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Abstract

Background

Dengue fever is the most widespread infectious disease of humans transmitted by Aedes

mosquitoes. It is the leading cause of hospitalization and death in children in the Southeast

Asia and western Pacific regions. We analyzed surveillance records from health centers in

Vietnam collected between 2001–2012 to determine seasonal trends, develop risk maps

and an incidence forecasting model.

Methods

The data were analyzed using a hierarchical spatial Bayesian model that approximates its

posterior parameter distributions using the integrated Laplace approximation algorithm

(INLA). Meteorological, altitude and land cover (LC) data were used as predictors. The data

were grouped by province (n = 63) and month (n = 144) and divided into training (2001–

2009) and validation (2010–2012) sets. Thirteen meteorological variables, 7 land cover data

and altitude were considered as predictors. Only significant predictors were kept in the final

multivariable model. Eleven dummy variables representing month were also fitted to

account for seasonal effects. Spatial and temporal effects were accounted for using Besag-

York-Mollie (BYM) and autoregressive (1) models. Their levels of significance were ana-

lyzed using deviance information criterion (DIC). The model was validated based on the

Theil’s coefficient which compared predicted and observed incidence estimated using the

validation data. Dengue incidence predictions for 2010–2012 were also used to generate

risk maps.
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Results

The mean monthly dengue incidence during the period was 6.94 cases (SD 14.49) per

100,000 people. Analyses on the temporal trends of the disease showed regular seasonal

epidemics that were interrupted every 3 years (specifically in July 2004, July 2007 and Sep-

tember 2010) by major fluctuations in incidence. Monthly mean minimum temperature, rain-

fall, area under urban settlement/build-up areas and altitude were significant in the final

model. Minimum temperature and rainfall had non-linear effects and lagging them by two

months provided a better fitting model compared to using unlagged variables. Forecasts for

the validation period closely mirrored the observed data and accurately captured the troughs

and peaks of dengue incidence trajectories. A favorable Theil’s coefficient of inequality of

0.22 was generated.

Conclusions

The study identified temperature, rainfall, altitude and area under urban settlement as being

significant predictors of dengue incidence. The statistical model fitted the data well based on

Theil’s coefficient of inequality, and risk maps generated from its predictions identified most

of the high-risk provinces throughout the country.

Introduction

Dengue fever (dengue) is a major infectious disease of humans in the tropics and sub-tropics

caused by dengue virus (DENV) and transmitted by Aedes mosquitoes. The virus has a single

positive-stranded RNA genome and is classified into the family Flaviviridae and genus Flavivi-
rus. There are 4 antigenetically-related DENV (DENV 1–4) each capable of causing the disease

[1]. DENV infections cause various symptoms ranging from asymptomatic or uncomplicated

fevers to more severe illnesses especially following secondary infections with heterotypic

DENV [2]. A haemorrhagic form of the disease has also been reported. The main vector, Aedes
aegypti, a predominantly urban mosquito, breeds mainly in water-filled reservoirs, often artifi-

cial containers, in human settlements [3]. Other outdoor mosquitoes in the same sub-genus,

including A. albopictus and A. polynesiensis, are capable of transmitting the virus [4]. Humans

are the primary vertebrate host of DENV but in Africa and Asia, an enzootic transmission

cycle exists that involves non-human primates [4]. There is uncertainty on the degree of

immunity which naturally acquired mosquito-borne infections confer in vertebrate hosts.

There has been an unprecedented expansion of the geographical range of the disease glob-

ally since the 1950s [1]. Until 1970, severe dengue epidemics were reported in less than 10

countries [1][4]. Currently, it is thought that the disease is endemic in more than 100 coun-

tries, with a third of the world population living in areas with heightened dengue risk [5]. The

spatial expansion of the disease mostly occurred between 1980 and 2010 [1]. Factors that could

be attributed to this trend include urbanization, tourism and migration, and climate change

[6]. Migration and tourism are believed to play a critical role in the spread of the disease if

infected travellers successfully transfer the virus to new environments. Environmental factors

such as human settlements, presence of water bodies, mixed agriculture, open land and

neglected grasslands [7], determine DENV persistence, while factors which influence vectorial

competence of DENV vectors (such as emergence rate, gonotrophic cycle, survival rate, etc.)

have important effects on the incidence of the disease [8].
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Dengue incidence has also increased in endemic countries over time [1]. A study conducted

in the Southeast Asia show that between 1980 and 2010, dengue incidence increased by 6.7%

in Thailand, 10.4% in Vietnam, 12.0% in Indonesia, 18.1% in Malaysia and 24.4% in Philip-

pines [9]. In China, a total of 655,324 cases (6.6 cases in 100,000) and 610 (6.10E– 03) deaths

were reported in the mainland, and in 2009–2014, 52,749 cases (0.53 cases in 100,000) and 6

(6.00E—05 in 100,000) deaths were reported in this region between 1978 to 2008 [10]. Risk

factors associated with high incidence of the disease in Vietnam, Indonesia, Malaysia and

Philippines include urban settlements with high population densities, poor drainage systems,

inadequate waste disposal and extensive use of water storage containers that can be used by

mosquitoes for breeding [9]. Furthermore, analyses conducted in Vietnam [11], India [12],

Cambodia [13], and Nepal [5] show a positive correlation between dengue incidence and rain-

fall, temperature and humidity. In studies conducted in Vietnam [11] and India [12], stronger

effects of rainfall and temperature were observed when these variables (rainfall and tempera-

ture) were lagged by two months.

