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Abstract: Bioenergy is expected to contribute to mitigating climate change. One major source for
bioenergy is woody biomass from forests, including logging residues, stumps, and whole trees from
young dense stands. However, at increased extraction rates of woody biomass, the forest ecosystem,
its biodiversity, and its ability to contribute to fundamental ecosystem services will be affected. We
used simulation and optimization techniques to assess the impact of different management strategies
on the supply of bioenergy and the trade-offs between wood fuel harvesting, biodiversity, and
three other ecosystem services—reindeer husbandry, carbon storage, and recreation. The projections
covered 100 years and a forest area of 3 million ha in northern Sweden. We found that the development
of novel and cost-effective management systems for biomass outtake from young dense stands may
provide options for a significant supply of bioenergy to the emerging bioeconomy, while at the same
time securing biodiversity and important ecosystem values in future stand developments. In addition,
there is potential to increase the extraction of harvest residues and stumps while simultaneously
improving conditions for biodiversity and the amount of carbon stored in forest ecosystems compared
to current levels. However, the projected continuing trend of increased forest density (in terms of
basal area) has a negative impact on the potential for reindeer husbandry and recreation, which calls
for researching new management strategies on landscape levels.
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1. Introduction

There are high expectations that bioenergy will contribute to mitigating climate change [1,2].
Today, woody biofuels account for about half of the EU’s total renewable energy consumption, and
the demand for bioenergy will most likely increase [3] and references therein. Sweden is one of
the main wood producers within the EU and is considered to be an important source for providing
forest residues to the European bioenergy market [3]. In addition, the Swedish government adopted
a climate goal of net zero emissions of greenhouse gases by 2045, and negative emissions thereafter [4].
The forest is expected to contribute to reaching the goal, inter alia by supplying more bioenergy [5].
It is therefore anticipated that Sweden’s woody biofuel demand will increase considerably, with an
additional demand for forest-based feedstock in the emerging chemical-, petrochemical-, and energy
industries of about 40–55 TWh in 2030 and 60–70 TWh in 2050 [6]. For comparison, the total energy
supply in Sweden amounted to 565 TWh in 2017, of which 143 TWh consisted of biofuels [7]. Sweden
and Finland are the two countries within Europe that utilize the largest volumes of woody biofuels,
and as the demand for bioenergy increases it is expected that many other countries will follow suit [8].
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There are two broad categories for woody biofuels: primary sources, such as logging residues,
stumps, and low-quality logs, and secondary sources, i.e., by-products from the forest industries such
as bark, saw dust, and black liqueur. Secondary sources are already fully utilized in Sweden [9]. Thus,
an increase in the supply of woody biomass can only be fulfilled by increasing the extraction rates of
primary sources, or by rising imports. The technical harvesting potential of primary woody biofuels in
Sweden is estimated to be 60–73 TWh per year [9,10]. In 2018 the total supply of primary forest fuels in
Sweden was ca 23 TWh [11], i.e., considerably below the technical harvesting potential.

Currently, logging residue extraction, i.e., the harvest of tops and branches left during final
felling, occurs on less than 20% of the harvested area in northern Sweden, and about 60% in southern
Sweden. Stump harvest occurs to a limited extent today, but is expected to increase to about 5%–10%
of the annual clear-felled area in the coming years [12]. Similarly, logging residues constitute the main
primary source of woody biofuels in most countries, but in the near future stumps and roundwood
may play a more prominent role [8]. Biofuel harvest from early thinnings in dense young forests are
currently done to insignificant levels, but will increase, as for stumps, if prize levels rise [13]. Therefore,
there is considerable potential for increased extraction rates of primary woody biofuels, especially in
northern Sweden, where current extraction rates are relatively low due to longer transport distances
and lower harvestable volume per hectare compared to southern Sweden [12]. The situation is similar
in other European countries, with large un-used potentials for woody biomass for energy use [8,14,15].

