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Abstract

Background: The increasing availability of remotely sensed data has recently challenged the traditional way of
performing forest inventories, and induced an interest in model-based inference. Like traditional design-based
inference, model-based inference allows for regional estimates of totals and means, but in addition for wall-to-wall
mapping of forest characteristics. Recently Light Detection and Ranging (LiDAR)-based maps of forest attributes have
been developed in many countries and been well received by users due to their accurate spatial representation of
forest resources. However, the correspondence between such mapping and model-based inference is seldom
appreciated. In this study we applied hierarchical model-based inference to produce aboveground biomass maps as
well as maps of the corresponding prediction uncertainties with the same spatial resolution. Further, an estimator of
mean biomass at regional level, and its uncertainty, was developed to demonstrate how mapping and regional level
assessment can be combined within the framework of model-based inference.

Results: Through a new version of hierarchical model-based estimation, allowing models to be nonlinear, we
accounted for uncertainties in both the individual tree-level biomass models and the models linking plot level
biomass predictions with LiDAR metrics. In a 5005 km2 large study area in south-central Sweden the predicted
aboveground biomass at the level of 18 m×18 mmap units was found to range between 9 and 447 Mg·ha−1. The
corresponding root mean square errors ranged between 10 and 162 Mg·ha−1. For the entire study region, the mean
aboveground biomass was 55 Mg·ha−1 and the corresponding relative root mean square error 8%. At this level 75%
of the mean square error was due to the uncertainty associated with tree-level models.

Conclusions: Through the proposed method it is possible to link mapping and estimation within the framework of
model-based inference. Uncertainties in both tree-level biomass models and models linking plot level biomass with
LiDAR data are accounted for, both for the uncertainty maps and the overall estimates. The development of
hierarchical model-based inference to handle nonlinear models was an important prerequisite for the study.
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Introduction
The interest in forest inventories is increasing due to the
key role of forests in global carbon cycles and, thus, in
the climate change discourse (e.g., Bellassen and Luyssaert
2014). For a long time regional and national forest inven-
tories have been based on field surveys of sparse networks
of sample plots (e.g., Tomppo et al. 2010; McRoberts et al.
2009). Such surveys rely on sampling theory and design-
based inference (e.g., Gregoire and Valentine 2008). An
advantage is that estimates of population parameters such
as mean and total biomass, and the corresponding uncer-
tainties, can be obtained without making any assumptions
about the population studied. Examples of national for-
est inventories of this kind are given in Tomppo et al.
(2008a, 2010) and Fridman et al. (2014). Currently, they
are the backbones of national forest statistics and interna-
tional reporting for compiling regional and global forest
resources assessments (e.g., Forest Europe 2015).
Some disadvantages of traditional forest inventories are

that they are expensive to carry out in areas with poor
road infrastructure and they provide only limited spatial
information about the forest resources. Use of remotely
sensed (RS) data is a means to overcome these disadvan-
tages and an increasing number of studies suggests that
RS data can be used in several ways to improve the effi-
ciency of forest inventories and add new dimensions to the
results. For example, RS data can be used for stratification
in the design phase of forest inventories (e.g., Katila and
Tomppo 2002;McRoberts et al. 2002; Haakana et al. 2019),
unequal probability sampling (e.g., Saarela et al. 2015a), or
balanced sampling (e.g., Grafstrom et al. 2017a). The lat-
ter design was implemented in the Swedish NFI in 2018
for the temporary plots (Grafstrom et al. 2017b). Gregoire
et al. (2011) and Gobakken et al. (2012) have shown how
RS data can be applied in the estimation phase to improve
the precision of estimators through model-assisted esti-
mation. Franco-Lopez et al. (2001), Tomppo et al. (2008b)
and, recently, Esteban et al. (2019) have shown how RS
data can be combined with field sample data to provide
maps of forest resources as a complement to estimates of
means and totals of the variables of interest.
When these types of maps are developed, RS and field

data are used in regression analysis or other types of
machine learning algorithms to predict the variable of
interest for each map element based on the RS data, using
an explicit or implicit model relationship between field
and RS data (e.g., Andersen et al. 2005; Hudak et al.
2008). Other examples are Wulder et al. (2008), who
used regression analysis to map predicted forest biomass
over a large spatial domain in central Saskatchewan,
Canada, using Landsat Thematic Mapper (TM) multi-
spectral data at a spatial resolution of 30 m×30 m, and
Zald et al. (2016) who applied the random forest algo-
rithm to map forest attributes using a combination of

airborne Light Detection and Ranging (LiDAR) sam-
ple data and wall-to-wall multispectral data derived
from Landsat TM and the Enhanced Thematic Map-
per Plus (ETM+) imagery over a large spatial domain in
Saskatchewan, Canada. An increasing number of studies
of this kind address forest mapping not only at local and
national scales, but also at regional and global scales. For
example, Saatchi et al. (2011) used a fusion of wall-to-
wall spatial data frommultiple sensors and sampled forest
height data collected by the Geoscience Laser Altimeter
System (GLAS) onboard the Ice, Cloud and land Eleva-
tion Satellite-1 (ICESat-1) to construct a global map of
forest carbon stocks at a 1-km spatial resolution. Hansen
et al. (2003) compiled a global map of percent tree cover
through a supervised regression tree algorithm using
MODIS data at a 500-m spatial resolution; and in the
GEDI project (Dubayah et al. 2014; Qi and Dubayah 2016;
Qi et al. 2019; Patterson et al. 2019) a space-borne laser is
applied for mapping biomass with almost global coverage
at a 1-km spatial resolution.
Following the introduction of LiDAR-assisted forest

