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ABSTRACT

This study compared the abilities of virgin heifer 
genomically enhanced breeding values (GEBV) and 
parent average breeding values (PA) to predict future 
cow performance. To increase confidence in genomic 
technology among farmers, a clear demonstration of the 
relationship between genomic predictions and future 
phenotypes is needed. We analyzed 12 different traits 
in first parity, including production, conformation, fer-
tility, and other functional traits. Phenotype data were 
obtained from national milk recording schemes and 
breeding values from the Nordic Cattle Genetic Evalu-
ation. Direct genomic breeding values were calculated 
using genomic BLUP and combined with traditional 
breeding values, using bivariate blending. The data 
covered 14,862 Red Dairy Cattle, 17,145 Holstein, and 
7,330 Jersey genotyped virgin heifers born between 
2013 and 2015 in Denmark, Finland, and Sweden. Phe-
notypes adjusted for systematic environmental effects 
were used as measures of cow performance. Two meth-
ods were used to compared virgin heifer GEBV and 
PA regarding their ability to predict future cow per-
formance: (1) correlations between breeding values and 
adjusted phenotypes, (2) ranking cows into 4 quartiles 
for their virgin heifer GEBV or PA, and calculating 
actual cow performance for each quartile. We showed 
that virgin heifer GEBV predicted cow performance 
significantly better than PA for the vast majority of 
analyzed traits. The correlations with adjusted pheno-
types were 38 to 136% higher for GEBV than for PA 
in Red Dairy Cattle, 42 to 194% higher for GEBV in 
Holstein, and 11 to 78% higher for GEBV in Jersey. 
The relative change between GEBV bottom and top 
quartiles compared with that between PA bottom and 
top quartiles ranged from 9 to 261% for RDC, 42 to 
138% for Holstein, and 4 to 90% for Jersey. Hence, 

farmers in Denmark, Finland, and Sweden can have 
confidence in using genomic technology on their herds.
Key words: genomic breeding value, genotyping, dairy 
cow, validation

INTRODUCTION

To increase confidence in genomic technology among 
farmers, a clear illustration of the relationship between 
genomic predictions and future phenotypes is needed 
(Pryce and Hayes, 2012). In the early years of genomic 
selection, mainly bulls were tested, but genotyping of 
virgin heifers has become more interesting as the costs 
decrease (Calus et al., 2015; Hjortø et al., 2015; Ettema 
et al., 2017). At herd level, genomic test results can 
be used to (1) find the best females for breeding and 
replacement, (2) identify females for embryo transfer or 
in vitro fertilization, (3) correct parentage assignment, 
(4) control monogenic traits, and (5) avoid inbreeding 
through genomic-assisted mating plans (Pryce et al., 
2012).

Genomically enhanced breeding values (GEBV) can 
be validated in different ways. Cross-validation includes 
dividing the available data set into validation and train-
ing sets. By masking observations of all individuals in 
the validation set and predicting the observations or 
EBV with a model based on individuals in the training 
set only, the correlation between masked phenotypes or 
EBV and predicted values for the validation individu-
als can be estimated. This correlation then reflects the 
accuracy of prediction (de Roos et al., 2009). A disad-
vantage of validating GEBV against conventional EBV 
is that training and validation sets are rarely strictly 
independent (Su et al., 2010). Yao et al. (2015) used 
genotypes and health data to predict future pheno-
types, taking correlations between predicted values and 
phenotypes as measurements of accuracy. To illustrate 
the accuracy of GEBV compared with parent average 
breeding values (PA), Weigel et al. (2015) divided cows 
into quartiles based on their virgin heifer GEBV and 
sire PTA, and thereafter calculated actual cow perfor-
mances for each quartile.
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Establishment of the Nordic Cattle Genetic Evalua-
tion in 2002 has led to intensified cooperation between 
AI organizations in Denmark, Finland, and Sweden 
(DFS). Because the differences across the Nordic coun-
tries were small, according to a study on genotype × 
environment interactions by Kolmodin et al. (2002), a 
joint breeding program was established. The current 
breeding goal combines breeding values for 60 traits 
into 14 main breeding values, including health, repro-
duction, production, and conformation.

