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Abstract 
Environmental conflicts of interest are important to account for when environmental policies are designed. 
This paper explores the quantitative connection between urban waste water treatment, coastal 
eutrophication, and fish biomass in the mesotrophic Gulf of Riga (northern Europe).  The probable effect 
on the water quality from one clearly defined abatement measure, improved urban sewage treatment has 
been studied. Furthermore, the implementation cost and the likely effect on total fish biomass have also 
been assessed. Computer simulations using the previously published model CoastMab suggested that good 
water quality according to the EU Marine Strategy Framework Directive could be achieved if urban sewage 
treatment would be upgraded to Nordic and German standards, and not only around the Gulf of Riga but in 
the whole Baltic Sea drainage basin. The Secchi depth would double according to these simulations while 
total phosphorus and summer chlorophyll concentrations would decrease by 54% and 53%, respectively. 
The total fish biomass should be expected to decrease by about 42% if “good” water quality (as defined in 
European Union directives) should be achieved. However, changes in total fish biomass could also be 
offset by changes in other important determinants such as climate related variables or fishing pressure. The 
study estimated that it could take about 20-40 years after abatement action for the trophic state in the Gulf 
to stabilise again. Upgrading urban sewage treatment to this extent would cost 468-1,118 million euros per 
year. Treatment could have substantial positive effects on the water quality of the Gulf but could also have 
adverse side effects on the total fish biomass. 
 
Keywords: eutrophication; Gulf of Riga; sewage treatment; water quality; fish biomass 
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Introduction 

Urban waste water treatment, coastal eutrophication and fisheries have been subject to 

much environmental regulation in the European Union and elsewhere.  Related to these 

issues are conflicts of interest between environmental goals such as low levels of 

eutrophication and thriving fisheries (Hansson et al. 2007). When environmental 

regulation is introduced or revised, it is important to assess expected beneficial 

environmental effects from each action alternative and to weigh such effects against all 

probable adverse side effects. 

  

Eutrophication, manifested as decreased Secchi depth (water clarity) and intensified 

phytoplankton blooms, has been considered a serious environmental problem in the Gulf 

of Riga (northern Europe; see fig. 1) for many decades. The mesotrophic Gulf is one of 

the most nutrient polluted sub-basins of the Baltic Sea (Håkanson and Bryhn 2008a; 

Kotta et al. 2008). Urban sewage treatment is the most effective, and also a 

comparatively cost-effective way to decrease the total phosphorus (TP) loading to the 

Gulf of Riga (Bryhn, 2009). The average waterborne TP loading to the Gulf during 1997-

2003 was 2,180 tonnes per year while the TP loading to the Baltic Sea (excluding the 

Kattegat and the Danish Straits) was 33,328 tonnes per year according to HELCOM 

(2007). Table 1 lists expected TP reductions if the EU Urban Waste Water Treatment 

Directive (UWWTD) would be implemented in the drainage area of the Baltic Sea, 

including the drainage area of the Gulf of Riga (from HELCOM 2007). More than one 

third of the TP loading to the Baltic Sea could thus be reduced by implementing this 

abatement measure, which would also include that about 54% of the TP loading from the 

Gulf of Riga catchment would be cut, while the TP loading to the Baltic Proper and the 

Gulf of Finland would decrease by approximately 42% and 47%, respectively. 

 

Nutrient concentrations and phytoplankton biomass are also connected to fish 

productivity. Fish stock size depends on the food availability to the fish. Primary 

producers may be consumed directly by fish or by various secondary producers which 

fish in turn prey on. Fish production appears to be proportional to primary production in 

coastal waters as well as in lakes, estuaries and oceans (Nixon 1982; Iversen 1990; 
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Houde and Rutherford 1993; Ware and Thomson 2005; Jennings and Brander 2010; 

Kaiser et al. 2011).  

 
Figure 1. Location of study area. The Baltic Sea and its subbasins Bothnian Bay (BB), Bothnian Sea (BS), 
Baltic Proper (BP), Gulf of Finland (GF), and Gulf of Riga (GR). Subbasin limits are marked by black 
lines. Accumulation (A) sediment areas are distinguished from erosion and transport (ET) sediment areas. 
Modified from Bryhn and Håkanson (2010). 
 

Although good oxygen conditions and low levels of organic matter decomposition by 

bacteria may promote fish survival in the young stages, high food availability appears to 
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be more important for subsequent stages and for the cumulative (net) effect of primary 

production on the total fish stock size (Hansson et al. 2007). 
 

Table 1. Expected TP loading reductions (tonnes/year) from improved sewage treatment compared to 2004. 
The final column lists how much of the reductions to the Baltic Sea could be performed in the Gulf of Riga 
drainage basin. The average annual TP loading 1997-2003 was 2,180 tonnes to the Gulf of Riga and 33,328 
tonnes to the Baltic Sea including the Gulf of Riga but excluding the Danish Straits. Data from HELCOM 
(2007). 
Country 
 
 

Baltic Sea drainage 
basin 
 

Gulf of Riga drainage 
basin 

% of Baltic Sea 
reductions in the Gulf 
of Riga drainage basin 

Belarus 
Czech Republic 
Estonia 
Lithuania 
Latvia 
Russia 
Poland 
Total 

1,977 
391 
133 
615 
187 
3,829 
5,292 
12,424 

523 
0 
17 
46 
162 
431 
0 
1,179 

26 
0 
13 
7.5 
87 
11 
0 
9.5 

 

General cross-systems relationships between primary production and fish yield are 

displayed in fig. 2 using data from two different studies (Håkanson and Boulion 2002; 

Chassot et al. 2007). The relationship in fig. 2A suggests that if primary production is 

reduced by 10%, the fish yield can be expected to decline by about 9%. Similarly, the 

regression in fig. 2B indicates that a 10% reduction in primary production of the Baltic 

Sea should result in a 15% lower fish yield. Patterns similar to those depicted in fig. 2 

have been documented by Nixon (1982), Iversen (1990), Ware and Thomson (2005) and 

Jennings and Brander (2010). 

