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Towards genomic-based breeding in Norway spruce

Abstract

Norway spruce is one of the most economically and ecologically important forest
tree species in Europe. The central obstacle to Norway spruce breeding is the length
of the breeding cycle, which takes 20 years or more to be completed. By utilizing
genomic-based breeding, breeding cycle length can be reduced, and accuracy of
selection can be improved. This thesis evaluates the potential of marker-assisted
selection and genomic selection in Norway spruce breeding.

Breeding values from 517 independent plus trees and 178101 Single Nucleotide
Polymorphisms (SNPs) generated with the exome capture approach on those same
trees, were used to conduct Genome-Wide Association Studies (GWAS) for 17 solid
wood quality traits and 15 wood tracheid properties in Norway spruce. Together, 52
significant SNPs from 39 candidate genes and 31 SNPs from 26 candidate genes
were identified. We also found 11 significant SNPs associated with resistance to
Heterobasidium parviporum in a population of 466 trees. GWAS was used as a tool
to detect genes determining fungal community composition in dormant buds based
on data from 478 plus trees. Predictive Ability (PA) of Genomic selection (GS) was
evaluated in 484 progeny trees from 62 half-sib families for solid wood quality traits
measured with12mm increment wood cores and standing trees. Results from the
genomic-based method are similar to those from the pedigree-based method.

In this thesis, the genetic information rendered by GWAS is insufficient to
conduct efficient marker-assisted selection (MAS), however it has advanced our
knowledge of the genetic architecture of traits of economic and ecological value, as
well as their genetic correlations. On the other hand, GS is considered as a powerful
alternative to genomic-based breeding in Norway spruce.

Keywords: GWAS, GS, wood quality traits, tracheid properties, Heterobasidium
resistance, fungal communities

Author’s address: Linghua Zhou, Swedish University of Agricultural Sciences,
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Preface

2020 is a special year. My 2020 started in my favourite city, my hometown,
due to an unexpected trip. Then the coronavirus pandemic spread all over the
world. People were forced to stay at home to control the infection. No
medicine and no vaccine. Human beings seem so tiny in the face of such a
disease. Not only did the medical resources in the world reach the edge, but
also our knowledge. Likewise, human feel so little when standing in the
middle of the forest surrounded by tall trees. Height, as many other tree
properties, is controlled by environment and genetics. The tree breeders’
dream is to produce the best tree with the highest yearly gain in any
environment, and quantitative genetics is the tool that breeders apply to
achieve that dream, as well as caring for the impact of their actions on
biodiversity and the environment. Long ago scientists and researchers could
only separate the effect between environment and genetics roughly according
to limited information, but that early approach soon reached its limit. In the
20" century, with the development of genomic technology, the gate to the
genomic world opened. Now, huge databases filled with genomic data have
been produced for human, animals, small plants and big trees. The genome
for several species of conifer has been sequenced and assembled, even
though they are enormous and complex, Norway spruce being one of them.
So, we are one more step closer to the breeders’ dream. Hopefully, we are
one more step closer to defeating the coronavirus too.
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1. Introduction

Forest trees are the group of plant species most likely to benefit from the use
of genomic information in the context of breeding (Plomion et al., 2016).
Early genomic-based evaluations are expected to increase the precision of
selection and shorten the breeding cycle for forest trees.

1.1 Development of molecular marker-based breeding in
forest trees

1.1.1 DNA-based molecular markers

All living organism are made up of cells programmed by a molecule called
DNA. This molecule is made up of a long chain of nitrogen-containing bases.
There are four different bases — adenine (A), cytosine (C), guanine (G) and
thymine (T). DNA is transmitted according to Mendelian laws of inheritance
from one generation to the next.

DNA-based molecular markers, or loci, are regions defined along the
DNA. Each molecular marker is described by the length or nucleotide
composition of its nucleotide sequence, which can be as simple as a single
nucleotide. Either way, a molecular marker aims to define the level of
polymorphism at a given locus, which can be located at genic or non-genic
regions. A molecular marker targeting a single nucleotide locus is called
Single Nucleotide Polymorphism (SNP), and could potentially be as
abundant as the number of base-pairs along an organism’s DNA molecule.
With the advent of high-throughput sequencing, SNPs have become the most
cost-effective molecular markers.
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1.1.2 DNA-based molecular marker applications in forest genetics

The first molecular marker-based attempts in the context of forest tree
breeding began in the 1990s (Emebiri et al., 1997; Groover et al., 1994). Even
at that time, many studies succeeded in identifying quantitative trait loci
(QTL) in agronomic crops (McCough and Doerge, 1995; Procunier et al.,
1997; Young et al., 1992). In forest genetics, the early QTL studies soon
provided evidence that a handful of QTLs of minor effect would not assist in
early selection in complex traits (Strauss et al., 1992). The lack of genetic
resolution of those early studies was the result of the high cost of genotyping
large number of trees at the required high molecular marker density. It is
important to note that the sample sizes and molecular marker densities in the
early QTL studies were insufficient considering that conifers are
characterized by large, complex and highly polymorphic genomes, in which
linkage disequilibrium (LD) decays rapidly (Neale and Savolainen, 2004).

In the early 2000s, with the advent and rapid development of DNA
sequencing technology, screening of a larger number of SNPs became
possible. More recently, new technological developments have resulted in
affordable SNP screening at the whole-genome level of large sample sizes.
In forest tree genetics, SNP markers have been applied to statistically
reconstruct linkage groups (LGs) (i.e., a representation of the gene
composition of a chromosome where genes are arranged by the level of
linkage among them) (Bernhardsson et al., 2019; Pavy et al., 2017), to
identify the main genes (as QTLs) underlying a trait (Eckert et al., 2012;
Lamara et al., 2016; Parchman et al., 2012), and more recently to improve
efficiency of selection in breeding programs (Beaulieu et al., 2014b; Chen et
al., 2018a; Isik et al., 2016; Lenz et al., 2017).

1.1.3 Family-based QTL mapping

QTL mapping, also called linkage mapping, requires association across loci
which can be generated by conducting bi-parental crosses (families). In those
crosses, co-segregation between alleles at marker loci and phenotypic trait
allows the identification of QTLs underlying a trait (Laido et al., 2014). In
plants, several main-effect QTLs have been identified for yield (Borner et al.,
2002; Kumar et al., 2007; Maccaferri et al., 2008; Peng et al., 2003), grain
protein content (Olmos et al., 2003; Sun et al, 2010), disease
resistance (Marone et al., 2013; Marone et al., 2009; Navabi et al., 2005;
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Todorovska et al., 2009), and flowering time (Béga et al., 2009; Hanocq et
al., 2004; Panio et al., 2013).

In forest trees - especially coniferous species - QTL analyses have failed
to identify major QTLs for complex traits with the same effectiveness as for
crop species (Neale and Kremer, 2011). Instead, few tens of QTLs of minor
effect are often detected (Hall et al., 2016). This is mainly a consequence of
the complexity and size of the conifer genome, and the rapid decay of LD,
which can only be compensated for by experimental designs that involve tens
of thousands of trees from one or less often from several families. However,
in reality, most QTL studies have been conducted on a few or only one full-
sib families, with small family sizes - in most cases in the range of 100s of
trees (Gion et al., 2011; Jermstad et al., 2001; Pot et al., 2006). Furthermore,
QTLs identified in a single full-sib family cannot be extrapolated to other
families where other alleles, other epistatic interactions (ie., interaction
across loci), or simply change in allele frequency (e.g., a locus becomes non-
polymorphic) may define those same loci. Nor is it possible - in most cases
- to extrapolate QTL effects across environments (Dillen et al. 2008;
Freeman et al. 2013; Gion et al. 2011; Novaes et al. 2009; Rae et al. 2008;
Thumma et al. 2010). These represent major limitations considering that
breeding is conducted with information that involves hundreds of families
(Skogforsk, 2011). Finally, estimated QTL effects are not only family- and
environment-dependent but are often over-estimated (the so-called Beavis
effect) mostly due to the limited statistical power of the experimental designs
(Beavis and Paterson, 1998; Hall et al., 2016).

1.1.4 Association mapping

Association mapping, also known as LD mapping, is fundamentally similar
to linkage mapping, but in this case the focus changes from families to
populations (Laido et al., 2014). LD mapping relies on historical
recombination events accumulated over generations, and the presence of a
larger number of alleles where it is more likely that a significant marker is
physically near to the causal gene, or within the gene itself (Ingvarsson et al.,
2016). In this respect, if a reasonable proportion of genetic variation is
explained by any molecular marker(s) it could potentially be applied to
conduct early Marker-Assisted Selection (MAS) (O’Connor et al., 2020).
The fact that LD mapping does not rely on controlled crosses represents a
major advantage as it overcomes one of the main limitations of family-based
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QTL analyses. Instead, any existing forest can be the target of a LD mapping
study.

When LD mapping is conducted at the whole genome level, it is known
as Genome-Wide Association Mapping (GWAS) (Risch and Merikangas,
1996). In combination with high-throughput sequencing technology, GWAS
is a powerful tool for the identification of causative gene(s) underlying
complex traits in model and non-model forest tree species (Alqudah et al.,
2020).

In conifers, a high density of molecular markers is required to dissect a
complex trait, due to the large genome size and the rapid decay of LD (Neale
and Savolainen, 2004; Neale and Kremer, 2011). GWAS has already yielded
important insights into the genetic basis of complex quantitative traits of
conifer species, focusing on wood composition in Loblolly Pine (Eckert et
al., 2012) and wood property traits in white spruce (Lamara et al., 2016),
Cedar (Hiraoka et al., 2018). These studies were important for tree breeding
programs and helped researchers to understand many aspects of the
ecological genetics of conifers (McKown et al., 2014b).

1.1.5 Genomic selection

Genome-wide prediction, or genomic selection (GS), relies on
simultaneously estimating the effects of many thousands of SNPs across the
whole genome to estimate the genetic merit, and genomic estimated breeding
value (GEBYV), of individuals based purely on genomic information
(Meuwissen et al., 2001). GS therefore avoids the possibility of missing a
substantial portion of genetic variance associated to large numbers of loci of
minor effect (Bhat et al., 2016).

Conventional methods rely on pedigree information (ABLUP, A-matrix
best linear unbiased predictor) to estimate the genetic merit of an individual.
Instead, GS relies on molecular markers to estimate the realized genomic
relationships between trees (GBLUP, G-matrix best linear unbiased
predictor). This approach can accurately capture relatedness at within-family
levels, thereby increasing the precision of evaluations (Plomion et al., 2016).

Accuracy of genomic prediction in forest tree species has been mainly
tested in cross-validation designs, where full-sib and/or half-sib progenies
within a single generation are subdivided into training and validation sets
(Beaulieu et al., 2014b; Grattapaglia and Resende, 2011; Resende Jr et al.,
2012; Resende et al., 2012). The training set is phenotyped (i.e., trait being
measured) and genotyped (i.e., SNPs being scored) with the purpose of
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building the genomic prediction model, whereas the validation set is only
genotyped and used to evaluate the precision of the genomic model.
Alternatively, other experimental designs are possible for model training and
validation. For example, a study of Pinus pinaster based on a three
generation pedigree (GO, G1, and G2) showed encouraging results based on
intergeneration genomic prediction, both by mixing parents and progeny in
the same training set (Isik et al., 2016) and by using GO and G1 individuals
to predict the G2 generation (Bartholomé et al., 2016).

Overall, model accuracy of GS has been reported to increase with larger
training-to-validation set ratios (Chen et al., 2018a; Tan et al., 2017; Zapata-
Valenzuela et al., 2013), while the level of relatedness between the two sets
is considered a prominent factor (Beaulieu et al., 2014b; Chen et al., 2018a;
Lenz et al., 2017; Suontama et al., 2019; Tan et al., 2017). Predictions have
also been shown to be more accurate when selection is carried out across
similar environments and tree-ages (EI-Dien et al., 2015).

GS has been shown to increase the genetic gain per year compared to
conventional breeding in many forest tree species (Beaulieu et al., 2014b; El-
Dien et al., 2015; Isik et al., 2016; Zapata-Valenzuela et al., 2013). In
eucalypts and poplars, the GS breeding strategy abolished the need for tree
testing in progeny trials. It also shortened the time and costs involved in the
clonal testing phase by reducing the number of selected trees that are
evaluated as clones (Grattapaglia, 2017). In conifers, GS combined with
somatic embryogenesis (SE) allowed pre-selection of zygotic embryos based
on their GEBVs, which greatly improved the efficiency of propagation
(Resende Jr et al., 2012).

1.2 Norway spruce breeding in Sweden

In Sweden, breeding of Picea abies (L.) H. Karst. (Norway spruce) and Pinus
sylvestris L. (Scots pine) began in the 1940s and 1950s with phenotypic
selection of plus trees and establishment of the first-generation seed orchards
(Karlsson and Rosvall, 1993). The Norway spruce breeding program follows
the multiple breeding population system (MBPS) with 20 partially
overlapping, latitudinally distributed breeding populations (also called
breeding zones), from which 50 trees are selected (Rosvall, 2019). These
trees serve as a founder stock for long-term breeding and gene conservation
programs (Androsiuk et al., 2013). In the 1980s, additional plus trees selected
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from commercial forest nurseries, together with a selection of the best
progeny tested plus trees from the previous selection resulted in the second
round of seed orchards. At the beginning of the 21st century, a third round
of seed orchards was established with the genetically best trees, selected
based on results from field tests.

In each breeding cycle, a number of trees are either control-fertilized to
generate full-sib progenies, or allowed open-pollination that results in half-
sib progenies. Next, progenies are tested in progeny trials, where the
experimental design aims for sound statistical analysis. Progeny trials are
replicated across a range of locations to improve the accuracy of the genetic
gain estimations (i.e., obtain the most accurate tree rank). Phenotypically or
genotypically Estimated Breeding Values (EBVs) are then utilized to
conduct backward selection. In other words, selection of the best plus trees
based on the performance of the progeny tested. Alternatively, EBVs can be
used to select the best progeny, a process called forward selection. Either
way, the best trees will be deployed as seed donors in seed orchards and after
reaching maturity (generation time), crossed again to start a second breeding
cycle.

The major obstacle for improving wood properties is the time necessary
to complete a breeding cycle, where the generation time is the major
bottleneck (Markussen et al., 2004). In Sweden, the Norway spruce breeding
cycle needs more than 20 years to be completed (Karlsson and Rosvall, 1993).
After selection of the donor parents (e.g., plus trees), the cycle continues with
a phase of breeding (crossing), followed by progeny propagation in the
nursery. Seedlings are then established in progeny trials and phenotypically
evaluated after certain age which depends on the trait. The step of phenotypic
evaluation and genetic assessment of the mother (backward selection) or
progeny (forward selection) genetic values can last more than 15 years. A
summary of the breeding cycle is presented in Figure 1.
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Genomic-based breeding Conventional breeding

Visual selection Visual selection

Crossing Crossing

Genotype Nursery

Phenotype

Forward Backward
selection selection

Figure 1. Comparison between conventional breeding and genomic- based breeding.

Forward Backward
selection selection

With genomic-based breeding, the field progeny test can be replaced by
statistical genomic models involving only genomic data (SNP genotypes),
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and accurately select seedlings within two years of crossing (Figure 1). This
is feasible in the context of backward selection, where already mature plus
trees are those being selected. However, in the case of forward selection,
genomic selection of progeny, as early as two years after crossing, does not
overcome the need to wait 20 years of generation time until those selected
progeny reach maturity and can be crossed to start a second round of the
breeding cycle. This strongly indicates that GS can only be efficiently
implemented in a forward selection breeding strategy if early flowering can
be induced.

1.2.1 Breeding objectives

In forest trees, especially at northern latitudes, rotation times are between
nine and sixteen years for fast growing species, such as poplars. However,
for slow growing species, like Norway spruce, the rotation time is around a
hundred years. Therefore, the breeding goals need to remain very general
and relevant over a long-term period of time. The main breeding objectives
for Norway spruce are survival, resilience to abiotic and biotic stresses such
as frost and pathogens, together with growth, and -more recently- wood
properties (Rosvall et al., 2019).

Wood quality traits are key determinants of the tree’s economic value
because they determine the quality of a variety of end-products, such as
structural boards, pulp and paper products, and furniture (Zobel and van
Buijtenen, 1989). Wood stiffness (generally expressed in terms of the
modulus of elasticity: MOE) is one of the most important traits for
construction timber and is mainly determined by measuring wood density
and microfiber angle (MFA) (Baltunis et al., 2007; Chen et al., 2014; Lenz
et al., 2011). In addition, wall thickness, radial fiber width, tangential fiber
width, and fiber coarseness are important traits contributing to overall fiber
quality (Scallan and Green, 2007) which is closely related to pulp and paper
properties.

Heterobasidion parviporum (H. parviporum)is the causal agent of
annosum root rot, a common and serious fungal disease found in conifer
forests of the Northern Hemisphere (Asiegbu et al., 2005), resulting in an
estimated financial loss of approximately 475 million SEK (€54 million)
annually (Hellgren and Stenlid, 1995). Analysis of genetic variation for
resistance to H. parviporum in Norway spruce revealed genetic inheritance

of the property and, therefore, the potential for improvement through
breeding (Chen et al., 2018Db).
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2. Objectives

The main objectives of the research in this thesis, were to investigate the
efficiency of genomic-based methods when used to assist the breeding of
Norway spruce. The specific questions addressed were:

<>

<>

Is selection of plus trees as reliable as progeny-based selection?
(paper I)

Are there QTLs of large effect for wood properties and resistance to
H. parviporum (paper 11, paper III & paper VI) to assist breeding?
Is Genomic Selection a feasible alternative method to genomic-
based breeding for Norway spruce? (paper V)

Is there correlation between genotypic variation and fungal
communities in vegetative buds? (paper [V)
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3. Materials and methods

This chapter provides an overview of the materials and methods associated
with the six papers. For more detailed information, see the corresponding
papers.

3.1 Tree materials

A two-generation Norway spruce pedigree was the core material of this
thesis work. The maternal generation consists of 524 plus-tree clones
(genotypes) located at two different clonal archives, one in Ekebo and the
other in Maltesholm, both in southern Sweden. The first-generation progeny
consists of 524 open-pollinated (half-sib) families replicated in two different
progeny trials, S21F9021146 aka F1146 (Horeda, Eksjo, Sweden) and
S21F9021147 aka F1147 (Erikstorp, Tollarp, Sweden), which were
established in 1990. We randomly selected six progenies per family and per
progeny trial. In total, 12 progenies per half-sib family were included in the
study. The plants are spaced on a grid of 1.4mX1.4m for the progeny trials.
In the clonal archives, the original spacing was 3mX0.5m, though this was
gradually increased following thinning. At the time of establishment, there
were originally 10 ramets (identical genotypes) grafted per clone at the clonal
archive, while at the time of sampling only three ramets remained in the
archive. The plus trees in the archives were grafted on rootstocks at the
seedling stage. As part of their maintenance, both clone archives were topped
in the autumn of 2007 at age 23, when a large seed crop was harvested.
Thinning of the Ekebo clonal archive and parts of the Maltesholm archive
were carried out for the first time in the late 1990s, and the most recent
thinning was conducted in the autumn of 2009 at age 25.

In Paper I, I and VI, data from the two-generation trees were utilized, in
paper III and IV, data from a subset of the plus trees (466 and 478

29



respectively) were used, and in paper V, 484 progenies from 62 families were
utilized.

3.2 Phenotype

3.2.1  Wood quality traits

Increment cores of 12 mm diameter were sampled in 2010 from one ramet
per plus-tree and from all 12 progeny trees at age 21-years old (Chen et al.
2014). Each core was screened using a SilviScan instrument. All three plus-
tree ramets and same progenies above mentioned were also scored for
pilodyn penetration depth using a Pilodyn 6J Forest (PROCEQ, Zurich,
Switzerland) and acoustic velocity using a Hitman ST300 (Fiber-gen,
Christchurch; New Zealand) at ages 22 and 24, respectively (Chen et al.
2015). All traits are summarized in Table 1.

Table 1. Wood quality traits involved in this thesis

Measurement method | Trait Abbreviation Unit
Increment core-based | Wood density WD kg/m’
(SliviScan) Ring width RW um
Modulus of elasticity MOE GPa
Microfiber angel MFA Degree
Number of cells NC
Radial tracheid width RTW um
Tangential tracheid width W um
Wall thickness WT um
Coarseness CO mg/m
Standing tree-based Pilodyn Pilo mm
Velocity AV (km/s)?
Modulus of elasticity MOEing GPa

3.2.1.1 SliviScan

The SilviScan is an instrument used for efficient measurement of multiple
solid wood properties. On increment cores, it delivers data from pith to bark
at high spatial resolution (Evans 1994; Evans 2006). Each increment core
was turned into 2mm sanded strips representing all the rings from pith to
bark and automatically scanned for radial variations in cross-sectional
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tracheid widths with X-ray transmission and diffraction, combined with light
image analysis. From these data, the locations of the annual rings were first
identified, followed by the identification of three compartments: earlywood
(EW), transition wood (TW) and latewood (LW) using the “20-80 density”
definition (Lundqvist et al., 2018). The measurement was conducted at
Innventia, now RISE Bioeconomy, Stockholm, Sweden.

3.2.1.2 Indirect measurements

In addition, measurements of the three solid wood traits (density, MFA and
MOE) were also obtained with Pilodyn and Hitman instruments conducted
directly on standing trees without removing the bark, at ages 22 and 24 years.
The Pilodyn measures penetration depth by pressing a needle into the stem.
Depth of penetration is inversely correlated with wood density. The Hitman
measures the velocity of sound waves in the stem, which correlates with
MFA (Downes et al., 2002; Lenz et al., 2013). MOEiyq is related to wood
density and velocity of sound (Haines and Leban, 1997; Knowles et al., 2004;
Lindstrém et al., 2002) and can therefore be estimated by combining the
Pilodyn and Velocity data, using the formula:

MOE;,q =(1/Pilo) X 10X AV?

where Pilo is the Pilodyn penetration depth (mm) and AV is the velocity of
the wave through the material (km/s), which has a high inverse correlation
with MFA (Chen et al 2015).

3.2.2 Disease resistance

Four traits related to disease resistance were included in the associate study
in paper II. These were: diameter of the tree at the inoculation site (D), length
of the necrotic lesion in the phloem and inner bark (LL), fungal growth in
the sapwood of progeny (SWG) and tree vitality (Vitality). The induced
defense response, measured by the LL parameter, was estimated by
measuring the discernible lesion spread upwards and downwards from the
edge of the inoculation point on the inside of the bark. SWG was estimated
using established protocols (Arnerup et al., 2010; Stenlid and Swedjemark,
1988). Vitality of the progeny was scored on a scale of 1-3, where 1 was
given for fully vital, and a score of 3 given to plants showing a pronounced
loss of vitality.
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3.3 Genotype

Genomic DNA was extracted from buds, or needles when buds were not
available. This DNA was submitted to RAPiD Genomics (USA), where
DNA library preparation and capture sequencing were performed. Sequence
capture was carried out using the 40 018 diploid probes designed and
evaluated for Norway spruce (Vidalis et al., 2018). The [llumina sequencing
compatible libraries were amplified with 14 cycles of polymerase chain
reaction (PCR) and the probes were then hybridized to make a pool
comprising 500 ng of 8 equimolar combined libraries following Agilent's
SureSelect Target Enrichment System (Agilent Technologies,
https://www.agilent.com/). These enriched libraries were then sequenced
using an [llumina HiSeq 2500 instrument (San Diego, USA) on the
2 x 100 bp sequencing mode. Raw reads were mapped against the P.
abies reference genome v.1.0 using bwa - mem (Li, 2013). Samtools v.1.2
(Li et al., 2009) and Picard (http://broadinstitute.github.io/picard) were used
for sorting and marking of PCR duplicates. Variant calling was performed
using gatk haplotypecaller v.3.6 (Van der Auwera et al., 2013) in gVCF
output format.

The Variant Quality Score Recalibration (VQSR) method was performed
to avoid the use of hard filtering for exome/sequence capture data. Two
datasets were created for the VQSR analysis, a training subset and an input
file. The training dataset was derived from the Norway spruce genetic
mapping  population  showing  expected  segregation  patterns
(Bernhardsson et al., 2019) and assigned a prior value of 15.0. The input file
was derived from the raw sequence data using gatk with the following
parameters: extended probe coordinates by +100 excluding INDELS,
excluding LowQual sites, and keeping only bi - allelic sites. The following
annotation parameters QualByDepth, MappingQuality and BaseQRankSum,
with tranches 100, 99.9, 99.0 and 90.0 were then applied for the
determination of the good versus bad variant annotation profiles. After
obtaining the variant annotation profiles, the recalibration was then applied
to filter the raw variants.
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3.4 Method

3.4.1 Mixed model

Linear mixed model was the core statistical model used in this thesis. The
general model equation is:

y=Xb+Zu+e. equation 1

with E(y) = Xb and Var(y) =V = ZGZ' + R; where y is the vector of
each individual tree observation, b is the vector of the fixed effects, u is the
vector of random effects and e is the vector of residuals. X and Z are
incidence matrices of fixed effect () and random effect (u), respectively.
The u and e are assumed to be independent and normally distributed as
u~(0,024), e~(0,102), where 4 is the additive genetic relationship matrix
(pedigree based), or G in the case of marker-based analysis, and / is the
identity matrix.
In equation 1, fixed and random effects were obtained by solving the

mixed model equation (White and Hodge, 2013):

x il i) 2]
Z’X Z7Z+1a| (0| |2y _

equation 2
where b and 1 are the estimation of fixed effect and random effect respectively.
1 is the identity matrix with dimensions equal to the number of mothers. The
scalar « is defined as @ = 02 /02, where o2 is the residual variance, o7 is
the additive genetic variance which can be calculated from pedigree or

marker information. % is the best linear unbiased predictions (BLUP) for
additive genetic effect which is also called breeding value (BV).

3.4.2 Heritability

The individual-tree narrow-sense heritability (k%) is the additive genetic
portion of the phenotypic variance and defined as:

2
g .
h? =-4 equation 3
o}
P

where o7 is the additive genetic variance and o is the phenotypic variance
(Lynch and Walsh, 1998).

With two generation phenotypic data, narrow sense heritability can also
be calculated by parent-offspring resemblance. The degree of resemblance is
expressed as the regression of offspring on parents as in equation 4:
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Y=p,+pX equation 4

where Y is the phenotypic value for the offspring and X is the phenotypic
value for the mother and since the genetic covariance between parents and
offspring is equal to 0.507 (Falconer and Mackay, 1996), f3; can be defined
as follows,

12
Cov(X)Y) 304 .
pr=——"=% equation 5
VarX op

From the slope of the regression, 4* (see equation 3) can be estimated as
h? = 2B, equation 6
The other method for 4’ estimation is based only on half-sib family
progenies. Since the additive genetic relationship between half-sib off-

springs is 0.2507 (i.e., a quarter of their alleles in common on average) and
af = 4X between families variance, we can re-write equation 3 as follows,

2 . .
o 4xbetween families variance .

h? =4 = 3 equation 7
O'P UP

3.4.3 Trait association mapping

3.4.3.1  Functional model

Instead of using a single value for each trait, in paper Il we introduced latent
traits which were obtained by modeling the data across annual rings (i.e.,
from pith to bark) with the following linear spline function,

y(t) = Bo + Bit + B (t — Ky) + B3(t — K3) equation 8

where y () is the function of trait based on time 7 (annual ring), K; (i = 1,2; K,
< K, ) are defined as knots, and (r — Ki):» = (t—K;) ift>Ki (Ki>0;i =
1,2), otherwise is equal to zero. An example for trait ring width was presented
in figure 2.

In equation 8 the intercept Sy, slope parameters f;, > (at Knot 1 (K;)) and
3 (at Knot 2 (K>)) are estimated by standard least squares (Ruppert et al.,
2003). These four estimates were used as the latent trait in the subsequent
QTL analysis. In this way, we succeeded in capturing not only the value of
that trait, but also the trend of the trait across annual rings.
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Figure 2. Trait ring width across 14 consecutive cambial ages. Light blue lines are
individual samples, black line is the mean value and red line is the spline function used
to map the curve.

LASSO (Least Absolute Shrinkage and Selection Operator) is a regression
method that involves penalizing the absolute size of the regression
coefficients. It allows handling highly dimensional cases with p>>n (i.e., the
number of SNPs is much larger than the number of individuals) and selecting
only a single representative SNP from the group of highly dependent SNPs.

In this thesis, we utilized the LASSO model as below:

(g{r(}l(g) %2?21(% —ag— X8, xijaj)z + 12?21|aj| equation 9

where y; is the phenotypic value of an individual i (i = 1,...,n; n is the total
number of individuals) for the latent trait Sy, ., 52 or B3, ay is the population
mean parameter, x; is the genotypic value of individual i and marker j coded
as 0, 1 and 2 for three marker genotypes AA, AB and BB, respectively. o; is
the effect of marker j (= 1,...,p; p is the total number of markers), and 4 (>0)
is a shrinkage tuning parameter. The penalty term is able to shrink the
additive effects of some of the markers exactly to zero and select the subset
of markers with effect on the trait to be used by the model. By tuning the
parameter A the degree of shrinkage can be determined, as well as the number
of markers having nonzero effects. Cross-validation is used to decide an
optimal value for A. Stability selection probability (SSP) for each selected
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SNP was applied as a way to control the false discovery rate and determine
significant SNPs (Gao et al., 2014; Li and Sillanp&i, 2015).

3.4.4 Genomic prediction

In this thesis, four genomic-based methods were used to estimate genomic
breeding values: Genomic Best Linear Unbiased Predictions (GBLUP)
(VanRaden, 2008), Random Regression-best Linear Unbiased Predictions
(rrBLUP) (Whittaker et al., 2000), BayesB (Hayes and Goddard, 2001), and
Reproducing Kernel Hilbert Space (RKHS). rrBLUP applies a shrinkage
parameter, lamda, to a mixed model and assumes that all markers have a
common variance. In BayesB, the assumption of common variance across
marker effects is relaxed by adding more flexibility to the model. RKHS does
not assume linearity so it can potentially capture non-additive relationships
(Heslot et al., 2012).
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4. Main results and discussion

4.1 Cost-effective methods to select outstanding
genotypes for solid wood properties

In paper I we evaluated the potential of ranking and selecting outstanding
genotypes for solid-wood quality directly from plus-tree clonal archives. It
is an alternative to backward selection based on EBVs, which requires
establishment and evaluation of large numbers of half-sib progeny trials. The
estimated correlations between half-sib progeny’s BVs and the plus tree’s
phenotypic values were 0.29, 0.13 and 0.23 for Pilodyn, Velocity and
MOE(ind), respectively. When using data from all three plus-tree ramets, the
correlation increased to 0.32, 0.15 and 0.28 for the same traits. The narrow
spacing between plus trees which resulted in strong competition may have
contributed to the discrepancies between these two plantations.

Based on indirect measurements, parent-offspring /4’ estimates were
higher as compared to estimates based solely on half-sib progeny data when
all three ramets were included in the estimations (Table 2).

Table 2. Heritability and repeatability estimates based on measurements of wood density,

MFA and MOE with SilviScan from increment cores and based on Pilodyn and Hitman
(velocity).

SliviScan Indirect methods
Method Density MFA MOE Pilodyn Velocity MOEina
*
fe(;ression 0.35 0.15 0.28 0.27 0.13 0.13
with_1 ramet (£0.16)  (£0.16)  (£0.16) (£0.15) (£0.15)  (£0.15)
PO regression 0.41 0.29 0.30
with 3 ramets N/A N/A N/A (£0.15)  (£0.15) (£0.15)
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Half-sib 0.43 0.29 0.38 031 0.20 0.28
correlation (£0.09)  (+0.08)  (£0.08) (£0.08) (+0.08)  (+0.08)

Repesbliy N Na N ?jf%) ?;%)(,)04) ?ﬂf(‘)?OS)

* PO: Parent offspring

This indicates that multiple copies of ramets are critical to increase the
accuracy of the genetic parameter estimates for selection of outstanding plus-
tree genotypes. In conclusion, backward selection, whether based on
offspring data alone or a combination of offspring and clonal archive data
would be most effective for wood density, and least effective for MFA,
whereas MOE showed an intermediate behavior.

Another alternative would be to select plus trees based on measurements
directly obtained from the plus trees in the archive. Repeatability estimates
for wood properties measured with the two indirect methods were higher
compared to any /4’ estimate, indicating that selection of the best plus-tree
clones could be a highly cost- and time-effective alternative to progeny trial
testing.

4.2 GWAS is a genomic-based method for the dissection
of complex traits

4.2.1 Wood quality traits

In paper Il and VI, we identified 83 significant SNPs from 65 candidate genes
related to solid wood traits (wood density, ring width, MOE, number of cells,
early wood late wood proportion, mass index) and tracheid properties
(microfiber angel, radiate fiber width, tangential fiber width, coarseness, wall
thickness).

Figure 3 shows a summary of the significant SNPs distributed across LGs
which were produced according to the ultra - dense genetic map
(Bernhardsson et al., 2019). X-axis is the position of QTL and y-axis is the
proportion of variance explained (PVE).
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The highest proportion of the variance explained resulted from the
additive action of three QTLs on wood density (11.39%), and five QTLs on
ring width (10.4%). For the other traits, the percentage of variance explained
by QTLs was lower than 10%. This result clearly indicates that GWAS failed
to detect the additional QTLs responsible of the remaining genetic variance.
This lack of power can be attributed to several explanations. Firstly, wood
properties are complex traits controlled by a large number of QTLs, each
with a small effect (Du et al., 2013; McKown et al., 2014a; Porth et al., 2013;
Wegrzyn et al., 2010). Secondly, the rapid decay of LD that is the result of
the outcrossing nature of Norway spruce and its large effective population
size. In our study, LD displayed diverse patterns among different
genes. Additionally, the sequence capture method only covered a total of
2331.1 kbp of the exonic sequence, 2470.9 kbp of the intronic sequence,
40.7 kbp of the UTR-like sequence and 9119 exon—intron boundaries
(Vidalis et al ., 2018). Therefore, a large portion of the genome was not
represented, and this would be compounded by the rapid LD in spruce.

Another important aspect to be considered is population structure, which
can influence LD, causing confounding effects and false positives or
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spurious associations between traits and molecular marker alleles (Sawitri et
al., 2020). Typically, GWAS methods incorporate tools to correct for
population structure, which in return are likely to remove a substantial
amount of significant gene association signals (Yengo et al., 2018). In paper
I and VI samples were derived from a relatively unstructured population.
Despite this, we included in the GWAS model the first two components from
the principle component analysis (PCA) which explained 5.3% of the
molecular marker differentiation.

In light of our results and previous GWAS studies in forest trees, we
conclude that a much larger sample size, in the order of tens of thousands of
trees, and a denser SNP markers coverage of genic and non-genic regions
would be required to detect a significant proportion of the additional markers
(Du et al., 2018). Furthermore, the power of GWAS to identify a true
association between an SNP and trait is dependent on how strongly the two
allelic variants differ in their phenotypic effect (the effect size), and their
allele frequency. In Norway spruce, despite the relatively low levels of
population structure, it is evident that there are differences in both pattern of
LD and allele frequencies between populations, calling for caution when
estimating parameters across a wide-range of sampling studies (Larsson et
al., 2013).

4.2.2 Disease resistance

In paper 111, GWAS based on a population of 466 plus trees returned 11 new
potential SNPs for resistance to H. parviporum. Individual SNPs explained
similar fractions of the phenotypic variation observed, a finding in agreement
with interval mapping based QTL study by Lind (Lind et al., 2014). Based
on the newly published ultra-dense genetic map (Bernhardsson et al., 2019),
five of the SNPs were found to be independent from each other, supported
by their localization at different LGs.

The candidate genes linked to SWG were more often expressed in the
sapwood than the genes linked to LL. Two candidate genes (i.e., significant
SNPs were located within those genes) were associated with the LL trait in
bark, MA 53835g0010 and PaLACS, which are likely to be members of the
gene cascade that induced defence against H. parviporum. These candidate
genes present new insights into the interaction between Norway spruce
and H.parviporum, such as the putative involvement of the secretory and
endosomal trafficking pathways and the laccase PaLACS in the control of
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lesion extension in the inner bark, or the potential role of mitochondrial
protein import and biogenesis in controlling H.parviporum spread in the
sapwood.

4.3 GWAS to identify genes correlated with fungal
communities and pathogens

In paper 1V, we combined internal transcribed spacer sequencing of the
fungal communities associated with dormant vegetative buds with a GWAS
in 478 unrelated Norway spruce trees. The aim was to detect host loci
associated with variation in the fungal communities across the population,
and to identify loci correlating with the presence of specific, latent,
pathogens.

Operational Taxonomic Units (OTUs) with the highest number of reads
were reduced using PCA. The first six PCs of the PCA were used as
phenotype to conduct GWAS and six Norway spruce SNPs were found
associated with the fungal community composition based on the eigenvalues
describing the third, fourth and fifth PC. Three additional SNPs associated
with colonization of the Norway spruce needle cast pathogen (Lirula
macrospora), or the cherry spruce rust (Thekopsora areolata) in
asymptomatic tissues were detected. This study confirmed that dormant
vegetative buds are, like needles, colonized by phyllosphere fungi, as the
taxonomic identities of many of the most heavily sequenced OTUs showed
affinity to previously reported members of the Norway spruce phyllosphere
fungal community.

Several of the potential orthologues of the Norway spruce candidate
genes associated with PC3 and PC4 indicate that shoot development and
morphogenesis are important factors in shaping genotype - specific
phyllosphere communities. Our GWAS results suggested that processes in
the morphogenesis and flush of the Norway spruce shoot exert a strong
influence on the dominant players in the phyllosphere community detected
in dormant buds. So, using genome-wide association as a tool, it will be
possible to identify many more causative genes and their roles across linked
traits, highlighting the potential for systematically uncovering the balanced
regulation between these traits and identifying the key hub genes that link
them (Feltus, 2014; Lamara et al., 2016). Genomic methods offer the means
to screen large numbers of loci associated with environmental cues.
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4.4 Genomic prediction in Norway spruce

In paper V, 4’ and Prediction Abilities (PA) based on ABLUP and GBLUP
were compared for density, MFA and MOE which were measured using
increment cores at age 19 years, and also for Pilodyn at age 22, Velocity and
MOEi,q at 24 years, on standing trees.