Genotyping of cows and virgin heifers in DFS started 
on a large scale in 2012 with the VikingGenetics geno-
typing project. Three breeds in the DFS countries have 
genomic breeding schemes: Red Dairy Cattle (RDC), 
Holstein, and Jersey. Initially, the main purpose was to 
include genotyped females in the reference population 
and thereby increase the accuracy of GEBV. This was 
especially important for RDC and Jersey, which had 
more limited reference populations based on bulls than 
did the Holstein breed. In 2018, close to 12% of females 
born in DFS were genomically tested, compared with 
approximately 2% in 2012, and growth potential for 
genomic testing remains. To date, over 250,000 females 
have been genotyped, and phenotypic information 
from over 100,000 of these animals has been recorded 
(Nielsen et al., 2019).

Approximately 85% of farms in DFS are enrolled 
in the national milk recording schemes. This enables 
validation of GEBV with phenotype data on a large 
scale, with a design having the desirable property that 
the validation population is strictly independent of the 
training population. The purpose of this study was to 
compare the abilities of virgin heifer GEBV and PA 
to predict future cow performance. To our knowledge, 
this has not previously been done on a large scale in 

3 breeds across countries. This could be an important 
step to convince farmers that genomic breeding values 
are valuable for use on their herds for selection deci-
sions.

MATERIALS AND METHODS

Data

Phenotype data were collected from the DFS milk 
recording schemes for the 3 breeds (RDC, Holstein, and 
Jersey). Observations from the first lactation of ani-
mals born from 2013 to 2015 were used in the analysis. 
To be included in the study, all animals were required 
to have a 305-d milk yield record. The total numbers 
of genotyped females in the study period with a 305-d 
milk yield record were 20,274 RDC, 23,910 Holstein, 
and 9,312 Jersey. We analyzed 12 traits in first parity: 3 
milk production traits (milk yield, fat yield, and protein 
yield), 2 udder health traits (SCS and occurrence of 
clinical mastitis), 1 fertility trait (interval, in days, from 
first to last service, IFL), 2 conformation traits (udder, 
and feet and legs), 1 calving trait (calving ease, CE), 
1 survival trait (survival to second calving, survival 
1–2), 1 claw health (CH) trait, and 1 general health 
(GH) trait. Detailed trait definitions can be found in 
Table 1. For Jersey, it was not possible to analyze CH 
or GH, because for those traits the genomic evaluation 
was still under development during the study period.

Female GEBV and PA were obtained from the Nor-
dic Cattle Genetic Evaluation (NAV, 2019). Detailed 
descriptions of all breeding values can be found in 
Table 2. Heritability in first lactation of traits used 
in the Nordic Cattle Genetic Evaluation can be found 
in Table 3, and in Table 4 average model reliabilities 
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Table 1. Detailed definitions of the traits studied

Trait  Phenotype definition (first lactation)

Milk yield  305-d kg of milk yield
Fat yield  305-d kg of fat yield
Protein yield  305-d kg of protein yield
SCS  SCC transformed to logarithmic scale
Clinical mastitis1  Clinical mastitis up to 300 d
IFL  Interval in days from first to last service
Udder  Total udder conformation score
Feet and legs  Total feet and legs conformation score
Calving ease (maternal)  First calving, recorded in 4 categories: (1) easy calving without help, (2) easy calving with help, (3) difficult 

calving without veterinarian help, and (4) difficult calving with veterinarian help
Claw health1  Records from first to second calving or up to 430 d after calving in first lactation. Claw disorders included were 

sole ulcer, sole hemorrhage, heel horn erosion, digital dermatitis, interdigital dermatitis, verrucose dermatitis, 
interdigital hyperplasia, double sole, white line separation, and corkscrew claw

General health1  Includes retained placenta, hormonal reproductive disorders, infective reproductive disorders, ketosis, milk fever, 
other metabolic diseases, other feed-related disorders, other diseases, and feet and leg problems

