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1  | INTRODUC TION

Grasslands are areas where the vegetation is dominated by grasses 
(Poaceae family). They are an intrinsic part of both rangelands and 
pasturelands and constitute about half of the global land area. 
Grassland provides different functions, such as livestock feed, 

environmental regulation, sequestration of soil carbon, biological 
diversity and maintenance of soil health (Carlier, ROTAR, Vlahova, 
& Vidican, 2009; Hönigová et al., 2012; Ribeiro, Fernandes, Dalila 
Espırito-Santo, 2014). Soil organic carbon (SOC) content is a key in-
dicator of soil fertility and grassland productivity, and SOC seques-
tration is considered a means to mitigate climate change through 
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Abstract
Grasslands occupy almost half of the world's land area. Soil organic carbon (SOC) is 
a key indicator of soil fertility and grassland productivity. Increasing SOC stocks (so-
called SOC sequestration) improves soil fertility and contributes to climate change 
mitigation by binding atmospheric carbon dioxide (CO2). Grasslands constitute about 
70% of all agricultural land, but their potential for SOC sequestration is largely un-
known. This review paper quantitatively summarizes observation-based studies on 
the SOC sequestration potential of grasslands in six East African countries (Burundi, 
Ethiopia, Kenya, Rwanda, Tanzania and Uganda) and seeks to identify knowledge 
gaps related to SOC sequestration potential in the region. In the studies reviewed, 
SOC stocks in grasslands range from 3 to 93 Mg C/ha in the upper 0.3 m of the 
soil profile, while SOC sequestration rate ranges from 0.1 to 3.1 Mg C ha-1 year-1 
under different management strategies. Grazing management is reported to have 
a considerable impact on SOC sequestration rates, and grassland regeneration and 
protection are recommended as options to stimulate SOC sequestration. However, 
a very limited number of relevant studies are available (n = 23) and there is a need 
for fundamental information on SOC sequestration potential in the region. The ef-
fectiveness of potential incentive mechanisms, such as payments for environmental 
services, to foster uptake of SOC-enhancing practices should also be assessed.
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reducing the carbon dioxide (CO2) concentration in the atmosphere 
(Conant, 2010; Conant, Cerri, Osborne, & Paustian, 2017; Freibauer, 
Rounsevell, Smith, & Verhagen, 2004; Ghosh & Mahanta, 2014; 
Mengistu & Mekuriaw, 2014). Thus, understanding the capacity of 
grassland soils to store organic carbon is vital in developing climate 
change mitigation strategies and in addressing soil health issues 
(Gray, Bishop, & Wilson, 2015).

Globally, grasslands contain more than one-third of aboveground 
and belowground stocks of organic carbon (Allen-Diaz et al., 1996; 
Mengistu, 2006). Fisher et al. (1994) and Mishra, Ranade, Joshi, 
and Sharma (1997) highlight the potential for SOC sequestration 
by deep-rooting African grasses, such as Andropogon gayanus and 
Brachiaria humidicola. Guo and Gifford (2002) estimated that the 
conversion of cropland to grassland increases SOC by about 19%, 
while recent meta-analysis shows an increase of 3%–5% (Conant, 
Paustian, & Elliott, 2001; Conant et al., 2017. The higher SOC stocks 
in grasslands are due to their perennial nature which results in con-
stant carbon inputs from aboveground vegetation and the large 
quantities of carbon to the subsoil via root exudates and decom-
posing deep roots (Zimmermann, Dauber, & Jones, 2012). However, 
grassland management practices have substantial effects on the 
turnover rates of soil organic matter, carbon inputs and soil nutri-
ents (Blair, Lefroy, & Lisle, 1995), leading to varying effects on SOC.

For instance, Dlamini, Chivenge, Manson, and Chaplot (2014) 
reported a 90% decline in SOC in the heavily grazed highlands of 
KwaZuluNatal in South Africa. Globally, the increased grassland 

degradation caused by overgrazing has been shown to substantially 
reduce SOC, mainly in the dry climates, with between 1.2% and 4.2% 
of the grassland SOC stocks likely to be lost (Dlamini, Chivenge, & 
Chaplot, 2016). Grassland rehabilitation through adopting improved 
management has been suggested as one way to reverse this loss. 
Chaplot, Dlamini, and Chivenge (2016) show that, compared to tra-
ditional free grazing, livestock enclosures where the livestock in-
tensity is increased in one area for short duration increases SOC in 
Southern Africa.

