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Abstract
Understanding spatiotemporal population trends and their drivers is a key aim in 
population ecology. We further need to be able to predict how the dynamics and 
sizes of populations are affected in the long term by changing landscapes and climate. 
However, predictions of future population trends are sensitive to a range of mod-
eling assumptions. Deadwood-dependent fungi are an excellent system for testing 
the performance of different predictive models of sessile species as these species 
have different rarity and spatial population dynamics, the populations are structured 
at different spatial scales, and they utilize distinct substrates. We tested how the 
projected large-scale occupancies of species with differing landscape-scale occu-
pancies are affected over the coming century by different modeling assumptions. 
We compared projections based on occupancy models against colonization–extinc-
tion models, conducting the modeling at alternative spatial scales and using fine- or 
coarse-resolution deadwood data. We also tested effects of key explanatory vari-
ables on species occurrence and colonization–extinction dynamics. The hierarchical 
Bayesian models applied were fitted to an extensive repeated survey of deadwood 
and fungi at 174 patches. We projected higher occurrence probabilities and more 
positive trends using the occupancy models compared to the colonization–extinction 
models, with greater difference for the species with lower occupancy, colonization 
rate, and colonization:extinction ratio than for the species with higher estimates of 
these statistics. The magnitude of future increase in occupancy depended strongly 
on the spatial modeling scale and resource resolution. We encourage using coloniza-
tion–extinction models over occupancy models, modeling the process at the finest 
resource-unit resolution that is utilizable by the species, and conducting projections 
for the same spatial scale and resource resolution at which the model fitting is con-
ducted. Further, the models applied should include key variables driving the metap-
opulation dynamics, such as the availability of suitable resource units, habitat quality, 
and spatial connectivity.
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1  | INTRODUC TION

Understanding spatial and temporal population trends and the driv-
ers behind them is a key aim in population ecology (Turchin, 2003). 
Such knowledge is also necessary when planning actions to mitigate 
the pervasive effects of habitat loss, fragmentation, and climate 
change (Pressey, Cabeza, Watts, Cowling, & Wilson, 2007). In frag-
mented landscapes, large-scale population trends often result from 
metapopulation dynamics, through the local processes of coloniza-
tion and extinction (Hanski, 1999). Theoretical studies suggest that 
metapopulation viability strongly depends on landscape features 
and processes such as the availability, size and longevity of suitable 
habitat patches (e.g., old stands or appropriate tree structures in for-
est landscapes), spatial connectivity, patterns of patch destruction 
and creation, and interactions between these (Johst et al., 2011).

Habitat patches naturally appear and disappear through succes-
sion and disturbance, but in production landscapes, these processes 
are largely replaced by management and conservation actions 
(Kuuluvainen, 2009). A continuous local supply of new resource 
units is critical for the persistence of species that are confined to 
ephemeral resource units such as living or dead trees. These species 
need to balance the local extinctions (stochastic or resulting from re-
source-unit disappearance) with local colonizations of new resource 
units. These units need to have high enough density in space and 
frequency through time to allow regional persistence (Gourbiere & 
Gourbiere, 2002; Snäll, Ribeiro, & Rydin, 2003).

It is important that forecasts of the long-term effects of manage-
ment and conservation actions on species populations are realistic and 
accurate, because today's decisions may give rise to adverse or unex-
pected consequences that may be difficult to overturn (Guisan et al., 
2013). To parameterize models of spatially realistic metapopulation 
dynamics (Hanski, 1999) to be used as a basis of forecasts, one should 
ideally have collected data repeatedly on the size and distribution of all 
habitat patches and local populations, and information about the dis-
persal rate and range of the species (Higgins & Cain, 2002). Such data 
are usually lacking, and thus, other solutions must be sought.

A common method to predict species responses to future envi-
ronmental changes is to use species distribution models (SDMs) fit to 
a single (static) snapshot of presence/absence data across the land-
scape (Elith & Leathwick, 2009). These include occupancy models 
which we evaluate for projection herein. SDMs associate the spatial 
pattern of a species' occurrence across a subset of the populations 
in the landscape with habitat and climate data. Such models fitted to 
snapshot pattern data, however, assume that the current occurrence 
pattern of the species is at metapopulation equilibrium with its envi-
ronment. Violations of this assumption can produce biased results as 
at disequilibrium, occupancy–environment relationship is expected 
to vary over time and space (Yackulic, Nichols, Reid, & Der, 2015). 