Survival 1–22  Survival from first to second calving
1Defined as 1 if the animal had at least one treatment, 0 otherwise.
2Defined as 1 if the animal survived, 0 otherwise.
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for genotyped animals can be found. Breeding values 
from 36 evaluations performed between August 2014 
and February 2017 were used in this study. The GEBV 
and PA used were based on the breeding values esti-
mated closest in time to when the animal reached 1 yr 
of age. Eleven different GEBV and PA were used: milk, 
fat, protein, udder health, fertility, udder, feet and 
leg, calving (maternal), claw health, general health, 
and longevity. These breeding values correspond to 
the phenotypes listed in Table 1 but are not defined 
in exactly the same way. Breeding values were based 
on multiple lactations, whereas phenotypes were from 
the first lactation only. The breeding values studied 

are also combinations of several underlying component 
traits (e.g., the fertility breeding value also includes 
information on the interval in days between calving 
and first service). We calculated GEBV using bivariate 
blending of direct genomic values and traditional EBV 
(Mäntysaari and Strandén, 2010; Taskinen et al., 2013). 
In September 2015, the calculation of direct genomic 
breeding values changed from GBLUP to SNPBLUP 
(Nielsen et al., 2016), which was shown to give compa-
rable results (Koivula et al., 2012). Detailed breeding 
value calculations can be found in NAV (2019).

To prevent virgin heifer reproductive performance 
from influencing the fertility breeding values used in 
this study, breeding values estimated after 14 mo of 
age were not included. For the same reason, animals 
genotyped after 14 mo were excluded. At the beginning 
of the VikingGenetics genotyping project, it was com-
mon to genotype animals up to the second lactation. 
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Table 2. Detailed definitions of breeding values (NAV, 2019)

Breeding value  Breeding value definition

Milk  Milk production in the first 3 lactations
Fat  Fat production in the first 3 lactations
Protein  Protein production in the first 3 lactations
Udder health  Based on records of clinical mastitis and SCC in the first 3 lactations and udder depth from first lactation. SCC and 

udder conformation are used as indicator traits
Fertility  Based on number of services, interval from calving to first service, interval from first to last service, non-return rate, 

heat strength, and conception rate. Includes records as virgin heifer to the third lactation
Udder  Linear traits combined into a group describing udder conformation. Based on the linear traits udder attachment, 

rear udder height, rear udder width, udder cleft/support, udder depth, teat length, teat thickness, teat placement 
(front), teat placement (back), and udder balance. Based on data from the first 3 lactations

Feet and legs  Linear traits combined into a group describing feet and leg conformation. Includes the linear conformation traits 
rear legs (side view), rear legs (rear view), hock quality, bone quality, and foot angle. Based on data from the first 3 
lactations

Calving (maternal)  Including calving ease and calf survival in the first 24 h. Calving is recorded in 4 categories, as for the phenotype 
trait (Table 1). Calf survival is defined as 1 if the calf survived, 0 otherwise. Includes records from first to fifth 
calving

Claw health  Includes records from the first 3 lactations. Claw disorders included were as defined in the phenotype definition 
(Table 1)

General health  Genetic resistance to reproductive, digestive, and feet and leg problems. Includes the same records as the phenotype 
definition (Table 1). Based on data from the first 3 lactations

Longevity  Describes the genetic ability to survive. Including days from first to the fifth lactation, with a maximum of 365 d per 
lactation

Table 3. Heritability in first lactation of traits used in the Nordic 
cattle genetic evaluation (NAV, 2019)1

Trait RDC Holstein Jersey

Milk 0.41 0.43 0.44
Fat 0.35 0.36 0.35
Protein 0.41 0.35 0.38
SCC 0.12 0.13 0.11
Clinical mastitis 0.04 0.05 0.04
IFL 0.03 0.03 0.03
Udder 0.25 0.25 0.25
Feet and legs 0.20 0.20 0.20
Calving ease 0.04 0.06 0.02
Claw health2 0.001–0.040 0.004–0.070 0.000–0.070
General health2 0.003–0.01 0.004–0.034 0.004–0.013
Survival 1–23 0.04 0.05 0.05
1RDC = Red Dairy Cattle; IFL = interval from first to last service, 
in days.
2The interval represents the range of heritability for the included sub-
traits (Table 1).
3Heritability for survival from first to second calving.