inventories (e.g., Nelson et al. 1988; Næsset 2002) for-
est resource maps of this kind have become accurate
enough to support management decisions at local level,
ranging from the scale of individual map units, to stands
and aggregates of forest stands. Examples are harvest-
ing decisions at the level of stands and valuation at the
level of forest properties (e.g., Nilsson et al. 2003). Thus,
sparse samples of field data can now be used for sev-
eral purposes, e.g., they can be used to provide traditional
forest statistics as well as maps of forest resources and
environmental conditions, when combined with RS data
(e.g., Nilsson et al. 2017).
However, it is far from trivial how maps of forest

resources should be used for producing reliable forest
statistics. For example, McRoberts et al. (2018) point out
that land cover statistics will be subject to systematic
errors if classifications for map units are merely summed
across a study area. Further, Gregoire et al. (2016) identify
several problems related to how uncertainties are typically
computed and reported in LiDAR-supported studies. For
example, in many cases uncertainties are merely assessed
intuitively based on subjectively selected sets of map units
where predicted values are compared with the corre-
sponding field measurements. It is not straightforward to
use data from such comparisons for estimating variances
or mean square errors of estimated means and totals for
an entire study area.
One way of using RS auxiliary data (e.g. in the form

of forest maps) in a statistically rigorous way for produc-
ing forest statistics is to apply model-assisted estimation
(e.g., Gregoire et al. 2011; Saarela et al. 2015a). With this
design-based inference technique model predictions are
subtracted from field reference values for a probability
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sample of map units. The mean of the observed devia-
tions is added to the mean of the model predictions across
all map units to obtain an estimate of the mean of the
variable of interest. While this approach has a poten-
tial to make cost-efficient use of RS data that correlate
strongly with study variables of interest, a drawback of
model-assisted estimation is that it requires a fairly large
probability sample of field data (Ståhl et al. 2016).
An alternative approach to using RS auxiliary data in a

statistically rigorous manner for producing forest statis-
tics is to apply model-based inference (e.g., Magnussen
2015). Model-based inference relies on an assumption of
a model that is assumed to generate random values for
each map unit based on the auxiliary data available for
the map units. This model is sometimes referred to as
a superpopulation model, from which the actual popu-
lation is realized (Cassel et al. 1977; Särndal et al. 1978;
Gregoire 1998). Since the individual values of the popula-
tion elements are random variables, so are the population
means and totals. While many concepts and estimation
procedures related to model-based inference tend to be
more complicated than design-based inference (e.g., Gre-
goire 1998), model-based inference also has advantages
(e.g., Magnussen 2015) e.g., with regard to combining
forest mapping and compiling forest statistics, since the
same basic procedures can be applied for both purposes.
Moreover, model-based inference can be used for pro-
ducing maps of uncertainties for the variables of interest,
although this opportunity seems to be seldom exploited.
An example is Esteban et al. (2019), who presented a
map of uncertainties for forest attribute predictions using
the random forest algorithm. The uncertainties were esti-
mated through bootstrapping. Such uncertainty maps are
important for assessing to what extent the map infor-
mation is accurate enough for making different kinds of
decisions.
Interestingly, uncertainty estimation under model-

based inference is fairly straightforward both at the level
of individual map units and at the level of totals and
means across large study areas (e.g., Ståhl et al. 2016). For
small aggregates of map units it is more complicated, due
to the need for information about how strongly model
errors are correlated across space (McRoberts et al. 2018).
Still, many different techniques have been presented for
small area estimation (e.g., Breidenbach and Astrup 2012;
Magnussen et al. 2014).
Conventional model-based inference utilizes auxiliary

information from all map units and a single model for
the relationship between auxiliary data and the variable
of interest. However, in many important applications sev-
eral models need to be combined in a hierarchical manner,
such as when biomass models are first developed for sin-
gle trees and then applied to predict aggregate plot level
biomass, which is used as training data for developing a

model linking RS data with plot level biomass. In such
cases it is not trivial how uncertainties should be esti-
mated. Saarela et al. (2016) developed a method called
hierarchical model-based (HMB) estimation and showed
that neglecting the uncertainty associated with one of the
twomodels involvedmight lead to severe underestimation
of the uncertainty. The method was further developed in
Saarela et al. (2018), although both studies were restricted
to use of linear models.

Objectives
The objective of this study was to clarify the link between
producing forest statistics for large areas through model-
based inference and mapping of forest resources, provid-
ing high spatial resolution maps of aboveground biomass
(AGB) and the corresponding uncertainties in terms of
root mean square errors (RMSE). This link may be obvi-
ous, since model-based inference requires predictions
for each map unit, but it is seldom acknowledged in
research studies. Data were available from single trees,
harvested and measured for developing allometric tree
biomass models, field plots from the Swedish National
Forest Inventory (NFI), and wall-to-wall airborne LiDAR
data acquired in 2009 – 2011. The map units were
18×18 meters large. HMB inference was applied, through
an individual tree biomass model and a biomass model
linking LiDAR data with aggregate plot-level biomass.
An important part of the study was to further develop
the HMB inference theory to incorporate nonlinear
models.