For species with high colonization–extinction dynamics, for example, 
many mammals, birds, and insects, the species distribution pattern 
can indeed be assumed to much depend on the current landscape 
structure (Ovaskainen & Hanski, 2002). If the landscape structure 
changes, for example, due to management operations, the species dis-
tribution will promptly adjust to the new structure. For such species, 
SDMs may produce reliable projections of future population trends. 
In contrast, for sessile species with slow colonization–extinction dy-
namics, such as probably many fungi and plants, the distribution pat-
terns may not reflect the present spatial structure of the landscape 
(Ovaskainen & Hanski, 2002). With changing landscape structure, the 
species distribution patterns will reflect the past rather than the cur-
rent landscape structure (Paltto, Nordén, Götmark, & Franc, 2006; 
Snäll, Hagström, Rudolphi, & Rydin, 2004). Thus for sessile species, 
a SDM may be inappropriate for predictive modeling, for example, 
resulting in overly optimistic projections in situations where the area 
and connectivity of the habitat have decreased over time.

When data are available over multiple time points, it is preferable 
to acknowledge the temporal change and model the processes which 
generated the patterns (Gimenez et al., 2014), for instance using what 
we refer here to as colonization–extinction models (also known as dy-
namic occupancy models, occupancy dynamics models, or multiseason 
occupancy models) (MacKenzie, Nichols, Hines, Knutson, & Franklin, 
2003). Under models for colonization–extinction dynamics, the past 
landscape structure becomes less influential, because colonization 
events that take place between the two surveys reflect the current lo-
cations of the dispersal sources. Especially for species with slow coloni-
zation–extinction dynamics, SDMs based on occupancy–environment 
relationships can be expected to produce biased future occupancy pat-
terns (Ovaskainen & Hanski, 2002), and it should be better to base pre-
dictions on models that incorporate both rates of local colonization and 
extinction and their dependence on environmental conditions (Yackulic 
et al., 2015). Projections of future population development have fo-
cused on changes in the distribution patterns (del Rosario Avalos & 
Hernandez, 2015), while estimates of the future summed occupancies 
or population sizes have to date received little attention.

A major issue in predictive ecology is the scale at which ecologi-
cal processes should be considered (Chave, 2013; Evans et al., 2013; 
Mouquet et al., 2015). Predictions made from models fit to data at 
different spatial modeling scales can lead to drastically different 
conclusions (León-Cortés, Cowley, & Thomas, 1999). When model-
ing is performed at too large a spatial modeling scale, local hetero-
geneities in resource quality and quantity relevant for the species 
in question will go undetected (Mouquet et al., 2015). SDM model 
performance has been shown to depend on the chosen grain size, 
especially for systems that can be relatively accurately modeled, but 
the direction and strength of this effect depend strongly on the type 
of species (Guisan et al., 2007).

K E Y W O R D S

data resolution, environmental driver, population dynamics, predictive modeling, scenario, 
spatial modeling scale



     |  3081NORDÉN et al.

In studies of species that are restricted to a particular resource unit 
in the habitat patch, such as living trees or deadwood, field surveys 
often involve a trade-off between resource resolution, that is, the 
minimum size or the types of the resource unit to be included (e.g., 
minimum deadwood diameter), and the survey area covered (Zotz & 
Bader, 2011). If small or particular kinds of resource units are abundant, 
including them in the survey may make it difficult to attain a survey de-
sign that would cover the within-habitat heterogeneity and give infor-
mation about the occupancy–environment relationship that is general 
for the focal species and habitat type. It is justifiable to exclude the 
small resource units from the survey if they are seldom used by the 
species and if they therefore do not significantly influence its popula-
tion dynamics (Loos et al., 2015; Zotz & Bader, 2011).

There were four aims in our study. The first aim was to test for 
differences in the future occupancies of (a) species with different land-
scape-scale occupancy when using occupancy versus colonization–ex-
tinction models. The occupancy models are based on data from one 
point in time, while the colonization–extinction models are based on 
data from two points in time. As data suitable for occupancy models 
are available and frequently used for many species and many geograph-
ical areas, it is important to find out how the trends and magnitudes of 
change that occupancy models reveal differ from the ones revealed 
by colonization–extinction models for which data are currently scarce. 
Colonization–extinction models are expected to be more realistic for 
predicting changes as they focus on rate of changes (of occupancy). 
We hypothesize that the difference in the projected future occupancy 
between occupancy and colonization–extinction models is greater for 
a species with lower landscape-scale occupancy because rare species 
can be expected to have slower colonization–extinction rates and 