 

It should, however, be stressed that there are other crucial determinants of total fish 

biomass which may dampen or counteract effects from trophic state changes on changes 

in biomass. Some of these determinants are fishing pressure (Möllmann et al. 2009; 

Jennings and Brander 2010), predation by seals or other marine mammals (Thurow, 

1997), and climatic factors such as variations in water inflow from more saline seas 

(Möllmann et al. 2009), wind speed and ice cover (Kotta et al. 2009). Additional factors 

related to eutrophication which may influence the relationship between primary 

production and fish yield are fish and zoobenthos kills due to deepwater hypoxia, and 

changes in macrophyte cover. Shallow waters with high macrophyte density may serve as 

crucial and vital providers of food and shelter for fish (Sandström and Karås 2002). 
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Nevertheless, there has been a sharp long-term increase in cod, herring and total fish 

production in the Baltic Sea during the last century which has partly been attributed to the 

cumulative effects of eutrophication (Thurow 1997; Ojaveer and Lehtonen 2001). 

 

 
Figure 2. Two cross-systems statistical models of primary production (PrimP) and fish yield (FY). A. 
Freshwater and marine ecosystems in various parts of the world, from Håkanson and Boulion (2002). B. 
European marine ecosystems, from Chassot et al. (2007). Data pairs regarding the Baltic Sea have been 
marked.The difference in units and scale projections should be noted. 
 

Previous studies have shown that good water quality in the Gulf of Riga could be 

achieved by means of substantially decreased TP loadings (HELCOM 2007; Håkanson 

2009). However, the present study concerns three new aspects related to this issue; (1) 

what will the effect be on the trophic state in the Gulf from improved urban sewage 

treatment, (2) how will the total fish biomass be affected, and (3) what is the abatement 

cost. The dynamic mass-balance model CoastMab (Håkanson et al. 2010) will be used for 

investigating effects from implementing the UWWTD in (a) the Gulf of Riga catchment 

only and (b) the whole Baltic Sea catchment, on the trophic state in the Gulf of Riga. The 

idea of using two scenarios is to examine whether one or both of these management 

options would be enough to achieve “good” water quality according to the EU Marine 

Strategy Framework Directive (Anon, 2008). In addition, effects on preconditions for 

fishery in the Gulf will be studied and discussed in relation to changes in trophic status. 

Finally, a separate cost estimate for implementing the UWWTD in the Gulf of Riga 
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catchment and for achieving good water quality will be made and will be compared to 

cost estimates made in connection with the Baltic Sea Action Plan, which was signed in 

2007 by the Ministers of Environment of the Baltic Sea States (HELCOM 2007). 
 

Background 

The Gulf of Riga (58°N, 23°30’E; Fig. 1) has a surface area of 16 700 km2, a mean depth 

of 24.5 m and a maximum depth of 56 m (Håkanson and Bryhn 2008a). The water of the 

Gulf is brackish as the salinity in most parts ranges from 5.5 to 6.0 psu (Kotta et al. 

2008). The Gulf of Riga is bordered by the Estonian and Latvian mainlands, the two 

islands of Muhu and Saaremaa, the Irbe Sound and the Suur Strait. The drainage basin 

covers 137,200 km2 (Laznik et al. 1999) and includes parts of Estonia, Latvia, Lithuania, 

Belarus and Russia. The largest river in this area is River Daugava with a drainage basin 

of 87,900 km2 (Laznik et al. 1999). River Daugava originates in Russia, flows through 

northern Belarus, drains parts of those countries as well as parts of Latvia and Lithuania 

and joins the Gulf at the Latvian coast. Water, nutrients and other substances are also 

transported to the Gulf via several smaller rivers and streams such as River Lielupe 

(drainage basin located in Latvia/Lithuania), River Gauja/Koiva (Latvia/Estonia), River 

Pärnu (Estonia/Latvia), and River Salaca/Salatsi (Latvia/Estonia). 

 

The Gulf is highly exposed to fluxes from the adjacent Baltic Proper, as fig. 1 suggests. 

The gross water flux to the Gulf from the Baltic Proper is 3-4 times greater than the 

discharge from the catchment. Although the Gulf is a net exporter of both water and TP 

to the Baltic Proper, the gross TP flux from the Baltic Proper to the Gulf of Riga is about 

4,300 tonnes per year (Savchuk 2005; Håkanson and Bryhn 2008a), and is thus 

considerably larger than the TP loading from the drainage basin.  

 

The average Secchi depth in the Gulf has decreased from 5 m in the early 1960s to 3 m 

during the first years of the 2000s (Fleming-Lehtinen and Kaartokallio 2009). Regularly 

measured and reliable data on many other water quality indicators are, however, only 

available for more recent decades and changes have been fairly modest during this time. 

July-August mean concentrations of chlorophyll-a (a pigment used as a proxy for 
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phytoplankton concentration or productivity) have fluctuated between 4 and 6.5 µg/l in 

surface waters during 1998-2007 (EC-JRC, 2008). Since the late 1980s, TP 

concentrations in surface waters have increased slightly from about 27 µg/l to 

approximately 31 µg/l (Bryhn 2010). Kotta et al. (2009) noted two TP loading peaks in 

the late 1980s and in the late 1990s but could not find any clear inter-annual loading 

trend. The TP concentration in the Baltic Proper has also remained fairly stable since the 

1980s with concentrations fluctuating around 21 µg/l in the 1980s and around 22 µg/l 

during 2000-2007 (Bryhn 2010). The lack of water quality improvement in the Gulf is 

likely due to relatively insignificant changes in TP loadings from the catchment as well as 

from the Baltic Proper.  

