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A B S T R A C T   

Although season has been shown to affect bull sperm quality and fertility in some studies, the effect of season on 
seminal plasma proteins has not been examined. In the present study, seminal plasma proteins were analysed by 
Fast Protein Liquid Chromatography (FPLC), to separate the phosphorylcholine-binding proteins and heparin- 
binding proteins from the other proteins. Semen samples were collected from bulls in three seasons: winter, 
summer and the rainy season. Sperm quality was analysed by flow cytometry and computer assisted sperm 
analysis, and further aliquots of semen were used to prepare the seminal plasma for FPLC. Meteorological data 
were available from a location close to the bull station. There were slight differences in sperm kinematics be-
tween seasons, but other parameters of sperm quality were not different. Minor differences in the 
phosphorylcholine-binding proteins were detected according to season, being lower in summer than in winter or 
in the rainy season, although there were no changes in the heparin-binding proteins. Temperature, humidity and 
rainfall differed between winter and the rainy season, but no differences were observed between summer and the 
rainy season except in the temperature humidity index (THI). However, the THI was above the threshold 
indicative of heat stress in all seasons, which could explain why few seasonal differences in protein composition 
were detected in this study. Alternatively, the bulls could have been well-adapted to heat stress. In conclusion, 
there were only slight differences in bull sperm quality and seminal plasma proteins between seasons during this 
study.   

1. Introduction 

Several studies have reported that bull sperm quality is affected by 
season, especially in tropical climates (e.g. Koivisto et al., 2009; Snoj 
et al., 2013), but also in more temperate regions (Valeanu et al., 2015; 
Sab�es-Alsine et al., 2017). However, other studies have not been able to 
detect a seasonal effect (Brito et al., 2002; Prastowo et al., 2019). All of 
these studies have focused mainly on sperm quality while the effect of 
season on the composition of the fluid portion of semen, i.e. the seminal 
plasma (SP), has not been examined. 

Bovine SP is a complex fluid to support sperm movement and provide 
transport for the spermatozoa into the female genital tract during mat-
ing (Maxwell et al., 2007a; Poiani, 2006; Suarez and Pacey, 2006). It is 
mostly composed of secretions from the accessory sex glands together 
with a small volume of fluid from the testis and epididymis (Maxwell 
et al., 2007; Moura et al., 2007). It contains proteins, minerals, elec-
trolytes, hormones and enzymes (Poiani, 2006) and has a major function 

in stimulating and supporting spermatozoa, by providing nutrients and a 
protective environment, and by enhancing sperm motility in the female 
(Maxwell et al., 2007a; Poiani, 2006). 

Some proteins are involved in sperm maturation (Muino-Blanco 
et al., 2008), whereas others inhibit sperm capacitation and the acro-
some reaction (Soubeyrand and Manjunath, 1997; Kaur and Sharma, 
2012). Therefore, differences in fertility could be due to variations in SP 
composition and its effect on both spermatozoa and the inseminated 
female. Proteins in bovine SP that stimulate capacitation of spermatozoa 
bind specifically to heparin and choline phospholipids (Miller et al., 
1990; Desnoyers and Manjunath, 1992; Therien et al., 1995). The major 
phosphorylcholine- and heparin-binding protein, PDC-109 (Protein with 
N-terminus aspartic acid, D, and carboxy terminus Cystine, having 109 
amino acids), from bull SP has been isolated and characterized (Calvete 
et al., 1996; Gasset et al., 1997). This protein binds to choline phos-
pholipids, inducing cholesterol efflux as a prelude to capacitation 
(Anbazhagan and Swamy, 2005). Since fertilization cannot occur 
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without capacitation, PDC-109 is essential for fertility. Binding to sperm 
membranes is facilitated in a basic, liquid environment (Anbazhagan 
et al., 2011). 