Many statistical models have been used to analyse the effects of climate factors on dengue

occurrence patterns. In Vietnam, for example, dengue patterns have been analysed using time

series seasonal decomposition model (in four provinces with high incidence) [11], cluster anal-

ysis based on SatScan statistics (within the city of Hanoi) [14], and a Poisson or negative bino-

mial regression model with lagged variables (also in Hanoi) [15][16] [17]. Similar approaches

have been used in other countries; a generalised linear model has for instance been used to pre-

dict the disease in Yogyakarta [18] while a novel modelling approach that used fuzzy rule-

based data mining technique was used in the Philippines (with a positive predictive value of

over 70%) [19]. Wavelength coherent analyses driven by ENSO incidences has also been used

to study multi-annual cyclical patterns that characterise the disease occurrence in the South-

east Asia [20]. Most of these approaches have, however, used data from few independent geo-

graphical locations or cities and focussed more on temporal dynamics. Spatiotemporal

interactions have, therefore, not been fully examined yet it is known that dengue cases cluster

in space and time [14][21] due to variations in (i) socio-economic development, including

urbanization trends, (ii) levels of awareness on the disease, (iii) access to public health services,

and (ii) frequency of local movements between contiguous areas.

This study used a spatiotemporal hierarchical Bayesian model to analyse surveillance data

from the National Dengue Control Programme (NDCP) in Vietnam. Bayesian models were

preferred because they provide a rigorous framework that can account for spatial-temporal

autocorrelation and are increasingly being used for disease mapping [22]. The study aimed to

develop a statistical model that can be used for developing dengue risk maps and forecasting

dengue incidence at monthly intervals while at the same time accounting for spatiotemporal

autocorrelations. Risk maps and incidence forecasting tools would enable policy makers to

deploy risk-based interventions. The availability of 12 years surveillance records from a dengue

dedicated project, meteorological data, and high-resolution geographical data provided a

unique opportunity for the development of these tools.

Materials and methods

Vietnam

Vietnam is located on the eastern Indochinese peninsula and has a long, narrow spatial

domain with an estimated population of 93 million in 2015 [23]. It has one of the highest pop-

ulation densities in the world with about 263 people/km2. Highest densities are found in agri-

cultural areas—such as the Red River Delta, the Southeastern and the Mekong River Delta–as

well as in the largest cities, Hanoi and Ho Chi Minh. Conversely, the northern part of the
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county is sparsely populated largely because of its high altitude and expansive forests especially

in the northwestern region. Climate has a strong latitudinal gradient given the north-south

elongation of the country that makes it straddle many climatic zones [24]. The central and

southern regions experience humid conditions throughout the year which favours many infec-

tious agents and vectors such as mosquitoes. Dengue virus has been isolated from various mos-

quito species in the country including Aedes albopictus, Ae. aegypti and Culex vishnui [25]. Ae.
aegypti and Ae. albopictus are classical vectors of DENV but for the first time, Lien et al. [25]

detected positive infection in C. vishnui from southern Vietnam. However, the role of C. vish-
nui in the virus transmission has not been described.

Data

The study used dengue surveillance data that were collected by the NDCP program over a

20-year period between 1994–2013, and published annually by the Ministry of Health in

annual record booklets [26]. The NDCP program was set up in 1999 to coordinate dengue sur-

veillance and control. Detection and reporting of dengue followed the Ministry of Health

Guidelines 1999 [27]. A case definition recommended by the World Health Organization for

provisional diagnosis was used to detect clinical cases. The case definition comprised acute

febrile illness of�38˚C lasting 2–7 days with at least two of the main symptoms including

severe headache, retro-orbital pain, nausea, vomiting, myalgia, arthralgia, haemorrhagic mani-

festations, and leukopenia [1][28]. Before 2002, a few cases were confirmed using serological

tests, but from 2002 onwards, the surveillance system collated cases confirmed using anti-den-

gue virus IgM Elisa test [16]. Cases detected in the clinics and laboratories had to be reported

to the province/city Preventive Medicine department within 24 hours and reports on the

trends observed were issued at monthly intervals. A dengue outbreak was officially declared

when a locality (a group/street/hamlet/sub-hamlet, inhabitant group or equivalent) reported

clinical cases fitting the case definition given above, or when a laboratory confirmed case,

together with finding the presence of mosquito vector/or mosquito vector larvae within 200m

radius around a patient’s house. The study only accessed records aggregated at the province

level–these data therefore had no personal information. Estimates of human population by

province-month were derived via a reverse calculation described by Lee [29] and used as the

denominator for estimating incidence. The reverse estimation procedure used published den-

gue cases and dengue incidence in 100,000.