About 75% of Eastern Africa is dominated by managed grassland 
systems. However, at the regional level little is known about the 
types of grassland managements and their impacts on SOC, with 
the existing studies focussing on small localized areas. Given the 
large land size of grasslands in East Africa, there is a yet untapped 
potential for C storage in the grasslands as an option to mitigate 
climate change. However, there is a need to review studies under-
taken in the past to better understand the current and future po-
tential effects of grassland management practices. Therefore, the 
aim of this study was review observation-based studies on grass-
land systems in East African countries (Burundi, Ethiopia, Kenya, 
Rwanda, Tanzania and Uganda (Figure 1)) in order to: (a) assess the 
SOC sequestration potential of existing management practices; (b) 
assess the key drivers affecting SOC sequestration in grasslands in 
the region; and (c) identify the knowledge gaps regarding SOC se-
questration potential in East African grasslands and provide recom-
mendations for further studies.

F I G U R E  1   Study area. The six 
countries in East Africa covered by 
the reviewed publications on SOC in 
grasslands and converted grasslands. 
Grasslands are represented by dark areas 
(data from ESA 2015: © ESA Climate 
Change Initiative – Land Cover project 
2017)
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2  | MATERIAL S AND METHODS

2.1 | Key terminology

Terminology referring to grasslands varies based on context. For in-
stance, in some cases rangeland and grassland are used interchange-
ably, while in others grasslands are considered part of different land 
use classes, e.g., rangelands and pasturelands. The terminology used 
in this review paper was as follows:

Rangelands

Land on which the native vegetation is predominantly grasses, grass-
like plants, forbs or shrubs. This includes land revegetated with 
such species naturally or artificially by routine management, mainly 
through manipulation of grazing.

Pasturelands

Enclosed tracts used for grazing distinguished by periodic cultiva-
tion to maintain introduced (non-native) forage species and use 
of agronomic inputs such as irrigation and fertilization (Holechek, 
Pieper,& Herbel, 2001).

Grasslands

Areas where the vegetation is dominated by grasses (plants of the 
Poaceae family) and which are an intrinsic part of rangelands and 
pasturelands.

2.2 | Study area

The present study covered six countries (Burundi, Ethiopia, Kenya, 
Rwanda, Tanzania and Uganda) in East Africa (Figure 1). The total 
grassland coverage in this area is an estimated 80 Mha (ESA, 2017). 
Ethiopia, Tanzania and Kenya have the largest coverage, with 32 
Mha, 23 Mha and 20 Mha, respectively, while the total grassland 
areas is smaller in Uganda (5 Mha), Burundi (1 Mha) and Rwanda (<1 
Mha) (ESA, 2017).

2.3 | Literature search and selection

A systematic literature search was undertaken using Google Scholar 
and key terms such as: “SOC” and “grasslands,” combined with 
country names. The results were compiled in a database for further 
analysis. From the total number of hits in each search, subsets were 
derived in three steps by applying criteria on the title (subset 1), ap-
plying criteria on full-text availability (subset 2) and applying criteria 

on the full text itself (subset 3). Subset 1 was derived by discarding 
papers where the title clearly indicated that the study covered an-
other geographical region or another land use. Subset 2 was derived 
by discarding publications for which no full-text version was available 
via the Swedish University of Agricultural Sciences (SLU, Uppsala, 
Sweden), or open access. Subset 3 was derived by discarding papers 
where the full text indicated that the study covered another geo-
graphical region or another land use and including only publications 
presenting quantitative data on SOC or SOC change over time. Only 
publications in the English language were considered.