 

However, the TP input to the Baltic Sea as a whole has decreased by more than 40% 

since the 1980s although surface water TP concentrations have not decreased in most of 

the Baltic Sea subbasins (Savchuk and Wulff 2009; Bryhn 2010). A common explanation 

is variations in major saltwater intrusions from the North Sea. After a major saltwater 

intrusion, redox conditions in deep waters and sediments of the Baltic Sea change due to 

the influence of the added oxygen-rich water which has a high salinity and density 

compared to surface waters and is therefore mainly transported downwards (Matthäus 

2006). Redox conditions affect phosphate diffusion from deep sediments (Conley et al. 

2002). Intensive saltwater intrusions have occurred at a historically low frequency since 

the 1980s (Matthäus 2006), after which a larger fraction of the settling particulate 

phosphorus (P) in the water appears to have returned as internal phosphate loading from 

deep sediments (Neumann and Schernewski 2008; Savchuk and Wulff 2009). Conley et 

al. (2002) correlated oxygen and phosphate concentrations in hypoxic waters of the Baltic 

Sea 1970-2000, noting more than 50% higher phosphate concentrations during years with 

low oxygen concentrations compared to years with less severe deepwater hypoxia. 

Another common partial explanation to the lack of substantial TP concentration changes 

is that the Baltic Sea reacts slowly to changes in nutrient input (Savchuk and Wulff 

2007). The TP content in Baltic Sea water is about 550,000 tons (Savchuk 2005). The TP 

content in shallow sediments exposed to wind and wave action has been estimated at 

200,000 tonnes while the P which may be released from deep sediments unaccessible for 
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waves may be 900,000 tonnes (Håkanson and Bryhn 2008). Altogether, waters, bioactive 

deep sediments and wave-exposed shallow sediments contain almost 50 times more P 

than what is added to the Baltic Sea annually from its drainage basin.  

 

Primary production promotes food availability for fish and thereby also affects fish 

production (fig. 2). The Baltic herring (Clupea harengus membras) is the most abundant 

amongst more than 50 other species in the Gulf of Riga and herring also accounts for 

about 90% of the commercial catch value. The herring stock is quite stationary in the 

Gulf (Kotta et al. 2008) and fig. 3 shows the annual variations in landings and spawning 

stock biomass of herring in the Gulf of Riga 1977-2007. Since the early 1990s, the 

spawning stock biomass has been quite stable. One can, however, note a strong increase 

in spawning stock biomass between the mid-1980s and the early 1990s, a change which 

concurred with increasing nutrient concentrations and primary production in this area 

(Kotta et al. 2008), and also with the end of a temporary extreme peak in prevalence of 

the migratory Baltic cod (Ojaveer et al. 1999; Eero et al. 2008). However, since trophic 

state changes during this period were very limited, the impact from these changes on the 

herring stock has been difficult to distinguish. Kotta et al. (2009) found no eutrophication 

effects on the herring stock in the Gulf during 1977-2006 but instead correlated herring 

stock changes to changes in climate variables. Regarding the development before this 

period, Thurow (1997) estimated that the herring biomass in the Baltic Sea had increased 

by a factor of 15-16 from the 1920s until the mid-1970s, although estimates for the Gulf 

of Riga were not specified. 

 

Urban sewage discharge in the EU is regulated by the UWWTD (Anon 1991). The 

Directive requires that waste water be collected and subjected to secondary treatment in 

all agglomerations with more than 2,000 population equivalents. Agglomerations with 

more than 10,000 population equivalents and which drain into sensitive areas should have 

more advanced urban sewage treatment. Exceptions to these general rules are described 

in Anon (1991). Table 1 shows that substantial TP reductions to the Gulf of Riga could 

be made if the UWWTD would be implemented throughout the drainage basin, although 
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it is important to note that a considerable part of the reductions would have to be made in 

the non-EU states Russia and Belarus. 
 

 
Figure 3. Spawning stock biomass and landings of herring in the Gulf of Riga, 1977-2007. Data from ICES 
(2008). 
 

The Marine Strategy Framework Directive (MSFD; Anon 2008), requires EU member 

states to take necessary measures to achieve (or maintain) “good” or “high” water quality 

in marine waters. Marine waters are defined in the MSFD as waters, including their 

seabed and subsoil, from the coastline “to the outmost reach of the area where a Member 

State has and/or exercises jurisdictional rights”. Good water quality should be achieved 

by the year 2020, albeit some waters may be exempted if this goal is out of reach. The 

MSFD applies to the whole Gulf of Riga which consists of Estonian and Latvian 

territorial waters. Good and high water quality were defined in Anon (2000) and the 

definitions are provided in table 2. 

 
Table 2. Ecological status classification according to the EU Water Framework Directive (Anon 2000). 
Ecological status Definition 
High 
Good 
 
Moderate 
 
Poor 
Bad 

No, or only very minor, anthropogenic alterations 
Low distortion levels resulting from human activity, which deviate only slightly from 
levels associated with “high” status 
Conditions deviate moderately from those at “high” status and are significantly worse 
than those at “good” status 
Major anthropogenic alterations compared to “high” status 
Severe anthropogenic impacts under which large portions of the relevant biological 
communities have disappeared 
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Methods 

The limiting nutrient in primary production of the Gulf of Riga is P (Kotta et al. 2008), so 

a delicate task in predicting effects on the trophic state from abatement action is to 

accurately assess external and internal P fluxes to, from and within the Gulf. The Baltic 

Sea Action Plan requires P abatement to the Gulf of Riga but no nitrogen abatement 

(HELCOM 2007). If P concentrations would decrease gradually in the surface waters of 

the Gulf, a gradually aggravated P deficiency could be expected for the phytoplankton 

communities which would thereby be forced to decrease their activity, reproduction and 

biomass (Tyrrell 1999; Håkanson and Bryhn 2008a; Schindler et al. 2008). 