It has been shown previously that fertility-associated proteins are 
present in bull SP and their respective concentrations can be correlated 
with fertility (Killian et al., 1993; Cancel et al., 1997; Gerena et al., 1998; 
Nauc and Manjunath, 2000). Furthermore, it has been shown that 
PDC-109 has chaperone-like activity, protecting other proteins against 
thermal stress via suppression of non-specific aggregation and direction 
into productive protein folding (Sankhala and Swarmy, 2010). There-
fore, it would be interesting to investigate whether variations in SP 
protein composition could contribute to seasonal variations in sperm 
quality, perhaps through an effect on nutrition. 

Analysis of individual proteins may not be particularly helpful in this 
context since the presence of one protein may compensate for the 
absence of another. However, the relative proportions of different 
classes of proteins may be important. One method for separating and 
quantifying proteins is Fast Protein Liquid Chromatography (FPLC), 
which separates phosphorylcholine-binding proteins, heparin-binding 
proteins, and non-heparin-binding proteins (Hansen et al., 2013). 

The aim of the present study was to determine if there is a seasonal 
effect on the distribution of fertility-associated proteins in SP from bulls 
in Thailand, evaluating the proportions of heparin-binding and 
phosphorylcholine-binding proteins by FPLC. 

2. Methods 

2.1. Animals 

Six Bos indicus bulls of the American Bhraman breed were available 
for routine semen collection at the North Eastern bull center, Depart-
ment of Livestock Development (DLD), Khon Kaen, Thailand (Latitude: 
16�26’ N, Longitude: 102� 49’ E). Their body condition score was 3.50 – 
3.75, on a scale of 1–5. The age of bulls at the start of semen collection 
was 8.0 � 2.60 years (mean 8 � 2.6 years, range 4 – 11 years). The bulls 
were housed in an open barn, as described previously (Koonjaenak et al., 
2007a) and were fed on grass (Panicum maximum and Brachiaria ruzi-
ziensis), commercial concentrate and minerals supplement. The bulls 
were kept according to national guidelines on the housing and care of 
animals. 

2.2. Semen collection and preparation of seminal plasma 

Semen was collected by artificial vagina approximately once per 
week according to routine husbandry procedures at the bull center, 
using the first ejaculation of each bull. The semen was obtained in three 
seasons: summer (May – June 2014), rainy season (September – October 
2015) and winter (January – February 2016). (Note the months stated 
refer to the time when the samples were collected, not to the duration of 
the season). After removing an aliquot for sperm quality evaluation, the 
remainder of the ejaculate was centrifuged at 1800 g for 10 min to pellet 
the spermatozoa. The supernatant was removed and checked for the 
presence of spermatozoa; centrifugation was repeated if necessary to 
remove all the spermatozoa. Aliquots of SP were frozen at -80 �C until 
required. 

2.3. Metereological data 

Data on the ambient temperature (�C), humidity (%), and rainfall 
(mm) at the time were accessed from the North Eastern Meteorological 
Center (Upper Part), Khon Kaen, Thailand, which is adjacent to the bull 
center (Koonjaenak et al., 2007a). The meteorological data were used to 
calculate a Thermal Humidity Index (THI) following a standard formula 
from the National Research Council (1971), as follows:  

THI ¼ (1.8 x T þ 32) – ((0.55 -0.0055 x RH) x (1.8 x T - 26))                     

where T ¼ temperature and RH ¼ relative humidity. 