Material andMethod
Overview
Forest attribute maps are usually based on wall-to-wall
RS data. In our example, we used airborne wall-to-wall
LiDAR data, collected on a national scale in Sweden.
Regression analysis was employed to regress the forest
attribute plot-level AGB on LiDAR metrics. The AGB-
LiDAR regression model was trained on field plot data
from the Swedish NFI. The plot-level AGB value is a
sum of tree-level AGB predictions using field measure-
ments of height and diameter at breast height (DBH),
i.e. tree-level AGB was regressed on tree height and
DBH. To train the tree-level regression models, here-
after referred to as AGB allometric models, datasets col-
lected by Marklund (1987, 1988) were used. Therefore, in
our estimation procedure there are two modelling steps
involved: the AGB allometric models and the (plot-level)
AGB-LiDAR model.
HMB inference was employed to estimate the RMSE

and the relative RMSE (RelRMSE) accounting for uncer-
tainties due to both modelling steps. New theory was
developed for incorporating nonlinear models in the
HMB framework. Through the new theory, the previous
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derivations of HMB estimators Saarela et al. (2016, 2018)
could be simplified. A graphical overview of the study is
shown in Fig. 1.

Study area
Our study area was a rectangular 5005 km2 large block
located in south-central Sweden. The forest area was
approximately 3909 km2, i.e. 78% of the total area. Agri-
cultural lands and urban areas were masked out using
land-use maps available through the Swedish National
Mapping Agency (Lantmäteriet 2019). The study area was
tessellated into 18 m×18 m grid-cells (map units). The
map unit size (324 m2) is approximately equal to the area
size of the NFI circular field plots described in “Swedish
NFI data and AGB-LiDAR regression model” section. The
locations of the study area and the clusters of NFI plots are
shown in Fig. 2.

Swedish national airborne LiDAR survey data
In 2009 the Swedish National Mapping Agency initiated
a national airborne LiDAR survey to obtain a new digital
elevation model (DEM) with 2 m×2 m spatial resolution.
By 2015 almost all forest lands in Sweden were scanned
(Nilsson et al. 2017). The scanning altitude was between
1700 m and 2300 m, and the pulse density about 0.5-1
pulses·m−2.
For each map unit and NFI field plot, LiDAR met-

rics were derived using the Fusion software (McGaughey
2012) following the area-based approach proposed by

Næsset (2002) from the height distribution of laser returns
between 1.5 m and 50 m height above ground. The
upper and lower height thresholds were set to exclude
non-vegetation returns (e.g., Lindberg et al. 2012). As
regressors in our AGB-LiDARmodel, we used two LiDAR
metrics: the laser height 80% percentile (hp80) and the veg-
etation ratio (vr), which is a ratio between the number
of first returns above 1.5 m and the total number of first
returns. The choice of these variables follows findings in
Nilsson et al. (2017).

Swedish NFI data and AGB-LiDAR regression model
Plot-level field data were obtained from the Swedish NFI,
which applies a systematic design of clusters with 4–12
plots. We utilized data collected during 2009–2011 from
504 permanent plots located in the study area and in the
neighbourhood of the study area (Fig. 2). The plot radius
was 10 m. A criterion for the plot selection was that the
same LiDAR instrument as the one used to collect LiDAR
over the study area had been applied. Information on indi-
vidual tree locations, species, and DBH was available for
each tree in all plots. However, tree height was available
only for a subsample of the trees (Fridman et al. 2014).
Table 1 provides descriptive statistics of the NFI data, sep-
arated for each species on trees with and without tree
height measurements.
Figure 3 shows a histogram of plot-level AGB, aggre-

gated from the tree-level AGB predictions, and converted

Fig. 1 Study overview
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Fig. 2 The study area and the clusters of NFI plots applied in the study

to tonnes per hectare (Mg·ha−1). The tree-level AGB
values were predicted using the AGB allometric models
described in “Tree-level data and AGB allometric models”
section.
The plot-level AGB-LiDAR model, denoted as the G

model in our study, has a model form similar to Nils-
son et al. (2017). However, whereas Nilsson et al. (2017)
used a standard square root transformation model, we
applied a similar nonlinear model with additive errors
including the same LiDAR metrics (see Table 2). We

employed the restricted maximum likelihood estimators
available in the R package nlme (Pinheiro et al. 2016)
through the gnls() R function. To overcome problems
due to heteroskedasticity, we fitted a random error vari-
ance model to estimate the individual error variance for
every predicted plot-level AGB value. Table 2 presents the
estimatedmodel parameters. Figure 4 shows the standard-
ized residuals for plot-level AGB predictions from LiDAR
metrics, displayed versus predicted plot-level AGBs using
LiDAR metrics, and (lower) LiDAR-based predictions of

Table 1 NFI tree-level data descriptive statistics separated for each tree species on trees with and without height measurements