 

Mass-balance models are the only means by which changes in trophic state and internal P 

fluxes can be predicted from changes in P loading and in other external factors 

(Håkanson et al. 2010). The model used in this study is called CoastMab and consists of 

mass-balance submodels of salt, TP and suspended particulate matter (SPM). Masses, 

concentrations and fluxes are simulated at monthly time steps using Euler’s method and 

ordinary differential equations. There are also other sub-models connected to these mass-

balance submodels; e. g., a Secchi depth submodel, a chlorophyll submodel and also a 

foodweb model framework (CoastWeb) with predator-prey interactions (Håkanson et al. 

2010). For simplicity and because no foodweb interactions will be simulated, total fish 

biomass changes will not be estimated by means of foodweb modelling in this study but 

will instead be predicted from TP concentrations and salinities. Thus, the CoastMab 

model (published in Håkanson et al. 2010) will be used for predicting i) TP 

concentrations, ii) chlorophyll-a concentrations (Chl; in µg/l), iii) the Secchi depth (in m) 

and iv) total fish biomass. Predictions of present levels of TP, Chl and Secchi depth will 

be compared to empirical measurements described in Håkanson (2009).  

 

A well-known alternative to CoastWeb and the approach described above is the Ecopath 

with Ecosim (EwE) framework (Christensen and Walters 2004; Hansson et al. 2007). 

EwE allows construction and combination of modelling blocks where the user provides 

constants and other information about the modelled group of organisms. However, EwE 

does not include a mass balance model related to eutrophication and nutrient inputs, 
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which makes EwE less well suited for the present study. An alternative to modelling 

average subbasin conditions related to the trophic state is to use 3D models which 

simulate concentrations and fluxes of nutrients on a small spatial and temporal scale 

(Håkanson et al. 2008a; Neumann and Schernewski 2008). Yet, modelling changes in 

average subbasin conditions on longer (monthly, annual and decadal) timescales should 

be sufficient for the purpose of the investigations in this paper and the CoastMab 

approach will therefore be selected. 

 

In the CoastMab model, water masses and sediment areas are divided into categories 

according to location in relation to the halocline and to location in relation to the 

theoretical wave base (fig. 4). The depth of theoretical wave base (DWB) is the depth at 

which wind and wave action normally reaches, stirs up sediments, and mixes water.  

Above this depth, erosion and transport (ET) sediments dominate bottom areas, while 

accumulation (A) sediments dominate areas below DWB. Waters above DWB are referred 

to as surface waters in CoastMab, while deep waters are defined as being located below 

DWB. Two subbasins of the Baltic Sea (the Baltic Proper and the Gulf of Finland) also 

display a marked halocline at about 75 m, so waters and sediments below DWB in these 

subbasins are divided into two categories; sediments and waters above the halocline 

(middle waters and mid-range A sediments) and below the halocline (deep waters and 

deep A sediments). TP and SPM fluxes and masses in the Gulf of Riga are thus simulated 

by CoastMab in the same manner as two other subbasins, the Bothnian Sea and the 

Bothnian Bay, using four state variables which represent surface waters, deep waters, ET 

sediments and A sediments. Six state variables are used for the Baltic Proper and the Gulf 

of Finland: surface waters and ET sediments, both above DWB; middle waters and mid-

range A sediments, both located between DWB and the halocline; and, finally, deep waters 

and deep A sediments located below the halocline. 

 

Some major simulated TP and SPM fluxes in CoastMab are sedimentation, mixing, 

resuspension (including erosion), diffusion, burial, biouptake and outflow. Sedimentation 

is the downward flux of SPM and particulate P due to gravity. Mixing is defined as the 

wind and wave driven TP and SPM fluxes between surface waters and lower water layers.   
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Resuspension refers to substance fluxes from ET sediments to the water column and such 

fluxes are also mainly driven by wind and wave action, and are parameterised in the model 

according to the morphometry of each subbasin and the P or SPM content in the ET 

sediments of each subbasin. Diffusion concerns dissolved P fluxes from water layers and 

sediments with high dissolved P concentrations to water layers with lower dissolved P 

concentrations. The SPM diffusion is zero since SPM is by definition particulate and not 

dissolved matter. SPM and TP pools in A sediments which do not return to the water 

column instead eventually enter the geosphere as they are buried by more recently 

precipitated material and this particle flux to the geosphere is commonly referred to as 

burial. Biouptake is the incorporation of dissolved P by primary producers during 

photosynthesis. Outflow is the TP and SPM export from the Baltic Sea to the adjacent 

Kattegat. 
 