2.4. Separation of seminal plasma proteins by Fast Protein Liquid 
Chromatography 

The SP proteins were separated on column HiPrep 16/10 Heparin FF, 
20 ml (GE Healthcare Bio- Sciences AB, Uppsala, Sweden) by FPLC ac-
cording to Varilova et al. (2006) and Madej et al. (2013) with some 
modifications. The column was used directly on €AKTAdesign™ systems 
(GE Healthcare Bio- Sciences AB, Uppsala, Sweden) with UNICORN™ 
software for data calculations on line. Samples of SP (0.1 ml ¼ 1.5 mg of 
protein) were injected through a valve with a 0.5 ml sampling loop. The 
non-heparin, non-phosphorylcholine-binding proteins, peak 1, 2 and 3 
(F1, F2, F3), were eluted with 0.02 M Tris-HCl buffer containing 0.156 M 
NaCl, pH 7.5. The phosphorylcholine-binding proteins, peak 4 (F4), 
were eluted with 0.02 M Tris-HCl buffer containing 0.156 M NaCl and 
0.05 M phosphorylcholine, pH 7.5. The proteins adsorbed on heparin, 
peak 5 (F5), were eluted using NaCl gradient (within 10 min) from 
0.156 M to 1.5 M in 0.02 M Tris-HCl buffer, pH 7.5. The flow rate was 1 
ml/min. Peak height (mAU), peak area (mAU*ml), and percentage of 
area for each peak in relation to the total area were recorded for each 
fraction. 

2.5. Evaluation of sperm quality 

2.5.1. Computer assisted sperm analysis (CASA) 
Motility analysis was performed on aliquots (5 μL) using a CEROS II® 

Version 1.7 (Beverly MA, USA) connected to a microscope (Zeiss, Axi-
olab A1, Jena, Germany) with a heated stage (38 �C). The following 
sperm kinematics were evaluated: total motility (MOT; a spermatozoon 
that moves more than its head length from its original position during 
the acquisition; progressive motility (a spermatozoon moving with STR 
> 80 and VAP > 50; PRO, %), slow motility (a spermatozoon moving 
with VSL < 30 or VAP < 20; SLOW, %), static motility (a spermatozoon 
moving with VSL < 1 or VAP < 4; STAT, %), Velocity Average Path 
(VAP, μm/s), Velocity Curved Line (VCL, μm/s), Velocity Straight Line 
(VSL, μm/s), Amplitude of Lateral Head Displacement (ALH, μm), Beat 
Cross Frequency (BCF; Hz), Linearity (LIN, VSL/VCL; %), Straightness 
(STR, VSL/VAP; %) and Wobble (WOB, VAP/VCL; %), Area (μm2) and 
Elongation (μm). 

2.5.2. Plasma membrane integrity (MI) 
Plasma membrane integrity was analysed by flow cytometry after 

staining with SYBR14 and propidium iodide (PI) (Goodla et al., 2014). 
Briefly, the samples were diluted with buffer B (patent applied for; J. M. 
Morrell and H. Rodriguez-Martinez) to a final concentration of 2 � 106 

sperm cells/mL (300 μL). The diluted samples were stained with 0.6 μL 
of 20 μM SYBR14, 3 μL of 24 mM PI (Live-Dead Sperm Viability Kit 
L-7011; Invitrogen, Eugene, OR) and incubated at 37 �C for 10 min 
before evaluation using a FC500 flow cytometer (Beckman Coulter, 
Brea, CA, USA). Excitation was obtained with an argon-ion laser (488 
nm). Red fluorescence was detected via a FL3 band-pass filter (610 nm) 
and green fluorescence was evaluated via fluorescence channel (FL1) 
band-pass filter (525 nm). In total, 50,000 spermatozoa cell were ana-
lysed. After gating to include only spermatozoa, they were classified as 
living (%) (intact membrane, SYBR14-positive/PI-negative), dead or 
dying (%) (damaged membrane, SYBR14-negative/PI-positive; or 
SYBR14-positive/PI-positive, respectively). 