Table 4. Average model reliabilities (%) published for genotyped 
animals, 1 to 2 yr old, born in 2017 [Gert Pedersen Aamand, Executive 
Director, Nordic Cattle Genetic Evaluation (NAV, Aarhus, Denmark), 
personal communication, June 26, 2019]; RDC = Red Dairy Cattle

Breeding value RDC Holstein Jersey

Yield 74 77 71
Udder health 66 74 63
Fertility 59 74 55
Udder 66 73 64
Feet and legs 66 66 57
Calving 54 68 43
Claw health 51 59 46
General health 50 58 45
Longevity 49 66 44
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Consequently, most of the animals removed were born 
in 2013, which was the first year analyzed in this study. 
However, in the last 2 years studied, 2014 and 2015, 
most animals were genotyped as virgin heifers and 
were therefore included in the study. The number of 
genotyped animals also increased over the study period. 
Hence, most of the animals studied were born in 2014 
and 2015. The numbers of genotyped animals in the 
birth year cohort studied (2013 to 2015), genotyped 
before 14 mo of age and with a 305-d milk yield record, 
were 14,862 RDC from 900 herds, 17,145 Holstein from 
1,960 herds, and 7,330 Jersey from 235 herds.

Statistical Analysis

To obtain adjusted phenotypes for use in analysis of 
the predictive ability of breeding values, a larger phe-
notype data set was analyzed using Statistical Analysis 
Software (SAS) version 9.4 (SAS Institute Inc., Cary, 
NC). This analysis included all animals in the milk 
recording scheme born from 2008 to 2016, which, in 
total, comprised 997,797 RDC, 2,322,514 Holstein, 
and 240,946 Jersey. The adjusted phenotypes—that 
is, residual effects estimated using PROC HP MIXED 
with the linear model [1] described below—were named 
according to the respective trait; for example, adjusted 
milk yield was named MilkAdj. A separate analysis was 
performed for each breed. 

The following linear model was used for all traits:

 yijklmn = µ + HYij + YMCjkl + CCAlm + eijklmn, [1]

where yijklmn is the observed phenotypic value in first 
lactation; µ is mean of the population; HYij is the fixed 
class effect of herd i and calving year j (2008 through 
2018); YMCjkl is the fixed class effect of calving year j, 
month k (1 through 12), and country l (Denmark, Fin-
land, or Sweden); CCAlm is the fixed class effect of 
country l and calving age in months as heifer m (18 to 
36); and eijklmn is the random residual, ~ , .ND e0 2σ( )

We used HYij + YMCjkl as contemporary groups due 
to small average herd size, making it difficult to use 
herd-year-month or herd-year-season. Country was not 
included in the model for Jersey, because all Jersey cows 
studied were located in Denmark. For further analyses, 
the PROC MEANS and PROC FREQ procedures in 
SAS were used for descriptive statistics.

Because breeding values were obtained from several 
routine evaluations separated in time, they were not 
directly comparable due to rolling base population. 
Linear regression analysis was used to adjust for ge-
netic trends over time. In PROC REG, the regression 
coefficient was estimated between breeding values in a 

given evaluation and the corresponding breeding values 
in the last evaluation (February 2017). The linear re-
gression model used was

 yi = b0 + b1X + eij, [2]

where yi is a breeding value in the last evaluation (Feb-
ruary 2017); b0 is the intercept; b1 is the regression co-
efficient on the corresponding breeding value (X) in a 
breeding evaluation performed from August 2014 to 
January 2017; and eij is the random residual, 
~ , .ND e0 2σ( )  Breeding values were then expressed on 

the scale of the last evaluation, using the estimated 
regression parameters from Model [2] using PROC 
SCORE.

PROC CORR was used to calculate the correlation 
between breeding values (PA or GEBV) and adjusted 
phenotypes for each of the breeds. A 95% confidence 
interval using Fisher’s Z transformation was used to 
assess the significance of the difference between correla-
tions. The PROC RANKS procedure was used to rank 
cows into 4 quartiles across herds for GEBV or PA.