One flux category included in CoastMab but not in most other Baltic Sea nutrient or 

foodweb models is related to rising land and sediment areas. The isostatic land uplift after 

the last glaciation period occurs at a rate of 0-9 mm/year in the Baltic Sea region (Eronen 

et al. 2001). Land uplift gradually lowers the wave base and exposes new bottom areas to 

Figure 4. The ETA-diagram. 
Functional division lines 
between bottom areas of 
erosion (E), transportation (T) 
and accumulation (A). DET is 
the divider between E and T 
areas while DWB (the depth of 
the theoretical wave base) is the 
divider between T and A areas. 
Both DET and DWB are 
determined from the effective 
fetch (EF ≈ √[surface area]  for 
whole basins). From Håkanson 
and Bryhn (2008a). 
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increased wind and wave driven erosion and resuspension. This means that large amounts 

of TP and SPM are continuously added to the system as a result of geological events 

(Jonsson et al. 1990). The eroded material primarily consists of glacial and postglacial 

clay, and the clay particles appear to have a clarifying effect on the Baltic Sea water. This 

effect has been used in the CoastMab model for improving the quantitative explanation to 

why waters are clear and oligotrophic in the northern Baltic Sea where land uplift is high 

while nutrient concentrations are much higher in the south where land uplift is low. Water 

mixing between subbasins is intensive, so geographical variations in nutrient loadings from 

the catchment cannot alone be the reason for the strong nutrient gradient in the Baltic Sea 

(Håkanson and Bryhn 2008a; Bryhn and Håkanson 2010). 

 

Chl is tightly correlated to TP and total nitrogen concentrations in aquatic systems. 

Furthermore, Chl increases at increasing temperatures, while salinity in the surface water 

layer (SalSW, in psu) affects the Chl/TP ratio (Håkanson and Bryhn 2008a; Håkanson et al. 

2010). In CoastMab, Chl is predicted from monthly surface water temperatures (SWT, in 

°C; the annual average and seasonal variation of SWT is modelled from the mean latitude 

of each subbasin), long-term mean salinities and dynamically modelled TP concentrations 

in surface waters (TPSW; in µg/l): 
 

Chl = TPSW ∙ DFSW · YDayL · YSal ∙ YSWT, Chl      (1) 

 

where DFSW is the dissolved fraction of phosphorus in surface water (dissolved phosphorus 

concentrations in surface waters divided by TPSW), while YDayL is a dimensionless seasonal 

moderator expressing the number of daylight hours during an average day of the month. 

YSal is a dimensional moderator for salinity and YSWT, Chl is a dimensionless moderator 

which expresses the impact of surface water temperatures on Chl. YSal is differently 

defined for different salinity ranges: 
 

Y1 = if SalSW < 2.5 then (0.20 – 0.1· (SalSW /2.5 – 1)) else (0.20+0.02·(SalSW/2.5–1)) 

Y2 = if SalSW < 12.5 then Y1 else (0.28 – 0.1· (SalSW /12.5 – 1)) 

Y3 = if SalSW > 40 then (0.06 – 0.1· (SalSW/40 – 1)) else Y2 

YSal = if Y3 < 0.012 then 0.012 else Y3       (2) 
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where SalSW is the salinity (in psu) in surface waters and Y1, Y2, and Y3 are 

dimensionless moderators used for defining YSal. YSWT, Chl is defined as: 
 

 YSWT, Chl = If (SWT > 4) then (1) else (SWT+0.1)/4     (3) 

 

Secchi depth is predicted from salinity and from dynamically modelled SPM values. 

SPM, i. e., particles, prevent light from penetrating the water column, so SPM in surface 

waters (SPMSW) and Secchi depth have an inverse relationship. The higher the salinity, 

the greater the flocculation of particles, the more rapid the sedimentation and the clearer 

the water. In the Baltic Sea, salinity may also be used as a proxy variable for colour, i. e., 

for allochthonous matter which prevents light dispersion and is transported by the 

freshwater discharge from the catchment (Håkanson et al. 2010).  A basic, cross-systems 

approach for predicting Secchi depth is used for defining the model variable SecRef (in 

m): 
 

SecRef = 10^(−((10^(0.15 · log(1 + SalSW) + 0.3) − 1)) + 0.5) · (log(SPMSW) + 0.3)/2  

+ (10^(0.15 · log(1 + SalSW) + 0.3) − 1)))        (4) 

 

 

SecRef is then used in combination with YSalSec (a salinity and water flux based 

dimensionless proxy variable for colour) to model Secchi depth while compensating for 

allochthonous influence: 
 

Secchi depth = YSalSec · SecRef       (5) 

 

where YSalSec,  is defined as 
 

YSalSec = (SalSW/SalKattegat  + QBPGR/(Qtrib+QBPGR)) / 2    (6) 

 

in which SalKattegat is the salinity in Kattegat (in psu), Qtrib is the water discharge from the 

catchment (in m3/month) and QBPGR is the water flux from the Baltic Proper to the Gulf 

of Riga (in m3/month). 
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Håkanson et al. (2010) modelled total fish biomass values as deviations around a norm 

value for the water body in question. Such deviations may be different levels of fishing 

pressure, changes in consumption by marine mammals and changes in other foodweb 

interactions or climatic variables. This norm value will be referred to as total fish biomass 

in the present work and is given in tonnes as: 
 

 Total fish biomass = (YSal / 0.28) · Area · 10−3 · 590 · TPSW
0.71   (7) 

 

where Area is the surface water area (in m2) and YSal was defined in eq. 2. 

 

Predictions from CoastMab have previously been successfully tested against long-term 

TP, Chl and Secchi depth data from the Baltic Sea subbasins displayed in fig. 1 

(Håkanson and Bryhn 2008a), against long-term TP data from 21 Baltic Sea coastal areas 

(Håkanson and Eklund 2007) and against a long time series of TP, Chl and Secchi depth 

data in Ringkøbing Fjord, Denmark (Håkanson et al. 2007). The model error was in 

general smaller than the relative deviation in a comparison of empirical data divided into 

two randomly selected datasets.  Fish biomass data are, however, comparatively uncertain 

and difficult to predict; empirical values in Ringkøbing Fjord were predicted in the right 

order of magnitude by Håkanson and Bryhn (2008b) using the CoastMab/CoastWeb 

approach. 

