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Abstract: APSIM Next Generation was used to simulate the phenological development and biomass
production of silage maize for high latitudes (i.e., >55◦). Weather and soil data were carefully
specified, as they are important drivers of the development and growth of the crop. Phenology related
parameters were calibrated using a factorial experiment of simulations and the minimization of the
root mean square error of observed and predicted phenological scaling. Results showed that the model
performed well in simulating the phenology of the maize, but largely underestimated the production
of biomass. Several factors could explain the discrepancy between observations and predictions of
above-ground dry matter yield, such as the current formalization of APSIM for simulating the amount
of radiation absorbed by the crop at high latitudes, as the amount of diffuse light and intercepted light
increases with latitude. Another factor that can affect the accuracy of the predicted biomass is the
increased duration of the day length observed at high latitudes. Indeed, APSIM does not yet formalize
the effects of extreme day length on the balance between photorespiration and photosynthesis on the
final balance of biomass production. More field measurements are required to better understand the
drivers of the underestimation of biomass production, with a particular focus on the light interception
efficiency and the radiation use efficiency.

Keywords: APSIM model; silage maize; radiation use efficiency; biomass; light interception
efficiency; calibration

1. Introduction

Maize (Zea mays L.) is among the most important crops cultivated globally, with more than 187
Mha produced annually around the world [1]. Maize grain is widely used as human and livestock
feed, but also for the production of bioethanol. As a whole crop, maize is also used as silage for
cattle-feeding purposes. High biomass production and high starch content are the main reasons for the
great interest in maize production [2].

In northern Europe, the importance of maize as a forage for ruminants has markedly increased in
recent decades [3]. The expansion of maize cultivation to latitudes higher than 55◦ has been made
possible thanks to the breeding of new varieties with shorter growing cycles [4]. In Sweden, the
area of silage maize increased from 2500 ha to more than 17000 ha between 2000 and 2017 [5]. The
expected increases in temperatures due to climate change [6] increase the probability of maize reaching
physiological maturity by the end of the growing season at high latitudes [7].
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The increase in maize usage around the world comes concomitantly with a regular and high
frequency breeding of new maize cultivars, resulting in a rapid replacement of cultivars: [8] reported
an average turnover of 3 years in the United States. This high throughput makes it difficult to estimate
how well various cultivars are adapted to different soil and climate conditions, in terms of potential
biomass production and quality. As ruminant livestock production relies on both quantity and quality
produced, it is beneficial to use tools that would allow farmers to optimize management practices
(including the choice of the cultivar) to maximize production.

Crop models are widely used to investigate optimum farming practices. Their mathematical
framework simulates the growth of a crop by taking into account various crop and environmental
input factors and interactions. A wide number of crop models have been developed since the middle
of the 20th century and the pioneering work of Cornelis Teunis de Wit [9,10]. Crop models can be
used to perform various tasks such as predicting the effects of climate change on crops (e.g., [11–13]),
optimization of farming practices for given soil–climate–crop combinations (e.g., [14,15]), understanding
the environmental stresses experienced by crops (e.g., [16,17]) or to improve the knowledge of the
physiological processes of a plant (e.g., [18]).

Although the modelling of maize growth is widely performed in tropical [19–21] and temperate
areas [22–24], there have been few attempts to simulate the growth of silage maize at high latitudes. [25]
successfully calibrated the FASSET model against field measurements of several variables (including
above-ground biomass, N content and grain yield) to simulate the effects of climate change on
the productivity of silage maize in Denmark, ultimately predicting that the projected increase in
temperatures and precipitation in Denmark for the next decades will dramatically increase the risk
of N leaching in maize cropping systems. In Sweden, two studies have been reported, using the
MAISPROQ model [26], which is derived from the FOPROQ model [27] that was originally developed
to simulate biomass production and nutrition qualities of grasslands at high latitudes. [7] used maize
cultivars predefined in MAISPROQ to assess the impact of climate change and variability on the
growth and maturation of silage maize in Sweden. Their results indicate that the effects of expected
warming between 2011 and 2100 will increase the likeliness of maize reaching silage maturity in
southern Sweden from 17% to 100%, while the chances of reaching silage maturity would increase
from 4% to 30% in mid Sweden. However, according to the authors, their results need to be confirmed
with Swedish field experiments. [28] calibrated MAISPROQ for Swedish grown cultivars using field
measurements and extrapolated the results to future trends for silage maize crops in Sweden based on
predicted climate. MAISPROQ reliabilities were shown to be reasonable for the quality estimations (R2