RESULTS

For RDC and Holstein, all correlations between 
breeding values and adjusted phenotypes were signifi-
cantly stronger for GEBV than for PA (Table 5). For 
Jersey, GEBV correlations were significantly stronger 
for all traits except clinical mastitis, CE, and survival 
1–2. The correlations with adjusted phenotypes were 
42 to 194% higher for GEBV than for PA in RDC, 
38 to 136% higher for GEBV in Holstein, and 11 to 
78% higher for GEBV in Jersey for the different traits 
(Table 5). All correlations between PA and adjusted 
phenotypes were significantly different from zero. The 
highest correlation found in this study was between 
milk GEBV and MilkAdj for Jersey (0.51). One of the 
traits for which the correlations increased the most, 
IFLAdj increased by over 64% for all 3 breeds when ge-
nomic information was included in the breeding values. 
For Jersey, the correlation between breeding value and 
IFLAdj increased by 78% when genomic information was 
included.

The relative change between the GEBV bottom and 
top quartile (∆GEBV) compared with that between 
the PA bottom and top quartile (∆PA), ranged from 
9 to 261% for RDC, 42 to 138% for Holstein, and 4 to 
90% for Jersey (Table 6). However, it should be noted 
that the large relative percentage change between PA 
and GEBV for both quartiles and correlations was, in 
many cases, from initially low levels.

Bengtsson et al.: VALIDATION OF GENOMIC BREEDING VALUES
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DISCUSSION

An advantage of using phenotypes for validation of 
breeding values is that it makes it easy for farmers to 
understand how their animals’ breeding values work 
in practice, when validation is against their own farm 
records. The use of phenotypes in this study was facili-
tated by the high rate of participation in the national 
milk recording schemes in the DFS countries. The ex-
tracted virgin heifer GEBV and PA, estimated before 
on-farm information was recorded, reflected informa-
tion available to farmers at the time of selection. The 
maximum age at which a breeding value for a heifer 
was taken was 14 mo, to reflect the breeding values at 
first insemination for virgin heifers. For example, at 
that age the farmer can combine genomic selection with 
decisions about sexed and beef semen, as suggested in 
other studies (Hjortø et al., 2015; Ettema et al., 2017).

Many of the breeding values used in the present 
study are combinations of several underlying compo-
nent traits. For example, the udder health breeding 
value includes data on clinical mastitis, SCC, udder at-
tachment, and udder depth. Furthermore, most of the 
breeding values are based on the first 3 lactations and 
not only the first lactation, whereas the phenotypes 
studied were only from the first lactation. These 2 fac-
tors most likely resulted in somewhat weaker relation-
ships between breeding values and phenotypes than 
if sub-trait breeding values for the first lactation had 
been used. However, those breeding values were not 
available for this study nor for the farmers in the stud-
ied period. Nevertheless, these factors probably had a 
limited influence on the relative change between GEBV 
and PA, which was the focus in this study.

We chose to use linear models for all traits, to repre-
sent current practice in the Nordic genetic evaluation. 
However, some traits could be claimed to be theoreti-
cally less well suited for a linear model, such as clinical 
mastitis, survival 1–2, and CE. Therefore, we tried dif-
ferent models to fit the data (binary distribution, Pois-
son distribution) in preliminary analyses for the Jersey 
breed, but the results were similar to those obtained 
using linear models.

The highest correlations obtained in this study were 
between production traits and breeding values. This 
could be expected, as production traits have the highest 
heritability and reliability of the traits studied (Tables 
3 and 4). Mathematically, the correlation between the 
true breeding value and phenotype is equal to h, and 
the proportion of variance explained by the breeding 
value is h2. However, we did not have the true breed-
ing values in this study, and therefore the expected 
(squared) correlation equals the product of heritability 
and reliability.

Bengtsson et al.: VALIDATION OF GENOMIC BREEDING VALUES
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The correlations with adjusted phenotypes were over 
40% stronger for all production traits and breeds when 
genomic information was used compared with PA. The 
highest correlation found in this study was between 
milk GEBV and MilkAdj for Jersey. The reliability of 
the yield breeding values differed least from each other 
(Table 4), where the heritability for RDC was slightly 
lower than for Holstein and Jersey (Table 3). The 
Nordic RDC is the most genetically diverse of the 3 
breeds studied, as it is a mixture of Swedish Red, Dan-
ish Red, and Finnish Ayrshire and also includes genes 
from Norwegian Red, Canadian Ayrshire, American 
Brown Swiss, and Red Holstein Friesian (NAV, 2019). 
Hence, less linkage disequilibrium between markers and 
quantitative trait loci could explain the lower correla-
tions for RDC. The difference between top and bottom 
quartiles in adjusted phenotypes when using GEBV 
instead of PA (∆GEBV − ∆PA; Table 6) for MilkAdj 
was lower than that reported by Weigel et al. (2015). 
For Holstein, the difference in our study was +450 kg 
with genomic information, compared with +1,104 kg 
in Weigel et al. (2015). However, only sire PTA (rather 
than PA) values were used in their study, and the re-
sults were only from 411 cows. Additionally, differences 
in production level and phenotypic variance most likely 
occurred between our study and that of Weigel et al. 
(2015).