 

The cost for improving urban sewage treatment to UWWTD standards was taken from 

HELCOM and NEFCO (2007) and was provided in 2004 euros. Costs were converted to 

2011 prices by adjusting for inflation according to rates reported by EUROSTAT (2011; 

see table 3). A separate cost estimate for the Gulf of Riga drainage basin was made using 

inflation adjusted costs from HELCOM and NEFCO (2007) multiplied by the ratio of 

possible nutrient reductions to the Gulf of Riga to possible nutrient reductions to the 

Baltic Sea, provided as percentage values in the final column of table 1. This operation 

rests on the assumption that the percentage of reductions that each country performs in 

the Gulf of Riga drainage basin compared to the whole Baltic Sea drainage basin (in table 

1) equals the percentage of costs for reductions in this area compared to reductions in the 

Baltic Sea drainage basin. 



16 
 

Year Inflation rate 
2004 
2005 
2006 
2007 
2008 
2009 
2010 

2.1 
2.2 
2.2 
2.1 
3.3 
0.3 
1.6 

 

 

Results 

Long-term model output values simulated at current TP loadings are compared to 

empirical long-term mean values in fig. 5. TP and Chl predictions were higher than 

empirical means, but the difference was less than one standard deviation higher than 

empirical means given in Håkanson (2009), see figs. 5A and C. Secchi depth was also 

predicted higher than the empirical mean value and the difference was between one and 

two standard deviations calculated from the empirical data (fig. 5B). Thus, while the 

model suggested a higher trophic state than empirical data in terms of TP and Chl, the 

modelled Secchi depth predictions, conversely, expressed a lower trophic state than 

measured values. 
 

 
Figure 5. Model output compared to empirical long-term measurements. A. Total phosphorus 
concentration. B. Secchi depth. C. June-August chlorophyll concentration. Empirical means and standard 
deviations 1992-2005 from Håkanson (2009). 
 

Table 3.  
Annual inflation rates 
(in %) in the euro 
zone. Data from 
EUROSTAT (2011). 
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Fig. 6 shows simulated TP concentrations in surface waters of the Gulf of Riga during 

three different scenarios. Scenario 1 described the no action alternative, which is 

described as “Constant TP loading” in fig. 6.  TP concentrations would in Scenario 1 

stabilise at a long-term mean value of 33-34 µg/l. In Scenario 2, the TP input to the Gulf 

from the drainage basin would decrease by 54% in month 13, which would correspond to 

an instantaneous implementation of the UWWTD in the drainage basin. Scenario 2 is 

called “Reductions in Gulf of Riga drainage basin” in fig. 6. The TP concentration in 

surface waters would eventually decrease by about 17%, to approximately 27-28 µg/l 

along Scenario 2. Scenario 3 included the assumption that the UWWTD would be 

implemented in the whole Baltic Sea drainage basin in month 13, which would decrease 

direct TP emissions to the Gulf of Riga by 54%, emissions to the Baltic Proper by 42% 

and emissions to the Gulf of Finland by 47%. In this scenario, referred to as “Reductions 

in Baltic Sea drainage basin” in fig. 6, TP concentrations decreased by about 54% to 15-

16 µg/l (fig. 6). 
 

 
Figure 6. Simulated total phosphorus (TP) concentrations in surface waters of the Gulf of Riga from 
improved urban sewage treatment. Scenario 1: Constant TP loading. Scenario 2: Reductions in Gulf of Riga 
drainage basin. Scenario 3: Reductions in Baltic Sea drainage basin. 
 

The Secchi depth simulated along the same three scenarios as those in fig. 6 is displayed 

in fig. 7A. In Scenario 1, the Secchi depth fluctuated around 3.5 m, while Scenario 2 led 

to a gradually increased Secchi depth values by some 45% to 5.0 m according to fig. 7A. 
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Even greater water clarity was achieved along Scenario 3, in which the Secchi depth was 

eventually doubled to 6.9 m. Simulated Chl concentrations during June-August are 

shown in fig. 7B. In Scenario 1, concentrations ranged from 3.5 to 4.3 µg/l, and 

decreased by about 13% to 3.1-3.7 µg/l during Scenario 2. Concentrations decreased even 

more in Scenario 3, by 53% to 1.7-2.1 µg/l. Average values in total fish biomass are 

depicted in fig. 7C. The average biomass fluctuated around 94,000 tonnes during 

Scenario 1 and decreased by 13% to about 82,000 tonnes along Scenario 2. A sharp total 

fish biomass decrease was noted in Scenario 3 as mean values decreased by 42% to 

54,000 tonnes. Foodweb simulations of scenarios 1-3 using CoastWeb (Håkanson et al. 

2010) yielded identical results for fish as in fig. 7C, since there were no foodweb 

interaction changes in any of the three scenarios. 

 

 
Figure 7. Simulated long-term environmental effects in the Gulf of Riga from improved urban sewage 
treatment. A. Secchi depth. B. June-August chlorophyll-a concentration. C. Total fish biomass. Scenario 1: 
Constant TP loading. Scenario 2: Reductions in Gulf of Riga drainage basin. Scenario 3: Reductions in 
Baltic Sea drainage basin. 
 

Thus, improved urban sewage treatment was projected to increase the Secchi depth but 

decrease TP and Chl concentrations and total fish biomass. It is apparent from fig 6 that 

the most accentuated changes in TP occurred during the first years after the loading 

decrease and that Scenario 2 would lead to stationary conditions more rapidly than 

Scenario 3.  
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Fig. 8 highlights the difference between Scenarios 2 and 3 with respect to percentual 

changes in modelled TP and Secchi depth values. The sharpest changes in both scenarios 

and both variables occurred 1-2 years after improved urban sewage treatment was 

introduced. The annual Secchi depth change became less than 1% six years after 

improved urban sewage treatment in Scenario 2, and less than 0.1% after eleven years. 