ranging from 0.25 to 0.54 for the validation subset) but limited for biomass production (R2 ranging
from 0.36 to 0.38 for the validation subset). This is explained by the limited amount of field-sampled
data available in the early phase of the growing stages. However, the results lead to similar conclusions
as those obtained by [7], with an increasing likeliness of silage maize in Sweden to reach the silage
maturity required for feeding to livestock.

MAISPROQ is a simple, semi-mechanistic model that requires little input data, making it relatively
easy to calibrate. However, the trade-off of MAISPROQ’s simplicity is a reduction in the capability of
the model to take into account various factors that affect the development of the crop. For example, the
soil module consists of a simple layer with limited information on the soil structure and water holding
capacities, which limits the ability of the model to quantify water stress. Moreover, it assumes that N is
non-limiting to crop growth, which prevents investigation of another important limiting factor for the
growth and quality of maize. In addition, MAISPROQ does not describe crop phenology, which is
critical information (i) for estimating the dynamic of the nutritive quality traits of maize [29], (ii) for
understanding the effect of environmental stress on grain production as well as (iii) for estimating
optimum harvest dates.

The limitations of MAISPROQ can be overcome using more process-oriented models, such as
STICS [30], DSSAT [31], or APSIM [32,33]. Although these models do not simulate the dynamics
of starch or other nutritive quality related traits, their structure takes into account the major abiotic
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factors that might limit the development of the crop. Of these models, the Australian APSIM model is
arguably the most widely used crop model globally (Figure 1), and has recently developed an updated,
user-friendly plant modelling framework that simplifies the process required to alter model processes
for new applications, such as the quality of maize grain in silage fields.

Figure 1. Citations of major crop models (from Web of Knowledge; data downloaded on the 02/08/2019).

Although APSIM-Maize is being widely used in tropical and temperate climate conditions [34–37],
it has not been used or calibrated for high latitudes (i.e., over 55◦ of latitude). Meaningful use of crop
models in simulation experiments requires appropriate parameterization for the model to predict
field data over the range of experimental conditions [38,39], as demonstrated previously by studies
using the APSIM-Maize model to predict irrigation strategies for alternative plant populations [35,40].
At high latitudes, specific conditions such as day length, low temperatures or the solar zenith angle
may affect the model’s capability to correctly simulate growth and phenology, as those conditions
are out of the domain of prior development of the model. Moreover, the short-duration varieties
used in Sweden and more generally at high latitudes have not previously been parameterized for
APSIM-Maize. Additionally, APSIM-Maize has been primarily designed to simulate grain production,
and its current rules for harvest maturity do not allow simulation of the optimal cutting time for silage
maize hybrids.

The aims of this study were therefore (i) to test the ability of APSIM-Maize to simulate the
phenological development and above-ground dry matter biomass production of silage maize at high
latitudes, and (ii) to identify improvements required to accurately simulate maize at high latitudes.

2. Materials and Methods

2.1. Field Data

The field data were acquired in 2013 and 2014 at three sites located in southern Sweden: Bajgården,
Färjestaden and Önnestad (Figure 2). Each site has a particular soil and climate combination that
represents different pedo-climatic conditions encountered in Sweden for silage maize cultivation. The
experiments were designed in randomized complete blocks with two replicates and six cultivars with
different maturation times. The names and FAO numbers [41] of the six cultivars were Arcade (160),
Ramirez (170), Amagrano (200), Atrium (210), LG 30211 (210) and Galbi (220). Farming practices are
summarized in Table 1.
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Figure 2. Location of the experimental sites used for the calibration of APSIM-Maize.

Table 1. Farming practices for the different sites and years of the study.