However, at increased extraction rates of woody biomass, the forest ecosystem, its biodiversity,
and its ability to contribute to fundamental ecosystem services will be affected, due to, e.g., increased
disturbance and the outtake of nutrients. A key question is therefore how much woody biomass forest
ecosystems can provide in a sustainable way and what the trade-offs are between wood fuel harvesting,
biodiversity, and other ecosystem services. Research on the environmental and biodiversity impacts
of woody biomass extraction from forests has grown rapidly in recent years. Based on a literature
review and expert assessment, de Jong et al. [16] estimated that the extraction of logging residues in
Sweden can be increased 2.5 times from current levels, and still be sustainable in terms of impacts on
biodiversity and environmental objectives. Another recent review pointed out that residue extraction
clearly has negative impacts on soil quality, productivity, water quality, and biodiversity, but that
the effects are small in comparison to conventional forestry itself [17]. However, existing studies often
focus on the stand-scale and short-term impacts, focus on just one or a few ecosystem services or
biodiversity aspects at a time, or do not include management options such as biofuel harvest from
early thinnings [18–21]. As a result, there is a need to investigate the implications of woody biomass
extraction on biodiversity and ecosystem services at landscape level and in the long-term [17]. To this
end, simulation studies play an important role for predicting the long-term and landscape level effects
of forest management on biofuel extraction potential, ecosystem services, and biodiversity. Thus,
they enable the analyses of long-term effects before they are observable in the field. Such simulation
studies, based on forest decision support systems using growth and yield models, can be done at
different spatial scales and allow for the analysis of the impact of different management strategies on
the availability of logging residues and trade-offs with ecosystem services and biodiversity. Further,
optimization approaches allow for the selection of combinations of management strategies that allow
for high woody biomass extraction potentials without compromising biodiversity and ecosystem
services. There is a large number of long-term simulation and optimization studies using forest decision
support systems and focusing on forest ecosystem services and biodiversity, but the focus is usually on
stemwood production and not on harvest residues [22–25]. In this paper, we use long-term simulations
of future forest development for different management and biofuel extraction strategies, combined
with an optimization approach building on linear programming (LP) and goal programming (GP) to
analyze how much woody biomass forest ecosystems can provide in a sustainable way.

The aim of this paper is to:

(1) Assess the long-term trade-offs between biofuel extraction, biodiversity, and three core forest
ecosystem services: carbon sequestration, recreation, and reindeer husbandry;
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(2) Identify a compromise solution for attaining the largest possible harvest levels of wood fuels
combined with the least negative impact on other ecosystem services and biodiversity.

The analysis is done using the county of Västerbotten in northern Sweden, with more than
3 million ha productive forest1 (>10% of the total Swedish forest area; productive forests are forests
with a mean annual increment > 1 m3/ha) as the case study area. Västerbotten county represents
the forest conditions in northern Sweden, where only a small proportion of the available primary
woody biofuels is utilized currently. We use an advanced forest decision support system and assess
the trade-offs between biofuel extraction and other ecosystem services and biodiversity under two
different biofuel extraction settings: extracting only logging residues from final fellings, and more
intensive extraction practices additionally, including logging residues from thinnings, stumps from final
fellings, and whole-tree extraction from dense young stands. All analysis is done with the assumption
that the harvest of timber volume and pulpwood volume should be in line with the potential sustainable
harvest levels based on projections done in the latest national scenario analysis [26].

2. Materials and Methods

2.1. Case Study Area

The current forest conditions in the case study area were represented by a total of 2738 national
forest inventory (NFI) plots, measured between the years 2008 and 2012. The NFI is an annual survey
of all forest land in Sweden, initiated in 1923, where circular plots with a radius of 7 or 10 m placed
along borders of squared tracts distributed in a systematic cluster design are inventoried [27]. Each
plot represents a forest area of up to 1800 ha. Of the total productive forest area in Västerbotten, 3.0%
is located in nature reserves, 7.5% in voluntary set-asides, and 6.7% in retention patches (based on
the latest national forest impact analysis [26]). The mean age of the forest is 68 years, with almost
40% of the forest being younger than 40 years. Forests in nature reserves are primarily older than
80 years (Figure 1). The mean standing volume is 100 m3/ha, and the main species are Scots pine (Pinus
sylvestris, 43%), Norway spruce (Picea abies, 38%), and birch (Betula spp., 16%). The remaining volume
is divided almost equally between other broadleaves (1.4%) and lodgepole pine (Pinus contorta, 1.5%).
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Figure 1. Location of the study area (a), volume distribution by age class (b), and age class distribution
(area) of the productive forest in the study area (c).

2.2. Ecosystem Services

We followed the ecosystem service classification of the Millenium Ecosystem Assessment [28], and
in addition to woody biofuel extraction we included one provisioning service (reindeer husbandry),
one cultural service (recreation), and one regulating service (carbon sequestration). We also included
biodiversity, which can be regarded as a cultural service or supporting service but also as a foundation
for all other ecosystem services, i.e., as a separate quality [29] (Table 1).

Table 1. Definition of indicators for ecosystem services and biodiversity.

Classification Indicator Definition Unit

Provisioning
service

Woody biofuel
production

Energy content of the extracted biomass of
residues, stumps and whole trees (above stump,

in biofuel thinnings), assuming that 1 t of
biomass (dry weight) corresponds to 4.9 MWh

TWh

Provisioning
service Reindeer husbandry

Area potentially suitable for reindeer pasture
(basal area < 20 m2/ha, tree density < 1600
stems/ha, not dominated by Pinus contorta),

based on [30])

ha

Regulating
service Carbon storage

Total forest carbon stock (including carbon in
above- and belowground tree biomass and forest

soil)
Mg C/ha
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Table 1. Cont.