The absolute value of the annual TP change was lower than 1% after five years and lower 

than 0.1% after seventeen years (fig. 8A). During Scenario 3, it took 12 years after 

improved urban sewage treatment until the the Secchi depth change was less than 1% per 

year and 41 years until this change was less than 0.1%. The same scenario required 19 

years to elapse from improved urban sewage treatment until the absolute value of the TP 

concentration change was lower than 1% per year and 45 years until this value was lower 

than 0.1% (fig. 8B). 

 

Annual changes amongst TP and Secchi depth were then used for defining “stabilising 

conditions” so that the trophic state was considered to stabilise when the absolute value 

of the simulated annual changes was lower than 1%. Conditions were assumed to be 

stable when absolute values of changes were lower than 0.1%. Thus, “stabilising 

conditions” in Scenario 2 occurred during 11-16 years after improved urban sewage 

treatment in Scenario 2 and during 19-41 years after improved urban sewage treatment in 

Scenario 3. It is also quite apparent from fig 6 that TP was still changing during 11-16 

years after improved urban sewage treatment in Scenario 2, but the significance of annual 

changes after that would have to be determined with statistical methods. 

 

The estimated costs for implementing Scenarios 2 and 3 are listed in table 4. In this table, 

there are two additional cost scenarios (from HELCOM and NEFCO 2007): that all new 

investments are made in rural areas (high cost scenario) or that these investments are 

exclusively made in urban areas (low cost scenario). Implementing the UWWTD in the 

Gulf of Riga drainage basin should cost 43-103 million euros per year while 

implementing this directive in the whole drainage basin of the Baltic Sea should cost 468-

1,118 million euros per year. 
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Figure 8. Annual change in modelled total phosphorus concentrations and Secchi depths. A. Scenario 2: 
Reductions in Gulf of Riga drainage basin. B. Scenario 3: Reductions in Baltic Sea drainage basin. 
 

Discussion and conclusions 

Simulated TP and Chl concentrations at present loading levels were less than one 

standard deviation higher than long-term empirical mean values (fig. 5) while simulated 

Secchi depth values were less than two standard deviations higher than the mean 

empirical Secchi depth. It should be noted that due to uncertainties in empirical data and 

in models, one cannot expect perfect predictions. CoastMab has been calibrated for 

making good overall predictions in all Baltic Sea subbasins in order to capture general 
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patterns in the various flux algorithms (Håkanson and Bryhn 2008a; Håkanson et al. 

2010). Simulating the phosphorus cycle in both the Baltic Proper and the Gulf of Riga 

was very important for predicting changes in the Gulf (figs 6 and 7). Therefore, it would 

have been a worse alternative to have calibrated the model against empirical data from 

the Gulf only, in comparison with the approach described in Methods. 
 
Table 4. Annual implementation cost (2011 prices, million euros) of the Urban Waste Water Treatment 
Directive. The calculation method is described in Methods. Estimates for the Gulf of Riga drainage basin 
are part of the estimates for the Baltic Sea drainage basin. Two cost estimates have been made for each 
case. High cost estimates are based on the assumption that all new investments are made in rural areas.  
Low cost estimates assume that all new investments are made in urban areas. 
Country Baltic Sea drainage basin Gulf of Riga drainage basin 

 
High Low High Low 

Belarus 267 113 71 29 
Czech Republic 18 8.0 0 0 
Estonia 1.1 0.25 0.14 0.03 
Lithuania 85 35 6.4 2.5 
Latvia 1.1 0.43 1.0 0.37 
Russia 228 96 25 11 
Poland 518 216 0 0 
Total 1,118 468 103 43 
 

Simulations in this study (figs. 6 and 7) demonstrated an important principle for the Gulf, 

that the water quality is highly dependent on the water quality in the adjacent Baltic 

Proper. Using a different modelling approach, Savchuk (2002) came to a somewhat 

different conclusion; that the TP import to the Gulf from the Baltic Proper was actually 

smaller (1,600 tonnes per year) than the TP import from the catchment. However, more 

recent studies by the same author (Savchuk 2005; Savchuk and Wulff 2007) covering all 

major subbasins of the Baltic Sea found that the TP import from the Baltic Proper was 

instead much larger than the TP import from the catchment, which has later been 

supported by Håkanson and Bryhn (2008a), Håkanson et al. (2010) and the present study. 

Thus, in order to substantially counteract the eutrophication of the Gulf, it would be 

necessary to decrease TP loadings to the whole Baltic Sea and not only from the drainage 

basin of the Gulf (figs 6 and 7). 

 

HELCOM (2007) suggested a summer Secchi depth exceeding 4.5 m as an appropriate 

environmental goal for the Gulf while Håkanson (2009) proposed an annual Secchi depth 

of 4.6 m as a reference value. However, it is probably not even enough to return to the 
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1960s Secchi depth values of 5 m (see Background) to achieve good water quality in the 

Gulf of Riga according to the MSFD (good status means a very limited anthropogenic 

influence; see table 2). Anthropogenic nutrient fluxes into the Baltic have been 

significant since the early 1900s (Savchuk et al. 2008). There were decreasing long-term 

trends in the Secchi depth in the Baltic Sea already in 1919-1939 which subsequently 

continued (Sandén and Håkansson 1996). Because of the intensive nutrient exchange 

between the Gulf and the rest of the Baltic Sea, it is likely that eutrophication in the Gulf 

to a great extent concurred with eutrophication in the whole Baltic Sea both before and 

after the 1960s. Therefore, there may be reason to believe that urban sewage treatment 

according to Scenario 2 which resulted in a long-term Secchi depth of about 5 m (fig. 7A) 

would not be sufficient for complying with the MSFD. Good water quality may instead 

require a Secchi depth of about 6 m, i. e., twice as great as current mean values of 3 m. 