For density and Pilodyn, similar estimates were obtained with ABLUP
and GBLUP, thus following the general trend that has been previously
reported in other forest trees (Beaulieu et al., 2014b; El-Dien et al., 2015;
Resende Jr et al., 2012). This suggests that larger number of SNPs are
required to capture historical LD in a species where LD decays rapidly.
However, for MFA, a low heritability trait, the PA estimation based on the
GBLUP model was substantially higher (0.16), compared to the ABLUP
model (0.04). After standardizing with h, the predictive accuracies (PC) of
the methods become more similar across traits. In forest trees, pedigree-
based PA estimates in conifer species have been reported to be higher or
comparable to molecular marker-based models (Chen et al., 2018a; El-Dien
et al., 2015; Lenz et al., 2017; Miiller et al., 2017; Zapata-Valenzuela et al.,
2013), but there are also some studies reporting molecular marker-based PA
estimates to be higher (El-Dien et al., 2018; Kainer et al., 2018; Suontama et
al., 2019).

The performance of other molecular marker-based statistical models was
similar, thus indicating that a large part of the SNPs had relatively equally
effect on wood quality traits. Otherwise, methods such as BayesB, which is
more efficient when large-effect QTL exist, should have outperformed the
other methods. This is also in line with previous results for growth and wood
quality traits in other forest tree species (Beaulieu et al., 2014a; Ratcliffe et
al., 2015; Thistlethwaite et al., 2017).

In this study we also estimated PAs using partial increment cores with
different depths, with the aim of investigating the minimum number of rings
(from bark) required to obtain reliable estimates in order to reduce tree injury.
For example, for wood density (in Figure 4) our GS model could be trained
at tree ages 10 to 12, including only the three to five outermost rings.
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Figure 4. Upper: Number of trees at each tree age with different number of rings.
Lower: PA of density from bark to pith at different tree ages (y-axis) and an increasing
number of rings included in the estimation (x-axis)
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There are four factors that affect accuracy of predictions significantly in
the context of GS: (1) The level of LD between molecular markers and QTLs,
(2) consanguinity between training and validation population, (3) effective
population size (Ne), particularly the number of individuals with the
phenotype and genotype used to develop prediction model, and (4)
heritability of the trait (Hayes et al., 2009). In our study, molecular markers
failed to detect any historical LD beyond the available and often single-
generation pedigree information, which may explain why PA was observed
to be similar between ABLUP and GBLUP for most of traits. PA estimates
generally showed a moderate increase in this study with increasing training
set size, irrespective of the statistical method used, since the effective
population size increased as more trees were involved in model prediction
development. Exceptions to this trend where MFA and MOE estimates were
found at 80% of the trees in the training set. In general, the order of PA
among different traits was consistent with the order of traits h* estimation
irrespective of the GS model, which strongly suggests the importance of
choosing traits with high heritability as feasible breeding goals, together with
experimental designs involving multiple testing sites to build accurate
predictive models (Zhang et al., 2017).
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5. Conclusions and future perspective

This thesis presents an evaluation of different genomic-based methods to
assist Norway spruce breeding. Based on the results of the studies of this
thesis work, the following conclusions and perspectives can be drawn:

- Higher repeatability for wood property traits indicates that selection of trees
in clonal archives based on phenotypic data represents a cost- and time-
effective method.

- Backward selection, whether based solely on offspring data or a
combination of offspring and multiple parental clone data, would be most
effective for wood density and least effective for MFA.

- GWAS is a valuable genomic-based tool to investigate the genetic
architecture of complex traits. However, GWAS full potential would
require a substantial scale up in sample size and molecular-marker density
in order to become an efficient tool for early marker-assisted selection.

- GS model training for wood quality improvement in Norway spruce should
be conducted at a tree age of no younger than 10 to 12 years old.

- GS has the potential to become an alternative for Norway spruce breeding,
following a drop in the cost of genotyping. A better reference genome may
improve the quality of SNPs so that more information rather than just
pedigree could be captured. GS implementation into forward selection
would require an acceleration of the flowering time in order to deliver its
full potential.

- Fungal community composition in dormant buds of Norway spruce trees is
partly determined by the genotype of the host tree.
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Popular science summary

Tall parents usually have tall children. This can be explained with genetics,
the science that study heredity, and genes are the functional unit of heredity.
People’s height is determined by a certain number of genes which are
inherited by the next generation. As in humans, when crossing two tall trees
the result is also tall offspring trees. Tree breeders are well-aware of this
phenomenon and is for that reason that they invest a lot of effort in
identifying the best trees to be crossed.

In Europe, Norway spruce is one of the most economic important species
for being the main source of wood for construction and pulp. This explains
the efforts that breeders conduct to maintain spruce forests healthy, while
increasing their growth and wood quality. Traditionally breeders are able to
succeed in their search for the tallest trees with the only use of two tools, a
meter and statistics. Recent technology offers the possibility to select the
tallest trees without measuring them. That magic is called Genomic Selection
(GS). GS can predict how tall a tree will be just by measuring gene effects
with mathematical tools, rather than measuring the tree height with a meter.
It is a genomic-based powerful tool that aims to accelerate and improve tree
selection in a cost-effective way.

This thesis is pioneer to investigate the feasibility of genomic-based
breeding for Norway spruce in Sweden.
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Popularvetenskaplig sammanfattning

Langa fordldrar far langa barn. Detta kan forklaras med genetik, den
vetenskap som studerar nedédrvning, och gener &r den funktionella enheten
for neddrvning. Mianniskans kroppsléngd bestdms av ett visst antal gener som
nedédrvs till ndsta generation. Liksom for ménniskor ger korsningar av tva
langa trdd langa avkommor. Detta &r nagot som skogstradsforddlare ar
medvetna om och av detta skil satsas mycket kraft pa att identifiera de bésta
traden for samkorsning.

Gran (Picea abies) ér ett av Europas ekonomiskt viktigaste tradslag som
rdvara for konstruktionsvirke och pappersmassa. Detta forklarar de
anstrangningar som forddlare gor for att bibehélla granens anpassning och
vitalitet samtidigt som tillvixt och vedkvalitet forbéttras. Det traditionella
sdttet for forddlare att identifiera trid med den bésta tillvidxten dr att anvénda
mitstang eller hojdmétare samt statistik. Nyutvecklad teknologi ger dock
mojlighet att vilja trid med den bésta tillvdxten utan att mita dem. Denna
teknologi dr genom-baserad forddling. Istéllet for att méta trdéden med nagon
mitutrustning méts generna som kontrollerar hojdtillvéxten. Med andra ord,
genombaserad forddling kan bedoma hur hogt ett trdd kommer att bli genom
att bara studera dess gener. Genombaserat urval &r ett kraftfullt redskap som
syftar till att snabba pa och forbittra selektionen av trdd pa ett
kostnadseffektivt sitt.

Denna avhandling &r banbrytande da den studerar mdjligheterna for
genombaserad forddling av gran i Sverige.
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Genetic analysis of wood quality traits in Norway spruce
open-pollinated progenies and their parent plus trees at
clonal archives and the evaluation of phenotypic selection of
plus trees

Linghua Zhou, Zhigiang Chen, Sven-Olof Lundqvist, Lars Olsson, Thomas Grahn, Bo Karlsson,
Harry X. Wu, and Maria Rosario Garcia-Gil

Abstract: A two-generation pedigree involving 519 Norway spruce (Picea abies (L.) Karst.) plus trees (at clonal archives) and their
open-pollinated (OP) progenies was studied with the aim to evaluate the potential of plus-tree selection based on phenotype data
scored on the plus trees. Two wood properties (wood density and modulus of elasticity, MOE) and one fiber property (microfibril
angle, MFA) were measured with a SilviScan instrument on samples from one ramet per plus tree and 12 OP progenies per plus
tree (total of 6288 trees). Three ramets per plus tree and their OP progenies were also assessed for Pilodyn penetration depth and
Hitman acoustic velocity, which were used to estimate MOE. The narrow-sense heritability (h?) estimates based on parent—
offspring regression were marginally higher than those based on half-sib correlation when three ramets per plus tree were
included. For SilviScan data, estimates of the correlation between half-sib, progeny-based breeding values (BVs) and plus-tree
phenotypes, as well as repeatability estimates, were highest for wood density, followed by MOE and MFA. Considering that the
repeatability estimates from the clonal archive trees were higher than any h? estimate, selection of the best clones from clonal
archives would be an effective alternative.

Key words: solid wood, Norway spruce, parent-offspring regression, heritability, repeatability.

Résumé : Une population pedigree de deux générations comprenant 519 arbres plus d’épicéa commun (Picea abies (L.) Karst.;
d’archives clonales) et leurs descendants issus de pollinisation libre (OP) ont été étudiés conjointement dans le but d’évaluer le
potentiel de sélection d’arbres plus en fonction de données phénotypiques prises sur ces derniers. Deux propriétés du bois
(densité du bois et module d’élasticité, MOE) et une propriété des fibres (angle des microfibrilles, MFA) ont été mesurées avec un
instrument SilviScan sur les échantillons d’un ramet par arbre plus et 12 descendants issus d’OP par arbre plus (total de
6288 arbres). Trois ramets par arbre plus et leur descendants d’OP ont également été évalués pour la profondeur de pénétration
du Pilodyn et la vitesse acoustique a I’aide d’un appareil Hitman, afin d’estimer le MOE. Les valeurs d’héritabilité au sens strict
(h?) basées sur la relation parents—progéniture étaient marginalement plus élevées que celles basées sur la corrélation de
demi-fratries, lorsque trois ramets par arbre plus étaient considérés. Pour les données de SilviScan, les estimations de la
corrélation entre les valeurs en croisement (BV) découlant de ’analyse des demi-fratries et les phénotypes d’arbres plus, ainsi que
les estimations de répétabilité, étaient les plus élevées pour la densité de bois, suivie par MOE et MFA. Considérant que les
estimations de répétabilité découlant des arbres d’archives clonales étaient plus élevées que toutes les valeurs de h?, la sélection
des meilleurs clones a partir d’archives clonales apparait comme une alternative efficace. [Traduit par la Rédaction]

Mots-clés : bois massif, épicéa commun, régression parents-progéniture, héritabilité, répétabilité.

Introduction

Norway spruce (Picea abies (L.) Karst.) is one of the most impor-
tant conifer species in Europe for both economic and ecological
aspects (Spiecker 2000). Higher volume production, vitality, and
log quality for straightness and branch angle have traditionally
been the main objectives of the species breeding program, while
more recently, different aspects related to wood quality are gain-
ing increasing attention (Mullin et al. 2011; Rosvall et al. 2011). For

mechanical properties of wood-based products, wood density, mi-
crofibril angle (MFA), and modulus of elasticity (MOE) are consid-
ered as the most important solid-wood quality traits (Chen et al.
2015; Zobel and Jett 1995), and therefore they are the focus of our
study.

The SilviScan technology was developed to measure radial vari-
ation (i.e., from pith to bark) of solid-wood quality traits, including
wood density, MFA, and MOE (Evans 1999, 2008; Evans and Elic
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2001), as well as fiber traits (Evans 1994). Its high efficiency com-
pared with that of corresponding laboratory methods contributed
substantially to advances in research and development within
wood biology, forestry, and the optimal use of forest resources in
softwoods (Lindstrom et al. 1998; Lundgren 2004; Kostiainen et al.
2009; McLean et al. 2010; Piispanen et al. 2014; Fries et al. 2014), in
hardwoods (Kostiainen et al. 2014; Lundqvist et al. 2017), and on
modelling of trait variations (Wilhelmsson et al. 2002; Lundqvist
et al. 2005; Franceschini et al. 2012; Auty et al. 2014). SilviScan is
also used to produce benchmark data and validate the procedures
of more rapid and nondestructive methods. Examples of solid-
wood traits are Pilodyn penetration depth and Hitman acoustic
velocity (hereafter referred to as Pilodyn and velocity, respectively;
Chen et al. 2015; Kennedy et al. 2013; Vikram et al. 2011). Pilodyn is
an indirect, nondestructive, low-cost, and easy-to-use instrument
for estimating wood density. In Norway spruce and other conifer
species, strong genetic correlations have been observed between
Pilodyn penetration depth and wood density measured with Sil-
viScan (Chen et al. 2015; Cown 1978; Desponts et al. 2017; Fukatsu
et al. 2011; King et al. 1988; Sprague et al. 1983; Yanchuk and Kiss
1993). Further, acoustic velocity measured with Hitman apparatus
has been shown as an efficient, indirect method related to MFA
and has already been used on many species, including Scots pine
(Pinus sylvestris L.; Hong et al. 2015), white spruce (Picea glauca (Mo-
ench) Voss; Lenz et al. 2013), and Norway spruce (Chen et al. 2015).
Models for many species were implemented in an earlier version
of SilviScan (Evans and Elic 2001), followed by further improve-
ments (Evans 2008). An analogous model using the proxy mea-
surements of acoustic velocity and Pilodyn penetration on
standing trees was shown to be efficient for selection based on
wood stiffness in Norway spruce (Chen et al. 2015). Pilodyn, how-
ever, measures wood density in only the outermost annual rings;
therefore, it has also been suggested that it may not be reliable for
ranking the whole tree in cases where the correlation between the
outermost rings and inner rings is low (Wessels et al. 2011) or if the
diameter of tree is wide.

A common practice in forest tree breeding programs, which
aims to guarantee early genetic gain, is to phenotypically select
superior genotypes (plus trees) from naturally regenerated ma-
ture stands (Zobel and Talbert 1984; Danusevicius and Lindgren
2002). In Sweden, selection of the breeding base population of
Norway spruce plus trees started in the 1940s (Karlsson and
Rosvall 1993). Presently, large numbers of plus trees are main-
tained in ex situ, grafted clonal archives. These archives serve as
breeding base populations in which crossings of selected parental
genotypes are conducted with the purpose of generating cross-
pollinated progenies for the next generation in the breeding cy-
cle. After establishment of the clonal archives, the plus trees are
genetically evaluated (ranked) for growth, straightness, branch
angle, and vitality superiority following the backward-selection
approach. Backward selection is an expensive method that starts
with the establishment of open-pollinated (OP) progenies for large
numbers of families in progeny trials often tested at multiple
sites. This is followed by the assessment of the progenies at more
than one site and at a tree age high enough for selection and
finally by the estimation of breeding values (BVs) to identify the
superior genotypes (White et al. 2007). A less expensive alternative
to backward selection is the direct selection of plus trees in the
clonal archives based on phenotype data directly measured on
the plus trees. This approach can be incorporated as the first
part of a two-stage selection approach in which plus trees are
first selected based on phenotype data for traits of high herita-
bility, followed by a second selection based on clonal or prog-
eny testing (Danusevicius and Lindgren 2005).

The goal of this study is to evaluate the potential of selection
based on phenotype data of outstanding plus trees compared with
backward selection based on OP progeny trials. For this, we con-
ducted the following three analyses:
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1. correlations between the plus-tree BVs for wood density, MFA,
and MOE estimated based on OP progenies and plus-tree phe-
notypes measured at the clonal archive; where SilviScan-based
data were available, correlations were estimated for each an-
nual ring;

2. narrow-sense heritability (h?) based on parent-offspring re-
gression and half-sib progeny correlation; and

3. repeatability or the proportion of clone variation at the clonal
archive to conduct plus-tree selection.

Materials and methods

Plant material

The study was based on a two-generation pedigree involving
519 mother plus trees from two different clonal archives located
at Ekebo and Maltesholm in southern Sweden. The clonal archive
at Ekebo was established in 1984 and the one at Maltesholm was
established in 1985-1987. At the time of establishment, 10 ramets
on average were grafted for each plus tree and planted with a
spacing of 3 m x 0.5 m. At the time of sampling, spacing had been
increased through thinning two times, leaving the majority of the
genotypes with first seven and then only three ramets remaining.
For their corresponding 519 OP families, more progenies per fam-
ily were planted at each progeny trial. Data from two progeny
trials were used: S21F9021146 (also known as F1146; Horeda, Eksjo,
Sweden) and S21F9021147 (also known as F1147; Erikstorp, Tollarp,
Sweden), both established in 1990 with a spacing of 1.4 m x 1.4 m.
The same OP families were present in both progeny trials. Incre-
ment cores from the progenies of the OP families were sampled in
2010 and from the ramets at the clonal archive in 2017.

Silvicultural activities

Mild precommercial thinnings were conducted in Héreda and
Erikstorp in 2008, at the age of 18 years, and in 2010, at the age of
20 years. At the first thinning, only strongly suppressed trees that
were judged to not reach commercial dimensions were cut down.
Most of these were less than 50 mm diameter at breast height
(DBH; breast height = 1.30 m), and their removal was assumed to
have no effect on the growth or properties of the remaining trees.
The second thinning was performed in the year of sampling and
influenced only the outermost growth ring, for which data were
excluded for other reasons (see following sections). The clone ar-
chives at Ekebo and Maltesholm were topped in autumn 2007 at
age 23 years, when a large seed crop was harvested. The upper-
most 15%-20% of the trees was removed. Thinnings of the Ekebo
clonal archive and parts of the Maltesholm archive were carried
out for the first time in the late 1990s and the last time in autumn
2009 at age 25 years.

Phenotypic measurements

The radial variations in wood density, MFA, and MOE had been
assessed already in a previous study (Chen et al. 2014). Increment
cores of up to 12 progenies per OP family (six from each progeny
trial) had been analyzed from pith to bark with SilviScan, followed
by the calculation of area-weighted means, representing the trait
means of all wood formed in the stem cross sections at each
cambial age. In the current study, analogous SilviScan data were
also generated for one ramet from each clone from the parental
519 plus trees at the clonal archives. Pilodyn 6] Forest and Hitman
ST300 instruments were used on the standing trees to assess pen-
etration depth and acoustic velocity (respectively) of the same
ramets. These measurements were used to estimate MOE as the
indirect methods (MOE(ind)) using the following formula:

MOE(ind) = (1/Pilo) x 10000 x AV?

where Pilo is the Pilodyn penetration depth (mm), and AV is the
velocity of the wave through the material (km-s~?). AV has a strong

< Published by NRC Research Press
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Fig. 1. Mean values generated with SilviScan data from the open-pollinated (OP) progenies and the clonal archive. MFA, microfibril angle;

MOE, modulus of elasticity.
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inverse correlation with MFA, and the inverse of Pilo has a strong
correlation with wood density (Chen et al. 2015).

When data for more than one ramet were available, the mean
was used for further Pearson correlation analysis. The evaluations
were based on data from ring 3 to ring 16. The two rings closest to
the pith were removed from the evaluations, as the rings here
may be so curved that the X-ray beam used on measurement will
pass through wood of adjacent rings. However, values for rings 1
and 2 are kept in Fig. 1 to illustrate the described problem. Data on
rings larger than 16 from the progeny trials were excluded to
avoid problems of representability, given that the slow-growing
trees did not reach the highest cambial ages (Lundqvist et al. 2018).
The number of rings per tree varied from 10 to 18. Further, data
for the outermost ring of each tree were excluded from the eval-
uations, as they may not be fully formed, to avoid problems of
data distortion due to damage of the ring during the increment
core extraction.

The genetic parameters were calculated based on means for
stem cross sections at different cambial ages (ring numbers) using
R (version 3.3.3; R Core Team 2017).

BV of mothers based on progeny tests
The linear mixed model used for the estimation of parental BV
and variance components was expressed in matrix form:

y=Xb+Zu+e

where y is a vector of measured data, b is a vector of fixed effects
with design matrix X, u is a vector of random effects with design
matrix Z, and e is a vector of residuals. Fixed- and random-effect
solutions were obtained by solving the following mixed-model
equation (White and Hodge 2013):

[x’x X'Z Mf,] _ [X'y]
Z'’X 7' + 1ol 7'y

where b is the fixed effects, including site, block within site, and
provenance; u is the random effect, which is the family; I is the
identity matrix with dimensions equal to the number of mothers;
and «ais a ratio of residual variance and genetic variance explained
by the random family effect.

The estimations of BV (1), variance, and covariance components
were done using the Ime4 package (Bates et al. 2015) in R (version
3.3.3; R Core Team 2017).

Pearson correlation

For all wood properties measured with SilviScan and indirect
methods, Pearson correlation was calculated between the plus
trees’ BVs and plus trees’ phenotype data. In the case of SilviScan-
based analysis, only one ramet was available, whereas in the case
of Pilodyn, velocity, and MOE(ind), two or three ramets were avail-
able, depending on the OP family.

Narrow-sense heritability (h?)

Two methods for calculating heritability were estimated. The
first method was based on half-sib family progeny analysis, and
the linear mixed model was fitted as follows:

B

Yigim = M+ S; + By + P+ Fygy + SEygy + e

ijkim

where yj,, is the phenotypic individual observation; p is the
general mean; S, By, and Py are the fixed effects of site i, block j,
and provenance k, respectively; Fy, is the random effect of family |
within provenance k; SF;g, is the random interactive effect of site i
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and family I within provenance k; and e, is the random residual
effect for individual tree m.

Narrow-sense heritability was estimated for each trait as

ijidm

-2
4 x of

G ot

where &3, 7, 67, 6%, and 6> are estimations of additive genetic
variance (A), phenotypic variance (P), family variance (F), family-
site interaction variance (SF), and residual variance (e), respec-
tively.

The second method was based on parent-offspring regression.
We used a linear regression to model the mother—offspring pairs
for each trait value:

Y =4, + BX

where Y is the phenotype value for the offspring, 3, is the inter-
cept of the regression, 3, is the slope of the regression, and X is the
phenotype value for a mother. Because genetic covariance be-
tween parents and offspring is equal to (1/2)o”. (Falconer and
Mackay 1996), we can get

cov(X,Y) _ (1/2)0',%;
varX 2

B, =

Ip
The individual tree h? is

2
2 Ta
ww=2

2
Op

So from the slope of the regression, the estimation of h? can be
obtained from

n? = 2B,

The standard error of heritability is estimated by 2/\/ITJ
(Falconer and Mackay 1996), where N is the number of families.

This way, the parent-offspring-based heritability was com-
puted for SilviScan data for each annual ring and for Pilodyn,
velocity, and MOE(ind). To allow comparison between the esti-
mates based on SilviScan and those based on indirect measure-
ments, all heritabilities were computed only on the 162 families
for which three ramets were available in the clonal archives.

In our study, the heritabilities for SilviScan data were calculated
for each cambial age from the area-weighted means representing
stem cross sections.

Repeatability

Repeatability indicates the proportion of total variation in a
trait that is due to differences among clones (Falconer and Mackay
1996). The individual repeatability R was calculated as (Falconer
and Mackay 1996; Lynch and Walsh 1998)

2

(’-C

2 2
o, + o,

where o7 is the estimated clone variance, and o? is the residual
variance.
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Progeny size effect on heritability

To investigate the effect of progeny size on the estimation of her-
itability based on a parent—offspring regression, we used a subset of
progeny trees in which each family had exactly six progenies in each
of the two trials. In total, 180 families and 2160 progeny trees were
included in the analysis. From this subset, one to six progenies
were randomly selected per family from each site. The process
was bootstrapped 500 times, and the means and standard errors
of heritability were then estimated for comparison. The most
prominent consequence of increasing the number of OP proge-
nies was the decrease in the standard errors (i.e., more precise
estimation of heritability) (Fig. 2). When a progeny size of four
trees was selected, parent-offspring heritability stabilized for
MOE(ind) and peaked for velocity, whereas it reached a maximum
value for Pilodyn at progeny size six. Based on these results, all of
the genetic parameters involving progeny data were estimated
using the highest number of progeny size.

Results

Traits curve for progenies and plus trees

Mean values for ring width, DBH, wood density, MOE, and MFA
were plotted against each annual ring for progenies and plus trees
(Fig. 1). Ring numbers larger than 27 for the clonal archive and
ring numbers larger than 16 for progeny trees were excluded, as
they were based on very few trees.

Ring width and wood density curves showed clear discrepancies
between the trees at the clonal archive and those at the progeny
trials. In the progeny test, the mean widths of the rings decreased
steeply until about ring 10, after which it became rather stable
until the overrepresentation of fast-growing trees became visible
at above ring 15 (Lundqvist et al. 2018), which is indicated in Fig. 1
with a black, vertical line. The density mean was high closest to
the pith, then stable at a low level until ring 10, after which it
started to increase steeply until the fast-growing trees became
overrepresented. In contrast to the progeny trial, the ring width
means of the clonal archives started low and increased steadily
until rings 10-12, presumingly at the time when the archive was
first thinned from dense to low spacious compared with the prog-
eny trials. Then, the means started to decrease with age. These
trees were topped at age 23 years, which should approximately
correspond to ring 18, indicated with a grey, vertical line. At
higher ages, ring width experienced a sharp drop, which can be
interpreted as a physiological response of the trees to the removal
of the upper canopy. From this, we concluded that data at higher
ages of the clonal archive may not represent the natural develop-
ment of trees and may not be fully comparable with the expected
response in the progeny trials at older ages. At ages deemed
representative, the wood density curve for the clonal archive
mirrored the changes in ring width, which is not surprising
considering that growth and density are negatively correlated
(Chen et al. 2014). In reference to DBH, we observed that the trees
at the clonal archive were thinner from pith up to ring 14. After
this ring, they became thicker than those at the progeny trial
because of steadily wider rings.

The curves representing change in MFA with annual ring were
very similar between the trees at the progeny trial and those at the
clonal archive. In both types of plantation, MFA decreased sharply
and stabilized towards the bark. The slight increases of the means
for the last rings shown may reflect overrepresentation of fast-
growing trees. As expected, the decrease in MFA is accompanied
by an increase in MOE because of the strong negative correlation
between the traits, also shown based on the same data by Chen
etal. (2014). It was also expected that the progeny trial MOE would
reach higher values than those at the clonal archive, as MOE
shows positive correlation with wood density, which is higher for
these trees in rings larger than 10. In contrast to ring width and

< Published by NRC Research Press
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Fig. 2. Heritability estimation by parent-offspring regression based on different numbers of progenies for Pilodyn penetration depth, Hitman
acoustic velocity, and MOE(ind). The number of ramets per mother clone varied among plus trees from one to three. [Colour online.]
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wood density, MFA and MOE curves did not reveal an effect of tree
topping.

BV and phenotypic value correlation

Per-ring correlations between half-sib, progeny-based BVs and
plus-tree phenotypes for the SilviScan data are presented in Fig. 3.
For wood density, correlation estimates increased steadily from
low levels at the pith to about 0.4 at rings 12-15. For MFA, the
estimates reached a plateau of about 0.17 at rings 4-7 and then
decreased gradually. The estimates for MOE were in-between: an
initial increase was followed by a plateau, with a decreasing ten-
dency only near the bark, which was possibly an effect of the
increasing overrepresentation of fast-growing trees at those ring
numbers.

The estimated correlations between half-sib, progeny-based BVs
and plus-tree phenotypes were 0.29, 0.13, and 0.23 for Pilodyn,
velocity, and MOE(ind), respectively. When using three plus-tree
ramets, the correlations increased to 0.32, 0.15, and 0.28, respec-
tively. These values were in concordance with the SilviScan-based
estimates of correlation, in which the highest values were reached
for density, followed by MOE and MFA.

Heritability estimates on progeny and parent-offspring
regression

Estimations of h? based on parent-offspring regression at each
annual ring using SilviScan data are presented in Fig. 4. The h?
estimates for wood density increased from pith to bark, and for
MFA, they remained on the same level across all annual rings. For
MOE, an initial increase of the h? estimates was followed by a
plateau.

The h? estimations of the whole-stem cross sections based on
half-sib progeny correlation and parent-offspring regression are
presented in Table 1. Based on progeny correlation, the h? esti-
mates were 0.43, 0.29, and 0.38 for wood density, MFA, and MOE,

6 8
Number of progenies

respectively. For mean parent-offspring, the h? estimates (based
on one ramet) were 0.35, 0.15, and 0.28 for wood density, MFA, and
MOE, respectively. The h? values estimated by progeny correlation
were 0.31, 0.20, and 0.28 for Pilodyn, velocity, and MOE(ind), re-
spectively. Moreover, based on parent-offspring regression, the
h? values ranged from 0.27 to 0.41, 0.13 to 0.29, and 0.13 to 0.30 for
Pilodyn, velocity, and MOE(ind), respectively. With respect to the
indirect measurements of wood quality, these results indicate
that h? estimations based on parent-offspring regression were
only marginally higher than those based on half-sib correlation,
even when three ramets per plus tree were included in the anal-
yses. Based on data collected with indirect methods, the progeny-
based h? estimates were higher than parent-offspring regression
h? estimates for one ramet. Instead, the progeny-based h? esti-
mates were marginally lower than the h? estimates obtained for
parent—offspring regression for three ramets. Based on SilviScan
data, the progeny-based h? estimates were higher than the h? es-
timates obtained for parent-offspring regression for one ramet.
To allow comparison, all of the h? estimates in Table 1 were com-
puted only on the 162 families for which three ramets were avail-
able in the clonal archive. Repeatability estimates were higher
than any h? estimate.

Discussion

In this study, we evaluated the potential of ranking and selec-
tion for better solid-wood quality traits of outstanding pheno-
types (plus trees) as an alternative to backward selection based on
BV estimates on half-sib progenies. The evaluation was based on
multiple genetic parameters: correlation between half-sib prog-
eny BVs and plus-tree phenotype data, repeatability, and narrow-
sense heritability (h?) based on parent-offspring regression as
compared with half-sib correlation.
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Fig. 3. Correlations of SilviScan data for each annual ring between breeding values (BVs) of plus trees estimated from the progeny and

area-weighted phenotypic values from the plus trees. [Colour online.]
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Fig. 4. Heritability estimates using parent-offspring regression of area-weighted values calculated from SilviScan data for each annual ring.
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Table 1. Heritability and repeatability estimates based on measurements of wood density, MFA, and MOE from SilviScan, as well as Pilodyn
penetration depth and Hitman acoustic velocity, which were used to estimate MOE as the indirect methods.

SilviScan Indirect methods
Methods Density MFA MOE Pilodyn Velocity MOE(ind)
Parent-offspring regression (1 ramet) 0.35 (+0.16) 0.15 (+0.16) 0.28 (+0.16) 0.27 (+0.15) 0.13 (+0.15) 0.13 (+0.15)
Parent-offspring regression (3 ramets) N/A N/A N/A 0.41 (+0.15) 0.29 (+0.15) 0.30 (+0.15)
Half-sib correlation (offspring only) 0.43 (+0.09) 0.29 (+0.08) 0.38 (+0.08) 0.31(+0.08) 0.20 (£0.08) 0.28 (+0.08)
Repeatability N/A N/A N/A 0.52 (+0.06) 0.30 (+0.04) 0.45 (+0.05)

Note: To allow comparison, all heritability estimates (+ standard error) were based only on the 162 families for which three ramets were available in the clonal
archive. Estimates that are statistically significantly different from zero are indicated in boldface type. MFA, microfibril angle; MOE, modulus of elasticity; MOE(ind),

modulus of elasticity for indirect methods; N/A, not applicable.

The h? estimates for wood density, MFA, and MOE measured
with SilviScan from increment cores were 0.43, 0.29, and 0.38 and
0.35, 0.15, and 0.28 based on progeny correlation and parent—
offspring regression, respectively. When using indirect measure-
ments directly on standing trees, the h? estimates based on
progeny correlation were 0.31, 0.20, and 0.28 for Pilodyn, velocity,
and MOE(ind), respectively. Moreover, based on parent-offspring
regression, the values ranged from 0.27 to 0.41, 0.13 to 0.29, and
0.13 to 0.30 for Pilodyn, velocity, and MOE(ind), respectively. Our
h? values estimated by progeny correlation were in the range of
those previously reported for wood properties in loblolly pine
(Pinus taeda L.; Isik et al. 2011), maritime pine (Pinus pinaster Aiton;
Louzada 2003; Gaspar et al. 2008), lodgepole pine (Pinus contorta
Douglas ex Loudon; Hayatgheibi et al. 2017), Norway spruce (Hylen
1997, 1999; Hannrup et al. 2004; Hallingbéck et al. 2008), white
spruce (Lenz et al. 2010), and British Columbia’s interior spruce
(Ivkovich et al. 2002). Similarly, our h? estimates based on parent-
offspring regression also agree with previously reported values
for wood properties in Norway spruce (Steffenrem et al. 2016),
loblolly pine (Loo et al. 1984; Williams and Megraw 1994), and
Sakhalin spruce (Picea glehnii (F. Schmidt) Mast.; Tanabe et al. 2015).

Our repeatability estimates for the indirect measurements
based on the analysis of three ramets per plus tree were 0.52, 0.30,
and 0.45 for Pilodyn, velocity, and MOE(ind), respectively. Previ-
ously reported repeatability estimates for wood quality and
growth in Norway spruce (Rosner et al. 2007; Gréns et al. 2009;
Steffenrem et al. 2016) and Sakhalin spruce (Tanabe et al. 2015) are
also in concordance with our estimates, whereas other studies
have reported either higher MFA and MOE values in radiata pine
(Pinus radiata D. Don; Lindstrom et al. 1998) or lower MOE values in
Sitka spruce (Picea sitchensis (Bong.) Carriere; Hansen and Roulund
1997).

Interpretation of the discrepancies between progeny and
plus tree for ring width and wood properties

The observed discrepancies in developments across annual
rings between the trees at the progeny trials and those at the
clonal archive for ring width, wood density, and MOE could be
attributed to a difference in spacing, including thinning of the
clonal archive. During the first years, the trees of the clonal ar-
chive were only 0.5 m apart and were under strong competition
compared with the trees in the progeny trials. This is presumed to
explain their thinner annual rings and higher wood density at
these ages. The thinning performed at two occasions even out this
difference in competition, and widths and densities become sim-
ilar. Thinning results in more favourable growth conditions for
the clonal archive trees regarding access to light and other re-
sources, which is presumed to explain why trees at these ages
instead have wider annual rings and lower wood densities. After
topping of the trees, it is harder to relate this to the developments
of growth and patterns.

Less spacing among trees is known to result in stronger compe-
tition for resources. Under tight spacing, lower diameter is pri-
marily the result of competition for light (Turner et al. 2009).
Trees tend to grow taller at the expense of diameter in their at-

tempt to outcompete the neighbouring trees in search of light.
Multiple studies in conifer species have reported effects of plan-
tation density on growth (diameter and slenderness) and wood
and fiber properties. Wider spacing at planting has been reported
to be associated with higher tree diameter and lower MOE in Scots
pine (Persson et al. 1995) and a number of coniferous species
(Chuang and Wang 2001; Zhang et al. 2002; Clark et al. 2008;
Lasserre et al. 2008, 2009; Schimleck et al. 2018). Ring width and
wood density are negatively correlated, and MOE is negatively
correlated with both wood density and MFA (Loo et al. 1984; Hodge
and Purnell 1993; Zhang and Morgenstern 1995; Waghorn et al.
2007; Gaspar et al. 2008; Lasserre et al. 2009; Chen et al. 2014). The
effect of spacing on growth and wood properties, together with
their well-documented correlations, strengthens our previous in-
terpretation regarding thinner rings and higher density for the
clonal archive trees in the first rings and the reverse later on. It
also supports our interpretation of the higher MOE, and lower
MEFA, at these latter ages for the progeny trees.

Although narrow spacing could account for the results that we
obtained, it is also possible that additional factors have contrib-
uted to the discrepancies between the two plantation types: abi-
otic factors such as rainfall, temperature, or soil properties.
However, a previous study conducted on the same data from the
progeny trials, both treated with similar silvicultural activities,
revealed low genotype-environment interaction (Chen et al
2014), which indicates that climatic conditions or soil properties
are not factors behind the differences (at least in southern Swe-
den, where all three plantations are located).

Potential for selection of Norway spruce plus trees on
phenotype data at clonal archives

In operational breeding, selection of plus trees as gene donors
to the next generation is usually conducted through evaluation of
their OP progenies grown in common-garden experiments (prog-
eny trials), a breeding design known as a backward selection. This
is a method that involves multiple actions such as seedling pro-
duction, seedling establishment (often in multiple sites), and as-
sessment and evaluation of multiple tree properties when the
trees in the trial have grown at least 10 rings at breast height. The
high demands in time and costs of this approach motivate evalu-
ation of alternatives such as plus-tree selection based on pheno-
type data assessed at the clonal archive.

Phenotypic selection of plus trees is a common practice for
establishing the foundations of a breeding program, while provid-
ing early genetic gains (Zobel and Talbert 1984). Furthermore,
two-stage selection strategies of plus trees, in which plus trees are
first selected based on phenotype followed by a second stage
based on clonal or progeny test, have previously been proposed in
conifers (Danusevicius and Lindgren 2002, 2004). Danusevicius
and Lindgren concluded that when heritability is high, pheno-
typic selection is a superior breeding strategy and a two-stage
strategy based on progeny testing improves by the first stage of
phenotypic selection.

Considering that repeatability and h? estimates are similar, we
suggest that selection of MFA at the clonal archive would be an
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effective alternative. However, given the low values of correlation
among plantations, h?, and repeatability, a lower efficiency in tree
improvement is expected for MFA than for other traits with
higher h? (e.g., density; Chen et al. 2014). This conclusion can be
extended to selection based on both progeny and plus-tree phe-
notype. The heritability of MOE using three ramets based on
parent-offspring regression (0.30) is higher than using half-
correlation (0.28); however, considering that clonal repeatability
for MOE (0.45) is higher than any h? estimate, we suggest that it
would be more cost- and time-effective to select clonal archive
trees based on MOE scored with indirect measurements. Previ-
ously, MFA and MOE have been reported to have low and moder-
ate heritabilities, respectively, in Norway spruce (Hannrup et al.
2004; Lenz et al. 2010; Chen et al. 2014), whereas higher heritabil-
ities have been reported for MOE in Scots pine (Hong et al. 2015)
and for MOE and MFA in loblolly pine (Isik et al. 2011). Similar to
the other wood properties (repeatability for wood density is
higher than correlation and h?), selection of trees at the clonal
archive based on indirect measurements of this trait will be effi-
cient. Considering that h? increases towards the bark, a higher
response to selection is expected at older ages. Other studies also
support our observation of higher heritability for wood density
than for MFA and MOE (Lenz et al. 2010; Isik et al. 2011; Chen et al.
2014).

Conclusion
Our study resulted in the following conclusions.

Narrow spacing at the clonal archive could account for the
discrepancies between the progeny trial and clonal archive for
ring width and wood density traits.

« Narrow-sense heritabilities (h?) estimated from parent-offspring re-
gression using a single ramet were lower than those based on
half-sib correlation. Based on indirect measurements, parent—
offspring h? estimates using three ramets were higher than
those based on half-sib correlation, indicating that multiple
copies of ramets are critical in estimating reliable genetic pa-
rameters and making selection in archive.

Wood density, or its surrogate trait Pilodyn measurement, had
the highest h? among the three wood quality traits, whether it
was based on SilviScan data using increment cores or indirect
measurements on standing trees and parent-offspring regres-
sion or half-sib correlation, followed by MOE and MFA.
Backward selection, whether based on offspring data alone or a
combination of offspring and clonal archive data, would be
most effective for wood density and least effective for MFA.
Based on higher repeatability estimates as compared with the
h? estimates, selection of the best clones from clonal archives
would be highly cost- and time-effective.