Species
Number of DBH, (cm) Height, (m)

trees min mean max sd min mean max sd

Birch and other 172 4.00 19.34 100.10 12.45 5.00 16.87 32.00 6.32

deciduous 2088 1.00 11.44 41.50 6.11 – – – –

Norway Spruce
544 4.10 22.76 70.20 11.19 3.20 17.88 43.20 6.88

4265 1.00 15.15 47.50 6.93 – – – –

Scots Pine
555 4.30 22.90 57.90 10.06 3.80 16.72 33.10 5.69

4841 1.00 15.74 47.40 6.30 – – – –
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Fig. 3 A histogram of plot-level AGB (aggregated tree-level AGB predictions converted to tonnes per hectare), (Mg·ha−1)

plot-level AGB displayed versus AGBs obtained from field
measurements, i.e. the AGBs obtained from aggregat-
ing tree-level AGB predictions to plot level. Although
the Swedish NFI applies clusters of plots, the long dis-
tance between plots in a cluster implied that we treated
each plot as an independent observation in the regression
analysis (cf. Nilsson et al. 2017).
In Table 2, ŷGi denotes predicted plot-level AGB

(Mg·ha−1) using LiDAR metrics from the ith NFI plot, α0,
α1 and α2 are AGB-LiDAR model parameters to be esti-
mated, V(υi) is individual random error variance, which
was modelled through a nonlinear power model with
three parameters denoted σ 2, δ0 and δ1.

Tree-level data and AGB allometric models
The tree-level data used for developing AGB allomet-
ric models were collected across Sweden by Marklund
(1987,1988). We used data collected only from the central
and southern parts of Sweden (Table 3).
Since heights were not available for all trees on the NFI

plots (Fridman et al. 2014), we developed two AGB allo-

metric model types for each tree species: one with DBH
(cm) and height (m) as regressors (type I), and the other
with DBH (cm) only (type II). In our study we used AGB
allometric model forms by similar to Repola (2008) for
birch and Repola (2009) for pine and spruce. Table 4
presents the models forms by species.
In Table 4, yk is a tree-level AGB (kg) for the kth tree

based on data from Marklund (1987, 1988); dtrk = 2 +
1.5 × DBHk is a transformation of DBH (cm) to approx-
imate the stump diameter (Laasasenaho 1982), hk is the
tree height (m), and β0, β1 and β2 are AGB allometric
model parameters to be estimated.
The R function gnls() (Pinheiro et al. 2016) was used

to fit model parameters accounting for heteroskedasticity.
Table 5 presents the estimated model parameters.
In Table 5, ŷk is a tree-level predicted AGB (kg) using

the corresponding allometric model for the kth tree, V(εk)
is individual random error variance modelled through a
nonlinear power model with two parameters ω2 and γ .
Figure 5 shows residual scatterplots, and Fig. 6 presents

scatterplots for AGB versus predicted AGB at tree level.

Table 2 Estimated AGB-LiDAR model parameters

Model Model form Model parameter estimates

AGB-LiDAR (G) yi = (α0 + α1hp80i + α2vri)2 + υi
α̂0 α̂1 α̂2

2.53 0.27 1.27×10−3

V(υi) σ 2(δ0 + ŷδ1Gi )
2 σ̂ 2

̂δ0 ̂δ1

0.78 1.50 0.74
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Fig. 4 AGB-LiDAR model scatterplots at the NFI plot level

Generalized hierarchical model-based estimation with
nonlinear models
HMB inference is based on the model-based inference
philosophy (Saarela et al. 2018). The target population
(of map units with AGB as the population attribute in
our example) is seen as a random realization shaped by

a superpopulation model involving some auxiliary infor-
mation. If there is more than one superpopulation model
involved and if the estimation procedure employs the
models in a hierarchical order, we can speak of HMB
inference (Saarela et al. 2018). We denote the first super-
population model, linked to the AGB allometric models

Table 3 Tree-level data; descriptive statistics (Marklund 1987, 1988)

Species
Number of DBH (cm) Height (m)

trees min mean max sd min mean max sd

Birch 158 0.20 12.22 36.80 7.99 1.40 11.23 24.80 5.32

Norway Spruce 401 0.40 16.33 63.40 10.71 1.30 12.92 35.20 7.49

Scots Pine 337 0.50 19.33 48.90 10.23 1.30 13.74 28.30 6.54
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Table 4 AGB allometric model forms by species

Species Model type Model form Reference

Birch
I yk = exp

(

β0 + β1
dtrk

(dtrk+12) + β2
hk

(hk+22)

) + εk
(cf. Repola 2008, Eq. 11 p. 612)

II yk = exp
(

β0 + β1
dtrk

(dtrk+12)

) + εk

Norway I yk = exp
(

β0 + β1
dtrk

(dtrk+20) + β2 ln hk
) + εk

(cf. Repola 2009, Eq. 17 p. 633)
Spruce II yk = exp

(

β0 + β1
dtrk

(dtrk+20)

) + εk

Scots I yk = exp
(

β0 + β1
dtrk

(dtrk+12) + β2
hk

(hk+20)

) + εk
(cf. Repola 2009, Eq. 9 p. 631)

Pine II yk = exp
(

β0 + β1
dtrk

(dtrk+12)

) + εk

(as will be shown in more detail below), as F

Model F: y = f(x;β) + ε, ε ∼ N(0,�). (1)

The model describes the relationship between AGB (y)
and p field-measured variables at plot level, i.e. x =
(1, x1, x2, ..., xp). The dataset, used to estimate the model
parameters, is denoted S.
AGB predictions for the NFI plots are denoted ŷFSa , i.e.

a vector of predicted AGB using the F model. Here, Sa
denotes the 504 NFI field plots, for which LiDAR met-
rics also available. The dataset Sa was used to train the
AGB-LiDAR model described in “Swedish NFI data and
AGB-LiDAR regression model” section. The model is the
second model in our modelling chain, and its general
form is:

Model G: y = g(z;α) + υ,υ ∼ N(0,�). (2)

Here, AGB (y) is regressed on q LiDAR metrics, z =
(1, z1, z2, ..., zq). However, instead of the unknown actual
AGB (y) the predicted AGB (̂yFSa ) is used in the analysis to
estimate the model parameters in the Gmodel (Eq. (2)).
The estimated parameters α̂Sa are then used to predict

AGB for each map unit using wall-to-wall LiDAR data for
the target population U, i.e.