Classification Indicator Definition Unit

Cultural service Recreation

Index between 0 and 1 describing a plots’
suitability for recreation, with higher index

values denoting a higher suitability for
recreation

-

Biodiversity Old forest Area of forest with age > 140 years ha

Biodiversity Mature
broadleaf-rich forest

Area of forest with age > 80 and broadleaves >=
25% of total basal area ha

Biodiversity Large diameter trees Density of trees with a diameter in breast height
> 40 cm

Number of
trees/ha

Biodiversity Deadwood Total deadwood volume, all decay classes m3/ha

Reindeer husbandry is an important industry for the Sami people in northern Sweden, which
justifies a consequence analysis of increased levels of woody biofuel harvesting. As an indicator for
reindeer husbandry, we used the forest area that has the potential to support the growth of ground
lichen based on [30]. Ground lichen, which is abundant especially in old, open pine forest, is an
important food source for reindeer during autumn and winter, and has declined substantially due to
modern forest practices [31].

Recreational activities in forests, including walking, jogging, berry and mushroom picking, as
well as hunting, are very common both in Sweden and other boreal countries, and the importance
and use of forests for recreational activities has been frequently recognized [32,33]. As indicator for
recreation we used an index between 0 and 1 describing a plot’s suitability for recreation, based on
a set of forest variables such as average height, trees/ha, and tree species distribution [34].

Carbon storage in forests contributes to the mitigation of climate change. In this study, carbon
storage was calculated as the total forest carbon stock, including carbon in above- and belowground tree
biomass and in the forest soil. Soil carbon storage was based on the Q-model, which is implemented in
the Heureka system, and predicts the amount of carbon and nitrogen present in the litter and humus
layer at a given time period [35].

We had no direct measure of biodiversity and therefore used proxies that are known to correlate
with high species richness and/or the occurrence of rare species, and that are used as indicators to
monitor the Swedish environmental quality objective Sustainable Forests [36]. In this study, we used
the amount of dead wood, old forest, mature broad leaf forest, and number of large trees as indicators
for biodiversity. Numerous studies support the fact that dead wood is one of the most important
prerequisites for preserved biodiversity [37]. Dead wood in this study included all stemwood resulting
from natural mortality with a minimum diameter of 10 cm, and in all decay classes. Old forest is
important to some species relying on continuity [38]. Large trees are amongst the most important
substrates for red-listed species in boreal forests [39]. During the last century, there has been a change
in the landscape structure in that conifer species (pine and spruce) have become more dominant. This
has led to a situation where biodiversity components tied to the presence of deciduous trees are under
pressure [40].

2.3. Analytical Framework

The trade-offs between increasing the extraction of woody biofuels and the impacts on the indicators
for biodiversity and ecosystem services were investigated through a two-step procedure using long-term
simulation of future forest development under different management alternatives combined with
optimization based on LP. To this end, we used the Heureka application PlanWise, which is a decision
support system for analysis and planning of the forest landscape [41]. PlanWise uses an optimization
approach to determine the best possible combination of management strategies to meet user-defined
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objectives and constraints. This is done in two steps: treatment generation, and treatment selection
(optimization).

During treatment generation, a large number of treatment schedules are created for each
plot, for one or several management strategies. Treatment schedules vary in the timing of
silvicultural activities, while management strategies can vary in management system (unmanaged,
even-aged, and uneven-aged) and the type of silvicultural activity applicable (for example, natural
regeneration/planting, number of thinnings, minimum rotation length, or different logging residue
extraction practices, or different regeneration measures). For each plot, treatment schedule and period,
PlanWise simulates the development of the tree layer by using a large set of models, e.g., empirical
growth and yield models, models for stand establishment, diameter and height growth, ingrowth, and
mortality. These models were developed by means of regression analysis using data from the National
Forest Inventory, long-term experiments, and yield plots [42–44]. Other components of the forest
ecosystem, like deadwood and carbon, were then calculated based on the development of the tree layer.

In treatment selection, an optimization problem was solved using linear programming (LP) or
mixed integer programming (MIP) aiming at finding the optimal combination of treatment schedules
for each plot, based on a user-defined objective that was to be minimized or maximized, and constraints
that were to be met.

The following sections describe the details of the treatment generation and selection process
applied in this study. Figure 2 gives an overview of the analytical framework.
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Figure 2. Overview of the analytical framework.

2.4. Treatment Generation

For each NFI plot, a set of possible treatment schedules was generated covering the entire
planning horizon, which in this study was set to 100 years, divided into 20 five-year periods.
The treatment schedules for a given management strategy differed in the timing of forestry activities
within the framework given by the management strategy. For each schedule, the outcome in terms of
indicator values for the selected ecosystem services and biodiversity was simulated.