Scenario 3 resulted in a Secchi depth near 7 m (fig. 7A) which may be between the 

classifications “good” and “high” water quality according to table 2. However, given that 

the model yielded slightly exaggerated Secchi depth values (fig. 5), the TP reductions in 

Scenario 3 (reductions in the Baltic Sea drainage basin) could in any case be necessary 

for doubling the Secchi depth from 3 m to 6 m. 

 

Considerably greater average Secchi depths than 5 m could be achieved within 10 years 

according to the simulations, but it may be difficult to reach a similar goal before year 

2020 (as prescribed in the MSFD) because of the time it takes to motivate, initiate, and 

complete urban sewage treatment plants in the whole Baltic Sea drainage basin. To reach 

this goal by 2030 would probably be a more realistic ambition. If Scenario 3 should be 

realised (reductions in the Baltic Sea drainage basin), the TP concentration, the Chl 

concentration and the total fish biomass should be expected to stabilise at about half of 

their current values (figs 6, and 7B and 7C). 

 

However, decreased biomass and production potential of fish may decrease profits and 

work opportunities in the fisheries sector, which is likely to be unpopular. A decreasing 

size of the total fish biomass would imply decreasing total allowable catches (TACs) of 

fish. It is also possible that a great trophic state decrease in the Gulf would trigger shifts 
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in species composition, into an increasing percentage of highly economically valued 

species (Håkanson et al. 2010), although investigating such shifts has been beyond the 

scope of the present study. Modelling results suggested that total fish biomass changed to 

a slightly lesser percentual extent than Chl, which is supported by results in Håkanson 

and Boulion (2002; see also fig. 2A) but according to the regression model in Chassot et 

al. (2007; see also fig. 2B), percentual changes in total fish biomass could very well have 

been as great or greater in comparison with Chl changes. In this context it is worth noting 

that variations in herring biomass in the Gulf have been substantial during the past 

decades. The spawning stock biomass doubled from the period 1977-1982 until 1995-

1990 (fig. 3), although these changes occurred when trophic state changes were modest 

and may instead have been driven by climatic factors (Kotta et al. 2009), or by the 

decreasing cod populations described by Ojaveer et al. (1999) and Eero et al. (2008). 

Large changes in trophic state may have clear effects on fish biomass (Thurow 1997; 

Håkanson and Boulion, 2002; Chassot et al. 2007; Hansson et al. 2007). However, effects 

from small changes in trophic state are difficult to distinguish from a multitude of other 

factors such as changes in fish landings or changes in climate related variables.  

 

The time resolution for decreasing the TP concentration in the Gulf of Riga by means of 

decreasing TP inputs has to the best of the author’s knowledge not been estimated 

previously. Fig 8 shows that the time between action and full effect (11-16 years during 

Scenario 2 and 19-41 years during Scenario 3) depends on the extent and location of the 

action. Håkanson et al. (2010) concluded that it would take 20 years or more until TP 

abatement action would have full effect on the Baltic Sea. Savchuk and Wulff (2007) 

estimated a much slower reaction; if all TP inputs into the Baltic Sea were to be stopped 

instantaneously, they concluded that it would take 50 years for the TP concentration to 

decrease by 50% and 250 years to decrease the concentration by 95%. 

 

It is striking that one single type of abatement strategy, urban sewage treatment, accounts 

for such a large part of the potential TP reduction to the Gulf of Riga and the rest of the 

Baltic Sea (see table 1 and HELCOM 2007). No other option such as wetland 

construction or more efficient manure handling and application have individually or in 
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combination been shown to be nearly as effective in terms of potential TP reduction 

compared to improved urban sewage treatment. The latter is also one of the most cost-

effective measures (Gren and Elofsson 2008) and it may be difficult to achieve any 

substantial trophic state changes without relying fully or partly on this measure (Bryhn 

2009). The present study has shown that improved urban sewage treatment at a cost of 

468-1,118 million euros per year could make a profound impact on the trophic state of 

the Gulf of Riga. This cost should be compared to the cost of the Baltic Sea Action Plan 

which has been estimated at 3,400 million euros per year in 2011 prices (calculated from 

HELCOM and NEFCO 2007). The Baltic Sea Action Plan also requires many measures 

with low cost-effectiveness (Bryhn 2009). However, regardless of which nutrient 

abatement strategy is selected, the expected effects on fish production should also be 

weighed in together with other costs and it is possible that the population around the Gulf 

of Riga would not want any substantial nutrient reductions on behalf of decreasing fish 

stocks. 

 

This study has investigated how the water quality and total fish biomass in the Gulf of 

Riga would be affected by improved urban sewage treatment around the Gulf and around 

the Baltic Sea. Simulations showed that good water quality in the Gulf according to the 

EU Marine Strategy Framework Directive could be achieved if urban sewage treatment 

would be performed to meet Nordic and German standards in all parts of the Baltic Sea 

drainage basin. The Secchi depth would approximately double while total phosphorus 

and chlorophyll concentrations would be cut by half. The total fish biomass would also 

eventually decrease by about 42% of its current size if good water quality should be 

achieved although such a change may be counteracted or exacerbated by changes in 

fishing pressure or climate. Improved sewage treatment to this extent would cost 468-

1,118 million euros per year. These findings suggest that substantial international 

cooperation is necessary for reaching good water quality in the Gulf. Moreover, findings 

in this study support the suggestion by Hansson et al. (2007) that diminishing fish stocks 

as a possible adverse side effect from nutrient abatement needs to be acknowledged and 

investigated further.  
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