therefore track changes in forest landscapes with a greater delay than 
common species. We further test for differences in projected future 
occupancies between modeling the data at (b) three different spatial 
modeling scales (cell, plot or patch) and (c) two resource-unit resolu-
tions (two different minimum diameters for deadwood to be included) 
to find out how scale and resolution influence predictions of future 
population trends. Inferences were made based on projections of oc-
cupancy of two model species in forest production land and in land set 
aside from production across the whole boreal zone of Sweden. The 
projections were obtained through stochastic simulations using the oc-
cupancy and colonization–extinction models fitted at different spatial 
scales and resource-unit resolutions. Building the models was part of 
our fourth aim, specifically (d) to test which local and regional environ-
mental variables explain the occupancy and colonization–extinction 
dynamics at different spatial scales and resource-unit resolutions.

2  | MATERIAL S AND METHODS

2.1 | Study patches and data collection

We obtained the large-scale extensive data on colonization–extinc-
tion dynamics by surveying spruce deadwood and fruit bodies of the 
focal polypore fungi in 174 forest patches across southern and cen-
tral Finland once in 2003–2005 (Nordén, Penttilä, Siitonen, Tomppo, 
& Ovaskainen, 2013) and then resurveying them in 2014. These two 
surveys revealed the colonization and extinction events that had 
taken place between the first and the second survey and constituted 
the data to estimate (parameters for) rate of change in occupancy 

F I G U R E  1   (a) The three spatial scales of data collection and modeling with a sample plot with five cells (20 × 20 m) in a forest patch. Small 
logs were only surveyed within the sample plot, while the large logs were surveyed across the whole patch. (b) The repeated survey data 
collected in 174 forest patches across boreal Finland used to build the occupancy and colonization–extinction models
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in the colonization–extinction models. Data from the first survey 
formed the basis for the occupancy models.

A forest patch is a contiguous and homogeneous forest area that is 
surrounded by other land types or forests of different age or tree spe-
cies (Figure 1). The survey plot was of the size 20 m × 100 m and sub-
divided into survey cells of 20 m × 20 m. All patches were dominated 
by Norway spruce (Picea abies) and covered a range of forest types: 
clear-cuts with retention trees (53 patches, 16 of which had a plot, 
16 × 5 cells), woodland key habitats (56 patches, 56 plots, 56 × 5 cells), 
and managed forests (65 patches, 65 plots, 65 × 5 cells). In each forest 
patch, in both surveys (2003–2005 and 2014), we surveyed the two 
fungal species (Phellinus ferrugineofuscus and P. viticola) and deadwood 
both in each cell and in the remaining patch area. See Appendix S1 for a 
detailed description of the data collection and the focal species.

2.2 | Modeling occupancy and colonization–
extinction

For each species, we fitted hierarchical Bayesian state-space models 
to the presence–absence data of the species at three spatial modeling 
scales (cell, plot, and patch) and two deadwood resource resolutions 
(diameter ≥ 5 cm or ≥ 15 cm). We included covariates collected for dif-
ferent spatial modeling scales that we hypothesized would explain the 
occupancies and colonization–extinction dynamics of the focal species 
(Appendix S1). For the comparison with the colonization–extinction 
models, we also fitted occupancy models to data from the first survey.

A detailed description of the occupancy and colonization–extinc-
tion models at the cell level is provided in Appendix S1. The number of 
colonizations and extinctions recorded allowed including the effects 
of covariates on colonization probability of mature patches. For the 
extinction probability and the colonization probability of clear-cut 
patches, only intercepts (i.e., the rate parameters) were estimated.

The covariates to retain in the final fitted models were deter-
mined with forward stepwise model selection. This model selection 
was based on overlap of 95% credible intervals with 0, reduction 
in deviance, and biological knowledge on the species, as suggested 
by Gelman and Hill (2007). The models were fit using OpenBUGS 
(Lunn, Spiegelhalter, Thomas, & Best, 2009) in R through the library 
R2OpenBUGS (Sturtz, Ligges, & Gelman, 2005). The data and com-
puter code used for models, simulations, and statistical analyses are 
archived in the Swedish National Data Service, https ://snd.gu.se/en.