ŷGi = g(zi; α̂Sa), (3)

where ŷGi is the predicted AGB using the Gmodel for the
map unit i, and zi is a (q + 1)-length vector of LiDAR
metrics for the map unit.
Under the assumption that ŷGi is model-unbiased, the

RMSE of the predicted AGB is (Cassel et al. 1977, Eq. 3.4,
p. 94.)

RMSE(̂yGi) =
√

z̃iCov(̂αSa)̃zᵀi + V(υi), (4)

where z̃i is a (q + 1)-length vector of partial derivatives
of g(zi; α̂Sa) with respect to α̂Sa, and V(υi) is the variance
of the random error υi. By replacing Cov(̂αSa) and V(υi)
with the corresponding estimators, we obtain the RMSE
estimator

̂RMSE(̂yGi) =
√

z̃i ̂Cov(̂αSa)̃zᵀi + ̂V(υi). (5)

From Eq. (5) it can be seen that the RMSE estimator
consists of two components, the estimated uncertainty
due to the estimated model parameters z̃i ̂Cov(̂αSa)̃zᵀi and
the estimated uncertainty due to the individual random
errors ̂V(υi). We now focus further on the ̂Cov(̂αSa)
estimator.

Covariancematrix of estimatedmodel parameters when
applying twomodels in hierarchical order
The covariance matrix of estimated model parameters
α̂Sa is a core component model-based inference (e.g.,

Table 5 Estimated parameters in the AGB allometric models

AGB allometric models V(εk)

Species Model type ̂β0 ̂β1 ̂β2 Model form ω̂2 γ̂

Birch
I –3.51 10.74 2.70

ω2̂y2γk
0.13 0.80

II –3.65 12.61 – 0.15 0.83

Norway I –1.71 9.29 0.50
ω2̂y2γk

0.14 0.79

Spruce II –1.57 11.45 – 0.12 0.84

Scots I –3.71 10.63 2.63
ω2̂y2γk

0.73 0.64

Pine II –4.26 13.06 – 1.03 0.65
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Fig. 5 Standardized residuals versus predicted tree-level AGB

McRoberts 2006; Ståhl et al. 2011, 2016, Saarela et al.
2015b). Since the α̂Sa estimator is dependent on the AGB
predictions ŷFSa , Cov(̂αSa) can be expressed conditionally
on ŷFSa using the law of total covariance (e.g., Rudary
2009)

Cov(̂αSa) = E[Cov(̂αSa |̂yFSa)]+Cov(E[ α̂Sa |̂yFSa ] ).
(6)

This is a new way of deriving HMB estimators, com-
pared to Saarela et al. (2016) and Saarela et al. (2018), in
which cases only linear models could be applied. The new
approach, through conditional covariance, simplifies the
theoretical procedure and allows use of nonlinear models
within the HMB estimation framework. Details are given
in Additional file 2.
It can be observed that the first term on the right-

side part of (6) can be expressed as the model-based,

generalized nonlinear least squares (GNLS) covariance
of estimated model parameters (e.g. Davidson and
MacKinnon 1993) conditionally on ŷFSa , i.e.

E[ Cov(̂αSa |̂yFSa)]= (˜Zᵀ
Sa�

−1
Sa

˜ZSa)
−1. (7)

The ˜ZSa is a matrix of partial derivatives of gSa(z; α̂Sa)
with respect to α̂Sa based on dataset Sa; and �Sa is the
covariancematrix of individual errors (υSa) for the dataset
Sa. In our study, the form of the matrix is diagonal; each
element is estimated as shown in Table 2 for V(υi). This
follows since NFI plots are located far from each other and
thus the spatial autocorrelation is negligible (hence the
off-diagonal elements of �Sa are zero). As in the previous
HMB study (Saarela et al. 2018), the uncertainty due to
the estimated �Sa was not accounted for, following com-
mon practice in this type of studies (e.g., Davidson and
MacKinnon 1993; Melville et al. 2015).
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Fig. 6 Predicted tree-level AGB versus measured tree-level AGB

The second term on the right-side of expression (6) is the core expression in HMB inference and shows how
uncertainty due to the predicted AGB using the F model, ŷFSa , is propagated through the estimation

Cov(E[ α̂Sa |̂yFSa ] ) =(˜Zᵀ
Sa�

−1
Sa

˜ZSa)
−1

˜Zᵀ
Sa�

−1
Sa Cov(̂yFSa)�

−1
Sa

˜ZSa(˜Zᵀ
Sa�

−1
Sa

˜ZSa)
−1. (8)

Thus, the covariance of the estimated model parameters α̂Sa can be expressed as

Cov(̂αSa) = (˜Zᵀ
Sa�

−1
Sa

˜ZSa)
−1

+ (˜Zᵀ
Sa�

−1
Sa

˜ZSa)
−1

˜Zᵀ
Sa�

−1
Sa Cov(̂yFSa)�

−1
Sa

˜ZSa(˜Zᵀ
Sa�

−1
Sa

˜ZSa)
−1.