Site Year Sowing
Date

Sowing
Depth

Sowing
Density

Nitrogen Input
at Sowing

Row
Spacing

(-) (-) (-) (mm) (seed.m−2) (kg.ha−1) (mm)

Bajgården 2013 13 May 20 8.5 100 700
2014 30 April 20 10 100 700

Färjestaden 2013 11 May 20 9 100 750
2014 28 April 20 8.5 100 750

Önnestad 2013 30 April 20 9 110 750
2014 26 April 20 9 110 750

Measurements of above-ground dry matter yield and phenological development occurred between
late May and early October for each site and year on 1.25 m2 sampling areas. During this period,
a total of 8 measurements of above-ground dry matter yield (ADMY) were made for each replicate.
Harvested samples were dried at 60 ◦C for 48 h or longer until a constant weight was reached.
The phenological stage of each treatment was recorded between emergence and anthesis using the
Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie (BBCH) scale [42], with a
minimum of two and maximum of four growth stage measurements obtained from each treatment,
depending on the experiment.

Soil physical characteristics and organic matter content were measured at each site in September
2017. Samples were taken at depths of 0–10, 10–20, 20–40, 40–60, 60–90 and 90–120 cm and used to
determine bulk density, field capacity and wilting point (LL15). The field in Önnestad had a sandy
texture (as defined by the USDA soil taxonomy) for the whole profile. In Bajgården, the field had
a sandy texture in the first sixty centimeters, then clay texture between 60 and 120 cm. The field in
Färjestaden had a sandy loam texture for the whole profile. The soil data used to set up the APSIM
soil module are available in a public dataset (http://dx.doi.org/10.17632/s3r4g8j6jj.1). A full soil water
profile was assumed at sowing due to the snow melt in spring.

Daily climate data including rainfall, solar radiation and minimum and maximum air temperatures
were sourced from weather stations located close to the study sites and managed by the Swedish
Meteorological and Hydrological Institute (https://www.smhi.se/en).

http://dx.doi.org/10.17632/s3r4g8j6jj.1
https://www.smhi.se/en
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2.2. Description of APSIM-Maize

APSIM-Maize (APSIM version 2018.10.10.3136) was used to simulate the growth of the
experimental maize plots. This model is part of the APSIM Next Generation suite of crop models [43].
It describes the growth of a homogeneous plot of maize at a daily time step based on soil characteristics,
climate data and farming practices. The simulation describes the phenology, leaf development, and
biomass production, as well as the partitioning of the dry matter, of maize.

Crop development is based on the Ceres maize model [44], where its duration is divided into 11
phases from germination to harvest. With the exception of the first phase (germination), which is a
function of soil water content, all phases are driven by thermal time and affected by water and nitrogen
stresses. The thermal time adjustments for low temperatures are included [24]. The leaf development
process is also dependent on thermal time accumulation. The leaf area index, computed from the
number of leaves that have appeared and their size, is potentially reduced by water, temperature and
nitrogen stresses.

APSIM-Maize uses a radiation use efficiency approach for predicting dry matter production [45].
The dry biomass produced is estimated as the product of the amount of solar radiation intercepted by
the canopy (through the leaf area index computations) and the radiation use efficiency (RUE) of the
crop. The RUE could be reduced by suboptimal nitrogen, air temperature, water and atmospheric
CO2 concentration stresses. In APSIM, the RUE accounts for the dry matter produced for the whole
plant (i.e., above and below ground biomass). The partitioning of the dry matter between the different
organs of the plant is a function of the phenological stage and is described in detail by [46].

2.3. APSIM-Maize Parameterisation

The model was parameterized for each location and each season according to the measured
environmental and agronomic data (Table 1). The initial cultivar used within APSIM was the early
maturing hybrid NSCM 41. As the cultivars used in this study were bred in northern Europe, with
long-day conditions, it can be expected that they were non-photosensitive. Therefore, the duration of
the photosensitive stage used in APSIM was set to 0.

The soil module parameterization is critical to correctly simulate the nitrogen and water balance of
the soil–crop system. The soil textures, drained upper limits (DULs) and lower limits (LL15) obtained
from laboratory measurements were used to set these parameters. The initial water content was set to
the soil water storage capacity, as proposed by [7], for simulating post-snow melt soil conditions.