When sorting results according to relevance, older publications 
were considered more relevant because of more citations. To en-
sure recent publications were equally included, separate searches 
restricted to the previous 11 years (2007–2017) were performed. 
In addition to this systematic literature search, other publications 
reporting on SOC stocks in East Africa were identified from the ref-
erence lists of publications or were known from previous work by 
the authors.

The results of the literature search are presented in Table 1. In 
total, 23 publications that quantified SOC concentration and/or SOC 
sequestration potential, or for which we could derive those values, 
were identified. No research work was found for Burundi, and ex-
tractable data were only available for Ethiopia, Kenya, Uganda and 
one regional study for East Africa as a whole. Of the total number of 
studies, seven reported data from before-after intervention cases, 
so sequestration rates were computed.

The fact that only 23 relevant publications were located indi-
cates a scarcity of hard data on the SOC sequestration potential of 
grasslands in the region. About half of the studies were carried out 
in Kenya (8 studies) and Ethiopia (6 studies) (Table 2), which indicates 
a geographical bias in empirical evidence on SOC sequestration po-
tential. Moreover, the selected countries differ in size and are there-
fore not directly comparable. In addition, a language bias could have 
excluded studies produced in French- and/or non-English-speaking 
countries (e.g., Burundi and Rwanda). In the retrieved publications, 
eight different management practices were examined: enclosure; 
improved management (using rotations and by adding different 
inputs such as manuring, fertilizer, etc); free grazing; light grazing; 
heavy grazing; fencing; restoration measures; and conversion from 
natural forest to grazing.

2.4 | Variables and formulae used to calculate SOC 
stocks and sequestration rates

In the analysis, direct SOC stock and C sequestration rate values 
were used if these were available in the studies reviewed. In the 
absence of values on stocks and sequestration rates, SOC concen-
tration (SOC%) and bulk density (BD) were used to calculate SOC 
stock for the soil layer specified. Total SOC stocks (Mg C/ha) were 
then calculated as a product of SOC%, BD and sampling depth 
(Equation 1). The sequestration rate of SOC was calculated by divid-
ing the SOC stock by the number of years since establishment of 
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each specific management practice/intervention (Equation 2). In the 
absence of bulk density data, an average BD value for the respective 
countries (~1.4 g/cm3 on average for all countries) was taken from 
the global soil mapping database SoilGrids.org (ISRIC, Wageningen, 
the Netherlands).

3  | RESULTS

3.1 | SOC sequestration potential of grasslands in 
East Africa

The SOC sequestration potential reported in the 23 publications 
is summarized in Table 3. There was great variation in both the re-
ported amount of SOC in the soil and the SOC sequestration rate 
under different management options. This may be due to the small 
number of studies available, supporting the need for additional ex-
periments and/or observational studies for accurate assessments of 
SOC sequestration potential in grassland soils in countries in East 
Africa.

The SOC amounts and the rate at which SOC is sequestered 
in grasslands under different management interventions in the se-
lected East African countries are presented in Table 3. Soil sampling 
depths behind the reported data were not uniform in the papers re-
viewed, and therefore, it was difficult to draw comparisons between 
countries and management intervention measures. Three different 

soil depth categories (0–0.1 m, 0–0.3 m and 0–1.0 m) were covered 
specifically by the soil samples analyzed in the 23 papers reviewed. 
However, no soil depth values were mentioned for the SOC values 
reported in three papers.

From the reported data, we inferred that the SOC stocks at 
0–0.3 m soil depth in grasslands range from 3 Mg C/ha (Ethiopia) 
to 93 Mg C/ha (Kenya) (Table 3). The reported impact of manage-
ment interventions on SOC sequestration rate varied from 0.1 to 
3.1 Mg C ha-1 year-1 for 0–1.0 m soil depth in Kenya, while lower 
sequestration rates (0.10 Mg C ha-1 year-1) were reported in general 
for some management practices in Ethiopia. The highest rate was 
reported for fencing (3.10 Mg C ha-1 year-1 for 7–10 year fenced 
grasslands in Kenya), followed by conversion from natural forest to 
grazing (2.4 ± 2.1 Mg C ha-1 year-1 in Uganda) and enclosure (1.8 ± 
0.2 Mg C ha-1 year-1). The extent to which grazing is practiced was 
also reported to affect the sequestration rate, e.g., light grazing 
(0.77 ± 0.4 Mg C ha-1 year-1), giving a higher sequestration rate than 
heavy grazing (0.9 ± 0.5 Mg C ha-1 year-1) for 0–0.1 m soil depth in 
Ethiopia.