2.5.3. Sperm chromatin structure (SCSA) 
Sperm chromatin integrity was evaluated as described by Koonjae-

nak et al. (2007b). Briefly, the sperm samples were mixed 50 μL: 50 μL 
with Tris-sodium chloride-EDTA (TNE) buffer (0.15 mol/L NaCl, 0.01 
mol/L Tris-HCl, 1 mmol/L EDTA, pH 7.4) and snap-frozen in liquid ni-
trogen vapor before storage at -80 �C. The samples were thawed on ice 
approximately 20 min before analysis and 10 μL were diluted with 90 μL 
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of TNE buffer. Partial DNA denaturation in situ was performed by 
mixing with 0.2 mL of a low pH detergent solution containing 0.17% 
Triton X-100 (0.15 mol/L NaCl, and 0.08 mol/L HCl; pH 1.2). After 30 s 
the denatured sperm were stained with 0.6 mL of acridine orange (6 
μg/mL in 0.1 mol/L citric acid, 0.2 mol/L Na2HPO4, 1 mmol/L EDTA, 
0.15 mol/L NaCl; pH 6.0) and were evaluated by flow cytometry within 
5 min of acridine orange staining. The standard optical equipment of a 
FC500 flow cytometer (Beckman Coulter) was used and forward scatter, 
side scatter, green (FL1, 525 nm band-pass filter) and red (FL3, 610 nm 
band-pass filter) fluorescence for 10,000 cells was collected. A gate 
restricting the analysis to spermatozoa was placed in the FSC-SSC 
dot-plot. The data were analysed using FCS express version 2 (Denovo 
Software, Thornhill, Ontario, Canada) to calculate the DNA Fragmen-
tation Index (%DFI) (%DFI¼red/redþgreen fluorescence). 

2.5.4. Mitochondrial membrane potential 
Mitochondrial membrane potential (MMP) of sperm cells was eval-

uated using the cationic probe 5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethyl- 
benzimidazolylcarbocyanine iodide (JC-1) (Goodla et al., 2014; Cos-
sarizza et al., 1993). Briefly, the samples were diluted to a final con-
centration 2.5 � 106 sperm cells/mL with buffer B before staining with 
1.2 μL of 3 mM JC-1 and incubating at 37 �C for 40 min. After incuba-
tion, the stained samples were analysed with a FC500 flow cytometer 
(Beckman Coulter), using an argon-ion laser (488 nm). Emitted fluo-
rescence was collected using both FL1 (525 nm) and FL2 (575 nm) fil-
ters. Green fluorescence was analysed in FL1 and orange in FL2, with 
compensation between these parameters. Spermatozoa were gated on 
the FSC-SSC dot-plot and 30,000 cells were classified as having high 
respiratory activity (%) (Orange fluorescence) or low respiratory ac-
tivity (%) (Green fluorescence). 

2.6. Statistics 

A two-way ANOVA was performed using Statplus:mac LE build 6.0.3 
(AnalystSoft Inc, Walnut, CA, USA) for each parameter. Factors in the 
analyses were season and bull, with the different parameters as depen-
dent variables. Tukey HSD correction was used. Differences were 

considered significant if p < 0.05. 

3. Results 

3.1. Meteorological data 

The meteorological data have been reported previously (Nongbua 
et al., 2020); a summary is provided in Fig. 1. 

3.2. Protein separation 

Non-heparin-binding proteins were eluted as the three first peaks 
(F1 þ F2 þ F3); phosphorylcholine-binding proteins and heparin- 
binding proteins were eluted as peaks F4 and F5 (Fig. 2). One of the 
bulls (Bull 3) was considered to be an outlier since the pattern of the 
FPLC peaks was different to the other bulls and has been excluded. 

The peak areas and peak heights of proteins fractions F1, F2, F3, F4 
and F5 from the bulls in different seasons are shown in Table 1 and S1, 
respectively. Table 1a and S1a show the overall means for each peak in 
each season, while Table 1b and S1b show the mean values for each peak 
for individual bulls in each season. The peak area of protein fractions 3 
and 4 was significantly higher (P < 0.05) in ejaculates during the rainy 
season compared to the ejaculates collected in summer (F3: 414.13 �
61.32 vs. 265.6 � 83.67; F4 35.17 � 18.41 vs. 65.90 � 20.79). Signif-
icant differences in the peak area were not observed in fractions 1, 2 and 
5 during all seasons analysed in this study. The peak height of peak 4 was 
significantly higher (P < 0.05) in the rainy season and in winter than in 
the summer (means � SD; rainy season 15.01 � 6.64, winter15.75 �
5.96, summer 6.62 � 2.65). 