2.3 | Projecting polypore occupancies in the 
coming century

To answer our study questions, we utilized available projections 
of forest conditions on National Forest Inventory (NFI) plots in 
adjacent boreal Sweden between 2010 and 2,110, the nation-
wide Forestry Scenario Analysis by the Swedish Forest Agency 
(Claesson, Duvemo, Lundström, & Wikberg, 2015; Eriksson, Snäll, 
& Harrison, 2015; Appendix S1). Next, we projected the occupancy 

dynamics of the species for the same time period. For each poly-
pore species, the final fitted occupancy model was utilized to ini-
tialize the occupancy states in the first time step, here 2010. We 
used 10-year time steps to simulate the subsequent colonization 
and extinction dynamics on the NFI plots until 2,110 using the 
final fitted colonization–extinction model with its estimated pa-
rameter values. For investigating the effect of making projections 
based on occupancy models, the final fitted occupancy model was 
instead used for each time step.

All projections were made based on drawing 1,000 values from 
the joint posterior distribution of the parameters from the fitted 
models. All NFI plots with no dead spruce or those with ages 26–63 
were given an occupancy probability of zero, because of the typical 
absence of spruce deadwood suitable for the species in forests of 
this age range (Mair et al., 2017).

3  | RESULTS

3.1 | Colonization and extinction events

We observed several colonization events, especially in the mature 
patches/plots/cells, and several extinction events, especially in the 
clear-cut patches/plots/cells (Table 1). The clear-cut forests lost al-
most all of their occurrences between the two surveys, and very few 
colonizations took place.

The species with the highest occupancy in the landscape, 
P. viticola, had higher colonization rates and higher ratios of col-
onization/extinction than the less frequent species, P. ferrugineo-
fuscus, at all spatial modeling scales and both resource resolutions 
(Table 1). We observed the highest extinction rates for P. viticola at 
the fine resource resolution (≥5 cm) and the smallest spatial mod-
eling scale (20 × 20 m). For P. ferrugineofuscus, the colonization 
and extinction rates were comparable between the fine resource 
resolution at the smallest spatial modeling scale and the coarse re-
source resolution at the largest spatial modeling scale. At the fine 
resource resolution, the colonization rate increased and extinction 
rate decreased with increasing spatial modeling scale. Similarly, at 
the coarse resource resolution, the largest spatial modeling scale 
had the highest colonization rates and the lowest extinction rates. 
Extinctions resulted both from host logs disappearing due to de-
composition and stochastically where suitable logs were recorded 
in both surveys.

3.2 | Summaries of fitted models

For P. ferrugineofuscus, the responses—probabilities of occurrence 
and colonization—were explained by the volume of spruce logs at 
the cell scale (here reflecting the presence of large logs), whereas 
the plot-scale responses were explained by stand age and the patch-
scale responses by stand age or connectivity (Table S2-1). The 
amount of data available allowed estimating the effects of one or 

https://snd.gu.se/en


     |  3083NORDÉN et al.

two covariates (Table S2-1), and hence, only one or two rounds of 
model selection were required. For P. viticola, the same responses 
were explained by the density of spruce logs (here reflecting many 
small logs) and connectivity at the cell and plot scales, and the den-
sity of spruce logs at the patch scale. The best-fitting measure of 
connectivity for P. ferrugineofuscus was the presence/absence of old 
(≥120 years) spruce forests within a distance that corresponds to a 
mean dispersal distance of 1 km. For P. viticola, two measures of con-
nectivity were important: the volume of spruce or presence/absence 
of spruce in old forests within a distance that corresponds to a mean 
dispersal distance of 10 km. Deadwood resource resolution had an 
influence on whether the density of logs was selected or not in the 
models for P. viticola.

3.3 | Future projections

We predicted higher occurrence probabilities and relative changes 
from the projections based on the occupancy models than the coloni-
zation–extinction models. The general probability of our model spe-
cies increasing across all forest land was higher using the occupancy 

models than the colonization–extinction models. The main reason 
for this was the predicted smaller decrease in production land when 
using the occupancy model (Figures 2 and 3, Table 2, and Figures S3-
1-4). For both model species, the probability of an increase over all 
forest patches was unity for the projections based on the occupancy 
models but ranged from 0.59 to 0.96 for P. ferrugineofuscus and from 
0.88 to 1 for P. viticola based on the colonization–extinction mod-
els. Occupancy models were more sensitive to the chosen resource 
resolution and spatial modeling scale than colonization–extinction 
models. Specifically, there was larger variation among the projec-
tion trajectories when using the occupancy models (Figures 2c,d and 
3c,d) than when using the colonization–extinction models (Figures 
2a,b and 3a,b).