3.2 | Factors affecting SOC stocks

3.2.1 | Geographical location, soil and climate

Two factors are important for increasing the amount of carbon 
sequestered in grasslands: 1) Carbon input to the soil by net pri-
mary production, and 2) the rate of organic matter decomposition 
(US Department of Energy, 1999). More than two-thirds of the 
carbon stored in grasslands is located below ground (Burke et al., 
1989; Parton, Schimel, Cole, & Ojima, 1987). Grassland SOC stocks 

(1)SOC
(

Mg∕ha
)

=BD×SOC%×Depth

(2)SOC
(

Mg ha
−1
year−1

)

=
SOC

(

Mg/ha
)

Age (year)

TA B L E  1   Documentation of the literature search using Google Scholar, December 7–9, 2017

Search ID Search string
Time period 
restriction Hits (# ) Subset 1 (# ) Subset 2 (# ) Subset 3 (# )

1 Ethiopia AND “soil organic carbon” AND grasslands ––– 13,500 16 14 3

2 Kenya AND “soil organic carbon” AND grasslands ––– 17,300 19 15 6

3 Tanzania AND “soil organic carbon” AND grasslands ––– 10,900 12 11 3

4 Uganda AND “soil organic carbon” AND grasslands ––– 7,430 17 11 4

5 Rwanda AND “soil organic carbon” AND grasslands ––– 2,950 13 13 4

6 Burundi AND “soil organic carbon” AND grasslands ––– 1,430 5 5 3

7 Ethiopia AND “soil organic carbon” AND grasslands Since 2007 8,960 25 24 9

8 Kenya AND “soil organic carbon” AND grasslands Since 2007 12,000 17 17 5

9 Tanzania AND “soil organic carbon” AND grasslands Since 2007 6,750 13 13 5

10 Uganda AND “soil organic carbon” AND grasslands Since 2007 4,480 14 14 5

11 Rwanda AND “soil organic carbon” AND grasslands Since 2007 1,710 10 10 4

12 Burundi AND “soil organic carbon” AND grasslands Since 2007 936 9 8 1

1–12 No. after removal of duplicates 30

1–12 No. after removal of studies presenting insufficient 
information for the Excel table

23

# = number of publications. ––– = no restriction 
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are primarily determined by climate factors such as temperature 
and rainfall (Gray et al., 2015), with SOC stocks typically being 
higher under a cool humid climate. However, in some cases, soil 
chemical and physical problems can negate this effect (McKenzie 
& Mason, 2010). There are some positive feedbacks to the cur-
rently observed elevated atmospheric CO2 concentrations and 
increased temperatures that may be an advantage for growing 
grasses, and thus for carbon sequestration in the soil (Steffen & 
Canadell, 2005). Howden et al. (1999) suggest that warmer tem-
peratures are also likely to lead to increased pasture growth, higher 
biomass yields and SOC sequestration. However, (Taboada, Rubio, 
Chaneton, Hatfield, & Sauer, 2011) claim that increasing tempera-
ture could lead to a decrease in total SOC, due to an increase in 
decomposition.

3.2.2 | Grass productivity

The production and decomposition of plant biomass can influence 
a number of ecosystem processes (Windham, 2001). Hence, plant 

biomass production and decomposition can determine carbon in-
puts to the soil profile. Moreover, plant allocation between above-
ground and belowground parts, and between shallow and deep 
roots, can leave distinct imprints on the distribution of soil carbon 
with depth (Jobbágy & Jackson, 2000). The high carbon input de-
rived from high plant root biomass production in grassland systems 
can provide the potential to increase soil organic matter content, 
which is a key factor for enhanced SOC storage in grasslands 
(Farage et al., 2004). Therefore, maximizing productivity and root 
inputs in grassland systems is crucial in increasing their SOC se-
questration (Trumbmore, Davidson, Barbosa de Camargo, Nepstad, 
& Martinelli, 1995). However, some studies report that a large root 
biomass supports substantial soil microorganism populations and 
their metabolic processes, thus contributing significantly to soil or-
ganic matter decomposition and carbon turnover (Kuzyakov, 2002). 
Accumulation of SOC in grasslands is also a function of the length 
of time for which the land remains under grasses (Neill et al., 1997). 
Therefore, regardless of technologies or mechanisms, grassland 
age must be considered when assessing longer-term carbon stor-
age potential.