2.4. Calibration Protocol

Calibration aimed to optimize the value of one or more parameters of a model by minimizing a
cost function describing the error between a simulated and field-measured state variable, also called
the adjustment variable. As the aim of this work is to be further assessed with other studies, the
calibration was performed on the complete available dataset, with no validation step. The function
used was the root mean squared error (RMSE) computed as

RMSE =

√∑n
1(pi − oi)

2

n
(1)

where n is the number of observations used, pi is the simulated value of the state variable and oi is the
measured value of the state variable.

A set of parameters related to the phenology was defined (see Table 2) for each cultivar using the
BBCH phenological stage [42] as the adjustment variable.
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Table 2. Cultivar parameters used for calibration.

Parameter Name (Abbreviation) Short Description

Emergence lag
(ShootLag)

Thermal time target (◦C) from germination to the
emergence of the plant

Juvenile phase
(JUV)

Thermal time target (◦C) from emergence to the
beginning of the photosensitive stage

Phyllochron
(PC x) Number of leaf tips that have appeared

Phyllochron
(PC y) Leaf rate appearance (◦C−1)

All the potential values of the parameters were defined within a realistic range (see Table 3)
based on the existing values provided for the early cultivars of the APSIM catalogue and combined to
create a full factorial simulation, consisting of a single matrix of 192 lines (i.e., unique combinations of
parameter values) and 3 columns (i.e., the parameters to recalibrate). This matrix was then used to
run APSIM-Maize simulations for each site and year of the recorded dataset, consisting of a total of
1152 simulations.

Table 3. Range (minimum and maximum) of values used for each parameter to calibrate.

Parameter Name (Abbreviation) Range (Minimum–Maximum)

Emergence lag
(ShootLag) 15–45

Juvenile phase
(JUV) 100–205

Phyllochron
(PC x) 1|4|4.2|10.5|11–1|4|11|15

Phyllochron
(PC y) 26|26|40|40|60–26|40|70|90

APSIM-Maize results were then analyzed with R (version 3.6.1, R Foundation for Statistical
Computing, Vienna, Austria, 2019). Field observations and APSIM-Maize predictions were matched
according to the site and date of sampling to compute RMSE (Equation (1)) and the combination of
parameters with the lowest RMSE was extracted for each cultivar. The coefficient of determination
R2, the index of agreement proposed by [47] and the normalized root mean square error were also
used as statistical indicators of the performance of the model to simulate the phenology and biomass
production of silage maize. The index of agreement (IoA) was computed as

IoA = 1−


∑n

i=1(pi − oi)
2∑n

i=1

(∣∣∣pi − o
∣∣∣+ ∣∣∣oi − o

∣∣∣)2

 (2)

with o being the average of the observed values.
The normalized root mean square error (NRMSE) was computed as

NRMSE =
RMSE

o
(3)

For each cultivar, the calibration was performed using the complete observation dataset to
maximize the robustness of the model. In order to evaluate the performance of calibration, a
leave-one-out cross validation (LOOCV) was performed. The six combinations of year and site
were used for calibration (five combinations) and validation (one combination) so that each of the
combinations was used for validation. For each loop of the LOOCV, the set of parameters with the
lowest RMSE value was identified, and the corresponding validation RMSE was calculated with the
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remaining combination of site and year. This resulted in six RMSEs for each cultivar which could be
compared with the RMSEs obtained with the calibration.

3. Results

3.1. Weather Data

The climate data for each location are presented in Figure 3. Minimum and maximum temperature
values fell into the expected ranges and did not exhibit any scattering or pattern that would indicate
abnormal recordings. Global (i.e., direct and diffuse) radiation data did not exhibit any positive or
negative offset when compared to computed clear sky radiation [48]. Rainfall data were also consistent
with expectations.

Figure 3. Climate data used in this study. (a) The daily minimum and maximum temperatures (◦C); (b)
the global solar radiations (MJ.m−2), as measured from the station (symbols), and computed clear sky
radiation (lines); (c) the monthly rainfalls (bars) and yearly cumulative rainfalls (lines).