In general, traits with low heritability in the present 
study, such as IFL, clinical mastitis, CE, CH, and GH, 
gained relatively more in accuracy from using genomic 
information than did highly heritable traits such as 
production. The same pattern has been reported by 

other studies (García-Ruiz et al., 2016; Wiggans et al., 
2017).

In our study, IFLAdj was one of the traits for which 
correlations increased the most when genomic informa-
tion was included in the breeding values (over 60% 
for all 3 breeds). It has been established that IFL has 
the strongest correlation with fertility breeding value 
(NAV, 2019). For Jersey, the correlation between breed-
ing value and IFLAdj increased by 78% when genomic 
information was included. Looking at the quartiles for 
IFL, the difference between ∆GEBV and ∆PA was 4.6 
to 7.0 d in favor of GEBV (Table 6). Consequently, 
virgin heifer GEBV was more effective than PA in iden-
tifying cows with poor and good fertility.

Our results also confirmed that GEBV can help in 
choosing animals with better udder health. The correla-
tion between SCSAdj and GEBV increased by over 55% 
compared with SCSAdj and PA for all 3 breeds. The 
udder health trait with the highest heritability is SCS 
(Table 3), and one could expect a stronger correlation 
compared with clinical mastitis. Weigel et al. (2015) 
found that SCS showed almost no difference between 
quartiles for PA, even though their study had greater 
differences between quartiles for genomic values. In 
the present study, we also found significant differences 
for correlations between Clinical MastitisAdj and udder 
health breeding values for Holstein and RDC but not 
for Jersey. However, the Jersey correlation between 
PA udder health and MastitisAdj was relatively strong, 
which indicates that the conventional evaluation works 
well for this trait, possibly owing to higher clinical 
mastitis frequency among Jersey cows than among 

Bengtsson et al.: VALIDATION OF GENOMIC BREEDING VALUES

Table 6. Differences in averages of adjusted (Adj) phenotypes between cows in bottom and top quartiles for virgin heifer parent average 
breeding values (∆PA), genomically enhanced breeding values (∆GEBV), and relative change in percent, respectively, for Red Dairy Cattle 
(RDC), Holstein, and Jersey; for trait definitions, see Table 1; n/a = not applicable

Trait1

RDC

 

Holstein

 

Jersey

∆PA ∆GEBV

Relative 
change2 

(%) ∆PA ∆GEBV

Relative 
change2 

(%) ∆PA ∆GEBV

Relative 
change2 

(%)

MilkAdj (kg) 708 1,171 65  1,061 1,512 42  738 1,156 57
FatAdj (kg) 28 41 45  33 48 47  28 42 54
ProteinAdj (kg) 20 31 57  27 38 44  22 34 55
SCSAdj 0.1 0.15 55  0.11 0.19 71  0.09 0.16 71
MastitisAdj (score 0 or 1) 0.02 0.03 19  0.02 0.04 52  0.08 0.08 4
IFLAdj (d) 7.7 12.3 60  9.1 16.1 76  7.3 12.2 68
UdderAdj (points) 2.5 3.5 39  2.7 4.4 62  1.7 3.3 90
Feet and legsAdj (points) 2 3.6 78  1.5 2.5 66  2.3 3.1 35
Calving easeAdj (score 1–4) 0.04 0.08 97  0.07 0.12 71  0.04 0.06 51
Claw healthAdj (0 or 1) 0.05 0.11 111  0.07 0.14 99  n/a n/a n/a
General healthAdj (0 or 1) 0.01 0.03 261  0.03 0.05 76  n/a n/a n/a
Survival 1–2Adj (0 or 1) 0.03 0.03 9  0.02 0.05 138  0.04 0.04 17
1IFL = interval from first to last service, in days.