For the production forest (83% of the forest area, excluding nature reserves, voluntary set-asides,
and retention patches), we defined six different possible management strategies: wood-production, no
thinnings, broadleaves, long rotations, continuous cover forestry (CCF), and unmanaged (Table 2).
The wood-production oriented strategy represents standard management practices, comprising
regeneration through planting, cleaning, several thinnings, followed by final felling with the retention
of three high stumps and ten live trees per hectare. The no thinning strategy includes cleanings, but no
commercial thinnings. The broadleaves strategy aims at increasing the proportion of broadleaves in
the landscape by increasing the share of retained broadleaves in cleaning and thinning operations, and
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allowing for longer rotation periods. In the long rotations strategy, pine is regenerated naturally and
rotation time is prolonged by up to 60 years after reaching the minimum legal age for final felling. In
the CCF strategy, which was only applied in spruce-dominated stands, the forest is managed with
a series of selection fellings. Finally, a set-aside strategy was simulated for all production forests, in
which the forest was left unmanaged.

Table 2. Description of the management strategies applied in the business-as-usual (BAU) and
bioeconomcy (bioE) extraction settings for the productive forest.

Management Strategies

Management
Practices Production No

Thinning Broadleaves Long
Rotations CCF Unmanaged

Regeneration Planting Planting
Spruce:

planting
Pine: natural

Spruce:
planting

Pine: natural,
seed trees
retained

Natural

Natural (when
starting from

bare forest
land,

otherwise not
needed)

Broadleaf
admixture after

cleaning
20% 20% 40% 20% - -

Broadleaf
admixture after

thinning
20% - 40% 20%

Selection
fellings

favoring
broadleaves

(larger
proportional
felling rate

for conifers)

-

Delay in final
felling after

reaching
minimum final

felling age

Max 30
years

Max 30
years 20–50 years 35–60 years - -

Number of
single retention

trees
10 10 20 20 10 -

Number of
high stumps 3 3 6 6 - -

Harvesting of woody biofuel is an option in all strategies except for the set-aside strategy. To be
able to compare the effect of different ambitions regarding woody biofuel harvesting, the management
strategies were simulated under two different settings for biofuel extraction: business-as-usual (BAU),
representing current practices, and bioeconomy (bioE), with intensified biomass extraction options. In
BAU, the only primary biofuel sources are logging residues (tops and branches) from final fellings. In
bioE, additional biofuel sources are small diameter trees from whole tree harvesting in early thinnings
(termed “biofuel thinning” in the remainder of the text), logging residues from regular thinnings,
and stumps (including large roots) from final fellings. In biofuel thinnings, all the above-ground tree
biomass is used for biofuel. Due to economic consideration, logging residues and stumps are only
extracted in plots with a minimum spruce proportion of 50%, in both biofuel extraction settings. We
applied environmental restrictions to logging residue and stump extraction based on recommendations
of the Swedish Forest Agency [26]. These included that no logging residue and stump extraction take
place on wet soils or peatland, due to the risk for rutting caused by forest machine trafficking. On moist
soils, stumps are not extracted at all, while logging residue extraction is allowed on sandy soils, but not
on clay- or fine silt soils. Further, stumps are not extracted on lichen-rich plots due to considerations
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for reindeer husbandry. Only spruce and pine stumps are extracted, stumps of all other tree species are
left in the ground.

The remaining forest, 17% of the area, was set aside for nature conservation without any woody
biofuel extraction, in both settings. Nature reserves were left unmanaged. In voluntary set-asides and
retention patches, some nature-conservation focused management was implemented, by applying
a management strategy consisting of selection felling on 10% (voluntary set-asides) or 20% (retention
patches) of the area, leaving the remaining area unmanaged.

2.5. Treatment Selection

After simulating alternative treatment schedules for each NFI plot, a set of optimization problems
were formulated and solved with LP for both biofuel extraction settings (BAU and bioE). All problems
consisted of assigning treatment schedules to each NFI plot so that the value of the objective function
was maximized while the defined restrictions were met. All optimizations included a constraint
specifying the demand for roundwood harvest, based on projections done in the latest national
scenario analysis on potential sustainable harvest levels [26]. Annual roundwood harvest demands
range from 6.1 in the beginning, to 6.9 million m3 (under bark) in the end of the planning horizon
(Figure 3). The roundwood demand includes firewood and unmerchantable stemwood, as a proportion
of regular roundwood harvests. We did not include these volumes in our assessment of potential
woody biofuels. We applied the same harvest demand constraint in all optimizations, allowing at most
a +/−1% deviation from the harvest demand in each period. In addition, a constraint for evenness in
woody biofuel extraction was included in all problems by accepting a maximal deviation of 20% in
each period from average woody biofuel extraction over the entire planning horizon, which is in line
with the deviation in harvest volume.
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2.5.1. Maximum Potential per Indicator

The first set of LP problems aimed at determining the maximal potential production of
the ecosystem services and biodiversity indicators (reindeer husbandry, carbon storage, recreation, old
forest, mature broadleaf-rich forest, large diameter trees, and deadwood) for each scenario, subject
to fulfilling a pre-defined level of roundwood harvest. The objective in each problem consisted of
maximizing the total indicator value over all planning periods (separately for each of the indicators),
subject to a demand for a certain amount of roundwood harvest for each five-year period.