Önnestad had the warmest and wettest weather of the three sites. Bajgården was the most
northern site, with the lowest amount of solar radiation, and was also the coldest and the driest of
the three sites. Färjestaden exhibited intermediate levels of rainfall and temperatures compared to
Önnestad and Bajgården.
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3.2. Calibration of the Phenological Parameters

The optimization of the phenological parameters for each cultivar shows that the overall prediction
of the BBCH stage by APSIM is satisfactory (Figure 4a); R2 = 0.81, RMSE = 8.8 phenological units and
NRMSE = 0.23 (see Table 4). The regression exhibited a slope of 1.04 (significantly >1, p < 0.001) with
an intercept of −2.5 (not significantly different to zero, p = 0.2). Deviation from the 1:1 line is evident at
approximately BBCH stage 30 (i.e., during stem elongation), where the simulations for Färjestaden
and Bajgården tend to overestimate the actual BBCH stage, and simulations for Önnestad tend to
underestimate the phenological stage.

Figure 4. Scatterplots of simulation results and field observations for Biologische Bundesanstalt,
Bundessortenamt und CHemische Industrie (BBCH) stage (a) and above-ground dry matter yield (b).
The red dashed lines show the linear regression. The black lines indicate the 1:1 regression line.

Table 4. Statistical indicators of APSIM performance. ADMY stands for above-ground dry matter yield,
n indicates the number of available measurements, and a and b are the slope and the intercept of the
linear regressions, respectively. p.u. stands for BBCH phenological units.

Variable n a b R2 RMSE NRMSE Index of
Agreement

BBCH 108 1.04 −2.5 0.81 8.8 p.u. 0.23 0.94
ADMY 282 1.32 0.12 0.87 5.2 t.ha−1 0.41 0.87

The dynamics of phenological developments for each cultivar confirm that there is good agreement
between predicted and observed values of BBCH stages (Figure 5), although a systematic overestimation
can be observed in Bajgården in 2014 for the first stages of development.
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Figure 5. Observed (symbols) and simulated (dashed lines) BBCH stage values as a function of the date.
The color varies according to the cultivar, and the shape of the symbols varies according to the site.

The results for calibrated parameter values suggest that all cultivars develop at a similar rate until
floral development (Table 5), with the exception of the Galbi cultivar, which requires a longer thermal
time target to complete the juvenile phase. The RMSEs of the cultivars show consistent values, ranging
from 7.0 (Galbi cv.) to 9.4 (Atrium cv.)
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Table 5. Optimal values of the phenology related cultivar parameters. ShootLag and JUV stand for the
emergence lag and juvenile phase, respectively (see Table 2 for definition). PC x and PC y define the
phyllochron used, with PC x being the number of leaf tips that have appeared and PC y being the degree
days necessary for a new leaf tip to appear. As PC x and PC y change depending on the number of leaf
tips that have already appeared, values listed in this table indicate the dynamic relationship between
both variables (https://apsimnextgeneration.netlify.com/modeldocumentation/). The corresponding
RMSEs of measured vs. predicted BBCH scaling are provided as an indication of the accuracy of the
calibrated parameters.

Cultivar ShootLag JUV PC x PC y RMSE FAO
Number

Amagrano 45 100 1|4|4.2|10.5|11 26|26|40|40|65 9.0 200
Arcade 45 100 1|4|4.2|10.5|11 26|26|40|40|60 9.1 160
Atrium 45 100 1|4|4.2|10.5|11 26|26|40|40|60 9.4 210
Galbi 35 160 1|4|4.2|10.5|11 26|26|40|40|60 7.0 220

LG 30211 45 100 1|4|4.2|10.5|11 26|26|40|40|65 9.0 210
Ramirez 45 100 1|4|4.2|10.5|11 26|26|40|40|60 9.2 170

The performance of the models calibrated with the complete dataset was compared to the
performance obtained for the LOOCV. Although the mean RMSEs slightly differ for the calibration
based on the complete dataset and the LOOCV, results are comparable (Figure 6). RMSEs obtained
from the calibration procedure lie within the range of RMSEs obtained from the LOOCV and are
comparable to the mean RMSEs of the LOOCV. This suggests that the calibration performed with
the complete dataset provides an accurate estimation of the considered parameters while avoiding
overfitting. The sets of best parameters obtained for each iteration of the LOOCV are also comparable
to the ones obtained from the calibration over the complete dataset: the best set from LOOCV was the
same as for the calibration 6 times out of 6 for cvs. Arcade, Atrium and Ramirez, 5 times out of 6 for cv.
Amagrano, 4 times out of 6 for cv. Galbi and 3 times out 6 for cv. LG 30211.