The area of peaks F1-F3 area (Fig. 3) was significantly increased (P <
0.05) in the rainy season compared to the summer (p < 0.05). The other 
parameters (peak F1-F3 height; ratio area F4/area F5; height 
F1þF2þF3þF4/height F5; height F4/height F5; area F1þF2þF3/total 
area; area F3/total area; area F4/total area; area F5/total area) were not 
different among seasons for the 5 bulls together (p > 0.05; data not 
shown), although the area of peak 4/total area was greater for Bull 4 
(<0.05) in winter than in summer (Table 1b). 

Fig. 1. Meteorological data. 
Note: multiple scales (Temperature �C; Humidity %; Rainfall mm; THI). 
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3.3. Sperm quality according to season 

Sperm kinematics, presented as overall means (Table 2) showed 
significant differences only for the parameter “area of the sperm head”, 
being higher in winter and summer than in the rainy season (p < 0.001). 
However, when a comparison is made among bulls (Table S2), there 
were also differences among bulls for VAP, VSL, VCL, Area and motility 
(p < 0.05 for each). 

Sperm viability and mitochondrial membrane potential (Table 3) 
were not different among seasons but showed small differences among 
bulls (p < 0.05). 

4. Discussion 

The objective of the present study was to compare the distribution of 
proteins in bull ejaculates collected in different seasons in Thailand 
using FPLC. There were significant differences only for F4 

Fig. 2. A representative FPLC profile of bull seminal plasma proteins. Peaks 1, 2 and 3 contain proteins not binding to heparin or phosphorylcholine whereas peak 4 
and peak 5 contain phosphorylcholine-binding and heparin-binding proteins respectively. 

Table 1a 
Peak Area (m Absorbance Units) of protein fractions in different seasons (n ¼ 5 
bulls).  

Protein Fractions Winter Summer Rainy 

F1 88.60 � 31.53 53.19 � 34.53 95.20 � 31.45 
F2 60.15 � 39.18 62.15 � 20.89 98.19 � 49.51 
F3 371.11 � 49.39 265.60 � 83.67 a 414.13 � 61.32b 

F4 68.81 � 17.33 c 35.17 � 18.41 de 65.90 � 20.79 f 

F5 2.58 � 2.64 0.26 � 0.57 2.45 � 2.82 

Note: Overall significant difference among seasons for peaks F1, 3 and 4 (P <
0.05). Different superscripts across a row indicate differences between seasons. 
a,b p < 0.05; e,f p < 0.01; c,d p < 0.001. 

Table 1b 
Peak area (m Absorbance Units) of protein fractions for individual bulls ac-
cording to season (n ¼ 5 bulls).  

Season Bull Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 

Winter 1 93.05 40.79 430.15 81.89 2.54 
2 99.87 95.24 393.50 74.80 0.00 
4 103.75 2.43 319.45 84.57 a 5.88 
5 33.63 68.46 392.71 43.02 0.00 
6 112.69 93.81 319.77 59.79 4.51 

Summer 1 94.41 83.54 379.33 61.10 1.28 
2 43.95 81.34 251.13 44.67 0.00 
4 84.44 63.76 320.21 29.63 ab 0.00 
5 23.48 37.32 184.45 27.82 0.00 
6 19.65 44.82 192.88 a 12.63 a 0.00 

Rainy 1 81.07 50.48 434.69 65.75 0.00 
2 107.19 68.98 425.66 73.33 2.26 
4 127.76 145.37 382.91 95.95 b 6.84 
5 47.65 68.30 331.52 53.31 0.00 
6 112.31 157.83 495.88 b 41.15 b 3.14 

Note: different superscripts indicate differences between seasons within bull. 
Area of peaks F1-3: significant difference among seasons p < 0.05; rainy season 
> summer, p < 0.05. 