2.5.2. Trade-offs between Woody Biofuel Extraction and One Indicator at a Time

To identify trade-offs between the extraction of woody biofuel and the other indicators, a second
set of LP problems was formulated and solved, identifying a set of Pareto-efficient solutions, i.e.,
solutions where the result for any one of the objectives cannot be improved without compromising



Sustainability 2020, 12, 4089 9 of 20

the result for the other objective. The objective in each problem consisted of maximizing the total
indicator value over all planning periods, subject to a gradually decreasing demand for woody biofuel,
i.e., decreasing the woody biofuel demand step-wise (99%, 95%, 90%, 80%, etc.) until a further decrease
did not change the results anymore.

2.5.3. Compromise Solution, including all Indicators

Finally, we used GP to identify a compromise solution, aiming at minimizing the maximum
relative deviation from the maximal potential production (resulting from the first set of LP problems)
for all of the indicators at the same time.

Each problem was formulated with linear objectives and constraints and solved with LP.
Consequently, the models are examples of a standard model I formulation [45]. All optimization models
were formulated within the Heureka system, using the ZIMPL optimization modeling language [46]
and solved with Gurobi 7.0. See Appendix A for the mathematical formulation of the problems.

3. Results

The two biofuel extraction settings differ widely in the woody biofuel extraction potential: BAU
produces at most 1 TWh woody biofuels per year, while the maximum potential is more than 4 TWh
per year in bioE. Woody biofuel amounts also varied strongly depending on which indicator was
maximized (Table 1). However, in the bioE management settings, woody biofuel amounts were always
higher than the maximum potential in BAU, independent of which indicator was maximized.

There was a large variation in the potential delivery of the different ecosystem services and
biodiversity indicator levels (Table 3). In both biofuel extraction settings, there are trade-offs between
woody biofuel extraction and ecosystem services, as well as biodiversity (Figure 4). The trade-off is
particularly strong between woody biofuel on the one hand and mature broadleaf-rich forest and old
forest on the other, while carbon stock, deadwood volumes, and recreation are less affected. However,
the shape of the trade-off curves—i.e., the almost linear part, where an increase in biofuel harvest results
in relatively small losses in the other indicator—suggests that careful management planning allows for
increasing woody biofuel extraction with only small losses in all biodiversity and ecosystem service
indicators, up to a certain point (Figure 4). The bioE settings allowed for considerably higher woody
biofuel extraction, while reaching the same maximum levels of ecosystem services and biodiversity
indicators as in BAU, except for recreation. The compromise scenarios allowed for the extraction
of 0.8 (BAU settings) and 3.3 TWh (bioE settings) of woody biofuel per year. At the same time,
the compromise scenarios also led to higher average ecosystem service and biodiversity indicator
levels compared to current conditions (given by the input data and reflecting the state of the forest in
2010), except for reindeer pasture and recreation index, which decreased in all optimizations compared
to current conditions, for both biofuel extraction settings (BAU and bioE). This is pre-dominantly due
to forests becoming continuously denser, which has a negative impact on ground lichen and recreation.
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Table 3. Pay-off table for the BAU and bioE scenarios, for the analyzed indicators. Columns show the results for the optimizations determining the maximum potential
for each indicator (average over time; maximum potential per indicator in bold). The last column shows the results for the compromise scenario (% of maximum
potential in brackets).

Maximizing:

Indicator Biofuel Reindeer
Pasture Recrea-tion C Stock Old

Forest

Mature
Broadleaf-Rich

Forest

Large-Diameter
Trees Deadwood Compromise

BAU
Biofuel (TWh/year) 1.0 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.8 (76%)

Reindeer pasture (1000 ha) 502 863 731 461 709 641 555 499 654 (76%)
Recreation index 0.27 0.27 0.29 0.30 0.26 0.28 0.28 0.28 0.28 (95%)

C stock (ton C/ha) 110 111 112 116 111 112 111 112 111 (95%)
Old forest (1000 ha) 341 512 427 336 598 405 365 328 453 (76%)

Mature broadleaf-rich forest (1000 ha) 197 341 343 293 280 516 207 210 391 (76%)
Large-diameter trees (trees/ha) 6.2 7.1 7.0 6.6 7.1 6.9 9.6 6.5 7.3 (76%)