Figure 6. Comparison of the RMSEs of calibration using the whole dataset (diamonds) with the RMSEs
computed from the leave-one-out cross validation (LOOCV). Large circles indicate the mean value of
the RMSEs computed with the LOOCV, and small circles indicate the individual values of the RMSEs
of the LOOCV. p.u. stands for BBCH phenological units.

3.3. Simulation of Above-Ground Dry Matter Yield

Once the phenological parameters were calibrated, predicted values of above-ground dry matter
yield were extracted and compared with field measurements (Figure 4b). Despite the successful
calibration of cultivar phenology, APSIM largely underpredicted above-ground biomass prediction,
with a regression exhibiting a slope of 1.39 (significantly >1, p < 0.001) and an intercept value of 0.12

https://apsimnextgeneration.netlify.com/modeldocumentation/
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(not significantly different to zero, p = 0.7). Although the prediction of ADMY shows an acceptable
relationship (R2 = 0.87), the accuracy is low (RMSE = 5.2 t.ha−1 and NRMSE = 0.41), with a large spread
of the data around the regression line and an obvious bias for overprediction.

The simulated dynamics of ADMY presented in Figure 7 confirm the results of Figure 4b, with a
clear underestimation of biomass production by the model. However, the differences appear to be less
in Bajgården, especially in 2013.

Figure 7. Observed (symbols) and simulated (dashed lines) above-ground dry matter yields as a
function of the date. The color varies according to the cultivar, and the shape of the symbols varies
according to the site.
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4. Discussion

4.1. Calibration of the Phenological Parameters

A factorial experiment was created to combine a set of predefined values for each cultivar
parameter to calibrate. Minimization of the RMSE was used to select the optimal set of values for each
cultivar. Although several calibration approaches are available [49], we selected this one because of its
time efficiency and its ease of reproducibility. The results of the calibration of the phenology related
parameters, with an overall error less than 10 BBCH units, can be considered as satisfactory.

BBCH values predicted by APSIM are, overall, in good agreement with field observations. The
deviation observed at approximately stage 30 can be due to an operator bias, as this stage corresponds
to the end of the leaf development and the beginning of the stem elongation. Evaluating the number of
nodes that have appeared can be a difficult task, especially in the first steps of stem elongation, and can
therefore be subject to a strong operator bias. Another reason that could explain this deviation is that
we used averaged values of replicates. Consequently, a replicate that was affected by a non-reported
stress would be included in the average calculations and result in an underestimation of the BBCH
stage. This explanation is particularly sound for results in Färjestaden (Figure 4a).

Individual cultivar RMSEs all fall within a similar range, at approximately 9 BBCH units, with
the exception of Galbi cv, with a RMSE of 7 BBCH units. The values for the parameters ShootLag
and JUV are the same for all cultivars except the Galbi cultivar. The obtained values of the JUV
parameter are lower than the ones reported in the APSIM-Maize catalogue of cultivars, which is
consistent with our expectations for the early to very early cultivars used at high latitudes. The
values for the ShootLag parameter are also lower than the default one used in APSIM-Maize (i.e.,
55 degree days). This would also be consistent with cultivars bred to meet requirements of shorter
growing seasons. The set of values for the phyllochron shows little variation among cultivars and
is close to the set of values proposed for the Atrium cultivar already present in the APSIM-Maize
catalogue of cultivars. Interestingly, the reported value for the JUV parameter of Atrium cv. in the
APSIM-Maize catalogue is higher than the reported value resulting from the present calibration. It
would be interesting to compare the data used for the initial calibration of Atrium cv. with the
data used in this study and determine whether these differences can be explained. The reader is
referred to the documentation (https://apsimnextgeneration.netlify.com/modeldocumentation/) for
further information on the catalogue of cultivars and related default values of parameters.