Country No. of studies
No. of 
interventions Intervention(s)

East Africa 1 1 Enclosure

Ethiopia 8 5 Enclosure; restoration measures; improved 
management; heavy grazing; light grazing

Kenya 6 2 Fencing; free grazing

Uganda 3 1 Natural forest to grazing

Tanzania 4 – –

Rwanda 1 – –

Burundi – – –

Total 23 8

TA B L E  2   Studies summarized, and 
number and type of interventions 
identified per country

TA B L E  3   Soil organic carbon (SOC) stocks and sequestration potential under grassland following different management interventions

Country/area Intervention Soil layer (m)
Initial SOC
(t C/ha)

SOC sequestration rate (t 
C ha–1year–1) Studies

East Africa Enclosure 0–30 43.80 ± 6.30 1.77 ± 0.18 Feyisa et.al., (2017)

Ethiopia Enclosure – 3.00 0.30 Niles et.al, (2010)

Restoration measures – 7.40 0.10 Girmay, Singh, Mitiku, 
Borresen, & Lal, (2008)

Improved management – 5.30 0.10 Girmay et.al, (2008)

Heavy grazing 0–10 32.20 ± 13.90 0.77 ± 0.40 Tessema, de Boer, Baars, & 
Prins, (2011)

Light grazing 0–10 36.40 ± 15.80 0.88 ± 0.50 Tessema et.al, (2011)

Kenya Fencing 0–100 26.10 3.10 Svanlund (2014)

Free grazing 0–30 92.90 – Svanlund (2014)

Free grazing 0–100 77.80 – Dabasso, Taddese, & Hoag, 
(2014)

Uganda Conversion (Natural forest 
to grazing

0–30 20.10 ± 12.50 2.40 ± 2.10 Twongyirwe et.al, (2013)
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3.2.3 | Grazing management

Managing grasslands is crucial, since grasses are the main feed source 
for livestock production systems (Conant et al., 2001; Ni, 2002). Grazing 
management aims at optimal use of grasslands for animals, which can 
be achieved by manipulation of one or more of three variables: spe-
cies/type(s) of animals, number of animals and distribution of animals. 
Grassland grazing systems are classified as continuous, seasonal or ro-
tational (Pratt & Gwynne, 1977). Rotational grazing is the typical graz-
ing management system for grasslands in East Africa and gives the land 
time to recover from past overgrazing (Pratt & Gwynne, 1977).

Poor management of grasslands, such as excessive free graz-
ing, has a major negative influence on grassland C cycling, affecting 
not only transfers between vegetation and soil compartments, but 
also ecosystem input and output flows (Franzluebbers et al., 2012; 
Holechek et al., 2001; Scurlock & Hall, 1998). In the long run, these 
alterations may have important consequences for the capacity of 
managed grasslands to store SOC (Holechek et al., 2001). In contrast, 
improved grazing management is reported to increase SOC storage 
in grasslands (Conant et al., 2017; Schuman, Janzen, & Herrick, 2002).

3.2.4 | Land conversion

In the past two centuries, 70% of grasslands worldwide have been 
cleared or converted to agricultural land (Banwart, Noellemeyer, & 
Milne, 2015; FAO, 2015; Foley et al., 2011). This tremendous pres-
sure on grasslands is expected to continue (Banwart et al., 2015; 
Holechek et al., 2001; Searchinger et al., 2015; Victoria et al., 2012). 
In Africa, increased human and livestock populations on a shrink-
ing land area, in combination with drought, which has always been 
a part of Africa's climate, have intensified ecological degradation 
of terrestrial ecosystems, resulting in food shortages and famines 
(Holechek et al., 2001; SIDA, 2010). East African countries, particu-
larly Ethiopia, Kenya and Tanzania, have some of the highest popula-
tion growth rates in the world (Solomon et al., 2015), which could 
potentially force more intensive land use and increasingly shift farm-
ing onto grasslands (Holechek et al., 2001; SIDA, 2010).

