize is generally started
when a development stage value of 1.4 is reached. To imple-
ment variable senescence consistent with stress intensity, this
development stage value was set to 1.38, 1.35, 1.33, and 1.30
for soil units A1a–d, respectively.

In winter wheat, the three groups of soil units A1a–d,
BC, and D1a–d showed differences in LAINDVI, especially in
April. In this case, the partitioning of aboveground biomass
allocated to the stem and to the leaves was calibrated, and
one specific partitioning was used for each group of soil units
(see Table A2). Since one parameterization was used within
each group of soil units, the variability in simulated LAI in
each group is the results of different soil parameterizations
that affect water stress.