Data required for this analysis were obtained from various on-line databases. Monthly

meteorological data were obtained from the Institute of Meteorology and Hydrology and Cli-

mate Change, Hanoi. This dataset had 13 variables including total monthly rainfall (mm),

highest rainfall (mm) in a month determined from daily records, total evaporation (mm), aver-

age temperature (˚C), average minimum and maximum temperature (˚C), absolute minimum

and maximum temperature (˚C), relative humidity (%), absolute minimum humidity (%),

total duration of sunshine (hours), wind velocity (m/s) and atmospheric pressure (kPa).

Land cover data were obtained from NASA’s Moderate Resolution Imaging Spectroradi-

ometer (MODIS) website. These data (referenced as MCD12Q1 product) has a spatial resolu-

tion of about 10 x 10km and has seven main LC types including forests, woodlands, grasses/

cereals, shrublands, cropland/mosaics, wetlands and unvegetated areas [30]. In these data, a

given LC type (savannah, forest, urban, crops, and wetland) ought to cover more than 50% of a

pixel for that LC type pixel to be ascribed to the pixel, otherwise, the pixel would have a zero

value for that LC type.

We extracted all these LC types except unvegetated areas using the province shapefile and

determined the area of a province covered by each of the LC type. The MCD12Q1 data are
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stored in degree unit with a resolution of approximately 0.08˚ and were available in annual

intervals; we downloaded those relevant for the target period 2001–2012. The data were down-

loaded in TIFF format, clipped using the Vietnam shapefile and converted into a vector layer

in ArcGIS using the Asia South Albers Equal Area Conic. A new field for recording area (in

square Kilometers) was created in its data attribute table. The geometry calculation table was

then used to estimate the area of each LC cover type and expressed as a percentage of the total

area of a province.

An ascii file on elevation in meters with a resolution of about 10 x 10km was downloaded

from the Food and Agriculture Organization of the United Nation’s soil data portal [31].

These were resampled using the province shapefile based on bilinear interpolation method for

altitude and nearest neighbour method for LC in order to harmonize their dimensions. These

data were then merged with the dengue fever records, meteorological variables and human

population using the province ID as the primary key. Maps of all the environmental data used

are given in S1 Fig.

Descriptive analyses

Dengue incidence, seasonal and interannual trends. Crude dengue incidence was

derived as the proportion of dengue cases reported of the estimated human population per

month and multiplied by 100,000 to obtain the number of new cases per 100,000 people. All

the crude and adjusted incidence rates reported here represent the number of new dengue

cases in 100,000 people. Its distribution by province, month and LC variables was analyzed

using line graphs and thematic maps. The first set of analyses generated crude incidence using

all the data that were available (2001–2012). This estimate was stratified by province and

mapped to determine the observed spatial distribution of the disease in the country. Similarly,

mean monthly rainfall, minimum and maximum temperature were estimated by month and

plotted with the monthly dengue incidence to determine their relative distribution patterns

(described further in the next section). The distribution of interannual dengue incidence was

also determined and plotted.

Distribution of dengue incidence, land cover types and altitude. The distribution of

dengue incidence across various levels of each LC type and altitude was investigated by con-

verting these geographical variables into categorical variables and subsequently stratifying

monthly mean dengue incidence using the new indicator variables created. All the variables

except wetlands and urban settlements were classified into three levels, with their lower and

upper cut points being 30th and 70th percentiles, respectively (for a balanced distribution of

data across the levels derived). Area under crop cultivation was classified into levels 0 −<24%,

�24-<80% and�80%; area under savannah grassland 0 −<1%,�1- <20% and�20%; area

under forests 0 −<2%,�2- <50% and�50%; and altitude 0 −<11m,�11-<285m and

�285m. Area under wetlands and that for urban/built-up areas were categorized into two lev-

els 0 and>0% because their values were mostly skewed to the right with a high density of zero

values. All the descriptive plots were developed using the ggplot2 package in R [32].

Principal component analysis of the meteorological data. We used principal compo-

nent analysis to identify key meteorological variables for multivariable analysis. The selected

variables had to cover at least 80% of the variance cumulatively to be considered as being good

predictors. Each variable was normalized (i.e., their means set to zero) to standardize their

scales. A standard biplot graph involving principal components 1 and 2 was then generated to

identify the most orthogonal variables. The graph clustered variables into distinct categories of

highly correlated predictors. Within each cluster, those variables that were far removed from

the center of the graph were considered to represent most of the variation of the outcome than
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the others in that cluster. Rainfall, minimum temperature and evaporation met this selection

criterion (Fig 1) and were also ranked highest in the PCA model that was generated alongside

the biplot graph.