The observed discrepancies between both plantation types for
growth, wood, and fiber properties could be mostly explained
by the tighter tree spacing at the clonal archive.
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SUMMARY

Norway spruce is a boreal forest tree species of significant ecological and economic importance. Hence
there is a strong imperative to dissect the genetics underlying important wood quality traits in the species.
We performed a functional genome-wide association study (GWAS) of 17 wood traits in Norway spruce
using 178 101 single nucleotide polymorphisms (SNPs) generated from exome genotyping of 517 mother
trees. The wood traits were defined using functional modelling of wood properties across annual growth
rings. We applied a Least Absolute Shrinkage and Selection Operator (LASSO-based) association mapping
method using a functional multilocus mapping approach that utilizes latent traits, with a stability selection
probability method as the hypothesis testing approach to determine a significant quantitative trait locus.
The analysis provided 52 significant SNPs from 39 candidate genes, including genes previously implicated
in wood formation and tree growth in spruce and other species. Our study represents a multilocus GWAS
for complex wood traits in Norway spruce. The results advance our understanding of the genetics influenc-
ing wood traits and identifies candidate genes for future functional studies.

Keywords: candidate genes, functional trait mapping, genome-wide association mapping, Norway spruce,
sequence capture, single nucleotide polymorphisms.

INTRODUCTION

Norway spruce (Picea abies (L.) Karst.) is a dominant bor- has become one of the priority traits (Bertaud and Holm-
eal species of significant economic and ecological impor- bom, 2004; Hannrup et al., 2004). Norway spruce breeding
tance (Hannrup et al., 2004). Long-term Norway spruce in Sweden completes one cycle in about 20 years and such
breeding programmes for improvement of growth and sur- long generation time makes improvements in growth and
vival were initiated in the 1940s and recently, wood quality wood quality very slow. Among wood quality traits, wood
© 2019 The Authors. 83
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density is considered a key indicator of stability, strength
and stiffness of sawn timber (Hauksson et al., 2001). Sev-
eral studies of wood quality observed that fast growth con-
flicts with high quality wood, as shown by the negative
genetic correlation between wood volume growth and den-
sity in Norway spruce (Olesen, 1977; Dutilleul et al., 1998;
Chen et al., 2014). However in several conifers such as
Scots pine (P. sylvestris L.) and red pine the relationship
has been inconsistent (Larocque and Marshall, 1995; Pel-
tola et al., 2009). To combine fast growth and desirable
wood properties through breeding, and to shorten the
breeding cycle, it is therefore imperative to design effective
early selection methods and breeding strategies. In an
effort to design optimal breeding and selection strategies it
is essential to identify alleles that are responsible for gen-
erating favourable or unfavourable genetic correlations
(Hallingbéack et al., 2014).

One of the early studies in conifers identified quantita-
tive trait locus (QTLs) for wood density variation in loblolly
pine using linkage analyses based on segregating family
pedigrees (Groover et al., 1994). However, marker-aided
selection (MAS) based on results from QTL linkage analy-
ses were never implemented in practical tree breeding due
to the so-called Beavis effect (e.g. inflated estimates of alle-
lic effects and underestimation of QTL number for eco-
nomically important traits) (Beavis, 1998), inconsistent
associations among different families and the low transfer-
ability of markers (Strauss et al., 1992). Association map-
ping (AM), also called linkage disequilibrium (LD)
mapping, is a powerful alternative QTL detection method
that was introduced to tree genetics using a candidate
gene approach (Thumma et al., 2010). AM overcomes the
limited resolution of family-based QTL linkage mapping by
relying on historical recombination in the mapping popula-
tion (Neale and Savolainen, 2004; Thavamanikumar et al.,
2013; Huang and Han, 2014). However, the genome-wide
levels of LD in Norway spruce has been revealed to be
complex and highly heterogenous (Larsson et al., 2013).
Therefore, AM is also vulnerable to some confounding his-
torical factors such as population admixture, selection
pressures which include possible genetic drift. Therefore,
population genetic structure, kinship and LD within the
study population need to be carefully accounted for in the
analysis to minimize false positives (Khan and Korban,
2012).

The availability of a draft genome sequence for Norway
spruce (Nystedt et al., 2013) has provided numerous possi-
bilities for the development of genetic markers to conduct
both AM at the genome-wide level (genome-wide associa-
tion, GWAS) and genomic selection (GS). Several reduced
representation-based approaches such as sequence cap-
ture and transcriptome sequencing (Hirsch et al., 2014)
have been developed for studying large genomes, such as
the 20 Gb Norway spruce genome. These approaches

reduce the sequence space by decreasing the repetitive
sequence content of the genome.

Several AM studies have been performed on traits in dif-
ferent tree species and have identified genetic loci linked
to, for instance, wood properties in Populus trichocarpa
Torr. & A. Gray ex. Hook (Porth et al., 2013) and Eucalyptus
(Resende et al., 2017b), and adaptive traits in Pinus con-
torta Douglas (Parchman et al., 2012). Some genes may
impact the trait development at a particular developmental
stage, whereas others may alter, or control, rates of
change and transitions between consecutive stages (Xing
et al., 2012; Anderegg, 2015). Studies aimed at dissecting
the genetic basis of such dynamics in wood properties can
benefit from the application of mathematical functions that
account for year-to-year variation across annual growth
rings, cambial age and distance from pith (Li et al., 2014).
The development of mathematical methods for the analy-
sis of these longitudinal traits has made it possible to map
QTLs underlying the dynamics of developmental traits
(Yang et al., 2006; Li and Sillanpaa, 2013; Camargo et al.,
2018), and to enhance our understanding of the genetic
architecture of the growth trajectories of such dynamic
traits (Ma et al., 2002; Xing et al., 2012). Such functional
mapping analysis can be conducted using a multistage
approach (Heuven and Janss, 2010). First, the phenotype
trends of each individual are modelled using curve-fitting
methods and the parameters describing the curve are then
considered as latent traits. The latent traits are then used
in an independent association analyses to search for geno-
mic regions affecting the trait and to estimate genetic mar-
ker effects (Li and Sillanpaa, 2013; Li et al., 2014).

In this study, we applied a functional AM approach to
identify genomic regions contributing to wood quality
traits in Norway spruce. We applied spline models since
traditional analyses that utilise a single point data across
annual growth rings may confound the analyses by aver-
aging across a full sample. Such averaging may obscure
mechanisms acting at specific time points during wood
formation and will make identification of underlying genes
more difficult. This study has performed the analysis of
number of cells per ring calculated from SilviScan data.
Penalized LASSO regression (Tibshirani, 1996) and the sta-
bility selection probability method (Meinshausen and
Buhlmann, 2010) were then used, to detect significant
associations between latent traits derived from estimated
breeding values (EBVs) and 178101 SNP markers covering
the Norway spruce genome.

RESULTS AND DISCUSSION

All 517 Norway spruce maternal trees in the study were
considered for variant detection and an average of 1.5
million paired-end reads were sequenced per individual
resulting in 178 101 SNPs. Most SNPs were missense
(61%). Applying the probability of stability selection
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(SSP) to the intercept, slope and two nodes (f, and B3) were consistent with overdominance (|d/al > 1.25), with
we detected 52 significant QTLs in 17 individual traits the remaining being codominant (27) (|d/al < 0.50) and 10
whose phenotypic variance explained (PVE) ranged from exhibiting partial to full dominance (0.50 < |d/a| < 1.25)
0.01 to 4.93% (Table 1). 14 of the significant markers (Table 2, Figure 3).

Table 1 Phenotypes, latent traits, SNP, SNP feature, frequency and PVE

Phenotype Latent Trait  QTL SNP? Allele  SNP Feature Frequency  PVE (%)
WD Intercept 167610 MA_10435406_13733 A/G Downstream variant 0.71 4.64
Slope 30469 MA_33109_11804 A/G Upstream variant 0.72 4.50
B2 30469 MA_33109_11804 A/G Upstream variant 0.551 415
B3 157442 MA_10432646_63090 G/A Upstream variant 0.567 2.43
EWD Intercept 167610 MA_10435406_13733 A/G Downstream variant 0.545 3.38
Slope 23798 MA_20321_44812 C/T Upstream variant 0.53 0.69
70955 MA_118446_4316 T/A Upstream variant 0.644 0.40
TWD Slope 131698 MA_10235390_3386  G/A Stop gained 0.672 1.58
160208 MA_10433411.3386  T/C Intron variant 0.595 3.4
Ba 89044 MA_212523 6278 T/C Upstream variant 0.534 3.34
LWD Slope 43797 MA_62987_13474 T/C Missense variant 0.524 1.81
165481 MA_10434805_21408 C/T Intron variant 0.588 1.21
171223  MA_10436058_4902 G/A Intron variant 0.712 4.03
RW Intercept 11535 MA_10694_9101 A/C Synonymous variant 0.545 1.95
112391 MA_879270_7373 C/T,A  Stop gained 0.532 1.45
112394  MA_879384_3894 C/A Splice region variant 0.692 2.56
Slope 165481 MA_10434805_21408 C/T Intron variant 0.521 2.66
Ba 23808 MA_20322_28351 T/G Synonymous variant 0.554 1.78
165481 MA_10434805_21408 C/T Intron variant 0.533 0.18
Bs 23808 MA_20322_28351 T/G Synonymous variant 0.55 1.20
165481 MA_10434805_21408 C/T Intron variant 0.615 1.79
TRW Slope 111057 MA_817099_1105 T/A Missense variant 0.685 1.12
B2 33110 MA_38472_13803 T/A Upstream gene variant ~ 0.657 3.23
89295 MA_214776_1624 G/A Upstream gene variant  0.688 4.51
Bs 111057 MA_817099_1105 T/A Missense variant 0.672 1.20
LRW Intercept 143628 MA_10428744 29330 C/T Downstream variant 0.668 0.5
B3 164772 MA_10434624_20686 C/A Downstream variant 0.571 0.06
MOE Slope 165481 MA_10434805_21408 C/T Intron variant 0.602 1.00
NC B2 145839 MA_10429444 12692 G/C Upstream variant 0.645 3.82
ENC Slope 98508 MA_402880_2045 A/C Upstream variant 0.667 0.03
167610 MA_10435406_13733 A/G Downstream variant 0.685 0.01
TNC Intercept 95870 MA_346723_2241 T/C Upstream variant 0.667 3.78
126785 MA_9447489_687 A/C Upstream gene variant ~ 0.68 4.93
LNC Intercept 143628 MA_10428744 29330 C/T Downstream variant 0.66 3.14
Slope 143628 MA_10428744 29330 C/T Downstream variant 0.672 4.77
EP Intercept 16868 MA_15729_40331 G/T Intron variant 0.609 3.32
91242 MA_246125_1213 G/A Synonymous variant 0.594 3.41
TP Intercept 101203 MA_462319_4322 AIC Upstream gene variant  0.594 1.16
132014  MA_10251995_2442 A/C Upstream gene variant  0.601 3.22
LP Ba 162397 MA_10434007_77578 C/T Upstream gene variant  0.892 1.14
EP/LP Intercept 51657 MA_80954_29644 G/A Downstream variant 0.63 0.81
60787 MA_98424_947 (va) Intron variant 0.655 1.80
123639 MA_8790100_1384 A/C Upstream variant 0.628 0.75
B2 59480 MA_96191_7122 A/G Synonymous 0.6 2.37
Bs 117333 MA_1045136_4310 T/C Missense variant 0.523 1.34
Mass index (growth x density) Intercept 166235 MA_10435002_4986 G/A Intergenic variant 0.533 0.65
Slope 61096 MA_99004_17108 G/A Synonymous variant 0.66 0.01
67181 MA_109804_10278 G/A Missense variant 0.612 0.05
1401 MA_1378_4718 C/A Exon/stop gained 0.588 1.19
138744  MA_10427214_13968 G/T Missense variant 0.58 1.80
162397 MA_10434007_77578 C/T Upstream variant 0.627 1.44
B2 21924 MA_19222_1789 AG Upstream variant 0.71 1.82

?SNP: The SNP name was composed of the contig (MA_number) and SNP position on contig. For example, the first SNP
MA_1043540_13733 was located on contig MA_1043540 at position 13 733 bp; PVE is the phenotypic variance explained.
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Table 2 SNP modes of inheritance

Phenotype QTL SNP Allele 2a° d® d/a
WD 167610 MA_10435406_13733 AG 19.63 9.45 0.96
30469 MA_33109_11804 AG 5.19 6.22 2.40
157442 MA_10432646_63090 G/A 4.49 2.80 1.25
EWD 167610 MA_10435406_13733 AG 5.495 2.270 0.83
23798 MA_20321_44812 cr 4.814 5.905 2.45
70955 MA_118446_4316 T/A 1.989 0.966 0.97
TWD 131698 MA_10235390_3386 G/A 3.849 —0.636 -0.33
160208 MA_10433411_3386 T/C 2.313 3.908 3.38
89044 MA_212523_6278 T/C 0.703 -0.962 —2.73
LWD 43797 MA_62987_13474 T/C 5.124 -1.086 -0.42
165481 MA_10434805_21408 cr 4.684 1.165 0.50
171223 MA_10436058_4902 G/A 0.938 2.482 5.29
RW 11536 MA_10694_9101 A/C 0.111 0.049 0.88
112391 MA_879270_7373 C/TA 0.056 -0.027 -0.98
112394 MA_879384_3894 C/A 0.194 -0.045 —0.45
165481 MA_10434805_21408 cr 0.158 0.039 0.49
23308 MA_20322_28351 T/G 0.025 0.030 2.62
TRW 111057 MA_817099_1105 T/A 0.016 0.001 0.16
33110 MA _38472_13803 T/A 0.029 -0.002 -0.19
89295 MA_214776_1624 G/A 0.026 -0.001 -0.13
LRW 143628 MA_10428744_29330 cr 0.006 -0.002 -0.67
164772 MA_10434624_20686 C/A 0.002 0.003 2.90
MOE 165481 MA_10434805_21408 cr 0.376 0.101 0.53
NC 145839 MA_10429444_12692 G/C 0.298 0.792 5.31
ENC 98508 MA_402880_2045 A/C 4.144 1.314 0.63
167610 MA_10435406_13733 AG 4.695 -3.033 -1.29
TNC 95870 MA_346723_2241 T/C 0.529 -0.187 -0.71
126785 MA_9447489_687 A/C 0.083 -0.429 -10.21
LNC 143628 MA_10428744_29330 cr 0.219 —0.057 —0.52
EP 16868 MA_15729_40331 G/IT 0.542 0.149 0.55
91242 MA_246125_1213 G/A 0.183 -0.129 ~1.40
TP 101203 MA_462319_4322 A/C 0.469 —0.199 -0.85
132014 MA_10251995_2442 A/C 0.339 —0.429 -1.63
LP 162397 MA_10434007_77578 cr 0.127 -0.071 -1.1
EP/LP 51657 MA_80954_29644 G/A 0.081 0.062 1.49
60787 MA_98424_947 cr 0.254 -0.181 ~1.43
123639 MA_8790100_1384 A/C 0.032 -0.078 —4.81
59480 MA_96191_7122 AG 0.120 -0.117 -1.95
117333 MA_1045136_4310 T/C 0.018 0.077 8.56
166235 MA _10435002_4986 G/A 0.138 0.013 0.19
MI 61096 MA_99004_17108 G/A 0.006 -0.009 -3.16
67181 MA_109804_10278 G/A 0.007 -0.012 -3.14
1401 MA_1378_4718 C/A 0.003 0.004 2.67
138744 MA_10427214_13968 GT 0.002 0.017 17.00
162397 MA_10434007_77578 cr 0.025 -0.010 -0.79
21924 MA_19222_1789 AG 0.014 -0.008 -1.14

“Calculated as the difference between the phenotype means observed within each homozygous class (2a = |Ggg — Gpy|, Where Gj; is the trait

mean in the ijth genotype class).

PCalculated as the difference between the phenotypic mean observed within the heterozygous class and the average phenotypic mean
across both homozygous classes [d = Ggy, - 0.5(GggtGpp)], where Gij is the trait mean in the ijth genotypic class.

Previous work utilizing a functional mapping analysis in
forest trees have used a limited number of molecular mark-
ers (Li et al., 2014). Li et al. (2014) applied this analysis in a
bi-parental Scots pine cross using 319 markers. Hence, our
work represents an advance in that we have been able to
apply this approach at the genome-wide scale (178 101
SNPs) on maternal trees, with a dynamic trait dataset

comprising 14 time points/annual growth rings (i.e. cam-
bial age). Latent traits represent significant time points in
the trait development allowing us to detect putative genes
at these critical junctures in wood formation. Functional
mapping has also been applied in ecological studies (Paine
et al., 2012) and crops more recently. The fitting of growth
models to the data describing growth trajectories of wood
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formation phenotypes allowed the identification of marker-
trait associations. This enabled us to track phenotype
development against the genetic contributions at key time
points.

Wood properties have previously been indicated to have
a complex genetic architecture, in which association studies
that make use of historical recombination represent a
method that presents a substantial increase in QTL detec-
tion power for such complex traits (Hall et al., 2016). In our
study, the number of QTLs detected reflected the complex
nature of the traits under study, and our experimental
design allowed the detection of the largest/most significant
QTLs. A previous functional mapping study involving SNPs
in conifers applied two levels of evaluating QTLs (Li et al.,
2014), for which they have suggestive and significant QTLs,
with our study only reporting the significant QTLs (single
level), hence the small number of QTLs in our study. The
small number of significant QTLs might also be due to the
complex nature of the approximately 20 Gbp spruce gen-
ome. The sequence capture method only covered a total of
2331.1 kbp of exonic sequence, 2470.9 kbp of intronic
sequence, 40.7 kbp of UTR-like sequence and 9119
exon—intron boundaries (Vidalis et al., 2018). Therefore, a
large portion of the genome was not represented and this
would be compounded by the rapid LD in spruce, which
might affect the number of significant QTLs detected. How-
ever, the numbers of QTLs detected in our study are in line
with some previous studies in conifers (Gonzalez-Martinez
et al., 2007), and with the drought association study in Nor-
way spruce (29 significant SNP) (Trujillo-Moya et al., 2018).

The QTL detected in our study explain a small propor-
tion of the genetic variation and this could be due to sev-
eral factors. This is in line with previous studies examining
genetic variation in complex traits in coniferous species
using forward genetic approaches, such as QTL (Sewell
et al., 2000; Novaes et al., 2009) and AM (Wegrzyn et al.,
2010; Du et al., 2013, 2018; Porth et al., 2013; McKown
et al., 2014; Lamara et al., 2016) The large effective popula-
tion size in forest tree populations closely resembles
humans, therefore making the ‘missing heritability’ issue
found in human AM experiments relevant to forest tree
populations. First, one of the hypothesis attributed to this
‘missing heritability’ is the substantial amount of quantita-
tive variation linked to the cumulative effect of rare alleles
that cannot be detected in GWAS using small sample sizes.
Therefore in our study increasing the sample size from 517
individuals might allow the inclusion of rare alleles,
explaining some of the missing heritability (Hamblin et al.,
2011; De La Torre et al., 2019). The detection of true low-
frequency alleles associated with complex traits is chal-
lenging as it requires large and genetically diverse popula-
tions (Hall et al., 2016). Variants with low minor allele
frequencies are usually discarded due to the potential of
genotyping errors. However, rare alleles play an important

© 2019 The Authors.
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role in both the genetic regulation of traits and explaining
the ‘missing heritability’ in forest species (De La Torre
et al., 2019). Therefore, this could have also contributed to
the small effect sizes detected in our study as we filtered
SNPs with low minor allele frequencies (<0.05 MAF). Sec-
ond, allelic heterogeneity in which multiple functional alle-
les exist and are associated with different phenotypes,
especially for such complex traits as those linked with
wood formation. The presence of allelic heterogeneity will
require a large population size that will encompass the
allelic variations to account for the missing heritability
(Bergelson and Roux, 2010). Third, non-additive effects
mainly epistatically derived variation between genes might
go undiscovered (Storey et al., 2005). Most GWAS models
have been designed to only consider the additive effects of
markers. Numerous studies have shown that non-additive
effects constitute a large part of the genetic variation of
complex traits, these studies considered intra-locus (domi-
nance) and inter-locus (epistatic) effects (Huang et al.,
2012; Zhou et al., 2012; Mackay, 2013; Yang et al., 2014; Du
et al., 2015). Yang et al. (2014) showed in corn an increase
in the proportion of heritability explained when a model
considering dominance was utilized and therefore allowing
a better overview of heterosis. In rice Zhou et al. (2012)
demonstrated the accumulation of multiple effects, includ-
ing dominance and overdominance, which might partially
explain some of the genetic basis for heterosis. Du et al.
(2015) identified additive, dominant and epistatic effects
explaining nearly two-fold high heritability in Populus
tomentosa for 10 growth and wood property traits utilizing
pathway-based multiple gene associations.

Lastly, epigenetic variation is also likely to be one of the
sources of the ‘missing heritability’. With the development
of advanced sequencing platforms, sophisticated genotyp-
ing tools have been developed to unravel epigenetic varia-
tion (Johannes et al., 2009). Therefore, the influence of
each of these factors on heritability strongly depends on
the population sampled and inclusion of sophisticated
genotyping tools in the case of epigenetics. The incorpora-
tion of a combination of advanced statistical models such
as regional heritability mapping (RHM) and the detection
of structural variants, insertion/deletions (InDels) and copy
number variants in GWAS studies from several tree spe-
cies has resulted in higher heritabilities being detected
(Resende et al., 2017a; Gong et al., 2018)

Trait trajectories and functional mapping

EBVs were plotted as phenotype data versus 14 consecu-
tive cambial ages (Figure 1). All phenotypes under investi-
gation are represented with thin light blue (Black average)
curves, to visualize the nature of variation and growth tra-
jectories of the phenotype (Figure 1 and Supporting Infor-
mation Figure S1). The dissection of dynamic traits in
forest trees has been predominantly performed using
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Figure 1. EBV trajectories of four wood quality
traits over time: (a) wood density, (b) late wood
density, (c) annual ring width and (d) late wood ring
width. Individual trajectories for each trait are
shown in light blue lines and the black line repre-
sents the mean trajectory for the phenotype. These
trajectories were used to determine the four latent
traits of each tree, using linear splines with two
knots.
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single data points representing the value of the trait at a
given developmental stage. The major disadvantage of
such an approach is that it overlooks many of the factors
that define the process of formation and development for
important traits such as density and ring width. We utilized
splines that have the advantage of not making a priori
assumption about the shape of the curve and allow for the
trait growth trends to be unbiased. Splines also allow for
the characterization of the dynamic traits in terms of a few
parameters derived from the spline models (Al-Tamimi
et al., 2016). The fitting of growth trajectories is considered
as optimal because it treats phenotypes measured over
time as different traits and also takes into account the cor-
relation generated by the ordered time points (Yang et al.,
2006). The growth trajectories of the traits over time were
calculated from the fitted splines and time intervals were
identified and selected based on the characteristic growth
trajectory of each trait, resulting in associations across and
within traits being identified (Table 1). Therefore, indicat-
ing the control by different sets of genes at different time
points for our longitudinal traits (Table 2), just as in some
age-specific QTLs found in other conifers and rice (Verhae-
gen et al., 1997; Emebiri et al., 1998; Wu et al., 1999). This
approach has the potential to be applied to genomic pre-
diction and selection studies for predicting individuals that
would have the highest impact through the formation and
development of a trait of interest. With application of dif-
ferentially penalized regression (DiPR), pooled significant
association markers can be utilized in GS in order to
increase prediction accuracies (Bentley et al., 2014).

Linkage disequilibrium

The zygotic LD (squared correlation coefficient r?) was
determined through the pooling of all 7 values and plot-
ting them against the physical distances between the same
SNP pair (Figure 2a). This allowed us to estimate the gen-
ome-wide degree of LD in Norway spruce, with the aver-
age LD for linked SNPs being inferred from the trendline
(curve) of the nonlinear regressions. The fitted curve indi-
cates the LD is low in Norway spruce, rapidly decaying by
over 50% (from 0.50 to 0.20) (Figure 2a). The average dis-
tance associated with the LD decline for = 0.1 varied
from 14 to 1500 bp (Figures 2c,d and S2). Neale and Savo-
lainen (2004) reported an LD decayed to less than 0.20
within roughly 1500 bp based on 19 candidate genes in
loblolly pine. As conifers are highly outcrossing a rapid LD
decay is expected, however in spruces the LD displays
diverse patterns among different genes or the same genes
in different species. The LD decline in spruces was also
noted to be roughly between a few base pairs and 2000 bp
(Namroud et al, 2010). These diverse heterogenous LD
patterns were also observed when we analyzed the LD for
individual contigs that had significant associations to our
traits (Figure 2c,d, Figure S3). The general LD estimate of
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all the SNP pairs indicated a fast LD decay (Figure 2a). This
rapid decay could be due to the number of contigs ana-
lyzed in relation to the large Norway spruce genome, as
well as the use of zygotic LD between genotypes. Lu et al.
(2016), noted that the calculation of gametic LD from
phased haplotypes indicated a slower LD decay than when
using zygotic LD in loblolly pine. However, they also
observed varying rates of LD decay between genes and
across different genome regions (Lu et al., 2016). There-
fore, the generality of the LD patterns within the Norway
spruce genome remains to be further analyzed because
only a relatively small and highly specific portions of the
genome was studied here.

Population inference

To account for effects derived from population stratifica-
tion we performed a principal component analysis (PCA).
The top two explained a total of 5.3% of the variation. Pop-
ulation structure inference of clusters detected by PCA was
performed by ADMIXTURE (Figure S3) and the best K
value plotted from the cross-validation error term. Using
the best K method, K =2 better explained the genetic
structure of the study population (Figure S3).

Overall summary of genetic associations

Several associations were shared within each trait and
across traits in the analysis. WD, Ring width (RW), Transi-
tional ring witdh (TRW) and Latewood number of cells (LNC)
had one (MA_33109_11804), two (MA_10434805_21408 and
MA_20322_28351), one (MA_817099_1105) and one
(MA_10428744_29330) QTLs shared by two or more latent
traits, respectively. Common QTLs within RW were observed
for slope, B, and 3 latent traits, with moderate frequencies
ranging from 0.521 to 0.615 and influenced their respective
traits to modest degrees (PVE in ranges of 0.18-2.66%).

For QTLs common across the different latent traits, SNP
MA_10434805_21408 was shared between latewood wood
density (LWD), RW and Modulus of elasticity (MOE); this is
not surprising because of the close correlation between
MOE and wood density. Intron variant MA_10434805_
21408 explained between 0.18 and 2.66% of the PVE
observed in the respective traits. This SNP associated also
had high frequencies of 0.602 and 0.615 in MOE and RW
explaining PVE of 1.00 and 2.66%, respectively (Table 2).
SNP MA_10435406_13733 was shared between WD, Early-
wood wood density (EWD) and Earlywood number of
cells (ENC), was associated with the intercept trait for WD
and EWD and the slope latent trait in ENC (Table 1), with
PVE ranging from 0.01 to 4.64%. The QTL had a high influ-
ence on the density related traits as it explained 4.64%
(WD) and 3.38% (EWD) both exhibiting a partial dominant
inheritance pattern (Table 2).

Numbers of cells (NC), ENC, TNC and LNC traits were
associated with a total of three putative genes and three
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Figure 2. (a) Decay of linkage disequilibrium (LD) across all the tagged genomic sequences, the majority being exonic regions. The squared correlation coeffi-
cient between loci (r?) is plotted against distance, in base pairs, separating loci. The fitted curve (red) is representative of the trend of decay from the 178 101
SNPs utilized in the association mapping (AM). (b) Decay of LD with distance in base pairs between sites from across 41 contigs with significant associations.
(c) Decay of LD across contig MA_96191 that has a significant association for ratio of percentage earlywood vs latewood on which two probes were captured.

(d) Decay of LD on contig MA_80033 indicating the variable LD in the genome.

protein domains. Of the three putative genes, two are
associated with serine/kinase activity and one is involved
in cysteine and methionine synthesis (Table S1). All the
SNPs associated with these traits were either downstream
or upstream of coding regions and may therefore act as
modifiers of gene expression.

Wood percentage traits, early wood proportion (EP), LP,
TP and the ratio of EP/LP had significant associations with
10 SNPs. Four of the six significant SNP variants for EP/LP
are modifiers with the other two SNPs, being a synony-
mous (MA_96191_7122) and missense (MA_1045136_4310)
variant. The synonymous SNP MA_96191_7122 was consis-
tent with the codominant mode of inheritance (Table 2).
The significant SNP MA_15729_40331, an intron variant,
that is associated with EP, is located in the gene
MA_15729g0010, homologous to a DNA-3-methyladenine
glycosylase Il enzyme (Table 1).

WD, EWD, TWD and LWD had a total of 12 significant
associations. A missense SNP, MA_33109_11804, was
associated with WD and located within the gene homolo-
gous to an Arabidopsis senescence-associated gene 24
(Table S1). Of the three significant SNP associations for
Transitional wood density (TWD), two, SNP MA_10235390_
3386 (stop gained) and SNP MA_212523_89044 (upstream
gene variant) were identified within genes. Two of the
three significant SNPs identified for LWD were intron vari-
ants (MA_10434805_21408 and MA_10436058_4902) with
the third being a missense variant (MA_62987_13474).

Trees showing a positive correlation between growth
and density had seven QTL specific for this observed phe-
nomenon (MI), explaining a PVE ranging between 0.05 and
1.82% (Table 1). The seven associated SNPs, were two
upstream gene variants, two missense variants one inter-
genic variant, one stop gained variant and one synony-
mous nucleotide replacement (Table 1). The SNP
MA_1378g0010_4718 encodes for a premature stop codon
on gene MA_1378g0010. Two SNPs associated with
the slope latent trait for MI (MA_1378_4718 and
MA_10427214_13968) have an overdominance inheritance
pattern with the C and G alleles being dominant, respec-
tively (Table 2; Figure 3).

Genetics associations for genes of known function in
wood formation

Intercept associations. Our study identified several inter-
esting genes linked to the significant QTLs from the inter-
cept latent trait, which represents the mean from our spline
model. This resulted in 17 significant associations with a

© 2019 The Authors.

PVE ranging from 0.50 to 4.64% associated with the inter-
cept latent trait. The modes of action determined by the
non-additive effects of these significant SNP associations to
the intercept latent trait were one for overdominance
(|d/al > 1.25), codominant (|d/a| < 0.50) 12 and four SNPs
were partial to fully dominant (0.50 < |d/a| < 1.25).

Ring width phenotypes RW, TRW, and LRW were linked
with a total of three gene models associated with the inter-
cept latent trait (Table S1). Of these putative genes associ-
ated with RW phenotypes, gene MA_10694g0010 was of
particular interest with regards to wood formation. SNP
MA_10694_9101 with a partial to fully dominant mode of
inheritance (Table 2) was located on the gene
MA_1069490010 that is homologous to an enzyme involved
in cell wall biosynthesis, endoglucanase 11-like, and was
associated with RW (Table S1) and was expressed in the
wood (phloem+cambium+xylem) component of spruce
(Figure 4). This enzyme is a vital component of xylogenesis
and is involved in the active digestion of the primary cell
wall (Goulao et al., 2011). Endoglucanases have been pro-
posed as enzymes involved in controlling cell wall loosen-
ing (Cosgrove, 2005). Endoglucanase 11-like gene is part of
the endo-1 family in which the eno-1-4-p-glucanase Korri-
gan gene belongs. Characterization of the Korrigan gene in
P. glauca has identified it to be functionally conserved and
essential for cellulose synthesis (Maloney et al., 2012).

Density-related phenotypes (WD, EWD, TWD and LWD)
had two significant associations detected for the intercept.
Both associations were detected by SNP MA_10435406_
13733 and were both partial to fully dominant in their form
of inheritance (Table 2). The SNP MA_10435406_13733
downstream on gene MA_104354069g0010 was also signifi-
cantly associated with the trait ENC slope latent trait. The
association of this gene with the WD and EWD intercept
implies that it has an impact on the overall development of
density throughout the growth period. This result coincides
with previous report about the influence of the earlywood
component on the properties of the annual ring as a whole
in Scots pine (Li et al., 2014). Association of the same gene
also with the slope latent trait of ENC corroborates the pre-
dictive value of number of cells for wood density. The gene
is homologous to phosphoadenosine phosphosulfate
reductase (PAPS), which plays a central role in the reduc-
tion of sulfur in plants. An analysis of PAPS enzymes in
Arabidopsis (Klein and Papenbrock, 2004) and Populus
(Kopriva et al., 2004) revealed that enzymes involved in sul-
fate conjugation play an important role in plant growth and
development (Klein and Papenbrock, 2004).
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Figure 3. Box plot of the estimated genotypic effect on the phenotypes in the study. The significant SNPs associated and each one of the traits have been corre-

lated to give the impact each genotype has on the average of the overall trait

Slope associations. The analysis of slope (rate of change)
of wood formation traits over cambial ages, to our knowl-
edge, has never been dissected in any Norway spruce QTL
or AM analyses.

For slope latent traits two significant candidate genes
concerning wood formation, PAPS and Proliferating Cell
Nuclear Antigen (PCNA), were detected across related
traits density, growth number of cells and MOE. The
codominant SNP MA_10435406_13733 (Table 2) that is a
3'-gene variant for WD was located on a gene that is
homologous to a phosphoadenosine phosphosulfate
reductase gene cysH_2 and common across ENC, WD and
EWD.

The SNP MA_10434805_21408 was located on the gene
MA_10434805g0010, which is homologous to an Arabidop-
sis PCNA protein (Table S1) and was ubiquitously
expressed with high levels in the wood (phloem+cam-
bium+xylem) component of spruce (Figure 4). This SNP is
associated across LWD, RW and MOE with partial to fully
dominance (0.50 < |d/a| < 1.25) for all three associations
(Table 2). The presence of these common QTL suggests
that these traits might be under the control of the same
genes or genetic pathways. Chen et al. (2014) reported a
significant positive genetic correlation between wood den-
sity and MOE, which increased with tree age. However,
wood volume growth and density have a negative correla-
tion (Chen et al., 2014), our study was able to detect QTLs
for trees exhibiting a positive correlation for this phe-
nomenon (MI). The common QTL observed across WD,
EWD and ENC indicates that the number of cells during the

juvenile wood development stages has a significant impact
on the overall density. The seasonal changes in EWD to
LWD have been speculated to be due to a change in auxin
levels leading to the initiation of wall-thickening phase,
which has a direct impact on the wood quality traits such
as MOE. This phase coincides with the cessation of height
growth and where available resources are used for cell
wall thickening (Sewell et al., 2000), which may explain the
common QTL between LWD, RW and MOE, as part of the
same feedback loop mechanism.

P2 and f3. When analyzing QTLs associated with the two
latent traits B, and B3, 16 significant associations were
detected, with phenotypic variances ranging from 0.01 to
4.51% (Table 1). Five of the significant markers were con-
sistent with overdominance (|d/a| > 1.25), with the 11 mark-
ers being dominant (0.50 < |d/a| < 1.25) (Table 2, Figure 3).

Wood density phenotypes (WD, EWD, TWD and LWD)
had three significant associations with the B, and B3 latent
traits (Table 1). The upstream variant MA_33109_11804
associated with both the slope and B, latent traits of WD
was detected on the gene model MA_33109g0100 that is
homologous to the Arabidopsis senescence-associated
gene 24 (Table S1) and the gene being expressed in shoots
and buds of spruce (Figure 4). An association for the latent
trait B, of TWD with a codominant SNP (MA_212523_6278)
(Table 2) was located upstream of gene MA_212523g0010
homologous to Kinesin-related protein 13 (gene-
L484_021891) and ubiquitously expressed in shoot, buds
and wood component of spruce, indicating its important

© 2019 The Authors.