2 Relative change
GEBV PA

PA
=

−∆ ∆
∆

, relative change in percent between GEBV bottom and top quartile compared with PA bottom and top 
quartile.
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Holstein and RDC cows (Appendix Tables A1 and 
A2). In the genotyped data set, the clinical mastitis 
frequency for Jersey was 17%, compared with 7% for 
Holstein and 6% for RDC. This was also reflected in 
the differences between quartiles, where both ∆PA and 
∆GEBV differences were larger for Jersey. However, we 
found no differences between PA and GEBV in their 
ability to predict the future adjusted phenotype for 
Jersey (Table 6). The low clinical mastitis frequencies 
for RDC and Holstein made it more difficult to detect 
differences between GEBV and PA. The correlations 
between breeding values for udder health and clinical 
mastitis are stronger in the second and third lactations 
(NAV, 2019). It would have been interesting to study 
the second and third lactations, but for most animals 
these had not been completed at the time of this study.

For RDC and Holstein, we discovered significantly 
stronger correlations between calving GEBV and 
CEAdj than between calving PA and CEAdj. However, 
with fewer genotyped heifers and some animals lacking 
CE information, it was not possible to draw a similar 
conclusion for Jersey. Analysis also revealed fewer calv-
ing problems for Jersey, for which the score was on 
average 1.06 in the genotyped group, compared with 
1.24 for RDC and 1.23 for Holstein (Appendix Tables 
A1 and A2). Further, heritability and GEBV reliability 
were also lower for the calving trait in Jersey compared 
with Holstein and RDC (Tables 3 and 4), which might 
explain why it was not possible to detect significant 
differences between GEBV correlation and PA correla-
tion. The difference between quartiles was also smaller 
for Jersey (+0.02) compared with RDC (+0.04) and 
Holstein (+0.05) when genomic information was in-
cluded in the breeding value (Table 6).

Phenotypes for both conformation traits were sig-
nificantly more strongly correlated with conformation 
GEBV than with conformation PA. On examining the 
difference between conformation quartiles (Table 6), it 
was also possible to see that the prediction improved 
when genomic information was included. The difference 
between the top and bottom 25% (∆GEBV − ∆PA) 
increased by between 0.8 and 1.6 scoring points for feet 
and leg conformation, and between 1.0 and 1.7 scoring 
points for udder conformation, when genomic informa-
tion was used (Table 6). Thus, GEBV can be more 
effective than PA in predicting future conformation.

We also disovered a lack of phenotypes for the CH 
trait (Table 5), which might have affected the results 
for that trait. Nevertheless, for both RDC and Holstein, 
the correlations between CH GEBV and CHAdj were 
significantly stronger than the correlations between CH 
PA and CHAdj. For Jersey, it was not possible to com-
pare GEBV and PA regarding their ability to predict 

future cow claw health, because the genomic evaluation 
for CH in that breed was only established in 2018.

For both Holstein and RDC, the correlations between 
general health GEBV and GHAdj were significantly 
stronger than the correlations between general health 
PA and GHAdj. The correlations between GH breeding 
value and GHAdj increased by 99% for Holstein and 
194% for RDC when using genomic selection. From the 
quartile differences (+0.02) for both Holstein and RDC, 
the benefit of using genomic selection was not equally 
clear. The heritability of the GH trait is low, and the 
trait is influenced by the environment to a large extent 
(Table 3). For GH, the genomic evaluation for Jersey 
was under development at the time of the study.

For RDC and Holstein, significantly stronger correla-
tions occurred between longevity GEBV and Survival 
1–2Adj than between longevity PA and Survival 1–2Adj. 
For Jersey, we found no differences between the abili-
ties of GEBV and PA to predict future survival per-
formance. Further, looking at differences between the 
quartiles (∆GEBV − ∆PA) for Holstein (+0.03), Jer-
sey (±0) and RDC (±0), it was not possible to see the 
benefit of genomic selection for RDC and Jersey (Table 
6). The reliability of survival GEBV was also lower for 
Jersey than for Holstein and RDC (Table 4). Survival is 
strongly affected by farmer decisions, the environment, 
and other functional and health traits (Kargo et al., 
2014), which also could explain the results. It would 
have been interesting to study survival in later lacta-
tions. The longevity breeding value includes data to the 
end of the fifth lactation, and the correlations between 
longevity breeding value and survival are stronger in 
later lactations (NAV, 2019).