Statistical modelling and prediction

Modelling approach. We analyzed the data using a hierarchical spatial Bayesian model

which approximates its posterior parameters using integrated nested Laplace approximation

methods (INLA) proposed by Rue, Martino, and Chopin [33] and implemented using the

RINLA package in R version 3.4.1. The same model has been used to model dengue incidence

in Bucaramanga, Colombia by Adin et al. [34]. It is particularly suited for analyzing multivari-

able, geographically referenced and (or) temporally correlated data. They are also suited for

disease mapping since they obtain information from neighboring locations and generate pre-

dictions with reduced uncertainty. A description of these models is provided by Banerjee et al.

[35]. In this analysis, the outcome of interest, as described above, was dengue incidence by

province and month. This was analyzed as a conditionally independent Poisson random vari-

able with the expected spatial and temporal autocorrelations accounted for using conditional

Fig 1. Biplot graph used to identify key predictors of dengue incidence in Vietnam among 13 meteorological

variables (2001–2009).

https://doi.org/10.1371/journal.pone.0224353.g001
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autoregressive (CAR) and autoregressive (AR [1]) models, respectively. The specifications of

the model was:

Zi ¼ mþ
Xnb

j¼1

bjxji þ
Xnf

k¼1

f k þ ui ð1Þ

where,

ηi the linear predictor, μ the baseline mean,
Xnb

j¼1

bjxji linear effects of xm covariates with βm

coefficients;
Xnf

k¼1

f k structured latent variables, which in our case was the spatial and temporal

effects, and μi is unstructured random effect (residual noise) [36]. Modelling was implemented

in two steps starting with model development using data for the period 2001–2009, followed

by model validation using the data for the period 2010–2012. A validated model was then used

to generate predictions for risk mapping. These analyses are described below.

1. Model development. Univariable and multivariable analyses were implemented succes-

sively to generate a dengue incidence forecasting model. These analyses led to the identifica-

tion of significant predictors, latent variables, and dummy variables for accounting for

seasonal effects. Predictor variables included in these analyses were meteorological variables

from the principal component analysis, all the environmental variables including altitude, and

the spatial and temporal effects. For both univariable and multivariable models, a variable was

considered as being significant if its 95th credible interval (representing 2.5% and 97.5% quan-

tiles) excluded zero. These limits were chosen to obtain a range that had the highest density of

the estimated parameter values around the median. Lagged variables of each of the meteoro-

logical variables analyzed were also tested in turns. Up to three lags were considered for each

variable and a form that returned the least deviance information criterion (DIC) estimate was

considered as being suitable.

A combination of backward and forward variable selection process was employed to build a

parsimonious multivariable model. For continuous variables, linearity assumption was evalu-

ated by fitting respective quadratic terms. Eleven dummy variables representing month were

also fitted in the model to account for the seasonal effects. The spatial effect was accounted for

using the CAR model; this captures the neighborhood structure of the assessment units, which

in this case were provinces. Alternative CAR models with varying correlation matrix specifica-

tions for the implied spatial design have been developed and reviewed extensively in literature.

Three CAR models including intrinsic conditional autoregressive model, proper CAR (or

Cressie model), and convolution model are available in RINLA as besag, besagproper and

Besag-York-Mollie (BYM), respectively [37]. We used the BYM model which combines the

CAR model and unstructured random effect to account for independent province-specific

noise.

We used the province shapefile to specify the BYM adjacency matrix. Each data point, yi,

was deemed to be based in a spatial region, s, which was part of a population of sites, s 2 S =

(0, � � ��, S − 1). Two sites that shared a common provincial border were therefore considered to

be neighbors. The spatial effect: fs(si), i.e., fs = (f(0), f(1), � � �, f(S − 1)) was modelled as an intrin-

sic Gaussian Markov Random Field (GMRF), which is considered as an alternative but deter-

ministic model for Markov Chain Monte Carlo (MCMC) model [36].

Similarly, autoregressive (AR [1]) model was used to account for temporal autocorrelation.

Each province had 108 time units (between January 2001 to December 2009) that were used in
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the AR [1] model. The AR model assumed that dengue incidence in the current month was

correlated with the that of the previous month.

2. Model validation. The final model fitted was used to generate predictions for 2010–

2012 period. Input data relevant for the period were offered to the model. Observed and pre-

dicted mean monthly incidence, together with its 2.5% and 97.5% quantile values were com-

puted and plotted to determine their relative trends. The accuracy of the forecast was

evaluated using Theil’s coefficient of inequality that has been used widely for model validation;

it is described in detail by Bliemel and MacKay [38]. It is a coefficient with values ranging from

0, signifying a perfect forecast, to 1 representing maximum inequality. The formula used was:

U ¼

1

n

Xn

i¼1

ðAi � PiÞ
2

" #1=2

1

n

Xn

i¼1

A2

i

" #1=2

þ 1

n

Xn

i¼1

P2

i

" #1=2
ð2Þ

where:

U–Coefficient of inequality

n–number of records

Ai−Observations which in this case are incidence records for 2011–2012

Pi- Predicted incidence data.

In the course of validation, four alternative spatio-temporal interactions described by

Ugarte et al. [39] were tested in turn in a bid to improve the Theil’s coefficient and reduce

uncertainty of the prediction.