4.2. Simulation of Above-Ground Dry Matter Yield

APSIM underestimated the ADMY of most experiments, with the only exception being that of
Bajgården in 2013. This particular case could be due to an unobserved stress, as it is observed in
all cultivars for this particular site and year. Apart from the simulations for Bajgården in 2013, the
reported underestimation is unusual given that phenological development was specified correctly and
that in such situations, crop models typically overestimate the dry matter yield due to reducing factors
such as pests, diseases or nutrient limitations [50] unaccounted for by the model.

In order to investigate other potential causes of this error, it is necessary to consider the method
that APSIM uses to compute the daily production of dry matter yield. It does so using an adapted
version of the efficiency model proposed by [45]:

∆DM = RUE× εi ×GR (4)

where ∆DM is the daily production of dry matter for a unit area (gDM.m−2.d−1), RUE is the radiation
use efficiency (gDM.MJ−1), εi is the light interception efficiency (arbitrary units) and GR is the daily
global solar radiation (MJ.m−2.d−1).

In this equation, we consider GR values to be reliable, as they have been validated by the Swedish
Meteorological Board and are close to the computed maximum data for each location. Therefore, it is

https://apsimnextgeneration.netlify.com/modeldocumentation/
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likely that APSIM parameters for the radiation use efficiency and the light interception efficiency could
be affected by specific weather conditions or the sun angles achieved at high latitudes.

4.2.1. The Radiation use Efficiency

The radiation use efficiency, as used in APSIM-Maize, has a default potential value of 2 gDM.MJ−1

(https://apsimnextgeneration.netlify.com/modeldocumentation/) and integrates the biomass production
of the whole plant (below and above ground). APSIM uses the global radiation to compute biomass
production, and therefore applies a 0.5 multiplier to RUE to compensate for the fact that only half of
the global radiation is used by the plant for photosynthesis (the so called photosynthetically active
radiation). The assumption of using a constant value for RUE might be a limitation for high latitude
simulations. [51] showed that in the case of wheat cultivated along a north–south transect in Australia,
the RUE value increases southward, with 1.1% per degree of latitude due to the increase in the
fraction of diffuse light (that is, the part of the light that is scattered by the atmosphere) toward higher
latitudes [52,53]. The diffuse light eventually reaches the highly efficient lower layers of the canopy [51].
It is possible that a similar mechanism also occurs for maize at Northern latitudes. [54] also showed
that a redistribution of the solar energy from highly exposed leaves to shaded leaves resulted in an
increased dry matter production for cabinet-grown tomato plants, indicating that plants exposed to
more diffuse light should increase their dry matter production. It is likely that a similar effect would
affect maize grown at high latitudes. As the current parameterization of APSIM does not take into
account the influence of diffused light, the influence of latitude on RUE might partly explain why it
underestimates the biomass produced.

APSIM uses several reduction factors to take into account the effects of abiotic stresses on RUE,
including water, nitrogen, atmospheric CO2 concentration, vapor pressure deficit and temperature
stresses. Simulations showed no water, nitrogen, CO2 or vapor pressure deficit-related stress. However,
temperature stresses were reported for all sites, resulting in a reduction in the theoretical maximum
yield ranging between 15% and 4%. This temperature-related stress, however, does not fully explain
the differences between observed ADMY and predicted ADMY.

It can be assumed that the effects of water, nitrogen, atmospheric CO2 concentration and vapor
pressure deficit are independent of latitude. However, APSIM assumptions on how temperature
affects RUE might need to be investigated. Indeed, the temperature stress FT is computed as a function
of the daily averaged temperature and a set of cardinal temperatures that defines the potential (from 8
to 50 ◦C) and optimal (from 15 to 35 ◦C) ranges for growth. The daily averaged temperature is itself
computed as a function of a weighting coefficient that accounts for the length of day. The default value
of this parameter is 0.75, which might be insufficient to take into account the extreme length of days at
high latitude during the growing season.