For both model species, we projected an increase in the set-
asides across all spatial modeling scales and resource resolutions, 
owing to increasing density and volume of deadwood, stand age, 
and connectivity for set-asides (Figure S4-1,-2). The relative change 
in occurrence across all the forest patches depended on the degree 
to which the positive trends in the set-asides could compensate for 
the declines (where predicted) in the production land (Figures 2 and 
3, Table 2, and Figures S3-1-4). We predicted higher occurrence 

TA B L E  1   Numbers recorded for each type of colonization–extinction history for different forest age classes across the varying spatial 
modeling scales and resource resolutions

Species
Age 
class

Spatial 
modeling  
scale

Resource  
resolution  
(diameter  
limit (cm)

Colonization–extinction 
history

Colonization 
rate

Extinction 
rate

Colonization 
rate/extinction 
rate Occupancy11 10 00 01

Phellinus 
ferrugineofuscus

Mature Cell 5 0 5 357 17 0.05 1.00 0.05 0.04

15 0 4 170 14 0.08 1.00 0.08 0.07

Plot 5 1 4 79 12 0.13 0.80 0.16 0.14

15 1 4 61 10 0.14 0.80 0.18 0.14

Patch 15 4 7 66 17 0.20 0.64 0.32 0.22

Clear-
cut

Cell 5 0 10 127 0 0.00 1.00 0.00 0.00

15 0 4 38 0 0.00 1.00 0.00 0.00

Plot 5 1 5 29 0 0.00 0.83 0.00 0.03

15 0 5 15 0 0.00 1.00 0.00 0.00

Patch 15 2 4 23 1 0.04 0.67 0.06 0.10

Phellinus viticola Mature Cell 5 1 10 338 30 0.08 0.91 0.09 0.08

15 1 3 168 16 0.09 0.75 0.12 0.09

Plot 5 3 6 69 18 0.21 0.67 0.31 0.22

15 3 3 55 15 0.21 0.50 0.43 0.24

Patch 15 7 6 61 20 0.25 0.46 0.53 0.29

Clear-
cut

Cell 5 1 11 124 2 0.02 0.92 0.02 0.02

15 1 3 38 0 0.00 0.75 0.00 0.02

Plot 5 1 7 26 1 0.04 0.88 0.04 0.06

15 1 6 12 1 0.08 0.86 0.09 0.10

Patch 15 2 8 18 2 0.10 0.80 0.13 0.13

Note: A history of “’11” means that the patch was observed to be occupied at each survey event, whereas a history of “10” means that the patch was 
observed to be occupied at the first survey event but not the second. Rates are number of events observed divided by the number of events possible, 
and occupancy is the proportion of modeling units occupied in the second survey.
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probabilities for P. viticola than for P. ferrugineofuscus, and an increase 
in future occupancy was more likely for P. viticola than P. ferrugineo-
fuscus across the two types of models, spatial modeling scales, and 
resource resolutions.

The differing forecasts of the occupancies of the two polypore 
species resulted from a combination of the general occupancies or 
colonization–extinction rates (Table 1) and the forecasts of the co-
variates of the fitted models (Table S2-1). For a description of these 
links, see Appendix S1.

The magnitude of future increase in occupancy depended 
strongly on the spatial modeling scale (cell, plot, patch) (Figures 
2 and 3). For both model species in mature forests, colonization 
rates were the lowest at the cell scale and increased going up via 
plot to patch scales, while the opposite was true for the extinction 
rates (Table 1). In clear-cut forests, colonization events were rare 
and extinction events were common at all spatial modeling scales 
(Table 1). The consequence of these overall colonization and ex-
tinction rates were that the probability of future increase across 
all forest land was higher for both model species when the projec-
tions were conducted using the plot- or patch-scale models than 

using the cell-scale model (Table 2 and Figures S3-1-4). Applying 
the fine resource resolution (≥5 cm) colonization–extinction model 
for P. viticola, the probability of a decline in the production land 
was much lower using the cell- than the plot-scale models (.08 vs. 
.66). However, here the .08 probability of decline also means a 
1–.08 = .92 probability of increase, which is thus detected by the 
fine resource resolution.