Degradation of remaining grasslands as a consequence of land 
conversion has become a major concern, as grasslands support nearly 
a billion domestic animals worldwide (Mengistu, 2006). In sub-Sa-
haran Africa, grassland degradation is much more obvious around 
watering points because of overstocking (SIDA, 2010). Hence, main-
taining and improving the health of grassland ecosystems is a major 
challenge (Holechek et al., 2001).

Grasslands in dryland areas of East African countries are generally 
degraded (Farage et al., 2004). Conversion of grasslands to marginal 
agriculture causes low productivity, which leads to SOC losses by ero-
sion and decomposition (Franzluebbers et al., 2012; Scurlock & Hall, 
1998). According to FAO (2004), as a consequence of cropland conver-
sion to grasslands in dryland areas, SOC sequestration rate declines 
from 0.17 Mg C ha-1 year-1 in the first 25 years to 0.04 Mg C ha-1 year-1 
in the next 25 years. On the other hand, Sanderman, Farquharson, 

and Baldock (2009)estimated a 0.3–0.6 Mg C ha-1 year-1 increase as a 
result of cropland conversion to permanent pasture in Australia.

4  | DISCUSSION

4.1 | SOC sequestration potential of grasslands in 
East Africa

For many years, crop breeders and growers have been selecting 
specifically for tropical grasses with deep, large root systems that 
can exploit nutrients and water in deeper soil layers (Fisher et al., 
2007). Deep root penetration into the subsoil and deposition of root 
biomass are believed to be the primary vehicle for SOC sequestra-
tion (Kell, 2011; Kuzyakov, 2002; McKenzie & Mason, 2010; Nguyen, 
2003). Hence, deep-rooting perennial grasses contribute signifi-
cantly to the SOC pool via biomass inputs (litter and exudates). In 
addition, mineralization processes are slower in deeper soil layers, 
so SOC losses are lower (Lorenz & Lal, 2005; Monti & Zatta, 2009; 
Rumpel & Kögel-Knabner, 2011).

Studies at various locations have shown that the average annual 
organic matter input to grassland soils is about twice that to cropped 
soils (Clifton-Brown, Breuer, & Jones, 2007; Jenkinson & Rayner, 
1977; McKenzie & Mason, 2010; Schwenke et al., 2014). Even grass-
lands subjected to controlled grazing have higher SOC levels than 
croplands, primarily due to the lower losses of SOC that occur when 
the soil is not tilled (Farage et al., 2004). However, estimates of car-
bon inputs from biomass in grassland savannah vary significantly, 
from 0 Mg C ha-1 year-1 in dry periods to between 5 and 15 Mg C 
ha-1 year-1 in the rainy season (Vågen, Lal, & Singh, 2005).

Grasslands can play a significant role in carbon sequestration 
if grazing management is optimized. Alternatively, if grasslands are 
exposed to prolonged overgrazing and soil degradation, the con-
sequence is high SOC losses (Conant, 2012; Farage et al., 2004). 
Improved grazing management has been estimated to increase SOC 
storage in US rangelands by 0.1–0.3 Mg C ha-1 year-1, while newly 
established grasslands have been shown to sequester as much as 
0.6 Mg C ha-1 year-1 (Conant et al., 2017; Schuman et al., 2002). 
There is much less empirical evidence available for East Africa and 
elsewhere in Africa, but the data at hand indicate that pasture im-
provements, including fertilization, liming, irrigation and sowing of 
more productive grass varieties, generally result in relative gains of 
0.1–0.3 Mg C ha-1 year-1 (Sanderman et al., 2009).