4.2.2. Light Interception Efficiency

The light interception efficiency εi is computed as follows

εi = 1− e(−k×LAI) (5)

where k is the coefficient of extinction (–) and LAI is the leaf area index (m−2
lea f .m−2).

k can be expected to be latitude dependent, as the smaller solar elevation angle of high latitudes
in summer enables more light to penetrate the canopy. In APSIM-Maize, k is a function of row spacing
and water stress (leaf curling). As latitude effects are unaccounted for, k might be underestimated,
which induces an underestimated amount of light used for photosynthesis and, consequently, an
underestimation of biomass production.

LAI is defined as the ratio of one-sided green leaf area to ground area [55]. In APSIM, LAI is a
function of the number of leaves and of the leaf-specific area. LAI is affected by water and nitrogen
stresses, which are latitude independent. LAI is also affected by the stress related to temperature, in a

https://apsimnextgeneration.netlify.com/modeldocumentation/
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similar way as described for RUE. Similar to k, LAI has a direct influence on biomass production, as
it determines the amount of light intercepted by the canopy. Although the post-tasseling simulated
values of LAI are within the usual range of 4 to 8, as reported by, e.g., [55,56], a proper evaluation of
these simulated values could not be performed due to the absence of measurements related to the leaf
area of the crop (such as LAI or leaf number) in the dataset.

Based on these statements, we performed a simple evaluation of the effects of RUE and k values
to evaluate how an increase in these variables would help to reduce the gap between simulated and
observed ADMY in Önnestad in 2014 for the Amagrano cultivar. RUE was increased to 2.66 gDM.MJ−1

based on the evidence from [51], and k values were increased to 0.8, 0.7 and 0.6 (previously 0.7, 0.5
and 0.4) for 20, 50 and 100 cm, respectively, of row spacing (https://apsimnextgeneration.netlify.com/

modeldocumentation/). Although the increased values of these parameters logically result in an
increase in ADMY, this approach did not fully close the gap between observations and simulations
(Figure 8). This could be because the values of these parameters should be further increased, or other
factors are currently unaccounted for by the model, such as the effect of day length on photorespiration.

Figure 8. Attempt to reduce the gap between predicted (lines) and observed (dots) above-ground
dry matter yields by increasing the radiation use efficiency (RUE) and the coefficient of extinction k
(Önnestad, 2014, Amagrano cv.)

4.2.3. The Light Interception Efficiency

Another factor that might affect the accuracy of APSIM in the simulation of ADMY is the
increased duration of day length at high latitudes. APSIM uses an adapted version of the efficiency
model proposed by [45] to compute the daily biomass accumulation. This approach simulates net
photosynthesis and does not separate the energy produced through photosynthesis from the energy
used for photorespiration. Although this approach provides accurate results for tropical and temperate
conditions, the extreme day length of the growing season at high latitudes might affect the accuracy of
the biomass production model used in APSIM, as the effects of photorespiration are largely reduced
due to the very short nights.

5. Conclusions

APSIM Next Generation (version 2018.10.10.3136) was used to simulate the growth of six maize
silage cultivars at high latitudes (>55◦ N). The relevant phenology parameters were calibrated to
optimize the RMSE value of measured and simulated BBCH scaling. Although the accuracy of the
simulation of the phenology was satisfactory, the above-ground dry matter simulated by the model
largely underestimated the measured values. This underestimation can be due to several factors, with
the first being the way in which APSIM assesses the effects of high latitude on the light interception
of radiation. Indeed, the model does not account for the amount of diffuse light for the production
of biomass. As the ratio of diffuse light increases with latitude, it can be expected that the model
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underestimates biomass production. The effect of the low sun angle of high latitudes, also unaccounted
for by APSIM, might also partly explain the underestimation of the biomass. Another factor that
potentially affects the performance of the model is the increased day length observed at high latitudes
that might eventually affect the balance between photorespiration and photosynthesis as currently
simulated by APSIM. It appears that more measurements need to be performed to overcome the
current issues, with a particular focus on leaves (leaf area index, leaf number, etc.) and radiation use
efficiency measurements. These results address the question of the current limitations of the model
structure used in APSIM and more generally in crop models for the simulation of biomass production.
As little work has been performed at such high latitudes, especially for C4 plants, it is necessary to
focus on the physical mechanisms that drive the light interception of radiation by the canopy and,
eventually, the biomass production of the crop.
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