The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,

The Plant Journal, (2019), 100, 83-100



Genome-wide association study in Norway spruce 93

. ] £ 9

f .8 33

g 2 g 3 3 §§

2 | » E P _E o -

L £ 2 © a z

kA 3ifti.y R a ii

o > @ 2 5 2 S X o W 55

e B g 5 P £ 2 % % 2 3 % 8 % 33

s o e T ¥ 233323 3 NEREE

s g - § ¥ 5 ¥ g % 2 E 5 g8 89

22 sz 2 8 % 2 3 ) 33 @3 2% -~ EE

EE 883 : s is Y5 ipperyBiEE

332ﬁ=g§£5=§=u::55§§a§§

12881150832 8288°¢2 3% 53

) £ E 33 ¢ p iy 3 sy sy 3s 2l

Phenotype _|Trait ene_id confidence |Ath_Nmae/deseription E =z =z = e & 2 5z & z z 5 4 = 8 z ==

MA_87927030010  High Alpha-DOX1 2 13 11 0 -1*-:1 150=2 1.5 —1 1 020=2 -1 -0 03 -1-2-2

MA_10634g0010 High GHIB1 3 0 00 0 0 0 0 0 0 0039 0 0 0 0 0 0 0 0 10

RW  MA_10434805g0010 Medium  PCNA1 16 0 -1-1 -1 -1 -1 04 09 04 0207 -0 009 0 -0 -0 12 -1 1 1

= MA_20322g0010 Medium AP2/B3-like 28 -1 -2 001 -1 08 1.7 28 04 -2 05 02 =2 -0 =2 =2 -1 -0 =2 3 2

] MA_879384g0010 Medium 0.2 -2 -1-003 -2 04 18 2 0 -213 —0-1-1-1 -1 -214 0 01
B MA_214776g0010 Medium Kinase =3 1 -0-013 004 -1-08 -2 07 -2 21 2 -209 1116 -0 1
TRW  MA_38472g0010 High AHDP P53 107 107 09 05 -1-04 -1 02 -1 -1 -0 -1 06 0 02 04 0
MA_817093g0010  Medium  Senescence protein 08 -1 01-1 -1 -0 -0 03 06 18 -0 =1 -1 007 -1 05 01/=2 -0
LRW___MA 104346240010 Medium __PME2 B85 1 -1 2 1 105305998 -1 02/=3 23 107 -1 008 -1 1
L] NC MA_528074g0010 High EFR =2 05 05 0 03 0.7 0 =2 -2 08 =3 =2 0 =202 1206 =2 0
3 enc  MA_90288080010  High MEESS 11 -0-114 1023 14 08/21 0027 -1 -116 0-1-1 01
§ MA_10435406g0010  Medium -0 -0-02 . 0 ) 1 0
‘g TNC  MA_9447489g! Medium I g 3
Z LNC___MA 104287440010 _High cLka =0 08 01-0 04 -0 02 -0-02 -0 -0 -0 0 0 -0 0.6 0406 -1 0
EP MA_246125g0010 Medium TIR-NBS-LRR class 0121 07 002 04 -0 =2-17 -1 =2 =2 05 104 -0 02 06 =2 -1

:'. P MA_10434007g0010 High URMS 04 -1 -1-0 -1 -1 -001 04 -0 -0 03 05 -002 -0 01 -0 03 0 1 1

2 TP MA_46231%0010  High Myosin-binding protein 0 08 05 0 04 0.6 06 -0-02 -0 01 -1 0.6 0 -2 0 05 01 -0 —0 -0 -0

g MA_80954g0010 Medium PS4 2 o -2-2088 28828 04125 1.7 13 -2 -0 01 2 -1 03 14 0 0-2

g MA_98424g0010 High STNL © -1 -1-002 02 01 0 03 08 -0 -0 03 0 -105 0 -0 -0 -0 102

3 EP/LP MAS Medium ype pr 002 -0 0 -0 -0 -0 -0-11 03 05 -0 09 00805 0 -0 =1 0 0 0

= MA_96191g0010 Medum  UGT7382 2 15 os -1l 11 27 13053 15 -1 07 ofSE a1 -0 o3[l -1 E2E3

MA_460877g0010  Medium __TIR-NBS-LRR class 0 =2 0-011 =1 03 =1 07 07 =0 =105 005 =0 =0 =0 =1 1 0 0

wing  MA3310960010 Medium  SAG24 05 -1 -1-001 -0 0 0 07 0 00508 -001 0 01 -0 06 -0 0-0

MA_ High 02 0 -0 002 -0 -0 -0-03 -0 03 -0 01 00304 001 -0 0-0-0

z EWD  MA_20321g0010 High BSL2 0 -0 -0 0 -0 04 -0 -0-02 -0 05 -0 05 0 -0 -0 06 02 -1 1 0 0

2 MA_10235330g0010  Medium  MSHS 13 0 00 0 0 0 0 005 0 0 0 0 0 0 0 0 0 0 00

a TWD MA_10433411g0010 Medium RACKIA 01 -1 -0-1 0 -0 =103 05 -0 =003 -0 102 -1 02 -0 1-=0 0 0

MA_212523g0010  High 81 o0 -1-1 -1 -1 01/17 2 14 -102@052 1019 -1 o) =20 -0 302

LWD _ MA 104360580010  Medium __ Spcd7/spcas family 0 0 00 012 0 01312 0 0 0 0 0 018 1 1 0 0 00

3 MA_1043500280010  Medium  OVA2 =103 05 1 -1 -0 -1 -1 -1 -1 08 -1 0 1/=1 0612 14 02 1=253

4 W MA_3900ag0010 Medium  SHR -1 0050 10113 -0 19 07 -001 -0 -1 12 -1 -0 -1 21 -1]B8l=3
a MA_109804g0010 High Y6L =204 -0 0 0 -0 o5[=3=38 -1 1024 25 o0 -0 08 05 05 =2 1

> MA_10427214g0010 Medium 29 0 0 0 0 009 0 0 0 0 0 0O 0 0 O 0 0 0 0 0 0

Figure 4. The heatmap showing the expression levels (VST values) of spruce candidate genes in different organs and tissues based on data of Nystedt et al.

(2013) available at http://congenie.org.

function in this species (Figure 4). This association is of
interest because Kinesin-related proteins are known to be
involved in secondary wall deposition, which can impact
wood density (Zhong et al., 2002), cell wall strength and
oriented deposition of cellulose microfibrils. Therefore,
these proteins would have a direct correlation with the
increase in density at the latent trait B, at age 6 years (Fig-
ure S1).

Ring width phenotypes (RW, TRW and LRW) had eight
significant associations identified for the latent traits f,
and P, explaining PVE ranging from 0.01 to 4.51%
(Table 1). The synonymous SNP MA_2032_28351 associ-
ated with the B, latent trait for RW is located on a gene
homologous with a plant-specific B3-DNA binding protein
domain explaining 1.78% variation and is shared among
various plant-specific transcription factors. This includes
transcription factors involved in auxin and abscisic acid
responsive transcription (Yamasaki et al., 2004). Auxin is
one of the central phytohormones in the control of plant
growth and development (Abel and Theologis, 1996), and
also known to be involved in cell wall loosening and

© 2019 The Authors.

elongation (Cosgrove, 2016). This association was
detected within the RW phenotype and detected for both
B, and B3 latent traits (Table 1). Therefore, this domain
could be involved with transcription factors involved in
both the decrease and increase of RW (Figure S1). Three
putative genes were associated with the B, and B3 latent
traits for the TRW phenotype. Of interest a senescence-as-
sociated protein associated on the TRW f, latent trait with
the missense variant MA_817099_1105. This might be
linked to the decrease in TRW at year 6 (Figure S1) due to
the decline of photosynthetic rate known to be induced by
the activity of senescence related proteins (Sillanpaa
et al., 2005). The gene was highly expressed in both the
early and late wood components of spruce supporting the
row of these senescence genes in controlling tree growth
(Figure 4). This association was also identified for the
slope latent trait indicating a potential impact on the rate
of change of transitional wood. The detection of senes-
cence related genes for wood density related phenotypes
for both the slope and B, latent trait (MA_33109_11804)
could indicate a possible relationship between the genes
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influencing RW and wood density. Contig MA_10434624 is
homologous to a pectin esterase and was associated with
the downstream variant MA_10434624_20686 with an
over-dominant mode of inheritance for LRW (B3 latent
trait) at year 10 (Table 2, Figure S1). This significant
downstream SNP (MA_10434624_20686) associated with
LRW on gene MA_104346249g0020 and homologous to
pectin methylesterases (PMEs), which are cell wall associ-
ated enzymes responsible for demethylation of polygalac-
turonans (Phan et al., 2007). This gene was observed
highly expressed in developing wood (Figure 4), indicat-
ing its importance for growth in spruce. This enzyme has
been shown to be linked with many developmental pro-
cesses in plants, such as, cellular adhesion and stem elon-
gation (Micheli, 2001). An association study in Picea
glauca (Moench) Voss identified a significant nonsynony-
mous SNP coding for cysteine associated with earlywood
and total wood cell wall thickness associated with pectin
methylesterase (Beaulieu et al., 2011). Our study identified
a PME SNP association in the late wood stage, supporting
the importance of PMEs in wood cell development.

When analyzing QTLs detected for traits linked to the
percentage of cells (EP, LP and EP/LP) we identified three
putative candidate genes, DNA-3-methyladenine glycosy-
lase Il enzyme, phytochrome kinase substrate 1 and gly-
cosyltransferase. Synonymous SNP (MA_96191_59480)
within the gene MA_96191g0010, which is homologous
to Glucosyltransferase in Picea sitchensis was associated
with the EP/LP, B, latent trait. The gene is highly
expressed in vegetative shoots (June) and during the
late afternoon in needles (Figure 4). Glycosyl transferases
operate by facilitating the catalytic sequential transfer of
sugars from activated donors to acceptor molecules that
form region and stereospecific glycosidic linkages (Lair-
son et al., 2008). The Arabidopsis ortholog (UDP-gluco-
syltransferase 73B2) encodes for a putative flavonol 7-O-
glucosyltransferase involved in stress responses. In our
study, this significant association was associated with
EP/LP, however a nonsynonymous variant in a gene cod-
ing for a glycosyl transferase in Populus was associated
with fibre development and elongation (Porth et al.,
2013).

Several receptor-like kinases (TIR/NBS/LRR and serine/
threonine-protein phosphatase) homologues were identi-
fied across traits (TRW, NC, EP, EP/LP and EWD) (Table S1).
Approximately 2.5% of the annotated genes in Arabidopsis
genome are RLK homologues (Shiu and Bleecker, 2001), in
which they, among other functions, play an important role
in the differentiation and separation of xylem and phloem
cells (Fisher and Turner, 2007). Similar to our study a syn-
onymous SNP in an RLK gene was associated with EP in
white spruce (Beaulieu et al., 2011), hence RLKs seem to be
involved in modifying a number of different wood proper-
ties from density to cell identity and number.

Norway spruce trees that possess the ability of fast
growth and high wood density are very rare, but such trees
and associated SNPs were discovered in our study. Trees
combining these traits are of high interest to the forestry
industry. Of the seven genes significantly linked to this phe-
nomenon of particular interest was a synonymous SNP on
MA_990049g0100 gene homologous to a transcription factor
from the GRAS family (Table S1). GRAS is an important
class of plant-specific proteins derived from three members:
GIBBERELLIC ACID INSENSITIVE (GAI), REPRESSOR of GAI
(RGA) and SCARECROW (SCR) (GRAS) (Hirsch and Oldroyd,
2009). GRAS genes are known to be involved in the regula-
tion of plant development through the regulation of gib-
berellic acid (GA) and light signalling (Hirsch and Oldroyd,
2009; Cenci and Rouard, 2017). Furthermore GA signalling
has also been shown to stimulate wood formation in Popu-
lus (Mauriat and Moritz, 2009). Therefore, the GRAS tran-
scription factor identified here and the other six genes
positively associated with MI provide interesting genetic
markers and tools to understand this phenomenon.

Wood density traits were associated with a total of 12
genes, the largest number of genes identified from the
contigs. The percentage of wood was linked to 10 putative
genes, cell width had nine putative genes and number of
cells was associated with six genes. Two genes were
shared across multiple traits, PCNA was common across
RW and LWD, and phosphoadenosine phosphosulfate
reductase was shared across WD, EWD and ENC.

EXPERIMENTAL PROCEDURES
Plant material and phenotype data

Plant material and phenotype data used in this study have previ-
ously been described in Chen et al. (2014). In brief, two progeny
trials were established in 1990 in southern Sweden (S21F9021146
aka F1146 (trial1) and S21F9021147 aka F1147 (trial2)). We selected
517 families originating from 112 sampling stands to use in the
investigation of wood properties. At each site, increment wood
cores of 12 mm were collected at breast height from six trees of
the selected families (1.3 m) (6 progeny x 2 sites = 12 progenies
in total). In total, 5618 trees, 2973 and 2645 trees from the F1146
and F1147 trials respectively, were analysed. The pith to bark pro-
filing of growth and wood physical attributes was performed
using the SilviScan instrument (Evans and llic, 2001) at Innventia,
now part of RISE, Stockholm, Sweden, where also the initial data
evaluations were performed (Methods S2). These included the
identification and dating of all annual rings and their compart-
ments of early wood (EW), transition wood (TW) and late wood
(LW). For this, a density-based ‘20-80" definition was used,
described and discussed in (Lundqvist et al., 2018). Traits of inter-
est to breeders were derived from the SilviScan data, such as the
radial NC and Mass Index (MI) introduced to express the relative
amount of biomass at breast height.

The investigation was trigged by the observation that some
trees broke the unfavourable negative correlation of the trait Mi
which is between density and growth. They produced, more bio-
mass than expected, and it was therefore important. In order to
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identify putative genes behind high values for this trait. Ml was
defined as:

Mass index =(Individual cross — sectional average density
/population cross — sectional average density)
«(individual cross — sectional area
/population average cross — sectional area)

The traits investigated in this study are listed in Table 3.
Statistical analysis

EBVs were calculated for growth and wood quality traits for 14
consecutive annual growth rings. The variance and covariance
components were estimated using asremL 4.0 (Gilmour et al.,
2014) as described in Chen et al. (2014). In brief, the EBVs at each
cambial age were estimated using univariate, bivariate or multi-
variate mixed linear models. The following univariate linear mixed
model for joint-site analysis was fitted to calculate EBV:

Yii = w+ Si + By + Fi + SFix + €y (1)

where Y is the observation on the Ith tree from the kth family in
jth block within the ith site, u is the general mean, S; and Bj; are
the fixed effects of the ith site and the jth block within the ith site,
respectively, F, and SF; are the random effects of the kth family
and the random interactive effect of the ith site and kth family,
respectively, ejy is the random residual effect. The random family
and site by family interaction effects are assumed to follow
N(0.0%) N(0,6%) and, respectively, where ¢2 and % are the esti-
mated family genetic variance and site by family interaction vari-
ance, respectively. Residual variation e was assumed to
N(O. [l’”ag}o]), where ¢2 and o2 are the residual variances for
0/n20%, e e

site 1 and site 2, I,y and /,, are identity matrices, n7and n2 are the
number of individuals in each site. The fit of different models was
evaluated using the Akaike Information Criteria (AIC) and the opti-
mal model was selected based on a compromise of model fit and
complexity.

Table 3 List of the phenotypes, their abbreviations and measure-
ment unit

Phenotype Abbreviation Unit
Ring wood density WD kg m~2
Early wood density EWD kg m~2
Transition wood density TWD kg m~2
Late wood density LWD kg m~2
Ring width RW um
Early wood ring width ERW um
Transition wood ring width TRW um
Late wood ring width LRW um
Ring number of cells NC
Early wood number of cells ENC
Transition wood number of TNC

cells
Late wood number of cells LNC
Early wood percentage EP %
Transition wood percentage TP %
Late wood percentage LP %
Early/late wood percentage EP/LP %
Modulus of elasticity MOE GPa
Mass index (density x growth) MI
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Latent traits

The EBVs were plotted against cambial age (annual ring number)
to produce time trajectories for each trait (Figures 1 and S1).
Spline model was fitted to the trajectories and their curve parame-
ters describing the character of their development over time were
used as latent traits in order to describe the dynamics of the EBVs
across age.

The general definition of a linear spline with multiple knots is
as follows

y(1) :Bo+ﬁ1t+B2(t7K1)\ +B3<t7K2)\ +o
+ |31+m(t_ Km)w

which is continuous and where K; (i=1, ... ,m; Ky <K, ... <K)
are defined as knots, and (t — Kj), = (t — K) if t> K; (K;>0; i=1,
...,m), and otherwise is equal to zero. The number of knots has to
be properly defined to provide an accurate description of the data
under investigation, while avoiding overadaptation to data (Li and
Sillanpaa, 2015; Camargo et al., 2018). In our case, we found two
knots most suitable to the time intervals investigated. Hence, the
linear spline model to describe the growth trajectory of individual
i applied in this study was defined as:

(2)

y(t) =Bo + Bat + Bo(t — Ki), + Ba(t —
&i(t) EN(0,62).

Ka). +e&i(t),
2). +ei(t) 3)

In equation (2), the intercept By, slope parameters f4, B, (at Knot
1 (Ky) and B3 (at Knot 2 (K,)) are estimated by standard least
squares (Ruppert et al., 2003). The four estimates were used as
the latent trait in the subsequent QTL analysis conducted in RSTu-
pio (Team, 2015), and then analysed using the LASSO model to
identify SNPs showing significant associations to the traits.

The intercept and slopes were used to evaluate the mean and
rate of change for the trait across the annual rings, respectively.
B, and B3 represent inflection points in the cambial age trajecto-
ries where the development of the EBVs enters new phases.
These two points (B, and f3) are therefore supposed to have bio-
logical significance, warranting a closer analysis of the genes
imparting these shifts in the EBVs dynamics. The four latent
traits show lower correlations compared with the direct measure-
ments on the original scales and they also have constant vari-
ances, thereby reducing the need to account for residual
dependencies in the model (Wu et al., 2004; Yang and Xu, 2007;
Li et al., 2014).

Sequence capture, genotyping and SNP annotation

Total genomic DNA was extracted from 517 maternal trees, using
the Qiagen Plant DNA extraction (Qiagen, Hilden, Germany) proto-
col with DNA quantification performed using the Qubit® ds DNA
Broad Range (BR) Assay Kit (Oregon, USA). Extracted DNA was
submitted to RAPiD Genomics (USA) where DNA library prepara-
tion and capture sequencing were performed. Sequence capture
was performed using the 40 018 diploid probes designed and
evaluated for P. abies (Vidalis et al., 2018). The Illumina sequenc-
ing compatible libraries were amplified with 14 cycles of poly-
merase chain reaction (PCR) and the probes were then hybridized
to a pool comprising 500 ng of 8 equimolar combined libraries fol-
lowing Agilent’s SureSelect Target Enrichment System (Agilent
Technologies, https://www.agilent.com/). These enriched libraries
were then sequenced using an lllumina HiSeq 2500 instrument
(San Diego, USA) on the 2 x 100 bp sequencing mode.
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Raw reads were mapped against the P. abies reference gen-
ome v.1.0 using Bwa-mem (Li, 2013). samTooLs v.1.2 (Li et al., 2009)
and Picard (http:/broadinstitute.github.io/picard) were used for
sorting and marking of PCR duplicates. Variant calling was per-
formed using GATK HAPLOTYPECALLER Vv.3.6 (Van der Auwera et al.,
2013) in gVCF output format. Samples were then merged into
batches of approximately 200 before all 517 samples were
jointly called.

Variant Quality Score Recalibration (VQSR) method was per-
formed to avoid the use of hard filtering for exome/sequence
capture data. For the VQSR analysis two datasets were created,
a training subset and an input file. The training dataset was
derived from the Norway spruce genetic mapping population
showing expected segregation patterns (Bernhardsson et al.,
2019) and assigned a prior value of 15.0. The input file was
derived from the raw sequence data using ATk with the follow-
ing parameters: extended probe coordinates by +100 excluding
INDELS, excluding LowQual sites, and keeping only bi-allelic
sites. The following annotation parameters QualByDepth (QD),
MappingQuality (MQ) and BaseQRankSum, with tranches 100,
99.9, 99.0 and 90.0 were then applied for the determination of
the good versus bad variant annotation profiles. After obtaining
the variant annotation profiles, the recalibration was then
applied to filter the raw variants. Using vcrrooLs v.0.1.13 (Dane-
cek etal, 2011), SNP trimming and cleaning involved the
removal of any SNP with a MAF and ‘missingness’ of <0.05 and
>20%, respectively. The resultant SNPs were annotated using
default parameters for sneerr 4 (Cingolani et al., 2012). Ensembl
general feature format (GFF; gene sets) information was utilized
to build the P. abies snrerr database.

Genetic structure and mode of inheritance

Linkage disequilibrium was calculated as the squared correlation
coefficient between genotypes (), globally with special attention
given to all the contigs with significant associations in vcrrooLs
v.0.1.13 software using the ‘geno-r2’ routine (Danecek et al.,
2011). The trendline of LD decay with physical distance was fitted
using nonlinear regression (Hill and Weir, 1988) and the regres-
sion line was displayed using RStupio (Team, 2015). Non-additive
effects of the significant markers was determined using the ratio
of dominance (d) to additive (a). The ranges were: partial or com-
plete dominance (—0.50 < |d/a| < 1.25) and additive (—0.50 < |d/a| <
0.50), with |d/al > 1.25 being equal to over- or underdominance
(Eckert et al., 2009).

FactoMiner (Multivariate Exploratory Data Analysis and Data
Mining) (Husson et al., 2017) implemented in RStupio software
was used to perform PCA. The covariate matrix derived from the
PCA was then displayed by plotting principal component 1 scores
against principal component 2 scores. The components of the
PCA covariate matrix were then applied to the AM to account for
population structure and correcting for any stratification within
the study. Significance of each genetic principal component (PC)
was determined using the Tracy-Widom (TWi) distribution and a
significance threshold of P = 0.01. For population clustering, Abmix-
Ture v.1.3.0 (Alexander et al., 2009) was used with five-fold cross-
validation and 200 bootstrap replicates. The bestK method was
implemented in RStupio to determine the best K with the use of
an elbow plot on the cross-validation error.

Trait association mapping

It is natural to use LASSO method for simultaneous estimation of
SNP effects and selecting a sparse subset of trait-associated SNPs
to the multilocus association model. This is because LASSO has

nice properties like being able to handle high-dimensional cases
with p>>n (i.e.,, a number of SNPs much larger than number of
individuals) and selecting only a single representative SNP from
the group of highly dependent SNPs. The LASSO model as
described by Li et al. (2014), was applied to all latent traits for the
detection of QTLs.

The LASSO model:

n p 2 P
min iz yi—oo— Y x|+ |yl (4)
(0,3) 2N P = i
where y; is the phenotypic value of an individual i (i=1,...,n; nis
the total number of individuals) for the latent trait o, B1, B2 or Ps,
o is the population mean parameter, x;; is the genotypic value of
individual i and marker j coded as 0, 1 and 2 for three marker
genotypes AA, AB and BB, respectively, o; is the effect of marker j
(i=1,..,n; nis the total number of markers), and % (>0) is a
shrinkage tuning parameter. The penalty term is able to shrink the
additive effects of some of the markers exactly to zero, and select
a subset of the most important markers into the model. The tun-
ing parameter . determines the degree of shrinkage, and the num-
ber of markers having non-zero effects. Cross-validation is used to
decide an optimal value for L.

In stability selection (Meinshausen and Biihimann, 2010; Alexan-
der and Lange, 2011): (i) several bootstrap samples are first created
from the original data; and (ii) frequency over-bootstrap samples
on how many times each SNP is being selected to the LASSO
model is monitored and used as a stable measure of variable selec-
tion. Stability selection probability (SSP) of each SNP being
selected to the model was applied as a way to control the false dis-
covery rate and determine significant SNPs (Gao et al., 2014; Li
and Sillanpaa, 2015). Briefly a subsample of half the number of
individuals was randomly picked up and the LASSO was per-
formed on it to select a set of markers. This procedure was
repeated 1000 times. Then the selection frequency of each marker
being selected was calculated, and was used to judge the support
of QTL. A decision rule suggested by Meinshausen and Biihimann
(2010) was applied to control the expected number of false posi-
tives:

1 q*

713 EVip’ (5)
where q is the number of selected markers, E[V] is the expected
number of false positives, and p is the total number of markers.
For a marker to be declared as a significant QTL, a SSP inclusion
frequency of at least 0.52 (i.e. derived based on formula 5) was
used for all traits. This frequency was inferred conditional on the
expected number of false selected markers being less than one
(Biihlmann et al., 2014).

Population structure was accounted for in all analyses by
including the first five PCs based on the genotype data as covari-
ates into the model. An adaptive LASSO approach (Zou, 2006)
was used to determine the percentage of phenotypic variance
(PVE) (H*q7) of all the QTLs (Methods S1). These analysis were all
performed in RStupio (Team, 2015).

Candidate gene mining

To assess putative functionality of SNPs with significant associa-
tions, a gene enrichment analysis of putative genes and their
associated orthologs was performed against the norwoop v1.0
database (http:/norwood.congenie.org) hosted by conGenE
(http://congenie.org/). The complete P. abies contigs that har-
boured the QTLs that were not annotated in the conGgeNE were
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used to perform a nucleotide BLAsT (BLasTn) search, using the
option for only highly similar sequences (MEGABLAST) in the
National Center for Biotechnology Information (NCBI) nucleotide
collection database (https://blast.ncbi.nlm.nih.gov/Blast.cgi?).

CONCLUSION

This work has dissected the genetic basis of wood properties in
Norway spruce with use of functional AM. In total, we identified
52 significant QTLs for wood properties and mining of candidate
genes located in the vicinity of significant QTLs identified genes
that could be directly or indirectly responsible for variations in the
observed traits. Functional mapping analyses allowed us to utilize
all the longitudinal data for a trait simultaneously and may better
account for the temporal trends and correlation structures across
years for the complex traits associated with wood formation. It
can therefore be applied to the detection of QTLs stable over time
(i.e. the QTLs associated with intercept traits) with greater statisti-
cal evidence. The slope latent trait over cambial ages or the rate
of juvenile-to-mature wood transition has allowed for the dissec-
tion the dynamics of the transition process itself and can be
applied to other important plant breeding traits. The significance
of our results is provided by the identification of QTLs associated
to both high wood density and fast growth, therefore larger bio-
mass. These QTLs can now be a basis for future functional geno-
mics in Norway spruce.

However, the direct use of QTLs for marker-assisted breeding
has not been successful, mainly due to the difficulty in transfer-
ring the associations across populations and species of forest
trees. With the small percentage variances detected and no direct
information about the developmental change of QTL expression,
breeders will be unable to make use of these QTLs in direct early
selection. Non-additive interactions especially epistasis, play an
important role in accounting for the total genetic variance of a
trait. Therefore this study will be a good basis for initiating the
detection and estimation of possible epistatic influence on these
complex traits. Future work should focus on replicated sampling
from a larger number of representative genotypes across different
environments, which take into consideration genotype x environ-
ment interactions. Additional support for marker-assisted tree
breeding may also be provided by the functional genetics studies,
systems mapping and consideration of biological mechanisms
(Liu and Yan, 2019) of the identified candidate genes in model
trees like Populus sp.
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Abstract

It is important to improve the understanding of the interactions between the trees
and pathogens and integrate this knowledge about disease resistance into tree
breeding programs. The conifer Norway spruce (Picea abies) is an important species
for the forest industry in Europe. Its major pathogen is Heterobasidion parviporum,
causing stem and root rot.

In this study, we identified 11 Norway spruce QTLs (Quantitative trait loci) that cor-
relate with variation in resistance to H. parviporum in a population of 466 trees by
association genetics. Individual QTLs explained between 2.1 and 5.2% of the pheno-
typic variance. The expression of candidate genes associated with the QTLs was
analysed in silico and in response to H. parviporum hypothesizing that (a) candidate
genes linked to control of fungal sapwood growth are more commonly expressed in
sapwood, and; (b) candidate genes associated with induced defences are respond to
H. parviporum inoculation. The Norway spruce laccase PaLAC5 associated with con-
trol of lesion length development is likely to be involved in the induced defences.
Expression analyses showed that PaLAC5 responds specifically and strongly in close
proximity to the H. parviporum inoculation. Thus, PaLAC5 may be associated with the

lignosuberized boundary zone formation in bark adjacent to the inoculation site.

KEYWORDS
genome-wide association study (GWAS), lignosuberized boundary zone, mitochondrion,

sapwood, secretory and endosomal trafficking pathways, suberin, TOM40

1 | INTRODUCTION

The importance of trees and forests for sustaining terrestrial life and

biodiversity can probably not be exaggerated (Petit & Hampe, 2006).
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Pathogen and pest attacks on trees negatively impact the health and
biodiversity of native forest ecosystems as well as forest plantations,
which can have large economic, ecological and societal consequences
(Cubbage, Pye, Holmes, & Wagner, 2000; Garbelotto &
Gonthier, 2013; Pautasso, Schlegel, & Holdenrieder, 2015; Wood-
ward, Stenlid, Karjalainen, & Huttermann, 1998). Therefore, it is
important to increase the understanding of interactions between the
tree and a pathogen in order to incorporate traits that confer to
increased resistance into forest tree breeding programs.

Norway spruce [Picea abies (L.) Karst.] is economically impor-
tant for the forest industry in Europe. Its major pathogens are fungi
in the species complex Heterobasidion annosum sensu lato (s.l.),
which causes stem and root rot in Norway spruce and several other
conifer tree species (Garbelotto & Gonthier, 2013; Woodward
et al, 1998). Under natural conditions, airborne spores of
H. annosum s.l. can infect stumps created after harvesting and thin-
ning operations. Once the stump is infected, surrounding trees or
stumps can be infected by secondary spread when H. annosum
s.l. mycelium enters neighbouring trees through root grafts and
contacts (Oliva, Bendz-Hellgren, & Stenlid, 2011; Redfern &
Stenlid, 1998). In Norway spruce, resistance to the spruce-infecting
congener Heterobasidion parviporum is quantitative in its nature
(Arnerup, Swedjemark, Elfstrand, Karlsson, & Stenlid, 2010; Chen
et al., 2018; Karlsson & Swedjemark, 2006; Steffenrem, Solheim, &
Skrgppa, 2016), and classical interval mapping-based quantitative
trait locus (QTL) analysis for resistance to H. parviporum identified
13 QTL linked to host resistance (Lind et al., 2014). PaLAR3, on the
QTLs associated with control of fungal spread in the sapwood, has
been validated and the function of the variation at the locus
described (Nemesio-Gorriz et al., 2016).

A feature that Norway spruce has in common with all tree species
is that a large fraction of the biomass is invested in the sapwood in
the trunk (Petit & Hampe, 2006). The primary function of the sap-
wood is to transport water and nutrients to the crown and it is domi-
nated by dead cells that have a limited capacity to respond to biotic or
abiotic stress (Johansson & Theander, 1974; Oliva et al., 2015;
Shain, 1971). To protect the sapwood, the trunk of a tree is clad in an
impermeable barrier, bark. The term “bark” commonly refers to all tis-
sues external to the vascular cambium of trees. The outer bark is
highly suberized and lignified, making it extremely resistant to
mechanical and chemical degradation. Only a few pathogenic microor-
ganisms are capable of directly penetrating the outer bark (Lindberg &
Johansson, 1991). Therefore, a common mode of entry for fungi that
cause stem cankers and decays is via mechanical wounds, exposing
the cortex, secondary phloem tissues or the xylem (Woodward &
Pocock, 1996). The speed at which the tree is able to seal off the tis-
sues exposed by wounding with wound periderm is critical in avoiding
damaging infections and subsequent loss of water transport capacity.
The process to heal the bark begins with rapid necrosis of cells closest
to the wound or progressing infection. It then continues with
programmed death of cells adjacent to the necrosis, forming the
lignosuberized boundary zone (LSZ), and de-differentiation of cells

next to the LSZ followed by differentiation of the wound periderm

(Bodles, Beckett, & Woodward, 2007; Mullick, 1977; Woodward,
Bianchi, Bodles, Beckett, & Michelozzi, 2007).

The trait control of lesion length extension (LL, with reported her-
itability values of 0.14-0.33) is measured as the size of the discernible
necrosis cells closest to the wound or progressing infection (Arnerup,
Lind, Olson, Stenlid, & Elfstrand, 2011; Chen et al., 2018; Steffenrem
et al., 2016). It could be argued that LL provides a measure of how the
induced defences and wound healing responses interact to control
the spread of the necrotrophic pathogen (Arnerup et al., 2011; Chen
et al., 2018; Danielsson et al., 2011; Lind et al., 2014; Steffenrem
et al., 2016). The trait control of fungal spread in the sapwood (fungal
sapwood growth, SWG) can be considered to provide a measure of
how well the combination of constitutive defences and the induced
defence responses in the parenchymatic cells can control the spread
of H. parviporum in the exposed sapwood (Johansson & Stenlid, 1985;
Oliva et al., 2015). The narrow-sense heritability of SWG has been
estimated to vary between 0.11 and 0.42 depending on the material
studied (e.g., experimental cross, natural population) (Arnerup
et al.,, 2010; Chen et al., 2018).

To date, the main focus of practical breeding in Norway spruce
has been on climatic adaptation, growth and wood quality traits
(Skrgppa, Solheim, & Steffenrem, 2015). In contrast, breeding for
replantation material with improved resistance to H.annosum s.s. and
H. parviporum is an overlooked objective because of limited informa-
tion about genetic variation in resistance to these pathogens and the
lack of reliable selection techniques (Skrgppa et al., 2015). There are,
however, clearly sufficient phenotypic and genetic variation for resis-
tance to H. parviporum in Norway spruce to allow for breeding
2010; Chen et al, 2018;

Swedjemark, 2006; Steffenrem et al., 2016), and no adverse correla-

(Arnerup et al, Karlsson &
tions between resistance to H. parviporum and growth or wood prop-
erties traits (Chen et al., 2018; Steffenrem et al., 2016). Hence, the
selection for H. parviporum resistance in breeding programmes could
lead to considerable gain without compromising other breeding
achievements (Chen et al., 2018).

To gain a deeper understanding of the heritability and genetic
architecture of, for example, disease resistance traits, including the
number, location, effect and nature of the loci involved, quantitative
and molecular genetic approaches can be used to analyse the relation-
ships between DNA polymorphism and phenotypic variation
(Bartholomé et al., 2016; Neale & Savolainen, 2004). The two main
approaches to detect QTLs: Interval mapping (IM) in experimental
crosses or linkage disequilibrium (LD) mapping, commonly known as
genome-wide association studies (GWAS) (Neale & Savolainen, 2004).
GWAS, relying on historical recombination in the mapping population,
overcomes the limited resolution of IM in experimental crosses
(Baison et al., 2019; Neale & Savolainen, 2004). If enough markers can
be analysed, this should be especially advantageous in conifers that
have particularly short average distances of maintained LD, often
even confined within genes (Namroud, Guillet-Claude, Mackay,
Isabel, & Bousquet, 2010). The effects of LD are also influenced by
the extreme physical distances separating genes in conifers (Nystedt
et al., 2013).
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It is likely that the Norway spruce genome harbours additional,
yet undetected loci, to the 13 QTLs already identified by (Lind
et al., 2014) controlling resistance to H. parviporum (Chen et al., 2018;
Hall, Hallingback, & Wu, 2016). Identification of further loci would
support the initiation of a breeding programme for the resistance to
the pathogen in Norway spruce and, just as importantly, improve the
understanding of the interactions between trees and necrotrophic
pathogens. The short maintained LD and the polygenic nature of the
traits controlling resistance suggest that GWAS could be a powerful
method to identify further QTL regions associated with H. parviporum
resistance in Norway spruce. Consequently, in this study, we aimed to
identify Norway spruce loci that correlate with variation in resistance
to H. parviporum in a population of 466 Norway spruce trees by
GWAS. We identified candidate genes associated with the QTLs and
analysed the expression patterns of the candidate genes in response
to H. parviporum hypothesizing that (a) candidate genes linked to the
SWG trait would be expressed in sapwood while candidate genes
linked to LL are expressed in more peripheral tissues, and;
(b) candidate genes that are part of the induced defence are induced

in response to H. parviporum inoculation.

2 | MATERIALS AND METHODS
2.1 | Phenotyping of resistance traits in the
progeny of 466 Norway spruce mother trees

We used the currently available largest Norway spruce resistance
phenotyping dataset to perform the GWAS. The material, inoculation
method and genetic analyses are described in detail in (Chen
et al, 2018). On average ten 2-year-old, open-pollinated progenies
derived from 466 tested plus trees in the Swedish breeding popula-
tion were inoculated with H. parviporum Niemeld & Korhonen strain
Rb175. A wooden dowel colonized by H. parviporum was fixated at a
wound on the stem of the plant with Parafilm. The inoculated plants
were kept under ambient light and temperature in the forest tree
nursery and harvested 21 days post-inoculation. The induced defence
responses (LL) in the phloem and inner bark were estimated by mea-
suring the discernible lesion spread upwards and downwards from the
edge of the inoculation point on the inside of the bark. SWG was esti-
mated using established protocols (Arnerup et al., 2010; Stenlid &
Swedjemark, 1988) (Table 1). The seedlings were cut up into five mm
discs and placed on moist filter papers in Petri dishes. Plates were
incubated in darkness under moist conditions at 21°C for 1 week to
induce conidia formation. Thereafter, the presence or absence of
H. parviporum conidia on each individual disc was determined under a
stereomicroscope. For each seedling, the sum of the discs where con-
idia were observed multiplied by 5 (mm) was noted as SWG. Plates
where no conidia could be observed on the discs, the inoculation
point and on the inoculation plug, and that showed total lesion length
of 2 mm or shorter, were treated as inoculation failures and were dis-
carded (Lind et al., 2014). Chen et al. (2018) reported narrow-sense
heritability values of 0.33 and 0.42, respectively, for LL and SWG and

TABLE 1  Summary statistics of the phenotype data used in the
trait-marker association study (Details can be found in Chen
etal. (2018))

Inoculation study Acron. Unit N? Mean
Diameter” D mm 4,628 40
Lesion length® LL mm 4,547 7.6
Fungal growth? FG/SWG mm 4,554 325
Vitality® Vitality Classes 4,376 19

2N: total number of progenies with valid recording of the trait.

YDiameter of the progenies at the inoculation site.

“Length of the necrotic lesion in the phloem and inner bark.

9dFungal growth in the sapwood of the progenies.

Vitality of the progenies where score 1 was given to fully vital and worst
score 3 was given to plants showing a pronounced loss of vitality.

moderate phenotypic (0.48) and genetic (0.47) correlations between
LL and SWG in this material.

2.2 | Norway spruce genotyping and SNP
annotation

Dormant buds were collected from each of the mother trees. Total
genomic DNA was extracted from the buds, using the Qiagen Plant
DNA extraction kit (Qiagen, Hilden, Germany), and the DNA was
quantified using the Qubit® ds DNA Broad Range (BR) Assay Kit
(Oregon, USA). The generation and evaluation of exome capture for
Norway spruce are described elsewhere (Vidalis et al, 2018).
Sequence capture on the mother tree DNA was performed using
40,018 previously evaluated diploid probes (Baison et al., 2019;
Vidalis et al., 2018). Probe design and sequence capture were done by
RAPID Genomics (Gainesville, FL, USA). In brief, lllumina sequencing
compatible libraries were amplified with 14 cycles of PCR and the
probes were then hybridized to a pool comprising 500 ng of eight
equimolarly combined libraries following Agilent's SureSelect Target
Enrichment System (Agilent Technologies). These enriched libraries
were then sequenced to an average depth of 15x using an Illumina
HiSeq 2,500 (San Diego, USA) on the 2 x 100 bp sequencing mode.
Read mapping and initial variant calling as well as the recalibration
of the quality of SNP calling were then applied to filter the raw vari-
ants, described in detail in Baison et al. (2019). In brief, the variant
calling was made using GATK HaplotypeCaller v.3.6 as per the best
practices protocol (Auwera et al., 2013) in gVCF output format. To
increase accuracy, hard filters in the form of minor allele frequency
(MAF) and “missingness” of <0.05 and >20%, respectively, were then

performed on the final dataset.

3 | GWAS

The LASSO model as described by Li et al. (2014) was applied to the

H. parviporum resistance trait data for the detection of QTLs.
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The LASSO model:

n
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where y; is the estimated breeding values (EBV) of an individual
i(i = 1,...,n; nis the total number of individuals) for each trait, ag is the
population mean parameter, x; is the genotypic value of individual
i and marker j coded as O, 1 and 2 for three marker genotypes AA, AB
and BB, respectively, g; is the effect of marker j (i = 1,...n; n is the total
number of markers) and 2 (>0) is a shrinkage tuning parameter. A fun-
damental idea of LASSO is to utilize the penalty function to shrink the
SNP effects towards zero, and only keep a small number of important
SNPs that are highly associated with the trait in the model. The stabil-
ity selection probability (SSP) of each SNP being selected to the model
was applied as a way to control the false discovery rate and determine
significant SNPs (H. Gao et al., 2014; Li & Sillanpas, 2015). For a
marker to be declared significant, an SSP inclusion ratio (Frequency)
was used with an inclusion frequency of all traits. This frequency
inferred that the expected number of falsely selected markers was
less than one, according to the formula of Bihlmann, Kalisch, and
Meier (2014). Population structure was accounted for in all analyses
by including principal components based on the genotype data as
covariates into the model (Baison et al., 2019). An adaptive LASSO
approach (Baison et al., 2019; Zou, 2006) was used to determine the
percentage of phenotypic variance (PVE) (H?qr) of all the QTLs. The

analyses were all performed in RStudio (Team, 2015).