Resource resolution (all or only large deadwood included) had a 
great impact on the future predictions. For P. viticola, we predicted 
clearly a more positive future population development with the 
fine resource resolution (≥5 cm) than with the coarse resolution 
(≥15 cm), and the precision of the prediction was higher for the 
coarse resolution (Table 2 and Figures S3-3-4). For P. viticola, we 
predicted, probably erroneously, a decline in the production land 
when we did not account for the small resolution deadwood units. 
For P. ferrugineofuscus, future decline in production land seemed 
certain based on the coarse resolution (both model types) but less 
probable (.47 and .38) based on occupancy models that used the 
fine resolution. Projections based on the occupancy models for 
P. ferrugineofuscus showed a decline in the production land only 

F I G U R E  2   Projections of mean 
occurrence probability and relative change 
in occurrence for Phellinus ferrugineofuscus 
over the present century in response to 
forest management. Panels (a, b) are for 
projections based on the colonization–
extinction models (Col-ext) and panels 
(c, d) for those based on the occupancy 
models (Occ). The projections are based 
on averaging the results based on 1,000 
simulations from the full posterior 
distributions of the fitted models
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for the models based on the coarse resource resolution; for the 
fine resolution, the trends were more stable (Figure 2; Table 2, 
and Figure S3-2). Projections based on the occupancy models for 
P. viticola similarly showed an almost certain (probability ≥ .99) de-
cline in the production land only when we modeled at the coarse 
resource resolution; at the fine resolution, the probability of de-
cline was zero (Figure 3; Table 2 and Figure S3-4). We predicted 
the greatest increase in future occupancy when modeling at the 
fine resource resolution. The effect of resource resolution was 
less pronounced in the colonization–extinction models than in the 
occupancy models.

4  | DISCUSSION

When making predictions for ecological systems, it is seldom clear 
from the outset which models to use and at what scale and resolu-
tion the modeling should be performed (Evans et al., 2013). Based 
on the joint posterior parameter distribution from hierarchical 
Bayesian models fitted to an extensive colonization–extinction 
dataset on deadwood-dependent fungi, combined with realistic 
forest projection data, we show that the future trends predicted 
were sensitive to all four questions addressed—to the type of 
modeling performed, the landscape-scale occupancy of the model 
species which affects their colonization–extinction rates, the spa-
tial scale of model fitting, and the resolution of the resource-unit 
data. For our model species, the resource-unit resolution had a 
strong impact on the predictions especially for the species that 
frequently uses the smaller deadwood that was excluded from 
the coarse-resolution data. Type of model (occupancy vs. coloni-
zation–extinction model) substantially affected the magnitude of 
the predicted change, while the effect of the spatial scale of model 
fitting was also considerable. We encourage the use of coloniza-
tion–extinction models over occupancy models (or more gener-
ally, species distribution models, SDMs), modeling the process at 
the finest resource-unit resolution that is utilizable by the species 
and conducting projections for the same spatial scale and resource 
resolution at which the model fitting is conducted.

4.1 | Colonization–extinction models produce more 
realistic predictions

The occupancy models, corresponding to the frequently ap-
plied SDMs (Franklin & Miller, 2010), predicted what we believe 
is unrealistically positive population development. Our conclu-
sion is based on knowledge about the study system and popula-
tion development of the focal species during the recent decades. 
Compared to the colonization–extinction models, the occupancy 
models predicted higher occurrence probabilities and less steep 
future declines in the production land leading to more positive in-
creases across all the forest land combined. Future declines are 
thus underestimated with occupancy models, especially if habitat 

amount is decreasing and the distances to dispersal sources are 
consequently increasing. Many of these species have slow life 
history which is often associated with rarity (Pilgrim, Crawley, & 
Dolphin, 2004). The occupancy models reflect the species dis-
tribution patterns which reflect the past rather than the current 
amount and connectivity of the habitat. Even more, occupancy 
SDMs often use data collected over a long time period during 
which the environment may change. The colonization–extinction 
models are more realistic because they reflect the rate of change 
from one time step to another. Their higher realism that they more 
mechanistically model the process leading to the occupancy pat-
tern may also explain why they were less sensitive to the spatial 
scale modeled and the resource resolution. Limitations of their use 
may be the costs of making another survey of the system and the 
time span necessary for changes to take place.

The colonization–extinction rates observed at the patch and plot 
scales in this study were surprisingly high. Several local colonizations 
and extinctions had taken place during just 9–11 years, which chal-
lenges the view of very long time lags, from decades to much over 
100 years, before a new equilibrium between the metapopulation 
and its environment is reached (Sverdrup-Thygeson, Gustafsson, & 
Kouki, 2014). The high turnover rate may be partly explained by the 
ecology of our focal species which are not confined to very large or 
slowly decomposing dead trees. However, our results also suggest 
that in many species of deadwood-dependent fungi, the delay in re-
sponse to environmental change is shorter than previously thought. 
Despite this, metapopulation equilibrium cannot be assumed as the 
colonization–extinction models project lower future species occur-
rence than the occupancy models. This is especially so for P. ferrugi-
neofuscus with a lower ratio of colonization/extinction. The species is 
thus tracking the changes in its environment with a delay, especially 
in the production forest with the highest rate of forest stand and 
deadwood turnover. The colonization–extinction models account 
explicitly for the temporal change, while occupancy models assume 
that the current occurrence pattern is at metapopulation equilibrium 
with the environment.