CONCLUSIONS

We showed that virgin heifer GEBV predicted cow 
performance significantly better than did PA for the 
vast majority of analyzed traits in Red Dairy Cattle, 
Jersey, and Holstein. Thus, farmers in Denmark, Fin-
land, and Sweden can have confidence in using genomic 
technology on their herds for selection decisions. Traits 
with low heritability, such as interval from first to 
last insemination, clinical mastitis, calving ease, claw 
health, and general health, gained relatively more from 
inclusion of genomic information than did highly heri-
table traits such as production.
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APPENDIX

Table A1. First-lactation descriptive statistics [average, SD, and number of animals (N)] for all animals born in 2013, 2014, and 2015 in 
Denmark, Finland, and Sweden

Trait1

Red Dairy Cattle

 

Holstein

 

Jersey

Mean SD N Mean SD N Mean SD N

Milk yield (kg) 8,022 1,432 217,245  8,984 1,660 601,353  6,263 1,126 61,105
Fat yield (kg) 355 63 210,289  363 63 592,887  371 61 61,100
Protein yield (kg) 288 50 210,295  308 53 592,914  259 43 61,105
SCS 0.68 0.42 200,178  0.67 0.37 553,293  0.8 0.37 57,807
Clinical mastitis (score 0 or 1) 0.06 0.24 182,038  0.09 0.29 495,373  0.16 0.37 52,458
IFL (d) 45.86 61.72 177,969  44.36 61.7 491,602  43.17 61.42 53,503
Udder (points) 79.79 5.34 96,273  80.06 5.28 244,125  80 5.53 38,496
Feet and legs (points) 80.02 5.34 96,288  80.18 4.99 244,144  80.07 5.5 38,496
Calving ease (maternal; score 1–4) 1.24 0.52 139,956  1.23 0.5 471,599  1.06 0.32 55,967
Claw health (0 or 1) 0.51 0.5 45,466  0.64 0.48 144,002  0.51 0.5 13,225
General health (0 or 1) 0.12 0.32 185,577  0.16 0.36 519,512  0.15 0.36 54,258
Survival 1–2 (0 or 1) 0.66 0.47 212,226  0.69 0.46 588,990  0.73 0.44 60,921
1IFL = interval from first to last service.

Table A2. First-lactation descriptive statistics [average, SD, and number of animals (N)] for all animals genotyped and qualified for analysis 
born in 2013, 2014, and 2015 in Denmark, Finland, and Sweden

Trait1

Red Dairy Cattle

 

Holstein

 

Jersey

Mean SD N Mean SD N Mean SD N

Milk yield (kg) 8,473 1,312 14,710  9,452 1,579 17,039  6,451 1,024 7,069
Fat yield (kg) 374 56 14,571  383 58 16,801  384 55 7,048
Protein yield (kg) 306 45 14,583  329 51 16,902  269 40 7,060
SCS 0.64 0.40 12,834  0.61 0.35 16,667  0.76 0.36 6,734
Clinical mastitis (score 0 or 1) 0.06 0.24 12,834  0.07 0.27 14,463  0.17 0.36 6,447
IFL (d) 42.03 58.53 14,549  39.87 57.92 16,833  40.36 59.85 6,451
Udder (points) 80.33 5.20 11,917  81.46 4.85 13,412  80.72 5.25 6,192
Feet and legs (points) 80.12 5.26 11,917  81.06 4.71 13,413  80.80 5.21 6,192
Calving ease (maternal; score 1–4) 1.22 0.5 11,521  1.23 0.50 16,891  1.07 0.33 6,691
Claw health (0 or 1) 0.54 0.50 4,129  0.59 0.49 4,829  0.55 0.49 1,096
General health (0 or 1) 0.15 0.35 13,885  0.14 0.35 15,748  0.15 0.35 6,626
Survival 1–2 (0 or 1) 0.69 0.46 14,694  0.71 0.45 17,029  0.75 0.43 7,053
1IFL = interval from first to last service.
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