3.1 | Identification of candidate genes associated
with the QTLs

To assess putative functionality of SNPs with significant associations,
a gene enrichment analysis of putative genes and their associated
orthologs was performed against the P. abies v1.0 genome (http://
congenie.org), collecting PFAM and GO term annotations and Populus
and Arabidopsis orthologues. The position of the detected QTLs in
Norway spruce genome was estimated by searching an ultra-dense
genetic map (Bernhardsson et al., 2019) for markers derived from the
same probes as the SNP markers holding the QTLs, identified based
on tblastn sequence homology for the SNP array sequences in the
Lind et al. (2014) study, as described by (Bernhardsson et al., 2019).
Information on the expression pattern of the putative candidate
genes associated with the QTL, in the Norway spruce clone Z4006
(the clone sequenced in Nystedt et al. (2013)) and in wood, were col-
lected from three sources. Firstly, expression data were downloaded
from the publicly available P.abies exAtlas (https://www.congenie.org)
and NorWood v1.0 (http://norwood.congenie.org) databases, respec-
tively. Both these databases are comprised of expression profiles from
approximately 50-year-old ramets of the genotype “Z4006.” Then, we
examined an RNAseq study of bark and phloem samples harvested at

seven dpi proximal (0-5mm from the wound) and distal to the

inoculation site (10-15 mm away from the wound) from two Norway
spruce genotypes (521K0220126 and $21K0220184) inoculated with
H. parviporum (Chaudhary et al., submitted manuscript). In brief, two-
year-old branches on clones of S21K0220126 and $21K0220184
were inoculated and sampled as described above using wounding as a
control. A total RNA from three biological replicates of each clone per
treatment were sequenced on the lllumina HiSeq 2500 at the
SNP&SEQ Technology Platform (SciLifeLab, Uppsala). Quality filtering
was done using Nesoni 0.97 (http://www.vicbioinformatics.com/
nesoni-cookbook/index.html#). Differential gene expression was iden-
tified using the Tophat-cufflinks pipeline (Trapnell et al., 2012, 2014;
Trapnell et al., 2013) and the “P. abies v1.0-all-cds.fna” gene catalogue

as a reference (Chaudhary et al., submitted manuscript).

3.2 | Branch inoculation with H. parviporum

We performed an inoculation experiment on six-year-old grafted
cuttings of the Norway spruce genotype $S21K7820222. Branches
on healthy-looking potted plants were inoculated with wooden
dowels colonized by H. parviporum Rb175 fixated to a wound on a
two-year-old branch with Parafilm. Control treatment branches
were wounded and covered with Parafilm. The inoculated plants
kept at ambient light and temperature conditions in a greenhouse.
At 7 days post-inoculation (dpi), bark surrounding the wounds and
inoculation sites were cut into two sections and samples were col-
lected at the inoculation site 0-5 mm around the wound and distal
to the inoculation site 10-15 mm from the wound. The bark sam-
ples were frozen separately in liquid nitrogen and stored at —80°C

until further use.

3.3 | AQuantitative PCR analysis of expression
patterns in response to H. parviporum inoculation

The total RNA was isolated according to the protocol by Chang,
Puryear, and Cairney (1993). To eliminate genomic DNA contamina-
tion, samples were treated with DNase | (Sigma-Aldrich) according to
the manufacturer's instructions. RNA integrity and quantity were
analysed by using the Agilent RNA 6000 Nano kit (Agilent Technolo-
gies Inc.). The 1 pg of total RNA was reverse transcribed to cDNA
with the iScript cDNA Synthesis Kit (Bio-Rad) in a total reaction vol-
ume of 20 pl according to the manufacturer's instructions, followed
by a two-fold dilution of the cDNA and storage at — 20°C.
Quantitative PCR (qPCR) reactions were performed with the
SsoFast™ EvaGreen® Supermix (Bio-Rad) according to the instructions
in the manual, using 0.3 uM of each primer (Table S1 in Data S1) and
Norway spruce cDNA equivalent to 25 ng of total RNA. The gPCRs
were carried out in an iQ5™ Multicolor Real-Time PCR Detection Sys-
tem thermocycler (Bio-Rad) using a program with a 30 s initial dena-
turation step at 95°C, followed by 40 cycles of 5 s denaturation at
95°C and 10 s at 60°C. Melt curve analyses were used to validate the

amplicon. Four biological replicates were used per treatment and two
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technical repetitions per standard, sample and negative control
were run.

The relative expression was calculated from threshold cycle
(Ct) values using the 2AACT-method (Livak & Schmittgen, 2001) by
using the geometric mean of Phosphoglucomutase (Vestman
et al., 2011) and elongation factor 1-a (ELF1a) (Arnerup et al., 2011) to
normalize transcript abundance. The gene expression experiments
were performed with four biological and two technical replicates.
One-way ANOVA with Dunns Post-test (GraphPad Prism 5.0) was

used to detect differences in expression levels between treatments.

4 | RESULTS

4.1 | Trait association mapping identifies novel
QTLs for resistance to H. parviporum

From an average of 1.5 million paired end sequence reads per individ-
ual, 197,399 high confidence SNPs from 23,837 probes were identi-
fied. The majority of the SNPs were missense (61%) and silent (36%),
the highest percentage being either upstream or downstream variants
(68% total).

Employing a Stability Selection Probability (SSP) on the estimated
breeding values (EBVs) for SWG and LL of the offspring on the
466 trees, we identified six SNPs with significant associations for
SWG and five SNPs associating with LL (Table 2). The QTLs for con-
trol of sapwood growth of H. parviporum (SWG) explained similar frac-
tions of the observed phenotypic variation (HQQTL) 24 to 52%
(Table 2). The five QTLs for control of the LL development in bark
explained between 2.1 and 4.4% of the observed phenotypic variation
(Table 2).

To investigate if the identified QTLs are independent from previ-
ously identified QTLs for resistance to the same isolate of
H. parviporum using IM (Lind et al., 2014), we searched an ultra-dense
genetic map (Bernhardsson et al, 2019) for the probes the SNP
markers originated from. This allowed us to estimate the position of
the detected QTLs and the original IM-based QTLs in the Norway
spruce genome. We could estimate the position in the Norway spruce
genome for six of the SNPs/probes (Table S2.1 and Figure S2.11 in Data
S1). All of the identified SNPs/probes were positioned >30 cM away
from the original IM-based QTLs in the genetic map. Given that the
maintained LD is estimated to only 109 bp across all the tagged geno-
mic sequences in this study (Table S2 in Data S1), it is likely that they
are independent. The SNP MA_53835_9763, associating with the trait
SWG, presented a potential exception as the probe MA_14663 is
positioned 4 cM away from MA_53835 in the map (Bernhardsson
et al, 2019). The probe MA_14663 corresponds to the SNP array
sequence for an IM-based QTL for infection prevention (Lind
et al., 2014; Chaudhary et al., submitted manuscript).

On the scaffolds holding the SNPs associated with the resistance
traits, a total of 14 gene models were identified, including 11 high- or
medium-quality Norway spruce gene models (Table 3). On the scaf-
folds holding more than one gene model, the SNPs were positioned in
MA_5978g0020, MA_25569g0020 and MA_97119g0010. Seven of
the candidate genes associated with SWG QTLs and seven with LL
(Tables 2 and 3). PFAM and GO term annotations and Populus and
Arabidopsis orthologues were collected from P. abies v1.0 genome
portal (Table 3). These metrics suggested that the gene models
MA_97119g0010 and MA_97119g0020, found on the scaffold
harbouring the SNP MA_97119_12277, indeed represented one gene.
BlastN searches against the NCBI database essentially confirmed this

suggestion as both gene models match JX500691.1 (Picea abies

TABLE 2  Significant association in the GWA study

Phenotype® QTL SNP® Allele® SNP feature? Frequency® PVE (%)

SWG_tot 8675 MA_5978_21,011 T/C Missense 0.71 4.83
26756 MA_17884_58584 A/G Upstream variant 0.72 341
54184 MA_53072_3732 G/A Synonymous 0.551 2.88
54695 MA_53835_9763 G/A Upstream variant 0.567 2.40
56105 MA_56128_7752 C/A Upstream variant 0.545 5.21
71928 MA_84091_11329 C/A Upstream variant 0.534 2.23

LL_tot 21105 MA_14352_27165 G/A Missense variant 0.603 3.82
27795 MA_18316_3165 G/T Upstream variant 0.618 211
31060 MA_19645_22184 c/T Missense 0.682 23
37057 MA_25569_28091 T/C Upstream variant 0.667 2.77
81488 MA_97119_12277 T/C Upstream variant 0.742 4.39

2Phenotype specifies the trait upon which the marker associate.

PSNP: The SNP name was composed of the contig (MA_number) and SNP position on contig. For example, the first SNP MA_5978_21011 was located on

contig MA_5978 at position 21011 bp.
“Allele indicates the biallelic SNP.

9SNP feature allelic variation associated with the SNP.
®Frequency, stability selection probability inclusion ratios for markers declared significant.

PVE, phenotypic variance explained, only values larger than 1.0% are displayed.
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TABLE 3 Candidate Norway spruce gene models associated with the QTL markers

SNP?
MA_5978_21,011

MA_17884_58584

MA_53072_3732
MA_53835_9763

MA_56128_7752
MA_84091_11329
MA_14352_27165

Candidate gene® Description (Blast2Go)®

MA_5978g0010 Phenylcoumaran benzylic ether
reductase

MA_5978g0020 Nuclear factor 1 A-type isoform
2

MA_17884g0010  Mitochondrial import receptor
subunit TOM40-1

MA_53072g0010

MA _53835g0010  Probable tocopherol O-
chloroplastic

MA_56128g0010
MA_84091g0010
MA_14352g0010  Transcription factor bHLH118

PFAM-Description/GO term®
PF00106-short chain dehydrogenase,

PF01073-3-beta hydroxysteroid
dehydrogenase/isomerase family

PF01118-Semialdehyde dehydrogenase,
NAD binding domain,

PF01370-NAD-dependent epimerase/
dehydratase family,

PF02719-Polysaccharide biosynthesis
protein,

PF03435-Saccharopine dehydrogenase,

PF03807-NADP oxidoreductase
coenzyme F420-dependent,

PF05368-NmrA-like family,
PF07993-Male sterility protein,
PF08659-KR domain,
PF13460-NADH(P)-binding

PF06219-Protein of unknown function
(DUF1005)

PF01459-Eukaryotic porin

PF01209-ubiE/COQ5 methyltransferase
family,

PF01728-FtsJ-like methyltransferase,

PF02353-Mycolic acid cyclopropane
synthetase,

PF03059-Nicotianamine synthase
protein,

PF05175-Methyltransferase small
domain,

PF05891-AdoMet dependent proline
di-methyltransferase,

PF07021-Methionine biosynthesis
protein MetW,

PF08003-Protein of unknown function
(DUF1698),

PF08241-Methyltransferase domain,
PF08242-Methyltransferase domain,
PF12847-Methyltransferase domain,
PF13489-Methyltransferase domain,
PF13578-Methyltransferase domain,
PF13649-Methyltransferase domain,
PF13659-Methyltransferase domain,
PF13679-Methyltransferase domain,
PF13847-Methyltransferase domain

PF00010-Helix-loop-helix
DNA-binding domain

Orthologs populus/
Arabidopsis®

Potri.009G118100.1/
AT1G75280.1

Potri.013G071000.3/
AT5G17640.1

Potri.007G000200.1/
AT3G20000.1

Potri.013G077000.1
AT1G64970.1

Potri.006G130600.1

Potri.015G134300.1/
AT4G25400.1
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TABLE 3 (Continued)

SNP? Candidate gene®
MA_18316_3165 MA_18316g0010

Description (Blast2Go)®
IST1 homologue

MA_19645 22184
MA_25569_28091

MA_19645g0010
MA_25569g0010

MA 2556980020

MA_97119_12277 MA_97119g0010  Laccase

MA_97119g0020  Laccase 12

Orthologs populus/

PFAM-Description/GO term® Arabidopsis®
PF03398-Regulator of Vps4 activity in Potri.019G087400.1/
the MVB pathway AT1G34220.2

Potri.002G054900.1/
AT1G03230.1

G0:0005618-cell wall,

GO0:0016020-membrane,

G0:0044444-cytoplasmic part
Potri.001G266500.1

Potri.019G124300.1 /
AT2G30210.1

Potri.010G183500.1 /
AT5G05390.1

PF07732-Multicopper oxidase

PF00394-Multicopper oxidase,
PF07731-Multicopper oxidase

2SNP: The SNP name was composed of the contig (MA_number) and SNP position on contig.

bCandidate gene.

“Description (Blast2Go).

9pPFAM-Description or GO terms when PFAM descriptions were missing.
®Populus/Arabidopsis orthologs identified in the P. abies v1.0 genome portal.

laccase LAC5a) with E = 4*107% and E = 0 and 99.62 and 99.71%
identity, respectively. This laccase, PaLAC5, was originally isolated
from lignin-forming Norway spruce suspension cultures. Apart from
MA_97119, two other QTL holding scaffolds (MA_5978 and
MA_25569) harboured more than one gene model (Table 3). Both of
these scaffolds appear to hold two different gene models as judged
by the PFAM annotations and Populus or Arabidopsis orthologs
(Table 3). MA_5978g0010 appears to encode a phenylcoumaran ben-
zylic ether reductase (PCBER) with similarity to PicglPPR21 (Porth,
Hamberger, White, & Ritland, 2011). The gene
MA_14352g0010 may belong to the basic helix-loop-helix (bHLH)
DNA-binding superfamily since the PFAM-ID PFO0010 (Helix-loop-
helix DNA-binding domain) is associated with the gene model. The
candidate gene MA_18316g0010 is associated with PF03398 (regula-
tor of Vps4 activity in the MVB pathway), indicating that this gene

model

too may be involved in regulatory activities. The gene model
MA_53835g0010 appears to encode a protein with methyltransferase
capacities based on its PFAM annotation and its Arabidopsis
orthologue (Table 3), and based on its PFAM annotation (PF01459)
and the annotation of the Arabidopsis orthologue, AT3G20000.1
(Table 3) which encodes p-barrel protein, TOM40, forming channels in
the outer mitochondrial membranes, it is likely that the candidate
gene MA_17884g0010 encodes a Norway spruce TOM40-like

protein.

4.2 | A majority of the candidate genes associated
with SWG are expressed in stem and wood forming
tissues

To gain a better understanding of the functionality of the candidate

genes, we assessed the expression in silico using available resources

cambium scw Early wood Late wood

T1 72 T3 T1 72 T3 T1 T2 T3 T1 T2 T3

SWG

_,|MA_18316g0010 o
= |MA_2556990020 | 3.1

FIGURE 1 Relative expression levels of candidate genes
associated to H. parviporum resistance QTLs through different stages
of xylem development including cambium and expanding early wood
(cambium), secondary cell wall-forming xylem (SCW), first dead early
wood cells (Early wood) and the previous year's latewood (late wood).
Data collected from NorWood v1.0 (http://norwood.congenie.org)
database, T1-T3 represent the expression level in each of the three
analysed trees (Jokipii-Lukkari et al., 2017). The bar to the left
indicates the relative expression level of the candidate gene in the
heat map [Colour figure can be viewed at wileyonlinelibrary.com]

such as NorWood and P. abies exATLAS databases. It predicted that
the candidate genes linked to SWG would more commonly be
expressed in sapwood than genes linked to LL. Only seven candidate
genes  (MA_5978g0010, MA_5978g0020, MA_17884g0010,
MA_53835g0010, MA_56128g0010, MA_18316g0010  and
MA_25569g0020) were expressed in any of the libraries in NorWood
(Figure 1). Of the expressed candidate genes, five were linked to
SWG. This indicated a trend (Chi-square = 3.233, p = .07) where can-
didate genes linked to the SWG QTLs were expressed more often in
wood compared to candidate genes linked to LL.

NorWood is a database of transcript abundances in high spatial
resolution section series throughout the cambial and woody tissues of
Norway spruce (Jokipii-Lukkari et al., 2017). Three of the five candi-
date genes associated with control of SWG (MA_5978g0010,
MA_5978g0020 and MA_17884g0010) showed the highest transcript
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levels in the cambial region. MA_56128g0010, also associated with
SWG, appeared to be more active in the expanding early wood and
secondary cell wall-forming tissues (Figure 1). One of the two candi-
date genes associated with the LL extension in the phloem and inner
bark that were detected in the NorWood libraries, MA_25569g0020
showed very high activity in the samples collected at the visual
appearance of dead early wood cells and in latewood (Figure 1). The
inspection of the expression patterns in the P. abies exATLAS indi-
cated that all MA_84091g0010 and
MA_19645g0010 were expressed in at least one tissue of the clone
Z4006 (Figure S3 in Data S1). Apart from the candidate genes that
were also detected in the NorWood database, several candidate
genes (MA_14352g0010, MA_25569g0010, MA_97119g0010 and
MA_97119g0020) associated with LL were found to be expressed in

samples derived from stem tissues (Figure S3 in Data S1).

candidate genes but

4.3 | The transcriptional responses to
H. parviporum inoculation identifies candidates
responding specifically to the pathogen

If the candidate gene models associated with QTLs contribute to the con-
trol of the H. parviporum infection, they may be involved in either the con-
stitutive or induced defence in the tissue (or both) (Arnerup et al., 2011;
Danielsson et al.,, 2011; Oliva et al., 2015). Assuming that genes associated
with the induced defences respond to inoculation with the pathogen, it is
relevant to assess the candidate genes expression pattern in response to
H. parviporum (Amerup et al, 2011; Danielsson et al, 2011; Oliva
et al, 2015). We used an RNASeq study of transcriptional responses in
bark and phloem response to wounding and H. parviporum inoculation
(Chaudhary et al., submitted manuscript). Five candidate genes showed
constitutive expression at seven dpi irrespective of the treatment:
MA_5978g0020, MA_17884g0010, MA_53835g0010, MA_56128g0010

Proximal Distal
Candidate gene Inoc Wound Inoc Wound
MA_14352g0010 *
MA_18316g0010 [k i B i
= | MA_2556990020 !
MA_97119g0010
MA_9711990020
MA_17884g0010
o | MA_53835g0010
= | MA_56128g0010 o
@1 MA_5978g0010
MA_5978g0020
FIGURE 2 Expression profile of candidate genes for

H. parviporum resistance in response to H. parviporum inoculation and
wounding at seven dpi proximally (0-5 mm from the inoculation site)
and distally (10-15 mm from the inoculation site) in the clones
$21K0220126 and $21K0220184 (Chaudhary submitted MS).
Asterisks indicate significant different expression levels between the
inoculation treatment and the wounding control in Cuffdiff. The bar to
the left indicates the FPKM values associated with the gene model
[Colour figure can be viewed at wileyonlinelibrary.com]

and MA_25569g0020 (Figure 2). Most of these showed moderate expres-
sion levels, but MA_17884g0010 expression was relatively high in all sam-
ples. Four gene models associated with LL were differentially expressed at
seven dpi: MA_14352g0010, MA_18316g0010, MA_97119g0010 and
MA_97119g0020 (Figure 2). Interestingly, the two candidate gene models,
(MA_97119g0010 and MA_97119g0020, i.e., PaLAC5) that showed the
largest induction in response to the inoculation treatment compared to
the wounding control proximal to the inoculation site, were not induced
but rather downregulated distally at seven dpi (Figure 2). To validate the
transcriptional responses estimated from the RNAseq data, we set up a
separate inoculation experiment in a single Norway spruce genotype for
gPCR validation of the expression patterns at seven dpi. The gPCR verified
the transcriptional regulation patterns between H. parviporum inoculation
and wounding treatment for most genes (Figures 2 and 3). This included
the absence of a transcriptional activity of the candidate genes
MA_53072g0010, MA_84091g0010, MA_19645g0010 and
MA_25569g0010. The repression of the putative bHLH transcription fac-
tor MA_14352g0010 in response to H. parviporum was not detected in
the gPCR experiment. The ¢PCR did PalLAC5
(MA_97119g0010 and MA_97119g0020) is strongly and specifically
upregulated in close proximity to the H. parviporum inoculation site
(Figure 3d). Two of the candidate genes linked to the SWG QTLs with
detected expression in the Norwood database, MA_17884g0010 and
MA_53835g0010, were shown to be induced in response to
H. parviporum compared to the control (Figure 3f,g). None of the tested
candidate genes, including MA_17884g0010 and MA_53835g0010, were

differentially expressed between H. parviporum inoculation and wounding

confirm  that

in sapwood in early interactions (Table S4 and Method Section in
Data S1).

5 | DISCUSSION
5.1 | Twelve distinct QTLs for resistance to
H. parviporum identified by GWAS

In this study, the GWAS identified 11 significant associations across
the two traits for H. parviporum resistance. QTLs for LL and SWG
traits detected in the GWAS explained similar fractions of the
observed phenotypic variation, as in the IM-based QTL study by Lind
et al. (2014). However, the narrow-sense heritability of the pheno-
typic traits was considerably higher among the 466 Norway spruce
half-sib families than in the single family used in the IM-based QTL
study, 0.42 compared to 0.11 for SWG (Arnerup et al., 2010; Chen
et al., 2018; Lind et al., 2014). The fact that the Norway spruce
genome v 1.0 assembly was highly fragmented comprising >10 million
scaffolds over 500 bp (Bernhardsson et al., 2019; Nystedt et al., 2013)
made it difficult to evaluate how the QTLs identified by GWAS relate
to the previously identified QTLs (Lind et al., 2014), or to each other.
However, the newly published ultra-dense genetic map (Bernhardsson
et al., 2019) showed that five of the QTLs were independent from the
other QTL regions as they were found in different linkage groups.

Only one of the QTL regions that was identified in the linkage map
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FIGURE 3  Expression profile of
candidate genes for H. parviporum
resistance in response to H. parviporum
inoculation (Hp) and wounding (W) at
seven dpi proximally (0-5 mm from the
inoculation site, indicated by the letter
“A"in, e.g., the treatment “Hp_A") and
distally (10-15 mm from the inoculation
site, indicated by the letter “C”) in the
Norway spruce clone S21K7820222 as
detected by qPCR. Candidates a-d are
associated with the trait LL and candidate
genes e-g with trait the SWG. The
floating bars in the graphs indicate min
and max values, the line indicates mean,
and different letters over the bars in the
graph indicate significant differences in
the statistical analyses (N = 4)
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Candidate genes have orthologues whose

(Lind et al., 2014). The SNP MA_53835_9763 is positioned within
4 cM from a probe in the confidence region for the trait infection pre-
vention (IP) on LG 11 (Lind et al., 2014; Chaudhary et al., submitted
manuscript). Thus, the possibility that these markers target the same
genomic region cannot be excluded, although it is not very likely given
the short LD. Overall, the GWAS returned 11 new potential markers
for resistance to H. parviporum in Norway spruce that could be used

to aid selection in breeding programmes.

genetic variation is associated with the control of the
responses to multiple stresses

Three of the candidate genes identified in the GWAS,
MA_17884g0010, MA_5978g0020 and MA_18316g0010, have Ara-
AT3G20000.1, AT5G17640.1
respectively. These orthologues hold QTLs for

bidopsis orthologues and
AT1G34220.2,

responses to multiple stresses (Kawa et al., 2016; Thoen et al., 2017).
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The candidate gene MA_18316g0010 was associated with control of
lesion length in the inner bark and it was upregulated in response to
H. parviporum inoculation compared to wounding alone, both proxi-
mally and distally. The Arabidopsis orthologue AT1G34220.2 encodes
IST1-LIKE1 (ISTL1), a protein predicted to be the Arabidopsis homo-
logue of yeast IST (Buono et al., 2016). ISTL1 is a regulator of the mul-
tivesicular bodies (MVB) pathway in which ubiquitinated and
endocytically internalized membrane proteins are degraded (C. Gao,
Zhuang, Shen, & Jiang, 2017). ISTL1, in interaction with LIP5 (LYST
INTERACTING PROTEIN 5, AT4G26750), is essential for normal plant
growth and repression of spontaneous cell death (Buono et al., 2016).
The fungus H. parviporum is a necrotrophic pathogen and upon infec-
tion or inoculation in trees, it will create necrotic lesions in the phloem
to gain access to the sapwood (Johansson & Stenlid, 1985; Lindberg &
Johansson, 1991). It is, therefore, tempting to propose that the
MA_18316g0010 protein fulfils the same role in the control of the cell
death process as the ISTL1/LIP5 complex, MA_18316g0010 was
upregulated in response to H. parviporum inoculation to repress cell
death, a mechanism that must be integral to the LL trait. It would be
interesting to test if the variation at MA_18316_3156 leads to differ-
ential accumulation of the transcript in response to H. parviporum.
The Arabidopsis orthologue to MA_17884g0010, AT3G20000.1,
encodes
40, TOM40. AtTOM40 is in LD with a QTL (Ch3:6968031) identified

in a multi-trait QTL mixed models GWAS using the responses to a set

translocase of the outer mitochondrial membrane

of 30 biotic and abiotic stresses in 196 accessions of Arabidopsis
(Thoen et al., 2017). TOM40 protein is the central channel forming
units of the TOM complex (Hill et al., 1998). The TOM complex and
the mitochondrial outer membrane play a central role in the interac-
tion between the mitochondrion and the cytosol. It mediates the
import of preproteins, the passage of small molecules and the trans-
duction of signals between cellular compartments (Duncan, van der
Merwe, Daley, & Whelan, 2013). Consequently, it is perhaps not
unexpected that genetic variation associated with MA_17884g0010
and TOM40 may influence plants responses to stress, or that
MA_17884g0010 shows a ubiquitous expression in the surveyed Nor-
way spruce tissues, with a slight upregulation in metabolically very
active tissues (eg the cambium) and in response to H. parviporum

inoculation.

5.3 | Candidate genes linked to SWG QTLs are
more commonly expressed in wood

Despite the economic and ecological importance of conifers, we know
surprisingly little about the genetic basis of resistance to decay patho-
gens compared to canker-forming pathogens in conifers (Kinloch,
Sniezko, & Dupper, 2003; Liu et al., 2017; Sniezko, Smith, Liu, &
Hamelin, 2014). Examining the regions under selection in response to
given pathogens or stressors, identifying and testing candidate genes,
can lead to better understanding of the interaction between the host
and the pathogen (Liu et al., 2017; Martin, Rénnberg-Wiastljung, Ste-
nlid, & Samils, 2016; Nemesio-Gorriz et al., 2016; Thoen et al., 2017).

Under the expectation that candidate genes linked to the control of
SWG are involved in processes shaping the cell wall or in production
of, for example, specialized metabolites in wood (Oliva et al., 2015;
Popoff, Theander, & Johansson, 1975; Stenlid & Johansson, 1987), we
predicted that the expression of the candidate genes linked to SWG
QTLs should be more commonly detected in the wood-forming tis-
sues than the genes linked to the LL QTLs. A trend for this was
observed in the NorWood database (Jokipii-Lukkari et al., 2017),
although a larger number of QTLs and candidate genes for both traits
studied would probably have been needed to gain conclusive evi-
dence. It is, however, important to point out that none of the QTLs
identified for SWG, or LL, coincide with the 52 QTLs for important
wood quality traits in Norway spruce reported by Baison et al. (2019).
An observation that is fully in agreement with the absence of signifi-
cant correlations between wood quality, or growth, traits and resis-
tance to H. parviporum in this material (Chen et al., 2018), suggesting
that the detected SWG QTLs may be associated to distinct defence-
related processes. Several of the expressed candidate genes showed
their highest transcriptional activity in the cambium and expanding
early wood libraries. The candidate gene MA_25569g0020, associated
with LL, showed increased transcriptional activity during visual
appearance of dead early wood cells in the sapwood. The transcript is
also specifically expressed in the phloem in the autumn/winter
(Jokipii-Lukkari et al., 2018), but it was not induced by H. parviporum
inoculation. This points to that the role of MA_25569g0020 in resis-

tance may be associated to the constitutive defence.

5.4 | The Norway spruce laccase PaLAC5 responds
specifically to H. parviporum inoculation

Two candidate genes associated with the LL trait in bark,
MA_53835g0010 and PalAC5, are likely to be members of the
induced defence to H. parviporum. The Norway spruce laccase gene
PaLAC5 (MA_97119g0010 and MA_97119g0020) was originally iso-
lated from lignin-producing Norway spruce suspension cultures
(Koutaniemi, Malmberg, Simola, Teeri, & Karkdnen, 2015), and trans-
criptome analyses of these lignin-producing Norway spruce suspen-
sion cultures under different conditions suggest that PaLAC5 is
associated with the activation of stress associated lignin production
(Laitinen et al., 2017). PaLAC5 has a very specific spatial expression
pattern in response to H. parviporum inoculation. It is strongly, and
specifically, upregulated proximally to the H. parviporum inoculation
site but not regulated 10 mm away from the developing necrotic
lesion or in response to the wounding control. In contrast to the
induction of PaLAC5 in stress associated lignin production conditions
in vitro, the transcriptional activity of PaLAC5 is very low in sapwood
(Blokhina et al, 2019; Jokipii-Lukkari et al., 2017; Laitinen
et al., 2017). Therefore, PaLACS5 is not likely to be associated with lig-
nifying tracheids or ray parenchyma cells indicating that the induction
of PaLAC5 expression under lignin-forming conditions in the cell cul-
tures is stress-associated and not directly connected to lignification
processes in wood (Blokhina et al., 2019; Jokipii-Lukkari et al., 2017;
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Laitinen et al., 2017). However, if PaLAC5 would be responding to
stress in general, it would likely have had an expression pattern similar
to many other studied defense genes, which often show upregulation
in proximal to both mechanical wounding sites and to inoculation
points (Arnerup et al., 2011; Danielsson et al, 2011; Ralph
et al,, 2006). Instead, it showed a distinct expression pattern. Thus, it
is probable that PaLAC5 expression is associated with specific cell
types or processes such as the formation of the LSZ in the bark adja-
cent to the inoculation site. The LSZ is characterized by deposition of
phenolics and suberin, and an early development of a discernible LSZ
is crucial in stopping fungal invasions (Bodles et al., 2007; Lindberg &
Johansson, 1991; Solla, Tomlinson, & Woodward, 2002; Woodward
et al., 2007). Recently, it was suggested that specific isoforms of per-
oxidase and laccases may be involved in cross-linking aromatics to
form lignin-like polyphenolics in the suberin in bark (Rains, Molina, &
Gardiyehewa de Silva, 2017). The expression pattern of PalLAC5
responding to H. parviporum and lignin-forming conditions (Laitinen
et al., 2017) clearly makes it an interesting candidate for such a role. It
remains to be seen if PaLAC5, indeed, is involved in the LSZ formation
and if genetic variation associated with PaLAC5 influences the forma-
tion of the LSZ.

6 | CONCLUSIONS

Our large sample sizes and a relatively high number of markers
allowed us to link traits to SNPs with GWAS and to identify candidate
genes associated with the QTLs. These candidate genes present new
insights into the interaction between Norway spruce and
H. parviporum, such as a putative involvement of the secretory and
endosomal trafficking pathways and the laccase PaLAC5, in the control
of lesion extension in the inner bark or the potential role of mitochon-
drial protein import and biogenesis in controlling H. parviporum spread

in the sapwood.

ACKNOWLEDGMENTS

Financial support was received from the Swedish Foundation for Stra-
tegic Research (SSF), grant number RBP14-0040 and The Swedish
Research Council for Environment, Agricultural Sciences and Spatial
Planning (FORMAS). We also acknowledge the Swedish Research
Council (VR) and the Swedish Governmental Agency for Innovation
Systems (VINNOVA). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the man-
uscript. The authors thank Anna Karkénen for discussions on Norway
spruce laccases, Louis Mielke for linguistic help and Maria Jonsson
and the field staff at the Swedish Forest research institute for assis-
tance with phenotyping.

The R scripts used for the GWAS are publicly available at https://
github.com/RosarioGarciaLab. Genotypic data and SNP position files
are available upon contacting Rosario Garcia-Gil (m.rosario.garcia@slu.
se). The Norway spruce genome assemblies and resources are avail-

able from http://congenie.org/pabiesgenome.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

AUTHOR CONTRIBUTIONS
Conceived the study: HW., J.S., B.K,, M.R.G.G. and M.E.
Planned the study: B.K.,, M.R.G.G., M.E,, LV.
Performed experiments: K.L., L.V., M.E., H.C., M.S.A,R.C., AO.
Analysed data: L.Z., J.B., Z.-Q.C., M.E,, K.L,,R.C.
Drafted the MS: M.E. and J.B.
Commented on MS: J.B, Z-Q.C,, KL, BK, M.E, H.C, MS.A.,
R.C.,J)S.,A0O.and MRG.G.
Wrote the final MS: M.E., all authors read and approved the final

version.

ORCID
Malin Elfstrand
Maria Rosario Garcia-Gil

https://orcid.org/0000-0002-0214-5284
https://orcid.org/0000-0002-6834-6708

REFERENCES

Arnerup, J., Lind, M., Olson, A,, Stenlid, J., & Elfstrand, M. (2011). The path-
ogenic white-rot fungus Heterobasidion parviporum triggers non-
specific defence responses in the bark of Norway spruce. Tree Physiol-
ogy, 31(11), 1262-1272. https://doi.org/10.1093/treephys/tpri13

Arnerup, J., Swedjemark, G., Elfstrand, M., Karlsson, B., & Stenlid, J. (2010).
Variation in growth of Heterobasidion parviporum in a full-sib family of
Picea abies. Scandinavian Journal of Forest Research, 25(2), 106-110.
https://doi.org/10.1080/02827581003730799

Auwera, G. A, Carneiro, M. O., Hartl, C., Poplin, R., del Angel, G., Levy-
Moonshine, A, ... DePristo, M. A. (2013). From FastQ data to high-
confidence variant calls: The genome analysis toolkit best practices
pipeline. Current Protocols in Bioinformatics, 43(1), 11.10.1-11.10.33.
https://doi.org/10.1002/0471250953.bi1110s43

Baison, J., Vidalis, A., Zhou, L., Chen, Z.-Q., Li, Z., Sillanp&a, M. J., ... Garcia-
Gil, M. R. (2019). Genome-wide association study (GWAS) identified
novel candidate loci affecting wood formation in Norway spruce. The
Plant Journal, 100(1), 83-100. https://doi.org/10.1111/tpj.14429

Bartholomé, J., Bink, M. C. A. M., van Heerwaarden, J., Chancerel, E.,
Boury, C., Lesur, ., ... Plomion, C. (2016). Linkage and association map-
ping for two major traits used in the maritime pine breeding program:
Height growth and stem straightness. PLoS One, 11(11), e0165323.
https://doi.org/10.1371/journal.pone.0165323

Bernhardsson, C., Vidalis, A., Wang, X., Scofield, D. G., Schiffthaler, B.,
Baison, J., ... Ingvarsson, P. K. (2019). An ultra-dense haploid genetic
map for evaluating the highly fragmented genome assembly of Nor-
way spruce (Picea abies). G3-Genes Genomes Genetics, 9(5),
1623-1632. https://doi.org/10.1534/g3.118.200840

Blokhina, O., Laitinen, T., Hatakeyama, Y., Delhomme, N., Paasela, T.,
Zhao, L., ... Fagerstedt, K. (2019). Ray parenchymal cells contribute to
lignification of tracheids in developing xylem of Norway spruce. Plant
Physiology, 181(4), 1552-1572. https://doi.org/10.1104/pp.19.00743

Bodles, W. J. A, Beckett, E., & Woodward, S. (2007). Responses of Sitka
spruce of different genetic origins to inoculation with Heterobasidion
annosum: Lesion lengths, fungal growth and development of the
lignosuberized boundary zone. Forest Pathology, 37(3), 174-186.
https://doi.org/10.1111/].1439-0329.2007.00494.x

Biihlmann, P., Kalisch, M., & Meier, L. (2014). High-dimensional statistics
with a view toward applications in biology. Annual Review of Statistics
and its Application, 1(1), 255-278. https://doi.org/10.1146/annurev-
statistics-022513-115545



12_|_W1 LEY— I L

ELFSTRAND €T AL.

Buono, R. A, Paez-Valencia, J., Miller, N. D., Goodman, K., Spitzer, C.,
Spalding, E. P., & Otegui, M. S. (2016). Role of SKD1 regulators LIP5
and IST1-LIKE1 in endosomal sorting and plant development. Plant
Physiology, 171(1), 251-264. https://doi.org/10.1104/pp.16.00240

Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method
for extracting RNA from pine trees. Plant Molecular Biology Reporter,
11(2), 113-116.

Chen, Z.-Q., Lundén, K., Karlsson, B., Vos, I., Olson, A., Lundqvist, S.-O., ...
Elfstrand, M. (2018). Early selection for resistance to Heterobasidion
parviporum in Norway spruce is not likely to adversely affect growth
and wood quality traits in late-age performance. European Journal of
Forest Research, 137, 517-525. https://doi.org/10.1007/s10342-018-
1120-5

Cubbage, F. W., Pye, J. M., Holmes, T. P., & Wagner, J. E. (2000). An eco-
nomic evaluation of fusiform rust protection research. Southern Journal
of Applied Forestry, 24(2), 77-85. https://doi.org/10.1093/sjaf/24.
2.77

Danielsson, M., Lunden, K., Elfstrand, M., Hu, J., Zhao, T., Arnerup, J., ...
Stenlid, J. (2011). Chemical and transcriptional responses of Norway
spruce genotypes with different susceptibility to Heterobasidion spp.
infection. BMC Plant Biology, 11, 154.

Duncan, O., van der Merwe, M. J,, Daley, D. O., & Whelan, J. (2013). The
outer mitochondrial membrane in higher plants. Trends in Plant Science,
18(4), 207-217. https://doi.org/10.1016/j.tplants.2012.12.004

Gao, C., Zhuang, X., Shen, J., & Jiang, L. (2017). Plant ESCRT complexes:
Moving beyond endosomal sorting. Trends in Plant Science, 22(11),
986-998. https://doi.org/10.1016/j.tplants.2017.08.003

Gao, H., Wu, Y., Li, J,, Li, H., Li, J., & Yang, R. (2014). Forward LASSO analy-
sis for high-order interactions in genome-wide association study. Brief-
ings in Bioinformatics, 15(4), 552-561. https://doi.org/10.1093/bib/
bbt037

Garbelotto, M., & Gonthier, P. (2013). Biology, epidemiology, and control
of Heterobasidion species worldwide. Annual Review of Phytopathology,
51(1), 39-59. https://doi.org/10.1146/annurev-phyto-082712-
102225

Hall, D., Hallingbéck, H. R., & Wu, H. X. (2016). Estimation of number and
size of QTL effects in forest tree traits. Tree Genetics & Genomes, 12(6),
110. https://doi.org/10.1007/511295-016-1073-0

Hill, K., Model, K., Ryan, M. T., Dietmeier, K., Martin, F., Wagner, R., &
Pfanner, N. (1998). Tom40 forms the hydrophilic channel of the mito-
chondrial import pore for preproteins. Nature, 395(6701), 516-521.
https://doi.org/10.1038/26780

Johansson, M., & Stenlid, J. (1985). Infection of roots of Norway spruce
(Picea abies) by Heterobasidion annosum. 1. Initial reactions in sapwood
by wounding and infection. European Journal of Forest Pathology, 15(1),
32-45.