Grasses also have the potential to sequester carbon in previously 
degraded soil. For example, in a study where switchgrass (Panicum 
virgatum L.) was grown on degraded land, SOC sequestration rate in-
creased by an estimated 12% over 10 years (Garten & Wullschleger, 
2000). Clifton-Brown et al. (2007) estimated the total mitigation 
potential of Miscanthus grass-dominated rangelands through car-
bon sequestration, soil and belowground biomass, combined to be 
5.2–7.2 Mg C ha-1 year-1 after 15 years. Miscanthus grass has been 
shown to accumulate significant quantities of new carbon to 1.0 m 
soil depth (Schneckenberger & Kuzyakov, 2007; Zimmermann et 
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al., 2012). Poeplau and Don (2013) observed a mean C4 plant-de-
rived SOC sequestration rate of 0.19–0.78 Mg C ha-1 year-1 under 
Miscanthus and found that the rate increased with increasing mean 
annual temperature. A study conducted by International Center for 
Tropical Agriculture (CIAT) scientists on gamba grass (Andropogon 
gayanus), which has a root system penetrating to 1.0 m depth in trop-
ical soils, revealed outstandingly high SOC sequestration rates of up 
to 195 Mg C ha-1 year-1 (Vietmeyer,1997 ).

Grasslands are the basis of livelihood for East African commu-
nities, which depend heavily on livestock (Mengistu, 2006). Animal 
numbers are expanding in the region to meet the needs of the grow-
ing human population and the animals are depending on a shrink-
ing rangeland area, which is putting rangelands under pressure 
(Holechek et al., 2001). In addition, the high demand for different 
kinds of products from rangeland causes frequent modification of 
land use, which results in changes in the relative area of different 
rangeland uses (Mengistu, 2006). In East Africa, a great number of 
wild animals depend on rangelands that they must share with hu-
mans and their herds and flocks (Figure 2). Grasslands of East Africa 
therefore need careful management, because they have great po-
tential for feed production and SOC storage (Mengistu, 2006).

4.2 | Opportunities for governance of grasslands in 
East Africa

African soils in general have great potential for storing SOC, provided 
that appropriate land management practices and carbon input meas-
ures are undertaken (Solomon et al., 2015). In Ethiopia, agricultural 
production and land productivity remain low, due to ever-increasing 
human population pressure on land resources, in combination with 
unfavorable land policies (small land holdings and land ownership is-
sues). Shiferaw, Hurni, and Zeleke (2013) report some success for 
the Ethiopian Sustainable Land Management Program (SLMP), which 
aims at improving soil quality and productivity by restoring degraded 
lands, including grasslands, using best land management practices 
and climate change mitigation and adaptation measures (https ://

www.giz.de/en/world wide/18912.html). The program reflects the 
goals of the growth and transformation plan for Ethiopia, one of 
which is to enhance SOC stocks in Ethiopian soils, including grass-
land soils (SIDA, 2010; Solomon et al., 2015).

In the studies reviewed in the present analysis, it is widely sug-
gested that rangeland/grassland regeneration and protection practices 
could be a sustainable option for SOC sequestration, contributing to cli-
mate change mitigation at both national and regional level. In addition to 
the climate change benefit, storage of carbon in grassland soils through 
improving the productivity of grass biomass offers economic returns 
(Singh, Guleria, Rao, & Goswami, 2011). However, grasslands are com-
plex ecosystems. For instances, restoring and sequestering carbon may 
come at the cost of reduced feed availability when free grazing is re-
stricted, negatively affecting pastoralists in the short-term. Similarly, 
while conversion of grasslands into cropland may benefit smallholder 
farmers, this land use conversion can entail further losses of SOC.