(9)

This is a general form of the covariance; if the model G is linear, then ˜ZSa will become ZSa, i.e. a matrix of predictor
variables with a column of units (e.g., Davidson and MacKinnon 1993).
By replacing Cov(̂yFSa) with its estimator, we obtain an approximately unbiased estimator of Cov(̂αSa), i.e.

̂Cov(̂αSa) = (˜Zᵀ
Sa�

−1
Sa

˜ZSa)
−1

+ (˜Zᵀ
Sa�

−1
Sa

˜ZSa)
−1

˜Zᵀ
Sa�

−1
Sa

̂Cov(̂yFSa)�
−1
Sa

˜ZSa(˜Zᵀ
Sa�

−1
Sa

˜ZSa)
−1,

(10)
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where

̂Cov(̂yFSa) = ˜XSa ̂Cov(̂βS)˜X
ᵀ
Sa, (11)

with ˜XSa being a matrix of partial derivatives of fSa(x;̂βS) with respect to ̂βS based on the dataset Sa; evidently, if the
model F is linear, then ˜XSa will be the XSa matrix of predictor variables. The covariance matrix of estimated β was
estimated using the GNLS estimator (e.g., Davidson and MacKinnon 1993)

̂Cov(̂βS) = (˜Xᵀ
S�−1

S
˜XS)

−1, (12)

where �S is a covariance matrix of individual errors εS over the dataset S. The �S matrix is a diagonal matrix; each
element is estimated using the model form presented in Table 5 for V(εk). This follows since Marklund (1987, 1988) col-
lected tree-level data to avoid spatial autocorrelation. For similar reasons as in Eq. (10), we do not account for uncertainty
due to estimating �S.
Detailed derivations of (6), (9) and (10) are presented in Additional file 2.

Aggregation of tree-level AGB predictions to plot level
So far, the plot level model F has been presented in a generic way. We now show how it was based on an aggregation of
tree-level AGB predictions, and how this aggregation affects the uncertainty.
Individual tree-level predictions of AGB were summed to plot-level values [kg] and converted to tonnes per hectare

values (Mg·ha−1), i.e.

ŷFi = 10 ×
ti

∑

k=1

1
RefAreaki

ŷ∗
ki , (13)

where ŷ∗
ki is the predicted tree-level AGB value, using one of the six allometric models (predictions based on a tree-level

model are denoted with ∗) for the kth tree from the ith NFI plot; 10
RefAreaki

is a factor converting AGB expressed as kg per
plot to Mg per hectare; “RefArea" is the NFI plot reference area for different values of DBH (Fridman et al. 2014); ti is
the number of trees on the ith NFI plot. Through Eq. (13) the plot-level AGB predictions ŷFSa = {̂yF1 , ŷF2 , ..., ŷFM }, over
the Sa dataset were generated (504 NFI plots).
Since several models for individual tree AGB were developed and applied in the study, there was a need to distinguish

between different models in the formulas. For this purpose we introduced a star notation with one (*) or two (**) stars
attached to different variables, parameters and datasets to generically distinguish between them. The covariance matrix
estimator of estimated β is then

̂Cov(̂βS∗ ;̂βS∗∗)=(˜Xᵀ
S∗�−1

S∗ ˜XS∗)−1
˜Xᵀ
S∗�−1

S∗ ̂Cov(εS∗ ; εS∗∗)�−1
S∗∗˜XS∗∗(˜Xᵀ

S∗∗�−1
S∗∗˜XS∗∗)−1. (14)

If model (∗) is the same as (∗∗), the right-side part in the expression Eq. (14) is reduced to (˜Xᵀ
S∗�−1

S∗ ˜XS∗)−1, which
corresponds to (12). Since the model fitting was performed independently for each model, the covariance between
model errors (Cov(εS∗ ; εS∗∗)) from different models is zero, which simplifies the estimation procedure.
The estimated covariance matrix ̂Cov(̂yFSa) of AGB predictions using the F model over the Sa dataset of NFI plots is

a quadratic matrix. Its dimension is given by the number of NFI field plots (i.e., 504×504); each entity of the matrix was
estimated as

100 ×
ti

∑

k=1

tj
∑

l=1

1
RefAreaki

x̃∗
ki

̂Cov(̂βS∗ ;̂βS∗∗ )̃x∗∗ᵀ
lj

1
RefArealj

, (15)
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where, ti and tj is the number of trees in the ith and the jth NFI plots; x̃ki is a (p + 1)-length vector of partial derivatives
of the f (x∗

ki ,
̂βS∗) model with respect to ̂βS∗ for the kth tree on the ith NFI plot; x̃∗∗

lj is a (p + 1)-length vector of partial
derivatives of the f (x∗∗

lj ,
̂βS∗∗) function with respect tôβS∗∗ for the lth tree on the jth NFI plot.