3. Risk mapping. A validated model was used to generate predicted dengue incidence.

Results

Mean dengue incidence

The mean monthly dengue incidence averaged 6.94 cases (standard deviation 14.49) per

100,000 people over the period (2001–2010). Over the wet period (May-November with a

mean monthly rainfall >40mm), the mean dengue incidence was 10.31 cases per 100,000 (SD

18.51). Provinces in the southern parts of the country had higher reported incidences com-

pared to those from central and northern regions. Hanoi city also reported appreciably higher

number of cases compared to the neighboring areas (Fig 2).

Dengue incidence had a strong seasonal pattern which often peaked between July–October

(Fig 3). This peak closely followed those of maximum rainfall, minimum and maximum

temperatures.

Distribution of dengue by levels of environmental factors

Relative trends between dengue incidence and environmental variables including LC and alti-

tude are shown in Fig 4. Dengue incidence declined with an increase in altitude, area under

savannah grassland and forests. Conversely, dengue incidence was higher in provinces with

wetlands compared to those without. It also increased with area under crop farming. Provinces

with urban/build-up areas generally had a slightly higher but delayed amplification of the inci-

dence compared to those without.

Spatial analysis of dengue fever occurrence patterns in Vietnam
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Fig 2. The distribution of crude number of dengue cases (1A), estimated human population (1B) and crude incidence (1C) by province in

Vietnam in 2001–2009. The lower panel gives crude number of cases (2A), estimated human population (2B) and crude incidence (2C) by province in

2010–2012. The observed dengue incidence given in 2C was used to validate the forecasting model developed in this study.

https://doi.org/10.1371/journal.pone.0224353.g002
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Interannual incidence

An analysis of dengue incidence over the entire period (2001–2012) showed consistent peaks

and troughs consistent with seasonal climate patterns (Fig 5). Except in July 2004, peak dengue

Fig 3. Observed seasonal trends in rainfall, minimum and maximum temperatures, and dengue incidence in

Vietnam in 2001–2009.

https://doi.org/10.1371/journal.pone.0224353.g003
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incidences were always lower than the mean for the wet period (10.31) until about mid-2005

when these peaks exceeded the threshold. In the later years, higher peak incidences (>10.31)

were observed. Major outbreaks were also observed about every 3 years; these occurred in July

2004, July 2007 and September 2010.

Univariable and multivariable analyses

Univariable analyses identified all the variables used including rainfall, minimum temperature,

duration of sunshine, evaporation as being significant predictors for dengue incidence

(Table 1). Lagging temperature by two months and rainfall by one month provided better fit-

ting models compared to using unlagged variables. However, to simplify the analysis, both

minimum temperature and rainfall data were lagged for two months and used in multivariable

analyses. On cartographic variables, only wetlands were not significant at this level of analysis.

Fig 4. Trends in dengue incidence at various levels of environmental factors used in the study including altitude, area under savannah grassland,

forests, urban development, crop farming and wetlands.

https://doi.org/10.1371/journal.pone.0224353.g004
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Of all the predictor variables used in the multivariable analysis, total monthly rainfall, mini-

mum temperature, and area under urban settlement/build-up areas, altitude, together with the

spatial (CAR) and temporal (AR [1]) effects, were significant in the model (Table 2). Minimum

temperature and rainfall (lagged by two months) did not meet the linearity assumption; each

of these variables were therefore fitted as quadratic functions. The posterior parameter distri-

butions for the main variables generated from the model (Table 2) suggest that minimum tem-

perature and dengue incidence have an exponential relationship while that for rainfall and

dengue incidence is a “concave-down”. This means that at lower levels, there was a positive

correlation between rainfall and dengue incidence but at higher rainfall levels of about

>500mm, rainfall had a negative correlation with the disease incidence. Areas with urban

Fig 5. Inter-annual trends in dengue incidence in Vietnam. Months that had higher than expected peaks in the

disease incidence are indicated in text within the graph. The horizontal dotted line at an incidence of 10.31 a threshold

that was used to demonstrate changes in the peak incidence of the disease before and after mid-2005.

https://doi.org/10.1371/journal.pone.0224353.g005

Table 1. Posterior parameter distributions from univariable models used to screen predictor variables.