Johansson, M., & Theander, O. (1974). Changes in sapwood of roots of
Norway spruce , attecked by Fomes annosus. Part 1. Physiologia Pla-
ntarum, 30(3), 218-225.

Jokipii-Lukkari, S., Delhomme, N., Schiffthaler, B., Mannapperuma, C.,
Prestele, J., Nilsson, O., ... Tuominen, H. (2018). Transcriptional
roadmap to seasonal variation in wood formation of Norway spruce.
Plant Physiology, 176(4), 2851-2870. https://doi.org/10.1104/pp.17.
01590

Jokipii-Lukkari, S., Sundell, D., Nilsson, O., Hvidsten, T. R., Street, N. R., &
Tuominen, H. (2017). NorWood: A gene expression resource for evo-
devo studies of conifer wood development. New Phytologist, 216(2),
482-494. https://doi.org/10.1111/nph.14458

Karlsson, B., & Swedjemark, G. (2006). Genotypic variation in natural infec-
tion frequency of Heterobasidion spp. in a Picea abies clone trial in
southern Sweden. Scandinavian Journal of Forest Research, 21(2),
108-114. https://doi.org/10.1080/02827580500529969

Kawa, D., Julkowska, M. M. Sommerfeld, H. M. ter Horst, A,
Haring, M. A, & Testerink, C. (2016). Phosphate-dependent root

system architecture responses to salt stress. Plant Physiology, 172(2),
690. https://doi.org/10.1104/pp.16.00712

Kinloch, B. B., Sniezko, R. A., & Dupper, G. E. (2003). Origin and distribu-
tion of Cr2, a gene for resistance to white pine blister rust in natural
populations of western white pine. Phytopathology, 93(6), 691-694.
https://doi.org/10.1094/phyto.2003.93.6.691

Koutaniemi, S., Malmberg, H. A, Simola, L. K., Teeri, T. H., & Kérkonen, A.
(2015). Norway spruce (Picea abies) laccases: Characterization of a
laccase in a lignin-forming tissue culture. Journal of Integrative Plant
Biology, 57(4), 341-348. https://doi.org/10.1111/jipb.12333

Laitinen, T., Morreel, K., Delhomme, N., Gauthier, A., Schiffthaler, B.,
Nickolov, K., ... Kirkénen, A. (2017). A key role for apoplastic H,O, in
Norway spruce phenolic metabolism. Plant Physiology, 174(3),
1449-1475. https://doi.org/10.1104/pp.17.00085

Li, Z., Hallingback, H. R., Abrahamsson, S., Fries, A., Andersson Gull, B.,
Sillanp3i, M. J., & Garcia-Gil, M. R. (2014). Functional multi-locus QTL
mapping of temporal trends in scots pine wood traits. G3-Genes
Genomes Genetics, 4(12), 2365-2379. https://doi.org/10.1534/g3.
114.014068

Li, Z., & Sillanp3s, M. J. (2015). Dynamic quantitative trait locus analysis of
plant phenomic data. Trends in Plant Science, 20(12), 822-833. https://
doi.org/10.1016/j.tplants.2015.08.012

Lind, M., Kéllman, T., Chen, J., Ma, X.-F., Bousquet, J., Morgante, M., ...
Stenlid, J. (2014). A Picea abies linkage map based on SNP markers
identifies QTLs for four aspects of resistance to Heterobasidion par-
viporum infection. PLoS ONE, 9(7), e101049. https://doi.org/10.1371/
journal.pone.0101049

Lindberg, M., & Johansson, M. (1991). Growth of Heterobasidion annosum
through bark of Picea abies. European Journal of Forest Pathology, 21
(6-7), 377-388. https://doi.org/10.1111/j.1439-0329.1991.th00775.x

Liu, J.-J., Sniezko, R. A, Zamany, A., Williams, H., Wang, N., Kegley, .
Sturrock, R. N. (2017). Saturated genic SNP mapping identified func-
tional candidates and selection tools for the Pinus monticola Cr2 locus
controlling resistance to white pine blister rust. Plant Biotechnology
Journal, 15(9), 1149-1162. https://doi.org/10.1111/pbi.12705

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression
data using real-time quantitative PCR and the 2722¢T method.
Methods, 25(4), 402-408.

Martin, T., Rénnberg-Wastljung, A.-C., Stenlid, J., & Samils, B. (2016). Iden-
tification of a differentially expressed TIR-NBS-LRR gene in a major
QTL associated to leaf rust resistance in salix. PLoS One, 11(12),
e0168776. https://doi.org/10.1371/journal.pone.0168776

Mullick, D. B. (1977). The non-specific nature of defense in bark and wood
during wounding, insect and pathogen attack. In F. A. Loewus &
V. C. Runeckles (Eds.), The structure, biosynthesis, and degradation of
wood (pp. 395-441). Boston, MA: Springer.

Namroud, M.-C., Guillet-Claude, C., Mackay, J., Isabel, N., & Bousquet, J.
(2010). Molecular evolution of regulatory genes in spruces from differ-
ent species and continents: Heterogeneous patterns of linkage dis-
equilibrium and selection but correlated recent demographic changes.
Journal of Molecular Evolution, 70(4), 371-386. https://doi.org/10.
1007/500239-010-9335-1

Neale, D. B., & Savolainen, O. (2004). Association genetics of complex
traits in conifers. Trends in Plant Science, 9(7), 325-330. https://doi.
org/10.1016/j.tplants.2004.05.006

Nemesio-Gorriz, M., Hammerbacher, A., Ihrmark, K., Kallman, T., Olson, A.,
Lascoux, M., ... Elfstrand, M. (2016). Different alleles of a gene
encoding leucoanthocyanidin reductase (PaLAR3) influence resistance
against the fungus Heterobasidion parviporum in Picea abies. Plant Phys-
iology, 171(4), 2671-2681. https://doi.org/10.1104/pp.16.00685

Nystedt, B., Street, N. R., Wetterbom, A., Zuccolo, A. Lin, Y.-C.
Scofield, D. G., ... Jansson, S. (2013). The Norway spruce genome
sequence and conifer genome evolution. Nature, 497(7451), 579-584.
https://doi.org/10.1038/nature12211




ELFSTRAND €T AL.

w1 WILEY_L ®

Oliva, J., Bendz-Hellgren, M., & Stenlid, J. (2011). Spread of Heterobasidion
annosum s.s. and Heterobasidion parviporum in Picea abies 15 years
after stump inoculation. FEMS Microbiology Ecology, 75(3), 414-429.
https://doi.org/10.1111/j.1574-6941.2010.01020.x

Oliva, J., Rommel, S., Fossdal, C. G., Hietala, A. M., Nemesio-Gorriz, M.,
Solheim, H., & Elfstrand, M. (2015). Transcriptional responses of Nor-
way spruce (Picea abies) inner sapwood against Heterobasidion par-
viporum. Tree Physiology, 35(9), 1007-1015. https://doi.org/10.1093/
treephys/tpv063

Pautasso, M., Schlegel, M., & Holdenrieder, O. (2015). Forest health in a
changing world. Microbial Ecology, 69(4), 826-842. https://doi.org/10.
1007/500248-014-0545-8

Petit, R. J., & Hampe, A. (2006). Some evolutionary consequences of being
a tree. Annual Review of Ecology, Evolution, and Systematics, 37(1),
187-214. https://doi.org/10.1146/annurev.ecolsys.37.091305.
110215

Popoff, T., Theander, O., & Johansson, M. (1975). Changes in sapwood of
roots of Norway spruce, attacked by Fomes annosus. Physiologia Pla-
ntarum, 34(4), 347-356. https://doi.org/10.1111/j.1399-3054.1975.
th03851.x

Porth, I., Hamberger, B., White, R., & Ritland, K. (2011). Defense mecha-
nisms against herbivory in Picea: Sequence evolution and expres-
sion regulation of gene family members in the phenylpropanoid
pathway. BMC Genomics, 12(608), 1-26. https://doi.org/10.1186/
1471-2164-12-608

R Studio Team. (2015). RStudio: Integrated development for R. Boston, MA:
RStudio, Inc. Retrieved from http://www.rstudio.com

Rains, M. K., Molina, I, & Gardiyehewa de Silva, N. D. (2017).
Reconstructing the suberin pathway in poplar by chemical and trans-
criptomic analysis of bark tissues. Tree Physiology, 38(3), 340-361.
https://doi.org/10.1093/treephys/tpx060

Ralph, S. G., Yueh, H., Friedmann, M., Aeschliman, D., Zeznik, J. A,
Nelson, C. C., ... Bohlmann, J. (2006). Conifer defence against insects:
Microarray gene expression profiling of Sitka spruce (Picea sitchensis)
induced by mechanical wounding or feeding by spruce budworms
(Choristoneura occidentalis) or white pine weevils (Pissodes strobi)
reveals large-scale changes of the host transcriptome. Plant, Cell &
Environment, 29(8), 1545-1570.

Redfern, D. B., & Stenlid, J. (1998). Spore dispersal and infection. In
S. Woodward, J. Stenlid, R. Karjalainen, & A. Hittermann (Eds.),
Heterobasidion annosum: Biology, ecology, impact and control
(pp. 105-124). London, England: CAB International.

Shain, L. (1971). Response of sapwood of Norway spruce to infectopn by
Fomes annosus. Phytopathology, 61(3), 301-307.

Skrgppa, T., Solheim, H., & Steffenrem, A. (2015). Genetic variation, inheri-
tance patterns and parent-offspring relationships after artificial inocula-
tions with Heterobasidion parviporum and Ceratocystis polonica in
Norway spruce seed orchards and progeny tests, 49.

Sniezko, R. A., Smith, J., Liu, J.-J., & Hamelin, R. C. (2014). Genetic resis-
tance to fusiform rust in southern pines and white pine blister rust in
white pines—A contrasting tale of two rust pathosystems—Current
status and future prospects. Forests, 5(9), 2050-2083.

Solla, A., Tomlinson, F., & Woodward, S. (2002). Penetration of Picea
sitchensis root bark by Armillaria mellea, Armillaria ostoyae and
Heterobasidion annosum. Forest Pathology, 32(1), 55-70. https://doi.
org/10.1046/}.1439-0329.2002.00265.x

Steffenrem, A., Solheim, H., & Skrgppa, T. (2016). Genetic parameters for
wood quality traits and resistance to the pathogens Heterobasidion
parviporum and Endoconidiophora polonica in a Norway spruce breed-
ing population. European Journal of Forest Research, 135(5), 815-825.
https://doi.org/10.1007/510342-016-0975-6

Stenlid, J., & Johansson, M. (1987). Infection of roots of Norway spruce
(Picea abies) by Heterobasidion annosum. European Journal of Forest

Pathology, 17(4-5), 217-226. https://doi.org/10.1111/j.1439-0329.
1987.tb01019.x

Stenlid, J., & Swedjemark, G. (1988). Differential growth of S- and P-
isolates of Heterobasidion annosum in Picea abies and Pinus sylvestris.
Transactions of the British Mycological Society, 90(2), 209-213.

Thoen, M. P. M., Davila Olivas, N. H., Kloth, K. J., Coolen, S., Huang, P.-P.,
Aarts, M. G. M,, ... Dicke, M. (2017). Genetic architecture of plant
stress resistance: Multi-trait genome-wide association mapping. New
Phytologist, 213(3), 1346-1362. https://doi.org/10.1111/nph.14220

Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L, &
Pachter, L. (2013). Differential analysis of gene regulation at transcript
resolution with RNA-seq. Nature Biotechnology, 31(1), 46-53. https://
doi.org/10.1038/nbt.2450

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R, ...
Pachter, L. (2012). Differential gene and transcript expression analysis
of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols,
7(3), 562-578. https://doi.org/10.1038/nprot.2012.016

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R, ...
Pachter, L. (2014). Differential gene and transcript expression analysis
of RNA-seq experiments with TopHat and Cufflinks (vol 7, pg
562, 2012). Nature Protocols, 9(10), 2513-2513. https://doi.org/10.
1038/nprot1014-2513a

Vestman, D., Larsson, E., Uddenberg, D., Cairney, J., Clapham, D.,
Sundberg, E., & von Arnold, S. (2011). Important processes during differ-
entiation and early development of somatic embryos of Norway spruce
as revealed by changes in global gene expression. Tree Genetics &
Genomes, 7(2), 347-362. https://doi.org/10.1007/s11295-010-0336-4

Vidalis, A., Scofield, D. G., Neves, L. G. Bernhardsson, C., Garcia-
Gil, M. R., & Ingvarsson, P. (2018). Design and evaluation of a large
sequence-capture probe set and associated SNPs for diploid and hap-
loid samples of Norway spruce (Picea abies). bioRxiv. Retrieved from
https://doi.org/10.1101/291716

Woodward, S., Bianchi, S., Bodles, W. J. A., Beckett, L., & Michelozzi, M.
(2007). Physical and chemical responses of Sitka spruce (Picea
sitchensis) clones to colonization by Heterobasidion annosum as poten-
tial markers for relative host susceptibility. Tree Physiology, 27(12),
1701-1710. https://doi.org/10.1093/treephys/27.12.1701

Woodward, S., & Pocock, S. (1996). Formation of the ligno-suberized bar-
rier zone and wound periderm in four species of European broad-
leaved trees. European Journal of Forest Pathology, 26(2), 97-105.
https://doi.org/10.1111/j.1439-0329.1996.tb00714.x

Woodward, S., Stenlid, J., Karjalainen, R., & Hiittermann, A. (1998). Pref-
ace. In S. Woodward, J. Stenlid, R. Karjalainen, & A. Hiittermann (Eds.),
Heterobasidion annosum: Biology, ecology, impact and control (pp. xi-xii).
London, England: CAB International.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the
American Statistical Association, 101(476), 1418-1429. https://doi.
org/10.1198/016214506000000735

SUPPORTING INFORMATION
Additional supporting information may be found online in the
Supporting Information section at the end of this article.

How to cite this article: Elfstrand M, Baison J, Lundén K, et al.
Association genetics identifies a specifically regulated Norway
spruce laccase gene, PaLAC5, linked to Heterobasidion
parviporum resistance. Plant Cell Environ. 2020;1-13. https://
doi.org/10.1111/pce.13768












L)

Check for
\ updates

Received: 25 February 2019
DOI: 10.1111/mec.15314

Revised: 31 October 2019 Accepted: 20 November 2019

ORIGINAL ARTICLE

MOLECULAR ECOLOGY [AVVAT 8 =A'%

Genotypic variation in Norway spruce correlates to fungal
communities in vegetative buds

Malin Elfstrand®

1Uppsala Biocentre, Department of Forest
Mycology and Plant Pathology, Swedish
University of Agricultural Sciences, Uppsala,
Sweden

2Ume4 Plant Science Centre, Department
of Forest Genetics and Plant Physiology,
Swedish University of Agricultural Sciences,
Umes, Sweden

3Skogforsk, Svalov, Sweden

Correspondence

Malin Elfstrand, Uppsala Biocentre,
Department of Forest Mycology and
Plant Pathology, Swedish University of
Agricultural Sciences, Uppsala, Sweden.
Email: Malin.Elfstrand@slu.se

Funding information

Svenska Forskningsradet Formas, Grant/
Award Number: 2015-00081; Stiftelsen
for Strategisk Forskning, Grant/Award
Number: RBP14-0040

| LinghuaZhou? | John Baison?
Bo Karlsson® | Harry X. Wu? | Jan Stenlid®

| AkeOlson'® | Karl Lundén!
| M. Rosario Garcia-Gil?

Abstract

The taxonomically diverse phyllosphere fungi inhabit leaves of plants. Thus, apart
from the fungi's dispersal capacities and environmental factors, the assembly of the
phyllosphere community associated with a given host plant depends on factors en-
coded by the host's genome. The host genetic factors and their influence on the as-
sembly of phyllosphere communities under natural conditions are poorly understood,
especially in trees. Recent work indicates that Norway spruce (Picea abies) vegetative
buds harbour active fungal communities, but these are hitherto largely uncharacter-
ized. This study combines internal transcribed spacer sequencing of the fungal com-
munities associated with dormant vegetative buds with a genome-wide association
study (GWAS) in 478 unrelated Norway spruce trees. The aim was to detect host loci
associated with variation in the fungal communities across the population, and to
identify loci correlating with the presence of specific, latent, pathogens. The fungal
communities were dominated by known Norway spruce phyllosphere endophytes
and pathogens. We identified six quantitative trait loci (QTLs) associated with the
relative abundance of the dominating taxa (i.e., top 1% most abundant taxa). Three
additional QTLs associated with colonization by the spruce needle cast pathogen
Lirula macrospora or the cherry spruce rust (Thekopsora areolata) in asymptomatic
tissues were detected. The identification of the nine QTLs shows that the genetic
variation in Norway spruce influences the fungal community in dormant buds and
that mechanisms underlying the assembly of the communities and the colonization
of latent pathogens in trees may be uncovered by combining molecular identification
of fungi with GWAS.
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1 | INTRODUCTION

At any given time during their life cycle, trees are colonized by a wide
range of microbes, including fungi. These fungi may reside both ep-
iphytically, on the surface of the tissue, and endophytically, within
the host tissue without causing any visible symptoms (Arnold, Henk,
Eells, Lutzoni, & Vilgalys, 2007; Rajala et al., 2013; Rodriguez, White,
Arnold, & Redman, 2009; Sieber, 2007). The epi- or endophytic fungi
associated with a tree have varying ecological roles, such as being
mutualistic symbionts (latent) pathogens or facultative saprotrophs
(Rajala, Velmala, Vesala, Smolander, & Pennanen, 2014; Saikkonen,
2007). Pathogenic fungi cause damage to the host that can reduce
host growth and fitness, such as by decreasing photosynthetic ca-
pacity, and causing premature leaf shed or lesion formation (Hanso
& Drenkhan, 2012; Pan et al., 2018). Highly diverse fungal commu-
nities have been reported in studies on current-year Norway spruce
needles, that is those that flushed during the sampling season
(Menkis, Marciulynas, Gedminas, Lynikiene, & Povilaitiene, 2015;
Nguyen, Boberg, Ihrmark, Stenstrém, & Stenlid, 2016). It has been
shown that the needle endophyte community in Norway spruce
(Picea abies L., Karst) varies among genotypes (Rajala et al., 2013,
2014). This would indicate that apart from the presence of fungi with
the capacity to colonize the host, environmental and climatic fac-
tors (Eusemann et al., 2016; Menkis et al., 2015; Millberg, Boberg,
& Stenlid, 2015; Moler & Aho, 2018; Nguyen et al., 2016; Rodriguez
et al., 2009), the assembly of the phyllosphere community associ-
ated with a given tree will also depend on factors encoded by the
host's genotype (Cordier, Robin, Capdevielle, Desprez-Loustau, &
Vacher, 2012; Rajala et al., 2013, 2014). Although it is hypothesized
that the plant-inhabiting community is synergistically determined by
environmental and host genetic factors (Horton et al., 2014; Rajala
et al., 2013; Terhonen, Blumenstein, Kovalchuk, & Asiegbu, 2019),
the role of specific host genetic variation under natural conditions
is poorly understood. Reports on specific host genetic variation that
affects the phyllosphere community composition come from annual
plant species and deal primarily with bacterial colonization (Horton
et al., 2014; Roman-Reyna et al., 2019; Wallace, Kremling, Kovar, &
Buckler, 2018). In a study of 196 accessions of Arabidopsis thaliana,
Horton et al. (2014) showed that both the presence/absence and
abundance of fungal species in the associated phyllosphere commu-
nities are influenced by the Arabidopsis genotype, but for only the
more abundant species in the study. Genome wide association study
(GWAYS) results have implicated a role of both defence responses
and cell-wall integrity in the assembly of Arabidopsis phyllosphere
fungal communities (Horton et al., 2014). However, hitherto there
have been no reports on specific genetic variants affecting phyllo-
sphere fungal community composition in perennial plant species,
such as trees. These have a more complex architecture (relative to
most annual plants) and are exposed to their changing biotic and
abiotic environment over many consecutive growth cycles. These
interactions between genetics, environment and time are likely to
significantly influence the structure of the phyllosphere community
of a host tree.

Conifers dominate the boreal forests in the Northern Hemisphere
(Farjon & Page, 1999). Owing to their often large population sizes,
outbreeding mating systems and efficient gene flow (wind pollina-
tion), conifers are characterized by high levels of heterozygosity and
intraspecific diversity, which is reflected in low levels of genetic dif-

ferentiation between populations (Savolainen, Pyh3jarvi, & Knirr,
2007). Norway spruce is one of the most important conifer species
in Europe, both ecologically and economically. Together with Scots
pine (Pinus sylvestris L.), it essentially makes up the continuous bo-
real forests of the continent. The fungal community composition of
Norway spruce needles has been reported to change along a latitudi-
nal gradient on a continental scale as well as between individual gen-
otypes of Norway spruce within a stand (Nguyen et al., 2016; Rajala
et al., 2013, 2014), a pattern which may be considered consistent
with horizontal transfer of the fungi, and possibly also with the high
intraspecific diversity in conifers (Prunier, Verta, & MacKay, 2016).

The development of high-throughput sequencing (HTS) methods
paved the way for the generation of the first draft assembly of the
Norway spruce genome (Nystedt et al., 2013). The availability of the
genome sequence for Norway spruce has opened new possibilities
for the development of genetic markers to produce highly resolved
genotypes of an individual tree (Vidalis et al., 2018) and to conduct
GWAS (Baison et al., 2019). Similarly, sequencing of the ITS (internal
transcribed spacer) region with HTS methods has allowed mycolo-
gists to describe fungal communities and community dynamics in
various ecosystems in greater detail than before, advancing func-
tional understanding of various ecological processes and phyloge-
netic relationships (Clemmensen et al., 2013; Kubartova, Ottosson,
Dahlberg, & Stenlid, 2012; Rosling et al., 2011; Seena & Monroy,
2016; Tedersoo et al., 2014; Vofiskova & Baldrian, 2012). The com-
bination of ITS sequencing of phyllosphere fungi with the recently
available genotyping resources in Norway spruce in an association
study may provide insights in to how tree phyllosphere communi-
ties assemble, through the identification of specific fungal taxa
and with genetic variants associated with general shifts, in the tree
phyllosphere communities. For instance, the communities of seem-
ingly healthy needles often include known (e.g., Lirula macrospora
or Rhizosphaera kalkhoffii) or suspected (e.g., Phoma herbarum and
Sydowia polyspora) needle pathogens (Menkis et al., 2015; Nguyen et
al., 2016; Rajala et al., 2013, 2014). Furthermore, in a recent meta-
transcriptomics study of Norway spruce tissues, similar frequencies
of fungal transcripts were found both in needle and in bud samples
(Delhomme et al., 2015), suggesting that vegetative buds as well as
needles harbour active fungal communities, but the study provided
no insights into the composition of the bud community.

Here we report the results of a study in the perennial conifer
Norway spruce that combined ITS sequencing of the fungal com-
munities associated with dormant buds with GWAS of 478 individ-
uals to (a) describe the fungal community associated with dormant
buds in a large population of unrelated trees and thus describe the
abundance of possible latent pathogen colonizations of asymptom-
atic tissues, (b) suggest loci in the genome of Norway spruce that
correlate with variation in the fungal communities across the studied
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population, and (c) identify loci in the genome of Norway spruce that
correlate with the presence of specific, latent, pathogens.

2 | MATERIALS AND METHODS

2.1 | Amplification, sequencing and analysis of
phyllosphere fungal community

Healthy looking vegetative buds were sampled from 518 trees in
the southern Swedish Norway spruce breeding archives, located
at Ekebo and Maltesholm. The trees in the breeding archive were
planted approximately 35 years ago with 7 m between each tree
and 5 m between rows. Buds were collected by hand from exposed
branches about 2 m above ground. The collected buds were placed
into labelled Ziploc plastic bags. In the field, the samples were stored
in sterox boxes filled with cooling blocks. After each day of field
work the samples were transferred to -20°C for long-term storage.
Total genomic DNA was extracted from approximately five buds per
tree using the Qiagen Plant DNA extraction kit (extraction details as
described by Baison et al., 2019).

DNA samples were amplified separately using the primer
pair gITS7 (5"-xxxxxxxxGTGARTCATCGARTCTTTG-3') and ITS4
(5"-xxxxxxxXTCCTCCGCTTATTGATATGC-3’) (lhrmark et al., 2012)
containing 8-bp sample identification barcodes denoted by x, as pre-
viously described (Clemmensen, lhrmark, Durling, & Lindahl, 2016).
Each sample was amplified using unique barcode combinations. The
gITS7-1TS4 amplicon amplifies the ITS2 region, which provides good
species resolution capacity and can be sequenced throughout the
entire length with available HTS technologies (Clemmensen et al.,
2016; Ihrmark et al., 2012).

Prior to the amplification of the ITS2 region, DNA quantifica-
tion was performed using the Qubit ds DNA Broad Range Assay Kit
(ThermoFischer) and samples were diluted when needed ensuring
sample concentration in the range of 1-10 ng/ul. PCR amplifications
were done according to Clemmensen et al. (2016). In brief 50-pl
reactions with a final concentration of 1x DreamTaq Green Buffer,
200 pm dNTPs, 750 um MgCl,, 1.25 pul DreamTaq polymerase
(ThermoFischer Scientific), 0.3 um Tagged gITS7/ITS4 primer mix
and approximately 2.5 ng of template DNA were run with the fol-
lowing cycle conditions: 5 min at 94°C, 27 cycles of 30 s at 94°C,
30 s at 56°C and 30 s 72°C, and a final 7 min at 72°C; blanks were
run as negative controls. The resulting amplicons were purified with
the AMPure kit (Beckman Coulter). The concentration of purified
PCR products was determined fluorometrically using the Qubit ds
DNA Broad Range Assay Kit (ThermoFischer), and equimolar mixes
of PCR products from 88 samples, including the blanks, were pooled,
creating six sample pools that were used for PacBio SMRT circular
consensus sequencing using eight SMRT cells per pool. Construction
of the sequencing library and sequencing were carried out by NGI
ScilifeLab.

The sequences generated were subjected to quality control and
clustering in the scata NGS sequencing pipeline (http://scata.mykop
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at.slu.se). Quality filtering of the sequences included the removal
of short sequences (<200 bp), sequences with low read quality (any
base in the sequence that has a PHRED score < 10) and primer di-
mers; homopolymers were collapsed to 3 bp before clustering.
Sequences that were missing a tag or primer were excluded. The
primer and sample tags were then removed from the sequence, but
information on the sequence association with the sample was stored
as metadata. The sequences were then clustered into different op-
erational taxonomic units (OTUs) that essentially correspond to the
species level by single-linkage clustering based on 98.5% similar-
ity. The most common genotype (real read) for clusters was used
to represent each taxon. For clusters containing two sequences,
a consensus sequence was produced. The fungal taxa were taxo-
nomically identified using the UNITE database version 7.2 (https://
unite.ut.ee/index.php) and the BLasTN algorithm. The criteria used for
identification were as follows: sequence coverage > 80%, similarity
to species level 98%-100% and similarity to genus level 94%-97%.
Sequences not matching these criteria were considered unidenti-
fied. To obtain further information on abundant yet unidentified se-
quences (i.e., suspected Norway spruce clusters), a secondary search
was performed in GenBank (NCBI) using the sLasTn algorithm. After
removal of singletons and nonfungal sequence reads, the relative
abundances of each fungal cluster (OTU) in each sample were calcu-
lated. The data set was tested for PCR (polymerase chain recation)
contamination by analysing the PCR blanks, and confounding factors
such as variation between sequencing libraries, sites and site charac-
teristics. From the original population samples, 473 trees growing at
the Maltesholm site were selected for subsequent analysis.

The 1% most abundantly sequenced OTUs were analysed with
multivariate ordination methods in Past 3.20 (Hammer, Harper, &
Ryan, 2001). To identify the main drivers in the data set, a principal
component analysis (PCA) was made and the first six eigenvectors
from the PCA were analysed in the subsequent GWAS.

OTUs including more than 2% of the reads, corresponding to
known conifer pathogens and with a presence in at least 35% of the
Norway spruce samples, were selected for targeted GWAS of latent
pathogens (Figure S3). Separate files with either relative abundance
or presence/absence data were prepared for each of the OTUs that
met the criteria for GWAS of latent pathogens and were used in
trait-association mapping.

2.2 | Norway spruce genotyping and
SNP annotation

Generation and evaluation of Norway spruce exome capture is de-
scribed elsewhere (Vidalis et al., 2018). In brief, 478 samples from
a subset of 9,000 maternal trees on which sequence capture was
performed using 40,018 previously evaluated diploid probes and
samples, were sequenced to an average depth of 15x. Illumina se-
quencing compatible libraries were amplified with 14 cycles of PCR
with the probes being hybridized to a pool comprising 500 ng of
eight equimolarly combined libraries following Agilent's SureSelect
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Target Enrichment System (Agilent Technologies) protocol. These
enriched libraries were then sequenced on an lllumina HiSeq 2500
using the 2 x 100-bp sequencing mode.

Read mapping and initial variant calling is described in detail by
Baison et al. (2019). Basically, the sequence reads were aligned to
the Norway spruce genome using the Burrows-Wheeler Aligner
(BWA,; Li & Durbin, 2010) and variant detection utilized the Genome
Analysis Software Kit (GATK; DePristo et al., 2011; McKenna et al.,
2010) best practice pipeline with a training subset created for ap-
plication in the Variant Quality Score Recalibration (VQSR) method.
Only bi-allelic single nucleotide polymorphisms (SNPs) with a minor
allele frequency (MAF) and “missingness” of <0.05 and >20%, re-
spectively, were removed. For the selected set of trees a total of
178,101 SNPs passed the filtering and were used for downstream
analysis. Annotation was performed using default parameters of sn-
PEFF 4 (Cingolani et al., 2012) and local Norway spruce genome an-
notated database. Ensembl general feature format (GTF, gene sets)
information was utilized to build the Picea abies snpEFF database.

2.3 | Trait association mapping

Loadings on the first six axes from the PCA of the relative abundance
data of the 1% largest OTUs were used for the GWAS, with each
individual axis explaining at least 5% of the variance in the detected
phyllosphere communities. Subsequently, the relative abundance or
presence/absence data for the OTUs (OTU_5, OTU_9, OTU_15 and
OTU_19) on each host genotype were used for the trait-association
mapping.

The statistical LASSO model as described by Li et al. (2014) was
applied to the traits associated with the detected phyllosphere com-
munities and phyllosphere pathogens.

The LASSO model is:

1g

() 2n 2;( '
where y; is the phenotypic value of an individual i (i = 1, ..., n; n is the
total number of individuals), «, is the population mean parameter, X; is
the genotypic value of individual i and marker j coded as O, 1 and 2 for
three marker genotypes AA, AB and BB, respectively, o is the effect
of marker j (i = 1, ..., n; n is the total number of markers), and 4 (>0) is a
shrinkage tuning parameter. A fundamental idea of LASSO is to utilize
the penalty function to shrink the SNP effects toward zero, and only
keep a small number of important SNPs which are highly associated
with the trait in the model.

The stability selection probability (SSP) of each SNP being se-
lected by the model was applied to determine significant SNPs (Gao
et al., 2014; Li & Sillanpa3, 2015). For a marker to be declared sig-
nificant, an SSP inclusion ratio (Frequency) was calculated for all
selected SNPs for each trait and a minimum inclusion frequency of
0.56 was chosen as the most prudent cut-off. The set of markers with
nonzero effects was recorded; after bootstrapping, this provides an

approximation of a p-value. The SSP threshold used for defining
significant SNPs was estimated as suggested by Meinshausen and
Buihimann (2010). The threshold is calculated based on the number
of SNPs, number of individuals included in the subset and expected
number of false positives. A lambda of 250 with 1,000 bootstraps
and a false positive cutoff of five (5) were applied to the entire as-
sociation analysis. Population structure was accounted for in all
analyses by including the first five components from a PCA of the
genotypic data as covariates in the LASSO model and the total vari-
ance explained by the five PCs was 19.3%. Finally, an adaptive LASSO
approach (Zou, 2006) was used to determine the percentage of phe-
notypic variance (PVE; HZQT) of all quantitative trait loci (QTLs). The
analyses were all performed with glmnet in RStubio, R version 3.4.0
(Team, 2015), and the codes used can be found at https://github.
com/RosarioGarciaLab/Norway-Spruce-Association-Mapping.

Information on putative candidate genes associated with the
QTLs and the expression pattern of the candidate genes in the
Norway spruce clone Z4006 were collected from the publicly
available Norway spruce genome portal and P. abies exAtlas (https
://www.congenie.org). The position of the detected QTLs in the
Norway spruce genome was estimated by searching an ultradense
genetic map (Bernhardsson et al., 2019) for markers derived from
the same probes from which the SNP markers holding the QTLs
originated.

3 | RESULTS

3.1 | Norway spruce buds are colonized by well-
known phyllosphere endophytes and pathogens

After quality control, 676,375 ITS sequence reads remained. At
98.5% similarity, these sequences clustered into 4,899 OTUs, ex-
cluding 3,357 singletons. Fungal taxa were identified using the
UNITE database. However, the dominant cluster (85% of reads, a
spruce ITS sequence [AJ243167] and 10 other nonfungal clusters
were removed from the data set leaving 4,888 OTUs [104,768 se-
quence reads]). After removal of the plant clusters the median read
count over the samples in the data set was 148 reads. Relative abun-
dances in each sample were calculated on the remaining OTUs. After
testing and removal of confounding factors and of samples with
poor amplification/sequencing success (total number of remaining
fungal reads <20) the analyses were limited to the largest clusters
only (Horton et al., 2014), leaving 473 Norway spruce samples and
49 OTUs (top 1%, including 80% of the fungal reads, Supporting
Information S1) in the subsequent analyses. The majority of these
belonged to Ascomycota, 56% belonged to Pezizomycotina alone
and two OTUs (4%) represented Taphrinomycotina (Figure S2). The
basidiomycete orders Agaricomycotina (25%), Pucciniomycotina
(13%) and Ustilagomycotina (2%) were among the most abundant
OTUs (Figure S2). Several of the most abundant OTUs represented
yeasts (e.g., OTU_2 and OTU_1), and correspond to the basidiomy-
cete yeasts Curvibasidium cygneicollum and Filobasidium wieringae,
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respectively while OTU_é corresponds to the common yeast-like
ascomycete Aureobasidium pullulans (Table 1). The abundant OTU_3
is probably a member of the Cladosporium herbarum complex
(Table 1). Other OTUs comprise well-known needle endophytes,
such as Ceramothyrium (OTU_11) and Perusta inaequalis (OTU_17)
(Table 1). OTU_4, one of the most abundant OTUs, is apparently a
hitherto undescribed ascomycete fungus (Table 1), and is identical to
the relatively abundant sequence cluster “Unidentified sp. 2168_9"
reported from the Norway spruce phyllosphere (Menkis et al., 2015).
Several of the abundant OTUs represent needle pathogens: OTU_9
(Thekopsora areolata), OTU_15 (Rhizosphaera kalkhoffii) and OTU_19
(Lirula macrospora), or latent pathogens: OTU_5 (Sydowia polyspora),
OTU_24 (Botrytis cinerea) and OTU_30 (Phoma herbarum) (Table 1).

To reduce the number of variables for the subsequent GWAS
analysis, the relative abundance data of the OTUs/species with the
highest number of reads were used in a PCA to identify the most
prominent drivers in the data set. The first two principal compo-
nents (PCs) explained 14.9% and 12.8% of the total variance respec-
tively in the phyllosphere community. The first and second PCs were
strongly influenced by the abundance data of the undescribed asco-
mycete (OTU_4) and C. cygneicollum, while the second axis was also
driven by C. herbarum, S. polyspora and OTU_10 (unclassified fungus;
Figure 1a; Table 1). In addition to several of the taxa shaping the
first two PCs, F. wieringae appeared to be an important driver on the
third, and T. areolata on the fourth (Figure 1b; Table 1). PCs 5 and 6
explained 7.8% and 6.3% of the variance, respectively but the axes
were shaped by mostly different OTUs than the first axis, such as
A. pullulans, T. areolata, R. kalkhoffii, Ceramothyrium sp. and L. mac-
rospora (Figure 1c; Table 1).

3.2 | Trait association-mapping

Using the loadings on the first six PCs of the PCA (Figure 1) for
GWAS, six QTLs associated with the fungal community that deter-
mine the PCs were detected (Table 2). The contigs of four of these
QTLs could be identified on different linkage groups in an ultradense
Norway spruce genetic linkage map (Bernhardsson et al., 2019;
Table S4), indicating that the QTLs are located at different positions
in the genome. The three SNPs that were significantly associated
with PC3 are positioned in or adjacent to four Norway spruce gene
models: MA_24477g0010, MA_31029g0010, MA_10428833g0010
and MA_10428833g0020 (Table 3). The gene ontology (GO) terms
GO:0007264 (small GTPase mediated signal transduction) and
GO:0006886 (intracellular protein transport) are associated with
the gene model MA_24477g0010 that is similar to the Arabidopsis
ADP-ribosylation factor A1F gene (Table 3). MA_10428833g0020,
encoding a putative ubiquitin-protein ligase, is associated with the
terms GO:0006817 (phosphate ion transport), GO:0016036 (cellu-
lar response to phosphate starvation), GO:0010337 (regulation of
salicylic acid metabolic process), GO:0080021 (response to benzoic
acid) and GO:0009626 (plant-type hypersensitive response). Neither
of the other two gene models have any functional information
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connected to them in the Norway spruce genome portal. However,
MA_31029g0010 is homologous to AT3G59340, a putative sol-
ute carrier family 35 protein which is reported to be located in
Arabidopsis chloroplasts. Inspection of the expression patterns of
MA_24477g0010, MA_31029g0010, MA_10428833g0010 and
MA_10428833g0020 reported in the Picea abies exAtlas (Nystedt et
al., 2013) suggest that the candidate genes may be highly expressed
in bark phloem, cambium and primary xylem (samples Z4006TR12,
Z4006TR24, Z4006TR25 and Z4006TR19) and that relatively high
levels of MA_31029g0010 transcript accumulate in vegetative
shoots, developing buds, pine apple galls and immature female
cones (Figure 2). Interestingly, the gene model MA_208236g0010
associating with PC5 showed an expression pattern reminiscent of
MA_31029g0010 with relatively high transcript expression accu-
mulating in vegetative shoots and developing buds (Figure 2). There
is no functional information for MA_208236g0010 in the Norway
spruce genome portal but the putative Arabidopsis orthologue
AT2G47820 encodes an arginine-glutamic acid dipeptide repeat
protein, and PLAZA Homology enrichment analysis (https://bioin
formatics.psb.ugent.be/plaza/) suggests that the molecular function
of GO:0003677 (DNA binding) is associated with the product of the
gene model.