4.2 | Considerations of appropriate spatial scale of 
model fitting

The predictions of the future population development depend 
strongly on the chosen spatial scale of the statistical model 
fitting. For the less frequent P. ferrugineofuscus, the predicted 
population increase by the year 2,110 ranged from 0% to 42%, 
depending on which of the three models were applied in the pro-
jections. We generally recommend conducting model fitting and 
simulation at a small spatial scale. This allows modeling and pro-
jecting the dynamics at the level at which the local population 
dynamics take place, including accounting for proximal variables 
within each patch and among patches. However, this recom-
mendation of simulating detailed dynamics ignores the compu-
tational power required. Moreover, for making projections for 
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a landscape or region, simulation of complete deadwood and 
population dynamics across the chosen spatial scale is required, 
ideally including dispersal between patches. However, for rare 
species with slow colonization–extinction dynamics and few 
occurrences on a small proportion of logs in each patch (here 
especially P. ferrugineofuscus), simulating detailed small-scale 
deadwood dynamics may be inefficient. For such species, model 
fitting and projection simulation at a larger scale (here plot or 
patch) may be more appropriate, especially if the general ques-
tion of the study concerns a landscape or region. Thus, conduct-
ing modeling and projection simulations at a more aggregated 
spatial resolution is acceptable. On the other hand, when mod-
eling at a larger spatial scale, more distal predictors (e.g., stand 
age) are selected—these affect the species more indirectly than 
the proximal predictors they replace (Merow et al., 2014). The 
use of the more distal predictors may bring a higher level of un-
certainty into the analyses, as it assumes a strong correlation 
between the distal predictors and the resources they replace. 
Moreover, if there is bias in this assumed correlation, then this 
bias is transferred into biased projections.

4.3 | Appropriate resource resolution depends 
on the ecology of the study species

Resource-unit resolution can have a considerable influence on the 
predictions of future population development. For P. viticola, the 
most striking difference in the projections was between using the 
fine- or coarse-resolution deadwood data. Excluding the smaller 
deadwood units resulted in the conclusion that this species will de-
cline in the production land, while when including them the decline 
was much reduced. For P. ferrugineofuscus, the population trends 
based on the coarse and fine deadwood data were more similar. This 
is because of the preference of P. ferrugineofuscus for larger-diame-
ter dead trees and consequently the models for this species having 
deadwood volume (influenced mostly by larger trees) as the sig-
nificant covariate of resource availability. With different minimum 
sizes of deadwood inventoried, the deadwood quantities such as 
density and volume of deadwood—the measures of resource avail-
ability used as covariates in the models and projections—may also 
change (Hottola, Ovaskainen, & Hanski, 2009). However, it may also 
be wise to choose the resource-unit resolution of analysis during 

F I G U R E  3   Projections of mean 
occurrence probability and relative 
change in occurrence for Phellinus viticola 
over the present century in response to 
forest management. Panels (a, b) are for 
projections based on the colonization–
extinction models (Col-ext) and panels 
(c, d) for those based on the occupancy 
models (Occ). The projections are based 
on averaging the results based on 1,000 
simulations from the full posterior 
distributions of the fitted models
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the initial exploratory analysis. For example, a species may occur 
on a substrate of subordinate quality (e.g., small-diameter logs) in a 
high-quality area (old-growth forest with high species abundance) 
resulting from mass effect. If erroneously assuming that it may 
occur on such substrate also in low-quality areas (albeit at low prob-
ability) and if this substrate is very common in these lower-quality 
areas, then one is likely to overestimate the future occupancy of 
this species, especially in low-quality areas. This may be the case 
for P. ferrugineofuscus whose colonization probability increases with 
diameter (Jönsson, Edman & Jonsson, 2008), but which only oc-
casionally occurs on the very common 5–10 cm logs. It may thus 
be justified to exclude the small resource units from the survey or 
analyses as their influence on population dynamics is minor (Loos 
et al., 2015). Another option, if data quantity allows, is to include 
the interaction between substrate size and forest age. See Appendix 
S1 for more discussion on resource resolution and species ecology.