Variable Fixed effects Hyperparameters

Intercept Predictor IID BYM model AR[1] model

Mean Quantile range Mean Quantile range Mean Quantile range Mean Quantile range Mean Quantile range

Rainfall a -0.46 -1.13–0.17 0.02 0.19–0.02 1.03 0.54–1.76 0.72 0.25–1.66 1.91 0.83–3.32

Temperature a -3,21 -1.13–0.17 0.12 0.12–0.13 1.09 0.60–1.80 0.95 0.34–2.21 0.89 0.80–0.95

Evaporation -0.57 -1.25–0.08 0.002 0.001–0.002 1.03 0.55–1.76 0.74 0.26–1.71 1.78 0.78–3.08

Duration of sunshine -0.52 -1.20–0.13 0.001 0.001–0.001 1.03 0.54–1.76 0.73 0.25–1.67 1.79 0.79–3.11

Altitude 0.25 -0.49–0.97 -0.003 -0.004–-0.002 1.02 0.62–1.57 1.52 0.50–3.49 1.84 0.81–3.20

Wetlands -0.42 -1.10–0.22 -0.001 -0.001–0.00 1.03 0.54–1.76 0.73 0.26–1.69 1.84 0.80–3.18

Shrubland -0.42 -1.10–0.22 -0.02 -0.02–-0.01 1.03 0.54–1.76 0.73 0.26–1.69 1.84 0.80–3.19

Cropland -0.17 -0.83–0.46 -0.005 -0.005–-0.004 1.05 0.53–1.87 0.60 0.21–1.32 1.88 0.84–3.27

Forests -0.83 -1.50–-0.18 0.01 0.01–0.02 0.99 0.50–1.78 0.53 0.19–1.15 1.92 0.87–3.38

Urban settlements -0.45 -1.12–0.19 0.07 0.07–0.08 1.05 0.56–1.79 0.74 0.26–1.69 1.86 0.83–3.24

a Variable lagged by two months

https://doi.org/10.1371/journal.pone.0224353.t001
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settlements had a higher risk of dengue (mean relative risk of 2.08) compared to rural/non-

urban areas.

The results given in Table 2 do not however include posterior distributions of the dummy

variables used to account for the seasonal effects. These results are given in Fig 6. These esti-

mates have a similar pattern as the crude incidence given in Fig 3.

Table 2. Marginal posterior distributions of model parameters estimated from a parsimonious hierarchical Bayesian spatial model fitted to dengue fever data from

Vietnam (2001–2010).

Variable Levels Mean SD Quantile

2.5% 97.5%

Fixed effects
Intercept -1.193 0.289 -1.771 -0.625

Minimum temperature1 -0.103 0.005 -0.112 -0.093

Rainfall2 0.082 0.003 0.076 0.087

Minimum temperature (squared) 0.006 0.000 0.005 0.006

Rainfall (squared) -0.006 0.000 -0.006 -0.005

Altitude3 -0.186 0.065 -0.314 -0.056

Urban settlement > 0% 0.597 0.012 0.573 0.620

� 0% 1.000 - - -

Model hyperparameters:
Spatial effect (iid) 1.189 0.292 0.712 1.856

Spatial effect (CAR) 1.636 0.848 0.533 3.767

Precision for time 5.325 1.969 2.112 9.642

Rho for time 0.913 0.032 0.842 0.967

1. Minimum temperature lagged by two months
2. Rainfall in mm divided by 100 to obtain appreciable parameter estimates
3. Altitude in meters divided by 100

https://doi.org/10.1371/journal.pone.0224353.t002

Fig 6. Posterior distributions of the dummy variables used in the model to account for seasonal effects.

https://doi.org/10.1371/journal.pone.0224353.g006
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Validation of the model

A comparison of the observed and predicted dengue incidences (2010–2012) (Fig 7) showed

that the predicted incidence closely tracked the seasonal trends and identified peaks and

troughs of the dengue occurrence patterns. However, during the September 2010 outbreaks,

the predicted incidence was lower than the observed even though it was relatively higher than

those of the other periods. The estimated Theil’s coefficient of inequality was 0.22.

Risk mapping to determine dengue occurrence patterns

Fitted values representing the number of dengue cases per 100,000 people per month in 2010–

2012 are displayed in Fig 8. Predicted dengue incidence matched the observed data (Fig 2) in

many parts of the country. However, in the north, additional provinces that neighbor the

Hanoi city were predicted to have higher dengue incidence that observed.

Discussion

We analyzed dengue fever surveillance records collected between 2001–2012 in Vietnam and

developed a statistical model that can be used for forecasting incidence. The disease has

become a major threat to human health and wellbeing in the country [11] and with climate,

the spatial range of dengue fever virus is likely to expand to areas that are currently considered

as being relatively safe [40]. Early warning systems that utilize climate and land cover data,

such as that described by Munasinghe et al. [41] are therefore required for risk prediction and

to guide the deployment of interventions. The existing global dengue risk maps (e.g. Bhatt

et al. [42]) cover multiple countries, including Vietnam, but they don’t delineate high risk

areas within countries. Country-specific risk maps and forecasting models on dengue have

been developed for many countries including Sri Lanka [41], Brazil [43], Argentina [44], Sin-

gapore [45] and in hyper-endemic cities of Colombia [34] and Venezuela [46]. Limited map-

ping of dengue has been done in Vietnam.