Summary of applied estimators
In summary, the target population mean was estimated as

μ̂ = 1
N

N
∑

i=1
ŷGi , (16)

where N is the number of map units.
The corresponding RMSE estimator was

̂RMSE(μ̂) ≈ 1
N

√

√

√

√

N
∑

i=1

N
∑

j=1
z̃i ̂Cov(̂αSa)̃zᵀj . (17)

In our study, the target population U was large, i.e. the target population mean ȳ = 1
N

∑N
i=1 yi is approximately equal

to the superpopulation mean ȳ ≈ μ and, thus, instead of predicting the random population mean we estimated the fixed
superpopulation mean (e.g., Ståhl et al. 2016). This implies that MSE(μ̂) ≈ V(μ̂).
The relative RMSE (RelRMSE) was estimated as

̂RelRMSE(μ̂) ≈ 100 ×
̂RMSE(μ̂)

μ̂
. (18)

And the relative contribution of allometric model ucertanity was estimated as

RelAllometryUncert(μ̂)=100×
∑N

i=1
∑N

j=1 z̃i
(

(˜Zᵀ
Sa�

−1
Sa

˜ZSa)−1
˜Zᵀ
Sa�

−1
Sa

̂Cov(̂yFSa)�
−1
Sa

˜ZSa(˜Zᵀ
Sa�

−1
Sa

˜ZSa)−1
)

z̃ᵀj
∑N

i=1
∑N

j=1 z̃i ̂Cov(̂αSa)̃zᵀj
.

(19)

LiDAR data, available for the entire study area, were used to predict AGB for each map unit. Equation (5) makes it
possible to estimate RMSE for every AGB prediction, and, thus, to create a map of estimated uncertainty. Additionally
to these two maps, we produced a map of relative RMSE (RelRMSE)

̂RelRMSE(̂yGi) = 100 × ̂RMSE(̂yGi)

ŷGi
. (20)

And a map showing the relative contribution of allometric model uncertainty to the total MSE (RelAllometryUncert),
i.e.

RelAllometryUncert(̂yGi)=100×
z̃i

(

(˜Zᵀ
Sa�

−1
Sa

˜ZSa)−1
˜Zᵀ
Sa�

−1
Sa

̂Cov(̂yFSa)�
−1
Sa

˜ZSa(˜Zᵀ
Sa�

−1
Sa

˜ZSa)−1
)

z̃ᵀi
z̃i ̂Cov(̂αSa)̃zᵀi + ̂V(υi)

. (21)
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Results
The mean and total AGB in the study area were estimated
through HMB estimation, thus combining tree level allo-
metric modelling, aggregation of tree level predictions
to NFI plot level, developing AGB-LiDAR models from
the aggregated predictions, and applying the AGB-LiDAR
models to all non-masked map units in the study area.
The resulting estimates and uncertainty estimates are pre-
sented in Table 6. In the table the proportion of the total
MSE that is due to the tree-level allometric model uncer-
tainty is also shown. It can be observed that it accounts for
a large portion, about 75%, of the total MSE.
As an add-on to these basic estimates for the study area,

HMB also allows for mapping of AGB and the RMSE
of the AGB estimates at the level of 18 m×18 m map
units. In Fig. 7, maps of predicted AGB, estimated RMSE,
estimated RelRMSE, and the relative contribution of allo-
metric modelling variance to the total MSE are shown
for a small portion of the study area. The map prod-
ucts for the entire study area are available via the link:
Supplementary Material.1
It can be noted that RelRMSE was mostly large at small

predicted AGB values, which is normal due to the denom-
inator being a small number. Exploring this relationship
further, in Fig. 8 the RMSE is displayed vs predicted AGB
(left), the relative RMSE vs predicted AGB (right), and
the proportion of the total MSE due to the allometric
modelling (below). The proportion of the total MSE due
to the allometric modelling reached a minimum when
the AGB predictions were about 55 tonnes per hectare,
corresponding to the estimated population mean.

Discussion
In this study we have demonstrated the correspondence
between mapping and formal model-based estimation of
aboveground forest biomass for a large study area in
south-central Sweden. While a large number of RS-based
studies focus on biomass mapping (e.g., Wallerman et
al. 2010; Santoro et al. 2012; Nilsson et al. 2017), fewer
studies address statistically sound estimation for large
areas (e.g., McRoberts 2010; Ståhl et al. 2011; Saarela et
al. 2015a; Gregoire et al. 2016), and even fewer stud-
ies the link between mapping and large-area estimation,
although, e.g., Esteban et al. (2019) is an exception.
In our study we show how the integration of map-

ping and estimation can be further elaborated, through
mapping not only the biomass as such but also of its
uncertainty. Uncertainties from two modelling steps were
accounted for, i.e. both the uncertainty due to AGB allo-
metric models at tree level and due to the model linking
plot-level biomass with LiDAR metrics, the AGB-LiDAR

1It is a ‘tif’ file, which can be opened in any GIS software or in R Statistical
Environment.