The candidate gene MA_10433886g0010 associated with PC4 is
linked with the GO-term GO:0007067 (mitosis) in the P. abies exAt-
las (Nystedt et al., 2013) and its peak expression is found in flushing
vegetative shoots although it is also expressed in, for example, buds.
MA_19950g0010, the other candidate gene associated with PC4,
appears to act in signal perception or transduction as its Populus
orthologue and best BLAsTx hits both encode WD-40 repeat fam-
ily proteins (Table 3). This gene model has a contrasting expression
pattern between early- and late-season buds (Figure 2). The gene
models associated with PC3 have very low levels of expression in
vegetative shoots that have just began to flush (Z4006TR02), while
the gene models associated with PC4 and PC5 show relatively high
expression in this tissue (Figure 2).

The presumed latent pathogen S. polyspora, the cherry spruce
rust fungi (T. areolata) and the species causing needle cast diseases
(L. macrospora and R. kalkhoffii; Horst, 2013; Kaitera, 2013; Pan et
al., 2018; Rajala et al., 2013) met the criteria for targeted GWAS of
specific, latent, pathogens. Trait-association mapping with presence/
absence or relative abundances of S. polyspora or R. kalkhoffii yielded
no QTLs, whereas two QTLs for L. macrospora presence/absence in
the host phyllospere communities and one for T. areolata presence/
absence were identified (Table 2). None of these QTLs was shared
with the QTLs identified with the 1% most abundant OTUs; these
traits were associated on independent SNPs, and appeared to be
located at different positions in the genome (Table S4). The L. mac-
rospora presence/absence in the host phyllosphere communities
was associated with SNPs positioned in or adjacent to the Norway
spruce gene models MA_97571g0020 and MA_10432519g0010
and the gene model MA_10g0010 was associated with T. areolata
presence/absence (Table 3). No functional information is associ-
ated with MA_97571g0020 in the Norway spruce genome portal,
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(a) 0.375 - . FIGURE 1 Principal component
. analysis of the operational taxonomic unit
0.300 ofu_2 (OTU)/species abundance data. Biplots

of the PCA on the abundance data of the
1% most heavily sequenced OTUs, used
for the GWAS analysis. Orange symbols
represent the individual samples. Green
lines with blue OTU names represent the
OTU loadings on the axis: (a) PC1 and
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but the PFAM ID PFO3801 (HEC/Ndc80p family) is associated with
MA_10432519g0010; high relative expression levels of this gene
model are found in young vegetative shoots (Z4006TR01) and in im-
mature male cones in the P. abies exAtlas (Figure 2). MA_10g0010,
associated with T. areolata, encodes a previously undescribed class

Il peroxidase. This candidate gene has a very distinct expression
pattern, high expression levels of this gene model are found in
young vegetative shoots, developing buds, wood and girdled twigs
(Figure 2), and very high relative expression is found in immature
female cones (Figure 2).
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TABLE 2 Significant association in the GWA study

Trait® SNP® Allele
PC3 MA_24477_24501 TC
MA_31029 _9337 C*G
MA_10428833_21190 T
PC4 MA_19950_16139 G*C
MA_10433886_12255 TA
PC5 MA_208236_3389 AG
Lirula macrospora MA _97571_20468 C*A
MA_10432519_8378 CA
Thekopsora areolata MA_10_25927 G*A
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SNP feature® Frequency? PVE®
downstream_gene 0.649
missense 0.633
upstream_gene 0.552
upstream_gene 0.533
upstream_gene 0.682 1.2%
stop_retained 0.565
upstream_gene 0.566
synonymous 0.566
upstream_gene 0.993

“The trait upon which the marker associates, PC3-PC5 indicate the associations with loadings on the respective PC, and L. macrospora and T. areolata
specify associations with the presence/absence data of these fungi among the samples.
The SNP name consists of the contig (MA_number) and SNP position on the contig. For example, the first SNP MA_24477_24501 was located on

contig MA_24477 at position 24,501 bp.
“Allelic variation associated with the SNP.

dStability selection probability inclusion ratios for markers declared significant.

®Phenotypic variance explained (only values larger than 1.0% are displayed).

4 | DISCUSSION

Foliar fungi of conifers are commonly predicted to be horizontally
transmitted and the phyllosphere community of a given tree would
be expected to represent a sample of the fungi present in the envi-
ronment (Millberg et al., 2015; Rodriguez et al., 2009; Terhonen et
al., 2019). In angiosperm tree species, the genetic distance between
host tree individuals may have a critical impact on assembly of the
foliar fungal community (Ahlholm, Helander, Henriksson, Metzler, &
Saikkonen, 2002; Cordier et al., 2012). The impact of the tree geno-
type is unclear in conifers where some studies report an effect of the
host genotype on community composition (Rajala et al., 2013), and
others find no such correlation (Eusemann et al., 2016). In this study,
combining ITS sequencing and GWAS techniques, we provide fur-
ther evidence that host genotype influences the composition of the
phyllosphere community in the significant marker trait-association
mapping of the variation in communities associated with dormant
Norway spruce buds.

To our knowledge, no studies of conifer phyllosphere communities
have used vegetative buds as a template. However, in a transcriptomic
study of various Norway spruce tissues the highest frequency of fun-
gal transcripts was found in needle and bud samples (Delhomme et al.,
2015), suggesting that dormant vegetative buds, like needles, may be
colonized by phyllosphere fungi. The results from our study further
support this, as the taxonomic identities of many of the most heav-
ily sequenced OTUs show affinity to previously reported members
of the Norway spruce phyllosphere fungal community. For instance,
Phialophora sessilis, Taphrina carpini, Ceramothyrium sp., Phoma herba-
rum, Aureobasidium pullulans, Sydowia polyspora, Rhizosphaera kalkhoffii
and Lirula macrospora are species which have been reported from
studies on Norway spruce needle communities (Menkis et al., 2015;
Nguyen et al., 2016; Rajala et al., 2013, 2014). The frequencies and
abundances of phyllosphere fungi differ depending on the species

present in the local environment (Nguyen et al., 2016; Rodriguez et al.,
2009), physiological status of the host tree (Menkis et al., 2015; Rajala
et al., 2014), tissue sampled and sample handling. The current study
is an illustration of this, as the fraction of yeast-like fungi was higher
here compared to earlier studies. The presence of a large fraction of
yeast species may be due to the use of nonsurface-sterilized explants
for DNA extraction, unlike in some previous studies (Nguyen et al.,
2016; Rajala et al., 2013). This indicates a need for a similar marker
trait association approach with both surface sterilized and nonsteril-
ized explants and perhaps with the amplification and sequencing of
the ITS2 region from several single buds from each tree instead of from
a pooled sample. However, extraction and community sequencing of
nonsurface-sterilized material as in our study, and the study by Menkis
et al. (2015), indicates that the Norway spruce phyllosphere may have
quite abundant, yet undescribed and possibly specific, epiphytes as il-
lustrated by OTU_4. This unidentified taxon was one of the most com-
mon fungi in the phyllosphere community in the current study and the
study by Menkis et al. (2015). It dominated on the first two PCA axes
together with the basidiomycete yeast Curvibasidium cygneicollum, the
common outdoor mould Cladosporium herbarum, to some extent the
weak pathogen S. polyspora, and Filobasidium wieringae, suggesting
that these axes may be driven primarily by highly frequent and highly
abundant phylloplane fungi. It has previously been reported that tree
genotypes can influence the occurrence of leaf epiphytes (Balint et
al., 2013; Cordier et al., 2012), but no marker-trait associations were
detected with the two first PCs in this study. Possibly a much larger
number of trees would be needed to pick up any association with the
community on dormant buds. Other PCs were driven more strongly
by well-known needle and wood colonizers such as S. polyspora, the
biotrophic cherry spruce rust fungus Thekopsora areolata (primarily
PC3 and PC4) and L. macrospora (PC5 and PCé).

Several, probable latent pathogens were identified among
the most abundant species: T. areolata, R. kalkhoffii, L. macrospora,
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TABLE 3 Candidate Norway spruce gene models associated with the community composition and pathogen presence

Trait®
PC3

pPC4

PC5

Lirula mac-
rospora

Thekopsora
areolata

Candidate gene

MA_24477g0010

MA_31029g0010

MA_10428833g0010

MA_10428833g0020

MA_19950g0010

MA_10433886g0010

MA_208236g0010

MA_97571g0020

MA_97571g0010

MA_10432519g0010

MA_10g0010

GO terms®

GO:0005215—transporter activity,
G0:0005525—GTP binding, GO:0005794—
Golgi apparatus, GO:0006471—protein
ADP-ribosylation, GO:0006886—intracel-
lular protein transport, GO:0007264—small
GTPase mediated signal transduction,
GO0:0016192—vesicle-mediated transport,
GO0:0016787—hydrolase activity

N/A

N/A

GO:0004842—ubiquitin-protein ligase activity,
GO:0005634—nucleus, GO:0006817—phos-
phate ion transport, GO:0009626—plant-type
hypersensitive response, GO:0009627—systemic
acquired resistance, GO:0009697—salicylic acid
biosynthetic process, GO:0009751—response to
salicylic acid stimulus, GO:0010167—response to
nitrate, GO:0010337—regulation of salicylic acid
metabolic process, GO:0016036—cellular re-
sponse to phosphate starvation, GO:0046872—
metal ion binding, GO:0080021—response to
benzoic acid stimulusGO:0042742—defence
response to bacterium

N/A

G0:0005634—nucleus, GO:0005739—
mitochondrion, GO:0005829—cy-
tosol, GO:0007067—mitosis,
G0:0009507—chloroplast

N/A

N/A

GO0:0003863—3-methyl-2-oxobutanoate
dehydrogenase (2-methylpropanoyl-transfer-
ring) activity, GO:0005739—mitochondrion,
GO0:0008152—metabolic process

N/A

GO:0008152—metabolic process,
GO0:0016491—oxidoreductase activity,
GO0:0016772—transferase activity, trans-
ferring phosphorus-containing groups,
GO:0046872—metal ion binding

Orthologues®

Potri.002G191400.1,
AT1G10630.1

Potri.014G151800.1,
AT3G59340.1

N/A

Potri.016G064600.1,
AT1G02860.1

Potri.014G027200.1

Potri.006G263300.2,
AT5G47690.3

Potri.008G210200.1,
AT2G47820.2

N/A

Potri.005G185400.1,
AT5G09300.2

Potri.001G208700.1,
AT3G54630.1

Potri.007G074700.1,
AT5G47000.1

Best BlastX hit*

XP_024995498.1, ADP-
ribosylation factor 2 isoform
X1 [Cynara cardunculus var.
scolymus]

XP_023873354.1, solute carrier
family 35 member F2 [Quercus
suber]

ABR18169.1, unknown [Picea
sitchensis)

ABR18169.1, unknown [Picea
sitchensis]

XP_006826575.1, pro-
tein ROOT INITIATION
DEFECTIVE 3 isoform X2
[Amborella trichopoda]
XP_003635522.2, PREDICTED:
sister chromatid cohesion
protein PDS5 homolog A-like
[Vitis vinifera]
XP_020082821, uncharacter-
ized protein LOC109706424
isoform X2 [Ananas comosus]
XP_006350818, PREDICTED:
acyl-coenzyme A thioesterase
13-like [Solanum tuberosum]
XP_020524476.1, 2-oxois-
ovalerate dehydrogenase
subunit alpha 2, mitochon-
drial isoform X2 [Amborella
trichopodal
XP_021663255.1, kinetochore
protein ndc80 [Hevea
brasiliensis]
XP_006847800.1, peroxidase
31 [Amborella trichopoda]

“The trait upon which the candidate gene associates; PC1-PCé indicate the associations with loadings on the respective PC; and L. macrospora and
T. areolata indicate associations with the presence/absence data of these fungi among the samples.

YGO terms associated with the gene model in the Norway spruce v1.0 genome portal.

“Angiosperm orthologues to the Norway spruce gene models reported in the Norway spruce v1.0 genome portal.

9The best BLAsTX hit recovered when querying the NCBI nonredundant protein database with the Norway spruce gene model (E-value cut-off

E < 1.0E-10).



ELFSTRAND €T AL.

209
MOLECULAR ECOLOGY sAVVAB i SV

PC3 PC4 PC5 Lm Ta_ FC
o o o o 3
- N - -
[=} o o o o
o o (=) (=) o o = o o (=)
~— - jo)) jo)) jo)) = o = N jo)
o o ™ (3] [(o] o (=] o o o
(=) o ™ (3] (o] (=) jo) (=) (=) o o
O jo2 [oo] [o9] oo} jo © (=] [ Te) =
~ [«2) oo} o0} [32) o (%] — — o o
N~ N N AN (3] Yo} N N [ (3] (=]
< o < < < [} [eo] (o] 'e} < jodl
< o= o o o )] o N~ N~ o o
NI ml FI FI ‘—I r[ Nl G’:I 0’1| \—l ‘—I
4 € £ £ £ € £ £« <« « - -2
Sample ID 2 = = = S = = = = = = Description
Z4006TR09 Buds early season dev
Z4006TR15 Buds late season dev
Z3001TR10 Immature female cone
Z4006TR02 Vegetative shoot early flush
Z4006TRO7 Vegetative shoots late flush
Z4006TRO1 Immature male cone
Z4006TR12 Stem vegetative shoot
Z4A006TR24 Wood June 21
Z4006TR25 Wood Aug 12
Z4006TR19 Stem girdled twig
Z4006TRO8 Pine apple gall
Z4006TR16 Needles dried twig sept 9
Z4006TR18 Needles girdled twig Sept 13
Z4006TRO5 Infected needles May 25
Z4006TRO3 1-year old Needles
Z4006TR04 2-year old Needles
Z4006TR11 Current year needles August
Z4006TR13 Current year needles September
Z4006TR20 Current year needles early morning September
Z4006TR21 Current year needles mid-day September
Z4006TR22 Current year needles late afternoon September
Z4006TR23 Current year needlesnight September

FIGURE 2 Expression of candidate genes in the Picea abies exAtlas. The heatmap depicts the relative expression levels (log, fold change
[FC]) of the candidate genes in select samples collected from the Picea abies exAtlas (https://www.congenie.org). The heatmap shows high
(upregulated) relative expression in red colours and low (downregulated) relative expression in green as indicated in the bar at the bottom

Botrytis cinerea, P. herbarum and S. polyspora (Hennon, 1990; Horst,
2013; Kaitera, 2013; Pan et al., 2018; Rajala et al., 2013). With the
exception of T. areolata, these species have been reported from
Norway spruce phyllosphere communities previously (Menkis et
al., 2015; Nguyen et al., 2016; Rajala et al., 2013, 2014). The latent
pathogens were, however, much more frequent in our study, found
in up to 82% of the samples. It is possible that a surface sterilization
treatment would have reduced the frequency of these taxa, but S.
polyspora, L. macrospora, T. areolata and R. kalkhoffii were relatively
highly abundant (File S3). Thus, our interpretation is that these
four pathogens had colonized asymptomatic buds, acting as latent
pathogens.

The interactions between trees and phyllosphere fungi
are diverse and not fully understood. It has been reported that

endophytic fungi are more diverse and abundant than patho-
gens within the phyllosphere community (Rodriguez et al., 2009;
Terhonen et al., 2019), something that is reflected also in our
study. Endophytic fungi in the phyllosphere have the potential to
both enhance and reduce tree growth and fitness through various
mechanisms (Rodriguez et al., 2009; Terhonen et al., 2019), one of
them being the capacity of phyllosphere pathogens to act as both
repressors and enablers of disease (Ridout & Newcombe, 2015).
A recent study on Populus and Melampsora established that the
interaction of Melampsora with endophytic disease repressors is
governed by hierarchical contingency rules that determine when
and where antagonists in the fungal community reduce plant dis-
ease severity, but that this interaction is forestalled by genetic
variation for Melampsora resistance in Populus (Busby, Crutsinger,
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Barbour, & Newcombe, 2019). If this is a general rule in the in-
teraction between phyllosphere endophytes, pathogens and their
hosts, identifying host genetic variation that restricts the coloniza-
tion by pathogenic fungi or covariates with particular phyllosphere
endophyte communities may help to increase our understanding
of the interaction between trees and their phyllosphere fungal
communities. In this study we were successful in identifying nine
such QTLs, highlighting various potential mechanisms.

The gene models MA_10428833g0010 and MA_10428833g0020,
associated with PC3, appear to either belong to the same gene as in-
dicated by the shared best sLasTx hit, ABR18169.1, or possibly repre-
sent a tandem duplication of Ubiquitin E3 ligase genes. Angiosperm
orthologues of ABR18169.1 have been shown to be linchpins in the re-
sponses to nitrate and phosphate starvation (Park, Seo, & Chua, 2014;
Peng et al., 2008) and to regulate plant immune responses (Yaeno & Iba,
2008). The potential connection to nitrate and phosphate starvation
responses makes this a highly interesting locus as the nutrient status
of Quercus macrocarpa and Pinus monticola leaves is one of the fac-
tors that influence their phyllosphere fungal community (Jumpponen
& Jones, 2010; Larkin, Hunt, & Ramsey, 2012). Furthermore, a recent
study has shown that an impaired phosphate accumulation capacity in
Arabidopsis led to a strong shift in the phyllosphere fungal community
(Finkel et al., 2019).

Several of the potential orthologues of the Norway spruce
candidate genes associated with PC3 and PC4 indicate that shoot
development and morphogenesis are important factors in shap-
ing genotype-specific phyllosphere communities in this study.
The poplar orthologue of MA_19950g0010, Potri.014G027200.1,
encodes a WD-40 repeat family protein with similarity to ROOT
INITIATION DEFECTIVE 3 (RID3). RID3 has been functionally char-
acterized and the RID3 locus controls cell division and shoot apical
meristem formation in Arabidopsis (Tamaki et al., 2009), acting as
a negative regulator of key genes. In this context it is noteworthy
that the expression of MA_19950g0010 is reported in the P. abies
exAtlas to be very low during the early phases of Norway spruce
bud development just after growth termination when the buds go
through a phase of rapid needle initiation and changes in starch
and tannin distribution patterns (Hejnowicz & Obarska, 1995). The
sister chromatid cohesion proteins PDS5s, the Arabidopsis ortho-
logues of MA_104333886g0010 which is associated with PC4, are
involved in mitosis, and depletion of this protein lead to severe
effects on development, among other traits (Pradillo et al., 2015).
Notably, MA_104333886g0010 is most highly expressed in the
early phases of bud flush, which is characterized by high mitotic
activity and also by changes in both morphology and starch and
tannin distribution (Hejnowicz & Obarska, 1995). Interestingly,
the candidate genes associated with PC3 show a concomitant
downregulation in vegetative shoots that have just began to flush
(Z4006TR0O2), compared to earlier and later phases of shoot devel-
opment; the genes are differentially expressed between samples
taken from needles and stem, indicating that the cellular processes
the candidate genes are associated with are not ubiquitous in
the phyllosphere and that their absence could be important for

colonization success for certain fungal taxa. The observations as-
sociated with PC3 and PC4 suggest that bud flush, and the changes
in distribution of energy and defensive metabolites that the tissue
transitions through, may be a critical phase in the colonization of
Norway spruce by the studied phyllosphere fungal community and
their later occurrence in dormant buds. This is in line with the work
by Eusemann et al. (2016) who postulated that tree phenology was
one of the drivers between assembly of the phyllosphere commu-
nity in their study. Phenology (timing of bud burst) is under very
strong genetic control in Norway spruce, and it has a narrow sense
heritability of approximately 0.8 (Hannerz, Sonesson, & Ekberg,
1999). The function and expression patterns of each of the identi-
fied Norway spruce candidate genes, and perhaps the role of phe-
nology, in the interaction between phyllosphere fungi and Norway
spruce, will need to be tested in future experiments.

One of the candidate genes associated with the presence/ab-
sence of L. macrospora in the communities, MA_10432519g0010,
has similarity to the HEC/Ndc80p family proteins. These proteins
are part of the kinetochore complex, which provides an attach-
ment site for spindle fibres in the centromere of chromosomes, and
thus are important for cell division (Shin, Jeong, Park, Kim, & Lee,
2018). Disruption of the kinetochore complex may affect, for ex-
ample, morphogenesis (Du & Dawe, 2007; Lermontova et al., 2011;
Shin et al., 2018). It may be difficult to reconcile a potential role
of MA_10432519g0010 in development and morphogenesis with
control of L. macrospora colonization as disease symptoms are com-
monly seen on second-year needles (Butin, 1995). However, it has
been suggested that L. macrospora infects flushing tissues in the
spring with a latency period of about 1 year until symptoms are vis-
ible (Hennon, 1990), which would connect the peak transcriptional
activity of the candidate gene with the crucial infection phase.

MA_10g0010, which harbours an SNP associated with the
presence of T. areolata in the phyllosphere fungal community is a
previously undescribed member of the class Il peroxidase family.
The gene model shows an expression pattern strongly associated
with differentiating and lignifying tissues in the P. abies exAt-
las, particularly with young female cones. Clearly the candidate
gene is active in tissues susceptible to the pathogen, and basid-
iospores of T. areolata are thought to infect Norway spruce cones
and young shoots in the spring (Hietala, Solheim, & Fossdal, 2007;
Kuporevich & Transhel, 1957). Thus, it is not far-fetched to imag-
ine that MA_10g0010 may be associated with processes in these
tissues that control their vulnerability to colonization, possibly
through cell-wall enforcement (Elfstrand et al., 2001; Fagerstedt,
Kukkola, Koistinen, Takahashi, & Marjamaa, 2010; Kéarkénen,
Warinowski, Teeri, Simola, & Fry, 2009; Marjamaa et al., 2006) or
processes controlling the timing of bud break and bud flush; over-
expression of the class Il peroxidase SPI2 in Norway spruce plants
led to significant delays of these process compared to in wild-type
Norway spruce plants (Clapham, Higgman, Elfstrand, Aronen, &
Arnold, 2003; Elfstrand et al., 2001).

Combining molecular identification and barcoding of phyllo-
sphere fungi with GWAS provides insight into host-encoded factors
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affecting the assembly of phyllosphere communities and the coloni-
zation of needle pathogens. Taken together, GWAS results suggest
that processes in the morphogenesis and flush of the Norway spruce
shoot exert a strong influence on the dominant players in the phyllo-
sphere community detected in dormant buds.
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Abstract

Background: Genomic selection (GS) or genomic prediction is considered as a promising approach to accelerate
tree breeding and increase genetic gain by shortening breeding cycle, but the efforts to develop routines for
operational breeding are so far limited. We investigated the predictive ability (PA) of GS based on 484 progeny
trees from 62 half-sib families in Norway spruce (Picea abies (L) Karst.) for wood density, modulus of elasticity (MOE)
and microfibril angle (MFA) measured with SilviScan, as well as for measurements on standing trees by Pilodyn and
Hitman instruments.

Results: GS predictive abilities were comparable with those based on pedigree-based prediction. Marker-based PAs
were generally 25-30% higher for traits density, MFA and MOE measured with SilviScan than for their respective
standing tree-based method which measured with Pilodyn and Hitman. Prediction accuracy (PC) of the standing
tree-based methods were similar or even higher than increment core-based method. 78-95% of the maximal PAs
of density, MFA and MOE obtained from coring to the pith at high age were reached by using data possible to
obtain by drilling 3-5 rings towards the pith at tree age 10-12.

Conclusions: This study indicates standing tree-based measurements is a cost-effective alternative method for GS.
PA of GS methods were comparable with those pedigree-based prediction. The highest PAs were reached with at
least 80-90% of the dataset used as training set. Selection for trait density could be conducted at an earlier age
than for MFA and MOE. Operational breeding can also be optimized by training the model at an earlier age or using 3
to 5 outermost rings at tree age 10 to 12 years, thereby shortening the cycle and reducing the impact on the tree.

Background of which the production of seeds and the evaluation of the

Norway spruce is one of the most important conifer spe-
cies in Europe in relation to economic and ecological as-
pects [1]. Breeding of Norway spruce started in the 1940s
with phenotypic selection of plus-trees, first in natural
populations and later in even-aged plantations [2]. Norway
spruce breeding cycle is approximately 25-30 years long,
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trees take roughly one-half of that time [3].

Genomic prediction using genome-wide dense
markers or genomic selection (GS) was first introduced
by Meuwissen [4]. The method modelling the effect of
large numbers of DNA markers covering the entire gen-
ome and subsequently predict the genomic value of indi-
viduals that have been genotyped, but not phenotyped.
As compared to the phenotypic mass selection based on
a pedigree-based relationship matrix (A matrix), gen-
omic prediction relies on constructing a marker-based
relationship matrix (G matrix). The superiority of the G-
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matrix is the result of a more precise estimation of gen-
etic similarity based on Mendelian segregation that not
only captures recent pedigree but also the historical
pedigree [5-7], and corrects possible errors in the pedi-
gree [8, 9].

There are multiple factors affecting genomic predic-
tion accuracy such as the extent of linkage disequilib-
rium (LD) between the marker loci and the quantitative
trait loci (QTL), which is determined by the density of
markers and the effective population size (N,). Increased
accuracy with higher marker density has been reported
in simulation [10] and empirical studies in multiple for-
est tree species including Norway spruce [11-14], and
SNP position showed no significant effect [15-17].
Simulation [10] and empirical [18] studies also agree on
the need of a high marker density in populations with
larger effective size (N.) in order to cover more QTLs
under low LD in contributing to the phenotypic
variance.

In forest tree species the accuracy of the genomic pre-
diction model has been mainly tested in cross-validation
designs where full-sibs and/or half-sibs progenies within
a single generation are subdivided into training and val-
idation sets [10, 19-22]. Model accuracy was reported to
increase with larger training to validation set ratios [11,
17, 23], while the level of relatedness between the two
sets is considered as a major factor [10, 15-17, 19, 24].
When genomic prediction is conducted across environ-
ments, the level of genotype by environment interaction
(GXE) of the trait determines its efficiency [11, 20, 21,
25]. The number of families and progeny size have also
been shown to affect model accuracy [11, 15].

As compared to the previously described factors, trait
heritability and specially trait genetic architecture are in-
trinsic characteristics to the studied trait in a given
population. Those two factors can also be addressed by
choosing an adequate statistical model depending on the
expected distribution of the marker effects [26]. Despite
theory and some results indicate that complex genetic
structures obtain better fit with models that assume
equal contribution of all markers to the observed vari-
ation, traits like disease-resistance are better predicted
with methods where markers are assumed to have differ-
ent variances [13, 20, 22, 27, 28]. However, results in for-
estry so far indicate that statistical models have little
impact on the GS efficiency [12, 17, 29].

In this study, we conducted a genomic prediction study
for solid wood properties based on data from 23-year old
trees from open-pollinated (OP) families of Norway spruce.
We focused on wood density, microfibril angle (MFA) and
modulus of elasticity/wood stiffness (MOE) measured both
with SilviScan in the lab, on standing trees of Pilodyn pene-
tration depth and Hitman velocity of sound. The measure-
ment methods are detailed in the next section.
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The specific aims of the study were: (i) to compare
narrow-sense heritability (H?) estimation, predictive abil-
ity (PA) and prediction accuracy (PC) of the pedigree-
based (ABLUP) models with marker-based models based
on data from measurements with SilviScan on increment
cores and from Pilodyn and Hitman measurements on
standing trees, (ii) to examine the effects on model PA
and PC of different training-to-validation set ratios and
different statistical methods, (iii) to compare some prac-
tical alternatives to implement early training of genomic
prediction model into operational breeding.

Result

Narrow-sense heritability (h?) of the phenotypic traits,
predictive ability (PA) and predictive accuracy (PC) based
on pedigree and maker data

In Table 1, narrow sense heritabilities (4?) and Prediction
Abilities (PA) based on ABLUP and GBLUP are compared
for density, MFA and MOE based on cross-sectional aver-
ages at age 19 years, and for Pilodyn, Velocity and MOE;,q
based on measurements with the bark at age 22 and 24
years, respectively. For density, MOE and Pilodyn, /4> did
not differ significantly between estimates based on the pedi-
gree (ABLUP) and marker-based (GBLUP) methods taking
standard error into account. For MFA, the pedigree-based
I’ was lower than the GBLUP estimate while for Velocity
and MOE,,,4, the pedigree-based 1 was higher.

When using pedigree, the order of the traits by /* agrees
with their order by PA estimates. Traits with higher /#*
tended to show also high PA estimates irrespective of the
method. The ABLUP PA estimates were similar to the
GBLUP estimates for density and Pilodyn, while for the rest
of the traits GBLUP delivered slightly higher PA estimates,
and significantly higher for MFA. The relative performances
of ABLUP compared to GBLUP differed for MOE, Velocity
and MOE;,q. The 4* estimates for MOE were similar for
both methods, while the PA estimate was higher for GBLUP.
In the case of Velocity and MOE;,q, a higher /> based on
pedigree contrasted with a slightly higher PA estimates based
on marker data. Standardization of the PAs with the h values
did not change the conclusions on the relative efficiencies of
pedigree versus marker data-based estimates.

Marker-based PA and PC between increment core-based
and standing-base wood quality traits

The marker-based PAs were generally 25-30% higher for
traits density, MFA and MOE measured with SilviScan than
for their respective standing tree-based method which mea-
sured with Pilodyn and Hitman. Concordantly, the />
values were 46, 65 and 55% higher based on Silviscan
methods, respectively. However, if we compare PC of the
increment core- and standing tree-based methods, they
were similar, and PC of MOE;,4 was even higher than that
for MOE using GBLUP.
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Table 1 Trait heritability, predictive ability (PA) and predictive accuracy (PC) Predictive accuracy (PC) for density, MFA and MOE
cross-sectional averages at tree age 19 years, for their proxies on the stems without removing the bark at tree ages 21 and 22 years.

Standard errors are shown in within parenthesis

Narrow-sense heritability (standard error)

Predictive ability Predictive Accuracy

(h) (standard error) (PA/R)
(PA)
Trait ABLUP GBLUP ABLUP GBLUP ABLUP GBLUP
density 0.70 (0.18) 069 (0.15) 0.30 (0.01) 0.29 (0.03) 036 0.35
MFA 0.04 (0.08) 0.17 (0.13) 0.04 (0.01) 0.16 (0.02) 020 039
MOE 0.27 (0.14) 0.31(0.15) 0.15 (0.01) 0.22 (0.02) 029 039
Pilodyn 035 (0.15) 0.32 (0.14) 0.22 (0.01) 0.20 (0.01) 037 035
Velocity 0.16 (0.12) 0.11 (0.10) 0.10 (0.01) 0.13 (0.01) 0.25 039
MOEind 0.31(0.14) 0.17 (0.13) 0.17 (0.01) 0.19 (0.01) 031 046

ABLUP pedigree-based Best Linear Unbiased Predictor (BLUP); GBLUP genomic-based BLUP

Effects on PAs of the GS models ratios between the
training and validation sets, and from the statistical
method used

Figure 1 shows how the PA estimates change with in-
creasing percentage of data used for training of the GS
model (training set), and as a consequence decreasing

validation set, on use of the five studied statistical
methods: one based on pedigree data and four on
marker information. For most of the traits, PA estimates
showed a moderate increase with increasing training set,
irrespective of the statistical method. Exceptions were
observed for MFA and MOE with less clear trends and
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Fig. 1 Predictive ability obtained with different ratios of training set and validation set, using different statistical methods
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the highest PA estimates at 80% of the trees in the train-
ing set. Figure 1 also shows that the PAs were consist-
ently about 25-30% higher for density, MFA and MOE
compared to their proxies-based om measurements with
Pilodyn and Hitman: approximately 0.28 versus 0.18,
0.17 versus 0.13 and 0.25 versus 0.18, respectively.

For density and Pilodyn, all five methods resulted in
very similar PA estimates across the ratios, while rrBLUP
and GBLUP seemed superior for the rest of the traits,
and mostly so for Velocity and MOE (Fig. 1). The rest of
the analysis were conducted based on the GBLUP mod-
elling method.

PAs on estimation of traits at reference age with models
trained on data available at earlier ages

Figure 2 shows how well the cross-sectional averages of
the different traits at the reference age 19 years were
predicted by models trained based on data from the
rings between pith and bark at increasing ages, using the
GBLUP method. The calculations were performed with
two representations of age: 1) Tree age counted from
the establishment of the trial (calendar age) and 2) cam-
bial age (ring number). In a plantation, the tree age of a
planted tree is normally known but not the cambial age
at breast height, as it depends on when the tree reached
the breast height. For the trees originally accessed, al-
most 6000 trees from the two trials, this age ranged
from tree age 2 to 15 years [30]. Among the 484 trees in-
vestigated in the current study, only 60 trees represent-
ing 33 families had reached breast height at tree age 3
years, 248 trees at 4 years and 410 at age 5 years (Fig. 2).
This means that for tree age, data are only available from
year 3, and then for only 12% of the trees. Those trees
being identified based on fast longitudinal growth but
also typically fast-growing radially. It was previously de-
scribed a positive correlation of R* = 0.67 familywise be-
tween radial and height grown across almost 6000 trees
[30]. Thereafter, the number of trees increased and
reached the full number some years later. When study-
ing the trees based on cambial age, the pattern is adverse
with data for all trees at ring 1 but decreasing numbers
when approaching the tree age of sampling. The number
of trees included in this work at each tree and cambial
age are shown with grey bars in Fig. 2.

For density, the estimated PAs showed a rising trend
within a span of about 0.25-0.30 for the models based
on both age types, after the first years. But the year-to-
year fluctuations were more intense for models based on
data organized on tree age. As MFA typically develops
from high values at the lowest cambial ages via a rapid
decrease to lower and more stable values from cambial
age 8-12vyears and on, one may expect that models
trained on data from only low ages would have difficul-
ties to predict properties at age 19 years. This was also

Page 4 of 12

confirmed. We even obtained some negative PA values
at early ages, such as years 1995 and 1996, and the PAs
for cambial age-based models started from very low
values, then increasing. The curves for MOE showed
PAs developing at values in between those for density
and MFA. This is logical, as MOE is influenced by both
density and MFA, with particularly negative effects from
the high MFAs at low cambial ages. At cambial age 13,
MFA and MOE showed a drop in the cambial age-based
PA estimates. Generally, the Figure indicates that gen-
omic selection for density could be conducted at an earl-
ier age than for MFA and MOE.

Search for optimal sampling and data for training of GS
prediction models

Figure 2 showed estimated PAs of models trained on
data from sampling different years, using data from all
rings available at that age (except for the innermost
ring). In this section instead of estimating PAs with the
whole increment core from bark to pith, we estimated
PAs with partial cores with different shorter depths to
reduce the injury to the tree, as showed in Fig. 3a-d.
This analysis was preformed based on tree age data only,
as the cambial age of a ring can only be precisely known
if the core is drilled to the pith which allowing all rings
to be counted.

Each row of the figures represents a tree age when
cores are samples, starting at age 3 years when the first
60 trees formed a ring at breast height, ending at the
bottom with the reference age 19years withl7 rings.
Each column represents a depth of coring, counted in
numbers of rings. As one more ring is added each year,
thus also to the maximum possible depth on coring, the
tables are diagonal. The uppermost diagonal represents
models trained on data from the 60 (12%) trees which
had reached breast height at age 3. The diagonal next
below represents models based on the 243 (51%) trees
with rings at age 4, etc. The PAs shown below the three
uppermost diagonals represent models trained of data
from more than 90% of the trees. The PAs were calcu-
lated from the cross-validation, based on data from the
trees on which the respective models were trained. This
means that the PAs of the three uppermost diagonals
are based only on fast-growing trees not fully represen-
tative for the trials. Many of the highest PAs found
occur along these diagonals. Due to their trees’ special
growth, only PAs based on more than 90% of the trees
will be further commented.

For wood density, Fig. 3b, the variations in predictabil-
ity show an expected general pattern: The PAs increased
with the increase of tree age on coring, and also with the
increase of depth, the increase of number of rings from
which the cross-sectional averages were calculated and
exploited on training of the prediction models. The



Zhou et al. BMC Genomics (2020) 21:323 Page 5 of 12
From pith to bark by year
Density MFA MOE
0.4
F 1500
0.34
3
3
r 1000g
& 0.2 =
{ 8
w
F500
0.14
ro
O i e e T PA
‘3{ @%@0\0 R °0%;°?\;°0\\o°2:“.}:“m'\& "\?-i@f:f:;?:f\w $ ; \lﬂ%:&\ number of
D \"\‘u‘o\ R ) NSRRI S O trees
Tree age (Year)
From pith to bark by ring
Density | MFA MOE
0.4
F 1500
0.34
=
c
- woo%
£ 021 //M g
F500
0.14
0.04 | 1]
1‘ é fli A“l é é } é é‘\'O'I" "2"31'47'51'81'7' ; é (IS /'1 é (li ; é S‘)I'O1I1 |l21'31l4|‘51'61'7 1' é :’i .1 é é } é 5’31'01'1 1'21'31'41'51'6\‘7
Cambial age
Fig. 2 Estimated Predictive abilities (PA) for prediction of cross-sectional averages at tree age 19 years, based on cross-sectional averages at
different tree ages (upper graphs) and cambial ages (lower graphs) from pith to bark

highest values, 0.29, are obtained at age 19 years, but
then also data from the reference year are included on
training the prediction model. An example of quite high
PAs at lower ages and depths: For coring at tree ages
10-12years and using data from the 3-5 outermost
rings, all alternatives gave PA values of 0.26-0.29.

For MFA, a trait with low heritability, the PA values
are low as already shown in Fig. 2 and the pattern in Fig.

3c is not easy to interpret. Here, the same set of alterna-
tives of samples at tree ages 10-12 and depths 3-5
outermost rings gave PA values of 0.15-0.18, compared
to the maximum of 0.19 among all alternatives using
90% of the trees. The values are lower at the highest
ages. Streaks of higher and lower values can be imagined
along the diagonals. The pattern for MOE in Fig. 3d is
similar to that of MFA, but on higher level. Training on
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data from coring at ages and to depths as above gave PA
values of 0.20-0.23, compared to the corresponding
maximum of 0.25.

Discussion

We have conducted a genomic prediction study for solid
wood properties assessed on increment cores from
Norway spruce trees with SilviScan derived data from
pith to bark, using properties of annual rings formed up
to tree age 19 years as the reference age.