We used a hierarchical spatial Bayesian model with meteorological and geographical (alti-

tude and LC) factors as predictors. These two groups of variables are seldom used together for

Fig 7. A comparison of the predicted and observed monthly mean incidence of dengue in Vietnam in 2010–2012

(36 months).

https://doi.org/10.1371/journal.pone.0224353.g007
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dengue risk prediction. A systematic review of literature that involved 26 studies, for example,

showed that only 7 used meteorological, climatological and/or remote sensing data [3] concur-

rently. Meteorological variables capture intra-annual, temporal dynamics of the disease (e.g.

studies conducted by Lei et al. [47], while geographical variables determine its spatial distribu-

tion (e.g. studies by Ling [7]). In this study, 13 meteorological variables were available but only

a few–i.e., minimum temperature, rainfall, evaporation—were selected as being important pre-

dictors through principal component analysis. Findings on the association between dengue

incidence and meteorological variables (i.e., temperature and rainfall) are similar to those

reported previously in Vietnam [11], India [12] and Cambodia [13].

Analyses of the temporal dynamics of the disease revealed regular seasonal epidemics that

were interrupted by major fluctuations that occurred in 3-year cycles as reported previously in

southern Vietnam [20]. Regular dengue epidemics have been attributed to extrinsic factors

due to climate variability while the multi-annual fluctuations (observed at 3-year intervals in

this case) are thought to be caused by antibody-dependent enhancement (ADE) of infection

due to the introduction of new DENV into a sub-population or an area with cross-reactive

antibodies from previous infections [48] [49]. We believe the ADE effects cause an increase in

hospitalization rates and hence registration of increased dengue cases in the surveillance sys-

tem. Infection dynamics associated with ADE effects are, however, beyond the scope of this

paper. More work is needed though to identify how new DENV are introduced to new areas

or sub-populations of exposed individuals.

Fig 8. Predicted dengue mean incidence for 2010–2012, with 2.5% and 95% quantiles.

https://doi.org/10.1371/journal.pone.0224353.g008
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We found non-linear associations between dengue incidence and both minimum tempera-

ture and total monthly rainfall. Controlling for the other variables considered, an increase in

the minimum temperature within the limits observed in Vietnam (14 to 28.5˚C) led to an

exponential increase in dengue incidence. On the contrary, an increase in maximum rainfall

per month (within the limits of 0–1,500 mm) was associated with a “concave-down” relation-

ship with the outcome. That means from 0 to about 550 mm, rainfall was associated with an

increase in dengue incidence but beyond this level, an increase in rainfall was associated with a

decline in dengue incidence. Evidence from studies on malaria vectors show that high rainfall

is known to cause flushing of mosquito breeding sites, therefore making them less suitable for

breeding [50], and it is likely that the same effect applies to dengue vectors. Better results were

obtained when both rainfall and minimum temperature were lagged by two months to account

for the period required for the amplification of vector populations once appropriate breeding

conditions are provided, as well as the completion of extrinsic incubation period of the virus.

Temperature has multiple pathways through which it can influence dengue risk. In general,

an increase in temperature shortens the development intervals of immature stages of mosqui-

toes, increases the biting rates of adults and shortens the extrinsic incubation period of patho-

gens [51]. It is also expected to encourage the adoption of behavioral practices in humans that

enhance human-vector contact such as staying outdoors for long periods or leaving their resi-

dences’ windows open while inside [47].

Rainfall, on the other hand, influence dengue occurrence by expanding the available breed-

ing grounds. It fills containers and depressions where dengue vectors can breed from [15] and

varies humidity levels. The ideal breeding habitats for dengue vectors (e.g. Ae. aegypti) include

uncovered water containers, drainage systems, disposed plastic containers, or used tyres [1]. It

is also expected that poor drainage canals in peri-urban areas may serve as reliable mosquito

breeding grounds and floods that develop after rainfall act as additional breeding sites that

amplify mosquito numbers.

Environmental variables determine relative distributions of pathogens, vectors and hosts in

space, and changes in their structure would destabilize established relationships (within and

between communities) leading to emergence of infectious diseases [52]. In this study, altitude

and LC represented environmental variables used to determine the distribution of ecological

niches for dengue. A number of studies have investigated the effects of altitude [53] [44] [54]

and urban development [55] [56] on dengue incidence in various countries but not much has

been done on the other LC types. Our analyses established a negative association between alti-

tude and dengue risk. A survey conducted in Nepal along an altitudinal gradient showed that

Ae. aegypti and Ae. albopictus could be found between 85–1,300m but rarely beyond 1,750 to

2,010m above sea level [57]. A similar observation has been made for a broad range of vector-

borne diseases including Japanese encephalitis [58] and malaria [58], among others. Apart

from influencing climate patterns, altitude modifies other factors that may influence mosquito

survival such as vegetation cover, and availability/density of hosts.