Fig. 3. Area of Peak protein fractions 1–3 (m Absorbance Units) according to 
season (n ¼ 5 bulls). 
Note: same letters (a) indicate a significant difference, p < 0.05. 
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(phosphorylcholine-binding peak), where the peak height was less in 
summer than in winter or in the rainy season, and peak area was less in 
summer than in the rainy season. Among bulls, Bull 4 showed differ-
ences in F4 peak height and area. The peak height and peak area indicate 
how much of a particular component is present, in this case 
phosphorylcholine-binding proteins. The reason for fewer 
phosphorylcholine-binding proteins in summer is not known but could 
be due to factors such as the quality of the feed, or the amount of feed 
consumed which, in turn, could be associated with water consumption. 
The temperature and the THI were both highest during summer and 
might be expected to affect water and feed intake (Collier et al., 2017). 

There were small differences among seasons and also among bulls in 
sperm kinematics (especially for Bull 4), although other parameters of 
sperm quality were not different among seasons. 

One of the problems in comparing our findings with those of others is 
that the classification of the proteins differs among different authors. 

Thus, for example, lactoferrin transferase and arginine esterase can be 
classified as either non-phosphorylcholine binding proteins or as a 
phosphorylcholine binding proteins, depending on the experimental 
conditions i.e. which buffer is used, or the order in which different 
buffers are used. Similarly, lactoferrin and lactoferrin fragments bind 
both phosphorylcholine and heparin (Mogielnicka-Brzozowska et al., 
2017), and would be found in peak 4 in the present experiment, 
depending on the order in which the different buffers were added. 

Thailand has a tropical climate, which might be expected to have an 
adverse effect on sperm quality. Temperature and humidity were 
different, and rainfall tended to be different between winter and the 
rainy season. There were only minor differences in sperm quality among 
seasons. However, during the period of the study, there were few dif-
ferences in temperature and humidity between summer and the rainy 
season, which may be a confounding factor in the interpretation of our 
results. These results are in agreement with Prastowo et al. (2019) who 
observed that season did not affect sperm quality in fresh semen from 
Bali bulls in Indonesia, and also with Brito et al. (2002) who did not find 
an effect of climate on sperm quality in Brazil. 

Factors such as environment, housing, age and breed have been 
shown to influence sperm quality in some studies (Snoj et al., 2013; 
Suriyasomboon et al., 2005; Felton Taylor et al., 2020). Although the 
bulls in our study were kept in an open barn, there was only a slight 
effect of season on sperm quality. The lack of a difference in climate 
between summer and rainy season during sampling in the present study 
could explain why there was not a more obvious difference in sperm 
quality. Bulls in temperate climates usually show changes in sperm 
quality for several weeks after changes in temperature and humidity 
(Malama et al., 2012; Sab�es-Alsina et al., 2019); our results indicate that 
the bulls that are well adapted to their environment show very little 
effect on sperm quality due to seasonal changes in climate. 

In our study, the THI was very similar in summer and the rainy 
season (83% and 81%, respectively) differing only from winter (75%). 
However, these THIs are over the threshold at which heat stress is re-
ported to occur, at least for dairy cows e.g. 72–73 (Morton et al., 2007; 
Schuller et al., 2014). The lack of effect on sperm quality could indicate 
either that the bulls were already adapted to such conditions, or that 
they were equally affected by heat stress in all seasons. 

In studies with stallion seminal plasma, higher levels of non-heparin, 
non-phosphorylcholine binding proteins were seen in the non-breeding 
season than in the breeding season. The authors speculated that these 
proteins might include cysteine-rich secretory protein 3 (CRISP3), which 
are known to affect sperm motility (Usuga et al., 2018). The presence of 
similar proteins could also explain the results seen in the present study, 
since the area of peak 3 was highest in the rainy season when sperm 
velocity was also highest. However, this is only speculation at this time; 
precise identification of the proteins present in each peak was beyond 
the scope of the present study. 

5. Conclusion 

Some minor differences in bovine SP protein composition from bulls 

Table 2 
CASA parameters of semen collected in different seasons (means � SD of 5 bulls).  