Deadwood (m3/ha) 12.6 12.9 12.6 13.6 12.9 12.8 12.9 14.7 12.7 (86%)

bioE
Biofuel (TWh/year) 4.3 1.2 1.2 1.5 1.3 1.2 1.4 1.2 3.3 (76%)

Reindeer pasture (1000 ha) 399 845 675 393 668 570 499 409 641 (76%)
Recreation index 0.24 0.28 0.29 0.23 0.26 0.26 0.26 0.23 0.26 (88%)

C stock (ton C/ha) 113 113 112 120 114 115 114 117 114 (95%)
Old forest (1000 ha) 317 527 403 322 614 412 375 326 465 (76%)

Mature broadleaf-rich forest (1000 ha) 198 352 330 267 291 534 219 210 405 (76%)
Large-diameter trees (trees/ha) 6.1 7.0 6.7 6.6 7.2 6.8 9.6 6.3 7.3 (76%)

Deadwood (m3/ha) 12.5 13.1 12.6 14.1 13.3 13.2 13.2 15.5 12.8 (82%)
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Figure 4. Trade-offs (Pareto frontier) between average annual woody biofuel production (x-axis) and
indicators for other ecosystem services and biodiversity. Markers indicate the current situation as well
as average values for the compromise solutions. Current situation reflects indicator levels in 2010, from
the input data.

The C stock increased over time in all scenarios, and about half of the increase was due to an
increase of C stock in tree biomass, and the other half in forest soils. Woody biofuel extractions affected
the total C stock only marginally.
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The average annual woody biofuel extraction potential exceeded current extraction levels
considerably in both the BAU and bioE management when maximizing biofuel, as well as in
the compromise scenarios (Figure 5). Most of the biofuel potential under the bioE settings comes from
biofuel thinning, an assortment that is hardly harvested currently. The extraction potential in the bioE
compromise scenario corresponded to approximately 27% (BAU compromise scenario: 6%) of the total
energy consumption of about 12.2 TWh in the Västerbotten region in the year 2017 [47]. The extraction
potential for logging residues was somewhat higher in BAU compared to bioE as the average rotation
length for spruce-dominated stands is longer in BAU, which means that stands have more biomass
when final-felled.
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Figure 5. Average annual woody biofuel extraction potential in different woody biofuel assortments, in
the BAU and bioE scenarios, when maximizing for woody biofuel (max biofuel) and in the compromise
solution. Current extraction rates are based on the average annual area where woody biofuel extraction
after final felling has been notified (years 2015–2018, circa 2000 ha/year in study area) and an assumed
average extraction rate of 38 ton dry matter/ha, and one ton dry matter corresponding to 4.9 MWh.

The production strategy was the dominant strategy in both the BAU and bioE management settings,
applied on more than half, and up to 82%, of the forest managed for wood supply in all scenarios
(Figure 6). The production strategy was most prevalent when the focus was on maximizing biofuel,
which at the same time had the lowest prevalence of CCF. CCF was more commonly applied in all
other scenarios, including the compromise solutions (both under BAU and bioE management settings),
as it supports biodiversity and several ecosystem services better than even-aged management [48].
There were only small differences in the distribution of management strategy between the BAU and
bioE management settings. For example, the no thinning strategy was less common in the compromise
scenarios under the bioE settings, as strategies that allow woody biofuel thinning were chosen instead.
Notably, in all scenarios, a variety of strategies was applied—pure production-oriented management is
not optimal, not even for maximizing woody biofuel extraction.
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4. Discussion

Society is gradually evolving from a dependence on fossil fuels to sustainable alternatives like
wood fuels. For many countries, there are good opportunities to increase the production of wood fuel in
combination with timber and pulpwood production. However, at increased production rates, the forest
ecosystem and its ecosystem services and biodiversity will be affected. As a result, studies investigating
the possibilities to increase the production of wood fuel in a sustainable way are important. In this
study, we used long-term simulations of future forest development for different management and
biofuel extraction strategies, combined with an optimization approach to analyze how much woody
biomass forest ecosystems can provide in a sustainable way.

The results from this study demonstrate that there is considerable leeway for forest management
in pursuing desirable objectives, while maintaining current roundwood harvest levels. With careful
management planning, the extraction of woody biofuel (i.e., biomass from logging residues, stumps,
and thinnings in young dense stands) could be increased considerably from current levels without
a significant negative impact on most of the studied ecosystem services and biodiversity. However,
reindeer grazing potential and recreation index decreased compared to current levels, in all scenarios.
This is to a large extent due to the projected increasing density in future forests, which continues an
on-going trend [49]. This could be alleviated with increased thinning intensity, which would reduce
the potential for wood production and was not assessed in this study.