Of all the LC types considered, only the urban/build-up areas was significant in the final

model. Compared to urban/build-up areas, croplands and wetlands were not significant yet

these LC types could support mosquito breeding, and have been associated with endemicity of

other vector-borne diseases including malaria [59], schistosomiasis [60], Rift Valley fever [61],

and West Nile fever [62]. However, Ae. aegypti, the main vector of dengue virus, is strongly

anthropophilic and thrives well in domestic environments. Urban settlements/build-up areas

are more suited for dengue endemicity but these mosquitoes can acclimatize to other external

breeding environments [63]. Moreover, an increase in human population in peri-urban areas

leads to expansion of build-up areas, crowding and damping and therefore the creation of

more mosquito breeding sites [6]. This ultimately results in increased vector-host contact, and
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faster rates of transmission of the virus. The intense vector-host contact is critical for dengue

transmission because the infectious period in humans, when uninfected mosquitoes can pick

the virus, is only12 days and there are no other reservoir hosts that can sustain the transmis-

sion [64].

Latent variables representing space and time are often used to account for spatiotemporal

autocorrelations [37]. Some of the spatial effects could be attributed to differences in ease of

travel/movement that might allow importation of cases in some areas, topography of the spa-

tial units which allow various degrees of water drainage, or socio-economic activities that

influence exposure to the disease. The model estimated the spatial effect of a province by inte-

grating the effects of all the neighboring provinces using the intrinsic autoregressive model

(CAR). This ensured that reliable dengue risk maps could be generated. The AR [1] model

used to account for temporal autocorrelation.

The model developed could provide a reliable forecast of dengue risk based on favorable

Theil’s coefficient of inequality obtained at the validation step of the analysis. Absolute per-

centage error (MAPE) is another commonly used accuracy measure but this was not used in

this study because it is thought to be unreliable especially when the observed data have low val-

ues. It produces large percentage errors when the observed data series is low and outliers may

distort accuracy assessments [45]. The model reliably captured seasonal changes in dengue

incidence, but it could not accurately match the peaks associated with the major epidemics

that occurred in September 2010, which as stated above, was mainly driven by ADE effects.

The model was still able to predict a higher incidence compared to that predicted for the rest

of the periods indicating that to some degree, climate factors contribute to the amplification of

the cyclic multi-annual dengue incidence during such periods in addition to ADE.

The predicted risk maps produced results that are similar to the dengue vulnerability maps

that have been published by Fullerton et al. [65]. It reliably predicted high dengue incidence in

most of the high-risk areas in the southern parts of the country and additional areas in the

north, such as the Hanoi city, that is known to have high dengue incidence [11]). As identified

in the dengue vulnerability maps published by Fullerton et al. [65], the model predicted a

higher dengue incidence in a few more provinces in the north than observed. One of the possi-

ble reasons that can explain the mismatch is that people from affected areas might have sought

medical services in Hanoi city. It has also been observed that data from regional surveillance

systems may not be recorded and reported uniformly between areas. Cohort studies conducted

by Wichman et al. 201 [66] in Thailand and Cambodia, indicated that dengue incidence was

under recognized by 8–9 times and area-specific multiplication factors were required to

amplify the number of cases observed to obtain reliable measures of burden. Regions with

discordant predicted and observed incidence trends can be targeted for cohort or capture

recapture studies to obtain primary data on incidence to inform the refinement of existing sur-

veillance systems and risk mapping.

The study, however, had some limitations. One, some of the data used (especially those col-

lected in 2001) were clinical records that had not been subjected to laboratory screening. Most

of the data collected after 2002 were however screened using anti-dengue virus IgM ELISA as

mentioned earlier. Despite this limitation, dengue surveillance data are often used for mapping

given that in many countries, a small proportion of cases are confirmed through laboratory

analysis. A similar challenge has been reported by Johansson et al. [67] who point out that clin-

ical records provide a consistent measure of the disease burden in time, and the number of lab-

oratory-confirmed cases would be too low for determination of temporal patterns.

The second limitation was that the model used climatic and environmental factors to pre-

dict dengue incidence, but it could not capture potential differences in the distribution of the

various serotypes of the dengue virus or host immunity and hence the ADE effect. Serotype-
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specific immunity, and hence the circulating dengue virus serotypes, is expected to fluctuate in

a community overtime, and some of the cyclic epidemics observed might be attributable to

these dynamic processes. Primary infection confers life-long protective immunity to an infec-

tive serotype, but an introduction of a new serotype 2–3 months later would cause an infection

[1]. The third limitation was our inability to include socio-economic variables such as migra-

tion patterns, or ability to afford medical care or preventative services, since these actions are

expected to influence dengue exposure. These were not available at the spatial scale considered.

Areas that require further work include (i) determination of the sensitivity and specificity of

the clinical case definition (such as those for), (ii) investigation of the distribution of the

DENV serotypes in relation to population immunity, (iii) capacity building on dengue surveil-

lance so that a majority of suspected dengue cases are screened using standard laboratory tests,

and (iv) validation of LC through the country.

Conclusions

The study identified minimum temperature, rainfall, altitude and urban/build-up areas as

being significant predictors of dengue incidence in Vietnam. It also revealed that it was impor-

tant to account for spatial and temporal dependence to account for extra-Poisson distribution

of the outcome. Two key products were generated from the study; dengue incidence risk maps

showing the distribution of dengue incidence in the wet and dry seasons. The second product

was a dengue forecasting model which can generate predictions for forward planning and

deployment of interventions.
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