4.4 | Reliable prediction of future occupancy

Despite the differing occurrence probabilities and rate of 
change in future occupancies produced by the occupancy and 

colonization–extinction models, the direction of the change was 
usually the same. This is partly explained by the fact that the co-
variates selected for the colonization probabilities were, in most 
cases, the same as those selected for the occupancy probabili-
ties. Arguably, precise predictions of biological responses to en-
vironmental change, especially if extrapolating beyond current 
conditions and into the future, require elaborate mechanistic pro-
cess-based models, driven by the detailed life history of the species 
(Evans et al., 2013). However, for essentially all species, including 
deadwood-dependent fungi, the data required to parameterize such 
models are still lacking. Inaccurate estimation of the rate of change 
in occupancy will lead to severe bias in future projections, for ex-
ample, when addressing the effects of global change (Dietrich et al., 
2012) that may increase habitat turnover rates, making population 
persistence more dependent on a high number and good connectiv-
ity of habitat patches (Johst et al., 2011). The potential sources of 
bias in our predictions that we identified are detailed in Appendix 
S1. Nevertheless, with models for colonizations and extinctions ac-
counting for key variables driving these metapopulation dynamics, 
such as the availability of suitable resource units, habitat quality 
(e.g., forest age), and spatial connectivity, we may detect the true 
future patterns and trends if they are strong.

TA B L E  2   Mean change in occupancy across all forest land and in production land between 2020 and 2110 based on 1,000 simulations 
from the full posterior distributions of the fitted models

Species Model type

Spatial 
modeling 
scale

Resource 
resolution 
(diameter in 
cm ≥ value)

Mean change in occupancy 
(95% Bayesian credible 
intervals; probability of 
increase), all forest land

Mean change in occupancy (95% 
Bayesian credible intervals; 
probability of decrease), production 
forest

Phellinus 
ferrugineofuscus

Colonization–
extinction

Cell 5 0.003 (−0.010 to 0.012; 0.77) −0.013 (−0.025 to −0.002; 1.00)

15 0.000 (−0.010 to 0.008; 0.59) −0.011 (−0.022 to −0.002; 1.00)

Plot 5 0.025 (−0.018 to 0.049; 0.93) −0.022 (−0.040 to −0.003; 0.99)

15 0.016 (−0.004 to 0.026; 0.96) −0.021 (−0.032 to −0.012; 1.00)

Patch 15 0.006 (−0.007 to 0.011; 0.91) −0.007 (−0.024 to −0.002; 1.00)

Occupancy Cell 5 0.035 (0.016 to 0.053; 1.00) 0.002 (−0.014 to 0.022; 0.47)

15 0.012 (0.004 to 0.019; 1.00) −0.012 (−0.023 to −0.002; 1.00)

Plot 5 0.064 (0.045 to 0.080; 1.00) 0.005 (−0.017 to 0.029; 0.38)

15 0.022 (0.014 to 0.026; 1.00) −0.027 (−0.031 to −0.018; 1.00)

Patch 15 0.020 (0.005 to 0.028; 1.00) −0.017 (−0.025 to −0.009; 1.00)

Phellinus viticola Colonization–
extinction

Cell 5 0.073 (0.029 to 0.116; 1.00) 0.25 (−0.006 to 0.056; 0.08)

15 0.017 (−0.010 to 0.043; 0.88) −0.023 (−0.039 to −0.007; 1.00)

Plot 5 0.039 (0.018 to 0.072; 1.00) −0.003 (−0.020 to 0.026; 0.66)

15 0.022 (0.007 to 0.036; 0.99) −0.019 (−0.034 to −0.003; 0.99)

Patch 15 0.022 (0.014 to 0.031; 1.00) −0.015 (−0.026 to −0.005; 1.00)

Occupancy Cell 5 0.092 (0.070 to 0.107; 1.00) 0.044 (0.021 to 0.060; 0.00)

15 0.012 (0.005 to 0.018; 1.00) −0.011 (−0.023 to −0.001; 0.99)

Plot 5 0.106 (0.091 to 0.114; 1.00) 0.057 (0.043 to 0.067; 0.00)

15 0.018 (0.014 to 0.020; 1.00) −0.020 (−0.028 to −0.012; 1.00)

Patch 15 0.029 (0.020 to 0.035; 1.00) −0.15 (−0.018 to −0.011; 1.00)

Note: Shown are also 95% Bayesian credible interval and probability of increase on all forest land and probability of decrease in production forest. All 
model types and resource resolutions predicted that there would be an increase in the set-asides with a probability of 1.00.
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