Season PRO 
(%) 

MOT 
(%) 

SLOW 
(%) 

ALH 
(μm) 

Area 
(μm2) 

BCF 
(Hz) 

ELONG 
(μm) 

LIN 
(%) 

STR 
(%) 

VAP  
(μm/s) 

VCL  
(μm/s) 

VSL  
(μm/s) 

WOB 
(%) 

Winter 26 � 16 72 � 19 19 � 3 6.6 � 1.6 17 � 1.7 a 23 � 3 0.52 � 0.05 45 � 5 76 � 6 67 � 16 120 � 33 51 � 12 57 � 3 
Summer 25 � 13 60 � 25 15 � 6 6.3 � 0.8 18 � 0.5 b 24 � 3 0.47 � 0.04 46 � 2 78 � 2 65 � 14 114 � 23 51 � 12 58 � 1 
Rainy 26 � 11 76 � 5 19 � 7 7.0 � 1.6 14 � 0.7ab 23 � 2 0.48 � 0.03 43 � 3 76 � 3 71 � 19 130 � 35 54 � 15 56 � 2 

Same superscripts within a column indicate significant differences between seasons. a, b: p < 0.001. 
Total motility (MOT), Progressive motility (PRO), Slow motility (SLOW), Static (STAT), Velocity Average Path (VAP), Velocity Curved Line (VCL), Velocity Straight 
Line (VSL), Amplitude of Lateral Head Displacement (ALH), BCF (beat cross frequency), Linearity (LIN), Straightness (STR), Wobble (WOB), Area of sperm head 
(AREA), length of sperm head (ELONG). 

Table 3a 
Mitochondrial membrane potential, membrane integrity and chromatin integ-
rity of semen collected in different seasons (means of 5 bulls).  

Season MMP H (%) MMP L (%) LIVING (%) HG (%) %DFI 

Winter 32 68 27 0.42 5.1 
Summer 33 67 24 0.40 7.0 
Rainy 30 70 29 0.28 3.9 

Note: MMP ¼ mitochondria membrane potential; H, L ¼ high, low; living ¼
membrane intact spermatozoa, HG ¼ High green fluorescence; %DFI ¼ DNA 
Fragmentation Index. 

Table 3b 
Mitochondrial membrane potential, membrane integrity and chromatin integ-
rity for individual bulls in different seasons.  

SEASON BULL HIGH (%) LOW (%) LIVING (%) HG %DFI (%) 

Winter 1 24.06 75.94 16.55 32 4.11 
2 33.48 66.52 25.32 71 8.53 
4 27.55 72.45 25.88 46 0.71 
5 20.87 79.13 19.43 25 9.91 
6 54.31 45.69 46.20 38 2.31 

Summer 1 22.59 77.41 9.28 32 11.33 
2 68.11a 31.89 a 61.38 19 2.91 
4 13.42 b 86.58 b 6.61 42 9.77 
5 18.89 81.11 12.04 28 9.54 
6 41.14 58.86 42.57 80 1.64 

Rainy 1 29.49 70.51 21.87 56 6.64 
2 47.23 52.77 58.05 20 1.58 
4 16.52 83.48 14.79 25 2.2 
5 20.95 79.05 21.67 11 6.68 
6 36.76 63.24 29.93 26 2.19 

Note: high, low ¼ high or low mitochondrial membrane potential; living ¼
membrane intact spermatozoa, HG ¼ High green fluorescence, %DFI ¼ DNA 
fragmentation index. 
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in Thailand were detected by FPLC according to season, mainly in the 
phosphorylcholine-binding proteins. These changes could contribute to 
seasonal variations in sperm quality, such as in sperm kinematics. 
However, the differences in temperature and humidity between summer 
and the rainy season were not marked in the year in which sampling 
occurred for this study, which could be a confounding factor contrib-
uting to the lack of a pronounced seasonal effect in this study. It would 
be interesting to expand the study to include samples from more bulls 
and other years. 
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