Even if these results seem promising from a production perspective, a few issues have to be
discussed. First, the indicators included in our analysis did not capture all effects of woody biofuel
extraction. Our assessment of reindeer grazing potential and recreation focused primarily on forest
structure and did not consider the potentially positive effects of residue removal on accessibility for
reindeer or humans. Another uncertainty concerns the potential negative impact of residue extraction
on wood production in the long-term, due to the additional extraction of nutrients [17,50]. In the study,
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we assumed that residue extraction after thinnings reduces the basal area increment by 5% during
the following 15 years, while residue extraction after final felling does not have any impact on future
wood production. Wood ash recycling may counteract nutrient depletion and minimize negative
effects of residue extraction on growth, at least on some soil types [51,52].

While both logging residue and stump extraction could be increased without large adverse effects
on other ecosystem services and biodiversity, the largest potential and currently under-used resource
is biomass from biofuel thinning. Thus, the early stage of rotations seems to give a high flexibility in
management without jeopardizing future stand values. As a recent literature review indicated, biomass
harvest in dense early thinnings enables early outtake of bioenergy, while simultaneously maintaining
the stand structure’s vertical heterogeneity and thereby supporting biodiversity [53]. The potential
may also increase if cost-effective management systems are developed and implemented [54].

Our assessment was based on currently available technology for residue removal. The future
development of technology and methodology for woody biofuel extraction operations may increase
the available potential without compromising other forest values. For example, smarter extraction
methods that are better able to separate residues into nutrient-rich parts—to be left in the forest—and
nutrient-poorer parts—to be extracted—could lead to higher biomass extraction levels, better fuel
quality and more nutrients left in the forest [55]. Another option is the development of precision
forestry that leaves just enough of, e.g., deadwood/nutrients to keep the highest ecosystem service
levels. In addition, our assessment did not account for transport distance from the forest to the industry.
Energy wood and wood chips from harvest residues are predominantly transported by truck, which
is not economically viable over distances longer than 100 km [15]. Long transport distances are
currently one of the main factors behind the low residue extraction rate in northern Sweden. The future
development of woody biofuel harvest is mainly influenced by economic preconditions, i.e., future
energy prices and transport distances. Therefore, extraction levels may change quickly as a result of
changes in energy prices or a shift from truck to train transport [12,15].

Our estimates of woody biomass potential from harvest residues are lower than those assessed
in the latest Forest Impact Analysis—at most circa 0.5 TWh per 106 ha managed forest in our study
compared to 1.8 TWh per 106 ha managed forest in northern Sweden [10,26]. However, the Forest
Impact Analysis did not include any economic constraints for residue extraction, while our analysis
included several such constraints, in particular by setting a lower limit for the proportion of spruce
(50%) for forests where residues can be extracted.

The focus of our analysis was on the long-term impact of increased woody biofuel extraction,
in particular the indirect impact through changes in management strategies. For example, a higher
proportion of mixed forests can lead to the reduction in woody biofuel potential, since a minimum
spruce proportion is needed for biofuel extraction to be economically feasible. Our results demonstrate
that the increasing demands on the forest call for careful management planning. All scenarios had
a variation in management strategies, i.e., the production strategy was not optimal on all sites even
when the sole focus was on woody biofuel production.

The reliability of long-term projections naturally depends to a large degree on the quality of
the used growth and yield models. The decision support system we used in our analysis has been
shown to give reliable growth projections for time periods of 100 years [42], in particular for even-aged
forests. Growth projections in forests managed with continuous cover forestry are less certain [56].
We did not project potential impacts of climate change, as our modeling approach only allowed
for including climate change effects on growth, but not expected increased disturbance risks. Both
the increased growth that is expected for northern European forests as a result of a warmer climate [57],
and the need for salvage cuttings after disturbances may increase future biofuel potentials compared
to our assessments.
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5. Conclusions

To conclude, the development of novel and cost-effective management systems for biofuel
outtake in early rotations may provide options for a significant supply of bioenergy to the emerging
bioeconomy, while at the same time securing biodiversity and important ecosystem values in future
stand developments. In addition, there is potential to increase the extraction of harvest residues
and stumps while at the same time improving conditions for biodiversity and the amount of carbon
stored in forest ecosystems compared to current levels. However, the suitability of forests for
recreation and reindeer grazing may decrease from the current level due to increasing future stand
density—irrespective of the intensity of wood fuel harvest.
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Appendix A

Maximum Potential per Indicator

The first set of LP problems aimed at determining the maximal potential production of each
indicator, e for each scenario, s, subject to fulfilling a pre-defined level of roundwood harvest and
to a demand of evenness in woody biofuel extraction. This means that the problem described with
Equation (A1)–(A10) was solved 16 times, once for each indicator and for both biofuel extraction settings.