4.3 | Knowledge gaps

4.3.1 | Data availability

Field studies on the SOC sequestration potential of rangeland systems 
in East Africa form only a small part of research on the subject globally 
(Tubiello, Soussana, & Howden, 2007). There have been no such studies 
in Burundi and few in the other five East African countries included in 
the present study. There is a need for sound empirical data on the SOC 
sequestration potential of grasslands in East Africa in general, and the 
potential or limitations for carbon sequestration in response to climate 
change in particular. For example, there is a critical need for data on 
SOC stock changes caused by conversion from grasslands to agricultural 
lands. It is also important to determine the quantitative impact of fac-
tors affecting SOC concentrations in grassland soils. Field experiments 
and computer modeling work examining the effects of management 
practices on SOC sequestration are required to understand underly-
ing mechanisms at multiple scales, as there is considerable variation in 
SOC concentrations and soil bulk density under grasses, depending on 
factors such as soil type and elevation (Chan & McCoy, 2010; Easter et 
al., 2007; Wilson, Koen, Barnes, Ghosh, & King, 2011; Young, Wilson, 
McLeod, & Alston, 2005; Zimmermann et al.,2012 ).

4.3.2 | Financing mechanisms

Sequestration of SOC in grassland soils is not currently eligible for 
payments under the Clean Development Mechanism (CDM) of the 
Kyoto Protocol, due in particular to issues of permanence and veri-
fication (SIDA, 2010). Therefore, there is also a need to review cur-
rent and potential financing mechanisms, such as voluntary carbon 
markets, for grassland improvement and adoption of management 
practices that enhance SOC in grasslands. Some possibilities for in-
vestment and policy support are currently opening up, such as the 
4p1000 initiative (Minasny et al., 2017).

F I G U R E  2   Wildlife on Kapiti Ranch of the International 
Livestock Research Institute, ILRI, south of Nairobi, Kenya

https://www.giz.de/en/worldwide/18912.html
https://www.giz.de/en/worldwide/18912.html
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4.3.3 | Deep soil SOC sequestration potential

Consideration of SOC stocks to soil depths of 1–2 m, or the entire 
root zone if deeper, may be required for accurate assessment of 
SOC sequestration and SOC storage potential (Olson, Al-Kaisi, Lal, 
& Lowery, 2014). However, there is a severe lack of SOC content 
data for most soils at 0.5–1.0 m depth or below (see also Olson 
(2013). In the tropics, current knowledge about SOC stocks below 
0.2 m depth is very limited, although there are some occasional 
measurements down to 4.0 m (Fisher et al., 1994) or even down 
to 6.0 m (Carvalheiro & Nepstad, 1996; Sommer, Denich, & Vlek, 
2000). In addition, variations in the vertical and horizontal distribu-
tion of SOC in tropical, subtropical and temperate soils need to be 
assessed.

4.3.4 | SOC sequestration rates under planted 
cut and carry forages

Another knowledge gap concerns SOC sequestration rates under 
planted cut and carry forages on cropland, which was not part of this 
review. Little is known about the SOC dynamics in these systems, 
and measuring C sequestration is a challenge, as the areas planted 
are patchier and integrated with other (food) crops. Hence, computer 
modeling might play a role. This could be linked to the interventions/
technologies CIAT is working on in Africa, which focus on cut and 
carry because rangelands are often communally managed and there 
is no individual incentive to introduce improvement measures.

5  | CONCLUSIONS

Grasslands have great potential to sequester SOC due to their fast 
establishment, growth and perennial biomass production, and im-
proved management of grasslands can increase this potential, par-
ticularly on degraded soils. However, this review revealed a lack of 
published studies on the SOC sequestration potential of grasslands 
in East Africa, so it is difficult to draw any firm general conclusions. 
Overall, it was found that:

• More studies are needed on the SOC sequestration potential of 
East African grasslands when promising management practices 
are adopted.

• There are tremendous variations in reported SOC sequestration 
rates. In combination with the low number of individual studies, 
this is likely to lead to biased and uncertain estimates of SOC se-
questration potential.

• The effects of grass type and management practices on SOC storage 
potential need to be fully quantified, including extending soil sam-
pling to greater depths and under deep-rooted perennial grasses.

• Ways of stabilizing carbon stored in soils so that it is not released 
by management-induced disturbances need to be identified.

Given the vast areas under grasslands worldwide and the tendency 
for grassland systems to store more carbon in soils, their carbon se-
questration potential should be compared with that of other land use 
systems. This could help improve decision making on prioritizing SOC-
enhancing measures and policies.
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