model. We showed that the relative uncertainty (Rel-
RMSE) was largest at small biomass values, but decreased
rather quickly and remained more or less constant at
biomass predictions for biomass values of 75 Mg · ha−1.
and greater. Compared to Esteban et al. (2019), who stud-
ied biomass change in Norway and Spain, our estimated
uncertainties appear to be larger, most likely as a result
of our inclusion of two modelling steps in the uncertainty
estimation.
An interesting pattern was observed when the pro-

portion of the total MSE due to the allometric model
uncertainty was displayed versus predicted AGB (Fig. 8).
The pattern was U-shaped, with large contributions from
the allometric modelling at small and large biomass pre-
dictions, but with rather limited contribution around the
average predicted value. The likely reason for this pattern
is that regression models tend to be precise around mean
observed values but less precise towards the extremes,
with regard to the observations (Davidson and MacKin-
non 1993). Thus, this pattern is likely due to the pattern of
tree-level data from the tree biomass dataset in Marklund
(1987, 1988) combined with the AGB-LiDAR model.
Another interesting pattern is visible in the scatterplots

of Fig. 8. The point clouds appear to be forked with
a large number of observations at the lower and upper
extremes. A likely reason for this is the combined effect
of species-specific models and the two allometric model
types developed for each species. Obviously, the AGB allo-
metric models using only DBH as a predictor variable will
result in larger prediction uncertainty than models based
on both tree height and DBH.
The development of a theoretical framework for incor-

porating nonlinear models into HMB estimation was
an important part of the study, which required a new
approach for developing HMB estimators compared to
previous studies Saarela et al. (2016, 2018). With the pro-
posed decomposition of the covariance matrix estimator
any nonlinear models could be applied in HMB, in case
the objective is to estimate the variance of an estimator of
the expected value of the superpopulation mean or total.
However, in case the objective is to estimate the MSE of
the actual superpopulation mean or total, or the MSE for
predictions at the level of map units, only nonlinear mod-
els with additive error terms can be applied. Since our
objective was to construct uncertainty maps at the level of
individual map units a nonlinear model with an additive
error term was selected.
The new framework makes it possible to trace uncer-

tainties due to several modelling steps. In our case
two modeling steps were included. However, the covari-
ance decomposition approach makes it straightforward
to derive variance estimators also for cases with three
or more modelling steps. Thus, the new HMB frame-
work would also allow for targeted improvement of
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Table 6 Estimated population mean and total, and corresponding uncertainties, and the allometry uncertainty contribution to overall
MSE

Estimated population
Estimate RMSE RelRMSE

Relative contribution of

parameter allometric model uncertainty

Population mean 55.02 Mg·ha−1 4.11 Mg·ha−1 7.49% 74.91%

Population total 21.51×106 Mg 1.61×106 Mg 7.49% 74.91%

AGB maps, since it can be evaluated what mod-
elling step(s) would be most beneficial to improve
from the point of view of obtaining small overall
uncertainty.
Maps of stand characteristics, such as biomass and vol-

ume, constructed using LiDAR data, can be expected to
be increasingly demanded for planning forestry opera-
tions in the future. Our results indicate that the type of

models involved provides accurate results, in terms of Rel-
RMSE, in old and middle-aged stands, i.e. stands with
intermediate and large AGB values. However, in young
forests (small biomass values) the uncertainties were large,
suggesting that other types of data should be applied. In
future applications it might be possible to bring addi-
tional modelling details into the HMB framework, making
it possible to distinguish uncertainties not only between

Fig. 7Map products
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Fig. 8 Predicted AGB versus RMSE, relative RMSE and the allometry uncertainty contribution: the black solid vertical line marks the estimated
population mean (55 Mg · ha−1)

different estimated biomass levels, but also between dif-
ferent species and site conditions. This would require new
types of data, such as tree species data derived from mul-
tispectral LiDAR (Axelsson et al. 2018). The uncertainty
maps would then provide additional information to forest
planners.
An interesting next step regarding uncertainty mapping

would be to move from map units to stands. This would
require aggregation of map units through segmentation
(e.g., Olofsson and Holmgren 2014). Stand level uncer-
tainty maps would also require information about the spa-
tial autocorrelation of model errors within stands, which
would be a challenge. However, several approaches for this
type of small area estimation are available (e.g., Breiden-
bach and Astrup 2012; Magnussen et al. 2014) and should
be evaluated for application in the HMB framework.
A final remark concerns the difference between hierar-

chical model-based inference and similar techniques such
as conventional model-based inference (e.g., McRoberts
2006), hybrid inference (e.g., Ståhl et al. 2011), and design-
based inference through model-assisted estimation (e.g.,
Gregoire et al. 2011). A large number of studies per-
formed during the last decades focus on assessment of
biomass and carbon, and related uncertainties, applying

techniques that may appear similar to the technique
applied in this study. Examples include Petersson et al.
(2017); McRoberts and Westfall (2016) and McRoberts et
al. (2016). In the latter study, Monte-Carlo simulation is
applied to assess the overall uncertainty in growing stock
volume estimation schemes involving several modelling
steps.

Conclusions
In this study a new approach to developing HMB esti-
mators was derived, making it possible to apply non-
linear models, as well as combinations of linear and
nonlinear models, in the HMB estimation framework.
The estimators were applied to a study area in south-
central Sweden, and it was shown that the relative
uncertainties in the biomass predictions were largest
when the predicted biomass was small. Further it was
demonstrated how biomass mapping, uncertainty map-
ping, and estimation of the mean biomass across a
large area could be combined through HMB inference.
Uncertainty maps of the kind presented in this study
allow for judgments about whether or not the forest
attribute map is accurate enough for the intended decision
making.
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