The mathematical formulation of the first set of problems is as follows:

Max
∑
i∈I

∑
j∈J

∑
p∈P

ei jpxi j (A1)

Subject to: ∑
i∈I

∑
j∈Ji

Ti jpxi j ≥ 0.99Tp ∀p ∈ P (A2)

∑
i∈I

∑
j∈Ji

Ti jpxi j ≤ 1.01Tp ∀p ∈ P (A3)

∑
i∈I

∑
j∈Ji

Mi jpxi j ≥ 0.99Mp ∀p ∈ P (A4)

∑
i∈I

∑
j∈Ji

Mi jpxi j ≤ 1.01Mp ∀p ∈ P (A5)

∑
i∈I

∑
j∈Ji

Bi jpxi j ≥ 0.8
∑
i∈I

∑
j∈J

∑
p∈P

Bi jpxi j ∀p ∈ P (A6)

∑
i∈I

∑
j∈Ji

Bi jpxi j ≤ 1.2
∑
i∈I

∑
j∈J

∑
p∈P

Bi jpxi j ∀p ∈ P (A7)

∑
j∈Ji

xi j = 1 ∀i ∈ I (A8)
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xi j = [0, 1] ∀i ∈ I ∀ j ∈ Ji (A9)

Equation (A1) specifies the objective function, i.e., to maximize the total value over all planning
periods for indicator e. Equations (A2)–(A5) are connected to the timber and pulpwood demand in each
period. Equations (A6) and (A7) are connected to the demand of evenness in woody biofuel extraction.
Finally, Equations (A8) and (A9) ensure that all plots are assigned in total one treatment schedule.

Trade-offs between Woody Biofuel Extraction and One Indicator at a Time

The second set of problems aimed at identifying the trade-offs in each scenario between
the extraction of woody biofuel and the other indicators subject to fulfilling a pre-defined level
of roundwood harvest and to a demand of evenness in woody biofuel extraction.

The mathematical formulation of the second set of problems is as follows:

Max
∑

i∈I

∑
j∈Ji

∑
p∈P

ei jpxi j. (A10)

Subject to:
Equations (A2)–(A9) and: ∑

i∈I

∑
j∈Ji

∑
p∈P

Bi jpxi j > α ∗MaxZw. (A11)

Equation (A10) specifies the objective function, i.e., to maximize the indicator value over all
periods. Equation (A11) specifies the gradually decreasing demand for woody biofuel. This means that
the stated problem was solved a number of times for each indicator and scenario. Each time the value
of α is gradually decreased from 0.99, 0.95, 0.90, 0.80, etc., until a further decrease in the demand of
woody fuel did not change the results anymore. MaxZw is the potential maximal extraction of woody
biofuel. The value of MaxZw is the result of solving the first set of Equations (A1)–(A9) with eijp = Bijp.

Compromise Solution, including all Indicators

The third set of problems identified a compromise solution, aiming at minimizing the maximum
relative deviation from the maximal potential production (resulting from the first set of LP problems)
for all of the indicators, at the same time subject to fulfilling a pre-defined level of roundwood harvest
and to a demand of evenness in woody biofuel extraction. This means that the problem described
below was solved two times, once for both biofuel extraction setting.

The mathematical formulation of the last set of problems is as follow:

Min Zc = max
{
Z∗∗e −Z∗e

}
e = 1, ..E. (A12)

Subject to:
Z∗e =

∑
i∈I

∑
j∈Ji

∑
p∈P

ei jpxi j, (A13)

and Equations (A2)–(A9).
Equations (A12) and (A13) specify the objective function, i.e., to minimize the maximal relative

deviation from the maximal potential production for all of the indicators at the same time. Z∗∗e is
the normalized value of the maximal production of indicator e resulting from solving of the first set of
problems and Z∗e is the normalized value under decision variable xij.
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Table A1. Explanation of variables, sets and constants included in functions 1–13.

Model Part Explanation

Variables xi j decision variable that takes a value between 0 and 1, indicating the proportion of
NFI plot I that is assigned to treatment schedule j

Sets

P Set of all periods
I Set of all NFI plots

J Set of all treatment schedules
Ji Set of treatment schedules for NFI plot i, Ji ⊆ J

E Set of indicators
S Set of scenarios

Constants

eijp Amount of indicator e in in NFI plot i, treatment schedule j and period p
Tijp Harvested timber volume in NFI plot i, treatment schedule j and period p

Mijp Harvested pulpwood volume in NFI plot i, treatment schedule j and period p
Bijp Wood fuel biomass extracted in in NFI plot i, treatment schedule j and period p

Tp Timber demand in period p
Mp Pulpwood demand in period p

a Proportion of the maximal potential production of one the other indicators
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