On Norway spruce operational breeding, the use of
OP families is preferable because it does not require ex-
pensive control crosses. The only action required is to
collect cones where progenies are typically assumed to
be half-sibs. Thus, OP families permit the evaluation of
large numbers of trees at lower costs and efforts than
structured crossing designs. We investigated narrow-

sense heritability estimation with ABLUP and marker-
based GBLUP and the effect on PA from using different
training-to-validation set ratios, as well as different stat-
istical methods. Further, we investigated what level of
precision can be reached when training the models with
data from trees at different ages, and 5also compared re-
sults for the solid wood properties with those for their
proxies. We also estimated the level of PAs reached
when coring to different depths from the bark at differ-
ent tree ages. The motivation was to find cost-effective
methods for GS with minimum impact on the trees dur-
ing the acquisition of data for training the prediction
models.

Narrow-sense heritability (h?)
In our study, PA estimates for both pedigree and
marker-based methods were consistent with their
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respective h” estimates. A conifer literature review indi-
cates that the level of consistency varies across studies
[8, 18-20]. In our study, h* estimation of density, MOE
and Pilodyn were similar for ABLUP and GBLUP; for
Velocity and MOE,,4, ABLUP had higher h? estimation
and for MFA, GBLUP achieved higher h* estimation. In
a previous study conducted on full-sib progenies in
Norway spruce, however, the ABLUP-based h* were re-
ported higher in all three standing-tree-based measure-
ments [11]. Instead, other conifer studies based on full-
or half-sib progenies reported a comparable performance
of A-matrix and G-matrix based methods in Pinus taeda
[18, 23], Douglas-fir [29] and Picea mariana [15] for
growth related traits and wood properties. Moreover,
ABLUP accuracies were lower for growth, form and
wood quality in Eucalyptus nitens [24]. Experimental de-
sign factors such as number of progenies and their level
of coancestry, statistical method and the traits and pedi-
gree errors under study may account for the apparent
inconsistence in the relative performance of both
methods [31].

Our results indicate that for more heritable traits
ABLUP and GBLUP capture similar levels of additive
variance, whereas for traits with very low heritability
using ABLUP, such as MFA, the markers are able to
capture additional genetic variance probably in the form
of historical pedigree reflected in the G matrix. Less ob-
vious is the case for Velocity and MOE;,,q where GBLUP
seems to capture lower values of additive variance. It is
possible that at intermediate values of 4? the benefits of
capturing historical consanguinity is overcome by pos-
sible confounding effects caused by markers which are
identical by state (IBS) or simply due to genotyping er-
rors. The #* values obtained with ABLUP and GBLUP is
the result of a balance between multiple factors such as
the genetic structure of the trait, the historical pedigree,
and the possible model overfitting to spurious effects or
genotyping errors.

Effects on GS model predictive ability (PA) of training-to-
validation sets ratios and statistical methods

In conifers and Eucalyptus cross-validation is often per-
formed on 9/1 training to validation sets ratio [8, 12, 15,
16, 28]. This coincide with the general conclusion from
the present study, with the exception of MFA and MOE,
for which the best results were obtained at ratio 8/2. It has
been suggested that when the trait has large standard de-
viation, more training data is needed to cover the variance
in order to get high predictive ability [32]. Therefore, for
density, Pilodyn and Velocity, PA kept increasing with the
size of the training set increased. But for other traits with
smaller standard deviation, (4.44 and 2.28 for MFA and
MOE), PA decreased when increasing the training set
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from 80 to 90%, which may indicate that too much noise
was introduced during model training.

The fact that the estimated PAs for all the solid wood
properties as measured by SiliviScan are 25-30% higher
than their proxies estimated from measurements of pene-
tration depths and sound velocity at the bark may reflect
the indirect nature of their proxies: the correlations calcu-
lated for the almost 6000 trees initially sampled were —
0.62 between Pilodyn and density, — 0.4 between Velocity
and MFA and 0.53 between MOE;,,q and MOE [33].

In the conifer literature it has more often been re-
ported similar performance of different marker-based
statistical models for wood properties [11, 12, 18, 28,
34]. This general conclusion agrees with our findings for
all our traits with the exception of Velocity and to a less
extent of MOE,,q. For these two traits, GBLUP and
rrBLUP performed better than the other GS methods,
which could be the result of a highly complex genetic
structure where a large number of genes of similar and
low effect are responsible for controlling of the trait. For
traits affected by major genes the variable selection
methods, for example BayesB or LASSO, have been re-
ported to perform better [18], whereas for additive traits
the use of nonparametric models may not yield the ex-
pected accuracy [35].

Comparison of PA and PC from methods based on
pedigree and markers

Generally, pedigree-based PA estimates in conifer spe-
cies have been reported to be higher or comparable to
marker-based models [11, 15, 16, 19, 20, 23], but there
are also some studies reporting marker-based PA esti-
mates to be higher [13, 24, 36]. Our results for density
and Pilodyn follow the general finding in forest trees,
whereas for MFA, a low heritability trait, the PA estima-
tion based on GBLUP model is substantially higher
(0.16) compared to the ABLUP model (0.04). When PA
is standardized with h, the predictive accuracies of the
methods become more similar across traits, indicating
that proportionally similar response to GS can be ex-
pected for all traits.

Use of tree age versus cambial age (ring number)

From a quick look at Fig. 2, one may get the impression
that breeding based on cambial age data allows earlier
selection than using tree age data. That would however
be a too rushed conclusion. At tree age 3 years, after the
vegetation period of 1993, only 12.5% of the trees had
formed the first annual ring at breast height. Not until
tree age 6years, more than 90% of the trees had done
so. But if aiming for 90% representation, one must wait
several years more until more rings are formed at breast
height, i.e., from 1993 to end of growth season 1996 at
tree age 6. And to train models based on data from 90%
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of the trees for cambial age say, age 6 at breast height,
samples cannot be collected until the end of growth sea-
son at tree age 11 years, or if a representation of 80% is
judged as satisfactory, at tree age 10 years. This has to be
considered if selection efficiencies are calculated based
on cambial age data, which is common. Such results
have for instance been published based on the almost
6000 trees sampled at 2011 and 2012 [37].

Correctly compared based on minimum 90% of the
trees, the estimated PAs shown in Fig. 2 are similar be-
tween the age alternatives, or slightly better for use of
tree age. For example, the PA for MOE using cambial
age data shows a smooth increase, reaching above 0.2 at
cambial age (ring number) 7, which needs data from the
tree of age 12. The corresponding curve from using tree
age passed above 0.2 already at age 8years. However,
curves based on tree age often show larger year-to-year
variation. This is most likely an effect of the fact that the
rings of same cambial age represent wood formed across
a span of years with different weather. Thus, cambial age
data reflect annual weather across a range of years,
which does not happen when using tree age data. On
the other hand, from a practical point of view, methods
based on using tree age may be easier to apply in oper-
ational breeding, especially as light color results in Fig.
3b-d, indicating that high PAs can be reached without
coring all the way to the pith. To number the rings for
precise cambial age, you need to find the innermost ring
at the pith, but that may not be necessary for good
results.

Implementation of GS for solid wood into operational
breeding

The results indicate that GS can result in similar early
selection efficiency or even higher than traditional
pedigree-based breeding and offers further possibilities.
Previously, in loblolly pine it was reported that models
developed for diameter at breast height (DBH) and
height with data collected on 1 to 4-year old trees
had limited accuracy in predicting phenotypes at age
6-year old [21]. In British Columbia Interior spruce,
the predictive accuracy for tree height of models
trained at ages 3 to 40 years, at certain intervals, and
validated at 40years revealed less opportunities for
early model training, since the plateau was not
reached until 30 years [28].

In our study, the highest PA values (on the diagonals
in Fig. 3b-d) were obtained for the subsets of fast-
growing trees which had reached breast height already at
tree age 3 and 4 years, 12 and 51% of the total number
of trees, representing a limited number of the OP fam-
ilies included in the analysis. Trees in this subgroup are
affected by high intensity of selection for alleles acceler-
ating growth within each OP family. Also, on cross-
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validation the prediction abilities for this group were cal-
culated based on the trees within the same group. In this
elite group different factors could account for a higher
PA value, such as lower phenotypic variance, decreased
number of alleles of minor effect could also facilitate
identification of major effects and/or higher consanguin-
ity between those families which may share alleles for
growth. These models are shown for completeness, but
as they cannot be used for operational breeding they are
not further discussed.

Models for genetic selection are useful in different
steps of a breeding program. One type of prediction
models, here illustrated with Table 1, can be trained
from existing trials, preferably based on trees of as old
age as available. Since the aim of breeding is to predict
tree qualities at age of harvesting when the major part of
the stem will be dominated by mature wood. Training
the models in older trees for wood properties also allows
considering other properties which cannot be easily ob-
served from trees of very young age, such as stem
straightness and health. For wood density, the results in-
dicate that models can be built without coring very deep
into the stem. It may be expected that this is valid also
for instance for tracheid dimensions which in combin-
ation determines the wood density [30].

As illustrated in this work, two aspects of incorporat-
ing wood properties into operational GS breeding pro-
grams can be addressed with the same set of data.
Firstly, as mentioned above, models for cost-effective se-
lection based on genomic information from existing
trees. In that case, models from data at old ages would
normally be preferred, for example for wood density
some model at bottom line of Fig. 3b. Secondly, models
providing guidance on at what age it is reasonable to ap-
proach young trees for training of GS models for specific
traits: a) trees in existing juvenile trials, or b) trees of
new generations with different pools of genetics. As an
example, the same Fig. 3b for wood density suggests GS
model training at tree ages 10 to 12 on the third to fifth
outermost rings to reduce costs and the negative impact
on the tree.

Conclusions

1) In comparison with phenotypic selection, Genomic
selection methods showed similar to higher
prediction abilities (PAs) for both increment core-
and standing tree-based phenotyping methods. This
indicates that the standing tree-based measure-
ments may be a cost-effective alternative method
for GS, but higher PAs were obtained based on in-
crement core-based wood analyses.

2) Different genomic prediction statistical methods
provided similar PA. At least 80% data should be
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included in the training set in order to reach the
highest levels of PA

3) This study represents the first published
investigation of the efficiency of GS with prediction
models trained on data acquired from sampling/
coring trees at different ages, combined with
sampling/coring to different depths, to optimize the
operational breeding for the combination of length
of breeding cycle, cost and impact on the trees. The
results indicate that similar efficiency can be
obtained at tree age 10—12 with 3—5 outermost
rings.

Methods

Plant material

The study was conducted on two OP progeny trials:
S21F9021146 (F1146) (Horeda, Eksjo, Sweden) and
S21F9021147 (F1147) (Erikstorp, Tollarp, Sweden). Both
trials were established in 1990 with a spacing 1.4 m x 1.4
m. Originally, the experiments contained more than 18
progenies from 524 families at each of site, but after
thinning activities in Horeda and Erikstorp in 2010 and
2008, respectively, about 12 progenies per family were
left. In 2011 and 2012, six trees per site (524 * 12 ~ 6000
trees) were phenotyped [37]. Standing tree-based mea-
surements with Pilodyn and Hitman were performed on
the same trees in 2011 and 2013, respectively, after
which further thinning was performed. For this study, in
2018, we generated genomic (SNP) data from 484
remaining progeny trees after thinning which belonged
to 62 of the OP families (out of the original 524 families)
and on average eight progenies per family. This geno-
typic data was combined with available phenotypic data
for the same trees that were used.

Phenotypic data

The phenotypic data was previously described in Zhou
et al, 2019 [38]. Increment cores of 12 mm diameter
from pith to bark were collected from the progenies in
2011 and in 2012. These samples were analyzed for pith
to bark variations in many woods and fiber traits with a
SilviScan [39] instrument at Innventia (now RISE),
Stockholm, Sweden. This data is referred as increment
core-based measurements through the text. The annual
rings of all samples were identified, as well as their parts
of earlywood, transition wood and latewood, averages
were calculated for all rings, as well as their parts and
dated with year of wood formation [30].

The aim of breeding is not for properties of individual
rings, but properties of the stem at harvesting target age.
Therefore, this study focused on predictions of averages
for stem cross-sections, and we chose tree age 19 years
as the reference age, with models trained on trait aver-
ages for all rings formed up to different younger ages.
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Three types of averages were calculated and predictions
compared for density, MFA and MOE: 1) area-weighted
averages, relating to the cross-section of the stem, 2)
width-weighted, relating to a radius or an increment
core, and 3) arithmetic averages, where all ring averages
are weighted with same weight. For the calculation of
area-weighted average we assumed that each growth ring
is a circular around the pith, calculated the area of each
annual ring from its inner and outer radii, and when cal-
culating the average at a certain age, the trait average for
each ring was weighted with the ring’s proportion of the
total cross-sectional area at that age. Similarly, for the
calculation of the width-weighted average, the trait aver-
age for each ring was weighted with the ring’s propor-
tion of the total radius from pith to bark at that age.
Similar results were obtained with the three average
methods. For this reason, only the estimates based on
the area-weighted method (the most relevant for breed-
ing) are shown. Tree age 19 years was used as the refer-
ence age. Thus, all the selection methods investigated
for density, MFA and MOE, phenotypic and genetic,
were compared based on how well they predicted the
cross-sectional averages of the trees at this age, with
their last ring formed during the vegetation period of
2009.

In addition, estimates of the three solid wood traits
were calculated based on data from Pilodyn and Hitman
instruments, measured on the standing trees without re-
moving the bark at age 22 and age 24 years, respectively.
Pilodyn measures the penetration depth with a needle
pressed into the stem, which is inversely correlated with
wood density. Hitman measures the velocity of sound
in the stem, which correlates with microfibril angle,
MFA [40, 41]. MOE is related to wood density and
velocity of sound [42-44] and can therefore be esti-
mated by combining the Pilodyn and Velocity data,
which estimates we here name MOE;,q (for standing-
tree based). Further details on how this was per-
formed in our study are given in Chen et al. 2015
[33]. The references show that these standing-tree-
based measurements provide useful information and
are very time and cost-efficient. However, they do not
allow calculation of properties of the tree at younger
ages. Therefore, we were not able to investigate from
what early ages such data can be uses within genomic
selection.

Genotypic data

Genomic DNA was extracted from buds or needles
when buds were not available. Qiagen Plant DNA ex-
traction protocol was utilized for DNA extraction and
purification and DNA quantification performed using
the Qubit® ds DNA Broad Range (BR) Assay Kit (Ore-
gon, USA). Genotyping was conducted at Rapid
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Genomics, USA, using exom capture methodology same
as the method used in Baison et al. 2019 [45]. Sequence
capture was performed using the 40,018 diploid probes
previously designed and evaluated for P. abies [46] and
samples were sequenced to an average depth of 15x
using an Illumina HiSeq 2500 (San Diego, USA) [45].
Variant calling was performed using the Genome Ana-
lysis Toolkit (GATK) HaplotypeCaller v3.6 [47] in Gen-
ome Variant Call Format (gVCF) output format. After
that, the following steps were performed for filtering: 1)
removing indels; 2) keeping only biallelic loci; 3) remov-
ing variant call rate (“missingness”) <90%; 4) removing
minor allele frequency (MAF)<0.01. Beagle v4.0 [48]
was used for missing data imputation. After these steps,
130,269 SNPs were used for downstream analysis.

Population structure

As a first step, we conducted a principal component
analysis to determine the presence of structure in our
population. The spectral decomposition of the marker
matrix revealed that only about 2% of the variation was
captured by the first eigenvector, indicating low popula-
tion structure. Additionally, in previous study, low geno-
type by environment (GxE) interaction was detected for
wood quality traits on these two trials [37]. Therefore,
population structure was not considered in the design of
cross-validation sets (see Modelling and cross-validation
chapter for further details on the cross-validation sets
design).

Narrow-sense heritability (h?) estimation
For each trait, an individual tree model was fitted in
order to estimate additive variance and breeding values:

y=XB+Zu+ Wb +e. (1)

where y is a vector of measured data of a single trait,
is a vector of fixed effects including a grand mean, prov-
enance and site effect, b is a vector of post-block effects
and u is a vector of random additive (family) effects
which follow a normal distribution % ~ N(0,Ac?,) and e
is the error term with normal distribution N(0,I6%,). X, Z
and W are incidence matrices, A is the additive genetic
relationship matrix and I is the identity matrix. 67,
equals to c,” (pedigree-based additive variance) when
random effect in eq. 1 is pedigree-based in which case u
~N(0,Ac%,), and ¢%, equals to O'g2 (marker-based addi-
tive variance) when random effect in eq. 1 is marker-
based in which case u ~ N(0,Go?,). The G matrix is cal-

culated as G = w, where M is the matrix of

2y 7 pi(1-pi)
samples with SNPs encoded as 0, 1, 2 (i.e., the number
of minor alleles), P is the matrix of allele frequencies
with the ith column given by 2(pi - 0.5), where pi is the
observed allele frequency of all genotyped samples.
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Pedigree-based individual narrow-sense heritability (/>

) and marker-based individual narrow-sense heritability
(hgz) were calculated as.

2 2
W2o— e g _ e
a 2 e o2
pa re

respectively, Gzpa and cng are phenotypic variances for
pedigree-based and marker-based models, respectively.

Selection of the optimal training and validation sets ratio
Cross-validation was conducted after dividing randomly
the whole dataset into a training and a validation set. To
find the most suitable ratio between the two, we divided
the data into sets with five different ratios between the
training and the validation sets: 50, 60, 70, 80 and 90%.
100 replicate iterations were carried out for each tested
ratio and trait.

Statistical method for model development
In the same context we aimed to find optimal methods.
Several statistical methods were compared: pedigree-
based best linear unbiased predictions (ABLUP), and
four GS methods: genomic best linear unbiased predic-
tions (GBLUP) [49], random regression-best linear un-
biased predictions (rrBLUP) [4, 50], BayesB [4], and
reproducing kernel Hilbert space (RKHS).

rrBLUP used a shrinkage parameter lamda in a mixed
model and assumes that all markers have a common
variance. In BayesB the assumption of common variance
across marker effects was relaxed by adding more flexi-
bility in the model. RKHS does not assume linearity so it
could potentially capture nonadditive relationships [51].
R package rrBLUP [52] was used for GBLUP and
rrBLUP, package BGLR [53] was used for BayesB and
RKHS. The pedigree-based relationship matrix was ob-
tained with the R package pedigree [54].

PA and accuracy estimation

The adjusted phenotypes y =y-XB were used as model
response in the genomic prediction models. Model qual-
ity was evaluated by predictive ability (PA), which is the
mean of the correlation between the adjusted phenotype
and the model predicted phenotypes, r(y’,yhat) from 100
times CV. Prediction accuracy (PC) was defined as PA/
v (h?) [15, 55]. In order to investigate whether GS model
training can be conducted at earlier age, PA at each tree
calendar age and cambial age were estimated. In this
case, cross validation was conducted only using area-
weighted values at each age, then the trait values at each
age were estimated. PA at a specific age was calculated
as the correlation between estimated trait values at that
age and area-weighted values from pith to the last ring
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(for cambial age) and last year (for calendar age),
respectively.

Genomic selection for well-performing trees with the
use of marker information (G matrix) requires access to
previously trained GS models. Thus, model training is a
necessary part of GS integration into operational breed-
ing. Model training can be conducted in already existing
plantations with trees of relatively high ages, as illus-
trated in this work. It is, however, expected and desired
that such model training can be conducted with high
PAs also for younger trees. This would be especially use-
ful if maturity (flower production) can be accelerated, to
shorten the total breeding cycle.

Operationally, it is also important to develop protocols
to assess wood quality in resources at minimum cost
and time, and with minimal impact on the trees. There-
fore, on coring, it is not only important to know the
minimum age at which useful information can be ob-
tained, but also from how many rings from the bark to-
wards the pith information is required to train models
with high predictive ability. To address these two prac-
tical questions for operational breeding, we trained pre-
diction models based on data from different sets of
rings, in order to mimic and compare PAs obtained
when coring at different ages of the trees to different
depths into the stem, or more precisely, using data from
different numbers of rings, starting next to the bark. All
the models were judged on, compared by their ability to
predict the cross-sectional average of the trait at age 19
years across all trees in the validation set.
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Abstract

Through the use of genome-wide association studies (GWAS) mapping it is possible to establish the
genetic basis of phenotypic trait variation. Our GWAS study presents the first such effort in Norway
spruce (Picea abies (L). Karst.) for the traits related to wood tracheid characteristics. The study
employed an exome capture genotyping approach that generated 178 101 Single Nucleotide
Polymorphisms (SNPs) from 40 018 probes within a population of 517 Norway spruce mother trees.
We applied a least absolute shrinkage and selection operator (LASSO) based association mapping
method using a functional multi-locus mapping approach, with a stability selection probability method
as the hypothesis testing approach to determine significant Quantitative Trait Loci (QTLs). The
analysis has provided 30 loci and 26 candidate genes, the majority of which show specific expression
in wood-forming tissues or high ubiquitous expression, potentially controlling tracheids dimensions,
their cell wall thickness and microfibril angle. Among the most promising candidates based on our
results and prior information for other species are: Picea abies BIG GRAIN 2 (PabBG2) with a
predicted function in auxin transport and sensitivity, and MA 373300g0010 encoding a protein similar
to wall-associated receptor kinases, which were both associated with cell wall thickness. The results
demonstrate feasibility of GWAS to identify novel candidate genes controlling industrially-relevant

tracheid traits in Norway spruce

Introduction

Norway spruce is considered to be one of the most important multipurpose species. Its wood provides
various solid wood products as well as pulp and paper products. It is considered one of the best raw-
materials for the production of mechanical pulp for many types of paper grades'. The properties of the
tracheids have large influences on the quality of the final products, and also on process economy and
sustainability, for solid wood as well as fibre-based products®. Tracheid morphology and cell wall
structure influence the flexibility of wood and fibres, interactions among fibres, as well as the
mechanical, physical and optical properties of the end-products®. Consequently, identifying the genetic
background of different tracheid traits as a basis for breeding may bring benefits for both industry and

society. Several papers have reported the phenotypic correlations, between tracheid cross-sectional



dimensions and wood traits such as density in conifers**¢. A study of Norway spruce felled in the
winter of 1989/1990 in central Sweden, found tracheid length dependent on the logarithm of cambial
age and growth ring width, with density dependent on latewood percentage. Similar models for the
influence of cambial age and ring width have been presented for tracheid length, width and wall
thickness models of Norway spruce, Sitka spruce, Scots pine and loblolly pine’. Such results have
indicated that changes in growth conditions over time acting mainly through crown development, will
have an influence on wood structure development in Norway spruce®. However, these reports paid
very little regard to the underlaying genetic factors influencing these phenotypes. Therefore, the
dissection of the genetics impacting these relationships and the variations observed in tracheid
properties will be of great value to any tree breeding program.

Various long-term breeding programmes for the species are already being pursued with the
goal to identify genotypes with high productivity and wood quality®. Wood density and microfibril
angle (MFA) are key indicators of wood quality as they influence strength and dimensional stability of
solid wood’. However, combining productivity with wood quality is problematic due to negative
genetic correlations between these traits'®. One of the tools helping to understand these genetically
complex variations in forest trees is the integration of extensive genetic and phenotypic data in order
to discern the genetics underlying these traits!'>!3, Hence, knowing the genetic control of these
variations, may lead to optimal breeding strategies for the improvement of both growth and wood
quality traits.

With genomic resources now available, a large array of molecular markers has been available
for the studying and understanding of complex traits. The majoritiy of these traits are known to be
predominantly polygenic in nature, and affected by environmental effects'*, hence the need to utilize
techniques that target the whole genome'>. The availability of an array of genomic resources has led to
the reliable identification of Quantitative Trait Loci (QTLs), which in conifers are traditionally
detected using suitable segregating populations such as, full- or half-sib progenies. More recently,
GWAS, also known as Linkage Disequilibrium (LD) mapping, has been applied as an alternative
approach of QTL detection from traditional pedigree-based mapping studies. GWAS accounts for

historical recombination events in the natural population as compared to those observed in a pedigree



based QTL mapping'®. When confounding factors are taken into consideration, LD mapping provides
greater resolution than pedigree studies, since it utilizes markers in strong LD with putative causative
genomic regions'”.

Many coniferous species are characterized by an outcrossing mating system and large
population sizes which lead to a rapid LD decay within the genomes and low inbreeding coefficient!.
However, rapid and heterogenous decay in conifer LD'® can be a source of concern as proximal
markers can be completely unlinked and therefore offer no predictive power to the quantitative trait
that may be residing physically close!®. Together LD heterogeneity, population structure®, epistasis
and Genotype x Environment interactions (GXE)?! are factors that if not carefully controlled can
negatively impact QTL identification. The utilization of LD mapping in the dissection of genetic
backgrounds underpinning complex traits has been shown in several systems, for example, complex
solid wood properties in Norway spruce?’, white spruce? and Eucalyptus', and detecting genes
underlying ecological adaptations in Populus®*. The dissection of these complex traits can benefit from
the application of mathematical functions that account for the year-to-year variation across annual
growth rings. The development of mathematical methods for the analysis of dynamic data has made it
possible to develop functional mapping approaches*>?¢ that firstly model the phenotypes using curve-
fitting methods and then utilize the parameters describing the curve (latent traits) for independent
association analysis®’2%,

GWAS can also increase our knowledge on molecular processes controlling tracheid traits.
Presently the majority of breeding programs have focused on the easy to measure phenotypic traits
such as volume, straightness, disease resistance and spiral grain. Due to cost and time of measurement
of traits related to tracheid dimensions most programs have not been able to select and advance such
traits using marker assisted breeding®. Therefore, this study is novel in that it is, to our knowledge, one
of the first to tackle the issue of dissecting the genetic background to tracheid properties in a conifer
species. With the exception of a single study conducted in Arabidopsis thaliana, as a model system,
for traits controlling fibre length®®, the majority of the studies related to tree fibre related traits have

31,32,33,34

focused on mostly microfibril angle genetics . Hence our study seeks to form the bases upon

which, the dissection of the genetic backgrounds to more complex and expensive traits, such as,



tracheid dimensions can be investigated. Such traits are to a large extent determined by the genes
acting during wood development®>*®, Tracheid traits can also be regulated non-cell-autonomously by
processes that take place in other organs and tissues. For example, the activity of the shoot apical

d*738 whereas the

meristem determines the availability of auxin in the cambium and developing woo
photosynthetic activity in the needles influences the availability of sucrose for wood biosynthesis®.
Therefore, combining the knowledge of candidate genes with their expression analysis will give more
insights to the biological processes shaping tracheids.

The major goal of this study was to identify causative allelic effects of genomic regions
contributing to wood tracheid traits using LD mapping on exome sequence capture data. Due to the
large size of the Norway spruce genome (20 Gb) and its highly repetitive nature, it presents a
challenge to use whole genome re-sequencing approaches for the development of molecular markers.
Approaches aimed at reducing these genome complexities, especially by either eliminating or
drastically reducing the repetitive sequences have been developed®. These approaches are referred to
as reduced representation approaches as there are used as proxies for whole genomic sequencing. In
this study, we have used exome capture, aiming at maximizing the capture of exonic regions of the
genome only, thereby increasing the coverage and depth of genic sequence in our variant detection
study. The analysis provided 26 mostly novel candidate genes for regulation of various tracheid traits,
which, along with their expression patterns, give new insights to the tracheid traits determination, and

offer key markers for early genetic selection in Norway spruce breeding.

Materials and Methods

Association mapping population

The association mapping population, phenotypic data and statistical analysis are described in Chen et
al., (2014)* and Hayatgheibi et al., (2018)*. Briefly, the mapping population for the association
mapping population constisted of two progeny trails established 1990 in Southern Sweden:
(S21F9021146 aka F1146 (triall) and S21F9021147 aka F1147 (trial2)), composed of 1373 and 1375
half-sib families. A randomized incomplete block design with single-tree plots was employed for both

trials. From the trials, 517 families in 112 provenances were selected for use in the investigation of



wood tracheid properties. Wood increment cores with diameter of 12 mm were collected at breast
height (1.3 m) from six trees from each of the selected families of each trial. A total of 5618 trees were

sampled: 2973 trees from trial F1146 and 2645 from F1147.

Phenotypic data generation

The radial variations of growth, wood and tracheid attributes from pith to bark were analysed using
the SilviScan instrument* at Innventia, now RISE Bioeconomy, Stockholm, Sweden. SilviScan is an
instrument for efficient measurement of radial variations in a multitude of properties from the same
sample with high spatial resolution. High precision sample strips from pith to bark were produced
from the increment cores and automatically scanned for radial variations in cross-sectional tracheid
widths with a video microscope combined with image analysis, in wood density with X-ray
transmission and in structural orientations with X-ray diffraction. From these data, information on
radial variations of further traits were derived, such as wall thickness, coarseness and MFA of
tracheids, and stiffness of wood (MOE). The locations of the annual rings were identified, as well as
of their compartments of earlywood (EW), transitionwood (TW) and latewood (LW), using the “20-80
density” definition*, established for use in different types of studies**¢4’. Averages for all rings and
their compartments were calculated for the traits and organised to be ready for use in continued
genetic evaluations, such as the work on solid wood traits*, on tracheid traits* and for wood traits®?,
genomic selection®® and influences of age and weather®'. The traits addressed in the current work are
listed in Table 1.

For MFA, central peak regression mathematical functions were fitted to describe the MFA
variation from juvenile towards mature wood, using procedures presented by Hayatgheibi et al.,
(2018)*2, including also pre-processing of the data for removal of outliers. A threshold value of MFA
20° for the fitted curves was chosen to define an age up to to which an inner core of wood with
inferior timber properties occurred, here named the transition age MFA1A*?. From anatomical
perspective, a threshold of 20° is on the high side, emphasizing a core of pronounced juvenility. We
have decided to stay with this threshold level, because for the young trees investigated, the fitted

curves for quite a few trees would not pass a low treshold, and they would have had to be discarded



from the analysis. Thus, it works better for ranking. The averages of MFA for wood inside and outside

this limit were calculated, MFAcore and MFAourer. This provided three latent traits for MFA.

Table 1. List of the traits, their abbreviations and measurement unit.

Trait Abbreviation Unit

Radial tracheid width (TWr)

Ring TWrring um
Earlywood TWrew pum
Transitionwood TWrrw um
Latewood TWrrw pm

Tangential tracheid width (TWt)

Ring TWitring pum
Earlywood TWtew pm
Transitionwood TWtrw pum
Latewood TWtLw pum
‘Wall Thickness (WT)
Ring WTRing pm
Earlywood WTew um
Transitionwood WTrw pm
Latewood WTLw um

Coarseness (C)

Ring Cring mg/m
Earlywood Cew mg/m
Transitionwood Crw mg/m
Latewood CrLw mg/m

Microfibril angle (MFA)




Ring MF ARing Degrees

Corewood MFAcore Degrees
Outerwood MFAouter Degrees
Transition age (cambial) MFAra Year

Exome Capture Analysis
DNA extraction, variant detection and annotation and population structure on the genomic data
utilized in this study was previously described?. Total genomic DNA from 517 half-sib individuals
was extracted using the Qiagen Plant DNA extraction kit (Qiagen, Hilden, Germany). DNA was
extracted from buds, when present, or from young needles, when buds were absent. DNA
quantification was performed using the Qubit® ds DNA Broad Range (BR) Assay Kit (Oregon, USA).
DNA from randomly selected individuals was then electrophoresed on a 2% agarose gel. Probe design
and evaluation is described in Vidalis et al., (2017)%. In breif, the exome capture method was
implemented by the probe design that was based on a combination of sequenced genomic DNA,
predicted gene annotations and de novo transcript assemblies. Exome capture was based upon the use
of targeted oligonucleotides that bind to complementary genomic sequences. Sequencing was
performed at Rapid Genomics, USA, using the Illumina sequencing platform. Sequence capture with
average depth of 15x coverage was performed using the 40 018 diploid probes previously designed
and evaluated for Norway spruce. [llumina sequencing compatible libraries were amplified with 14
cycles of PCR and the probes were then hybridized to a pool comprising 500 ng of 8 equimolarly
combined libraries following Agilent’s SureSelect Target Enrichment System (Agilent Technologies).
These enriched libraries were then sequenced to an average depth of 15x using an [llumina HiSeq
2500 (San Diego, USA) on the 2 x 100 bp sequencing mode at Rapid Genomics, USA.

Raw reads were mapped against the P. abies reference genome v1.0 using BWA-MEM>,
SAMTools v.1.2% and Picard (http://broadinstitute.github.io/picard) were used for sorting and
marking of PCR duplicates. Variant calling was performed using GATK HaplotypeCaller v.3.6 as per

the best practices protocol*® in gVCF output format (see



http://www.broadinstitute.org/gatk/guide/best-practices for more information about GATK best

practices). Samples were then merged into batches of ~200 before all 517 samples were jointly called.
GATK based Variant Quality Score Recalibration (VQSR) method was performed in order to
avoid the use of hard filtering for exome/sequence capture data. For the VQSR analysis, two datasets
were created: a training file and an input file. The training dataset was derived from a Norway spruce
genetic mapping population with known segregating loci. The training dataset was designated as true
SNPs and assigned a prior value of 12.0. The input file was derived from the raw sequence data using
the above mentioned GATK’s best practices with the following parameters: extended probe
coordinates by +100 excluding INDELS, excluding the LowQual sites, and keeping only bi-allelic
sites. The annotation parameters QualByDepth (QD), MappingQuality (MQ) and BaseQRankSum,
with tranches 100, 99.9, 99.0 and 90.0, were then applied to the two files for the determination of the
good versus bad variant annotation profiles. After obtaining a VQSR for all raw data variant sites, the
recalibration was applied to filter the raw variants. The SNP trimming and cleaning involved the
removal of any SNP with MAF and “missingness” of < 0.05 and >20%, respectively. These
parameters were filtered out using VCFTools*”. The resultant SNPs were annotated using default
parameters for snpEff 4°%, Ensembl general feature format (GTF, gene sets) information was utilized

to build P. abies 1.0 snpEff database.

GWAS LASSO

Latent traits expressing how the traits developed with age were calculated in two steps. First, a
breeding value approach was applied to refine data from influences not directly related to the genes,
such as site and block effects. For this purpose, breeding values were estimated (EBV) for each
annual ring separately (cambial age), reducing site and block effects, but also the time trajectories,
which were reconstructed as a final step by adding back the averages at each age. The variance and
covariance components were estimated using ASREML 4.0 as described in Chen et al., (2014)'. The
EBVs at each cambial age were estimated using univariate, bivariate or multivariate mixed linear
models in order to select the optimal model for each trait, based on a compromise of model fit and

complexity. Akaike Information Criteria (AIC) was used to determine the fitness of different models.



This resulted in use of a univariate linear mixed model for joint-site analysis as the bases for the

analyses of all traits:

Yijki = u+S; + Bjy + Fi + SFy + €4 [1]
where Y;jy, is the observation on the /th tree from the kth family in jth block within the ith site,

u is the general mean, S; and Bj ;) are the fixed effects of the ith site and the jth block within the ith

site, respectively, Fj and SF;; are the random effects of the kth family and the random interactive

effect of the ith site and kth family, respectively, e;x; is the random residual effect.

For the tracheid dimension and coarseness traits, linear splines with multiple knots were fitted
to the EBV refined time trajectories against cambial age (annual ring number) (Fig 1), generally

defined as follows:

y(@O) =B+ B+ Bt -K), +pt-K), +..+B,,(-K,),, (2]

This is a continuous curve starting at the intercept o, with linear segments between the knots at =K;
(=1,...,m; Ki<K>...<K,), segments with slopes defined by the B to fi+m parameters, where i = 0 if t
< Ki.1. The knots are thus reflecting transitions between phases of different slopes in the development
of the traits, and at each knot, the slope is changed according to the 3 of the next segment. Therefore,
the times when the knots occur have to be properly defined in order to provide accurate descriptions of
the data under investigation, and also their numbers in order to avoid overadaptation to data® . We
found use of two knots the most suitable for tracheid dimension traits across the time intervals

investigated. Hence, the linear spline model used was defined as:

YO =+ Bt Bl -K). + f-Ky) 40, 60~ N0 [3]

In a first analysis, fixed values of K; and K> were adapted for each trait. Then, the intercept fo, and the
slope parameters f1, 5> and 33 were estimated for each tree by standard least squares®. The four
estimates were used as the latent trait in the subsequent QTL analysis conducted in R-studio®', and
then analysed using the LASSO model in order to identify SNPs showing significant associations to

the traits.
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The LASSO model as described by Li et al (2014)%°, was applied to all latent traits for the detection of

QTLs.
The LASSO model:
- 4 y
min =3 (v —a =2 x5a,) + A e | [4]
0:%j i=1 =l J=l

where y; is the phenotypic value of an individual i (i=1,...,n; n is the total number of individuals) for the
latent trait, ao is the population mean parameter, x;; is the genotypic value of individual i/ and marker j
coded as 0, 1 and 2 for three marker genotypes AA, AB and BB, respectively, o; is the effect of marker
Jj (i=1,...,n; n is the total number of markers), and 1 (>0) is a shrinkage tuning parameter.

Stability selection probability (SSP) of each SNP was applied as a way to control the false discovery
rate and determine significant SNPs®%635%, For a marker to be declared significant, a SSP inclusion
ratio (Frequency) was used with an inclusion frequency of at least 0.52 for all traits. This frequency
inferred that the expected number of falsely selected markers was less than one (1), according to the
formula of Buhlmann et al, (2014)%. Population structure was accounted for in all analyses by
including the first five principal components based on the genotype data as covariates into the model.
The LASSO regression has a limitation in that it might over-shrink the effect size of SNPs due to the
use of a single tuning parameter for all the regression parameters®. The consequence is that the
LASSO might significantly under-estimate the proportion of phenotypic variation (PVE) explained by
a SNP®. To improve this, an adaptive LASSO approach® was used alternatively to evaluate the PVE
of'a QTL (Methods S4):

In brief, estimated breeding values (EBV) were computed for each annual ring by cambial
age to reduce site and block effects (see Chen et al 2014). In a second step, linear splines were applied
to reconstruct time trajectories based on annual ring EBV. Fix age values for two knots were
determined, as the intercept and slope parameters, the latent traits, were fitted to the EBV describing

the shape of the time trajectories of each individual tree.

Candidate gene mining

11



To assess putative functionality of SNPs with significant associations, gene ontology and network
analysis of putative genes and their associated orthologs was performed against the NorWood v1.0

database (http://norwood.congenie.org®”) hosted by ConGenlE (http://congenie.org/). After the

identification of the QTL, the Norway spruce contigs linked to the significant SNPs were extracted
from the web based database congenie (congenie.org/blast). The complete Norway spruce contigs that
harboured the QTLs that were not annotated in the ConGenlE were used to perform a nucleotide
BLAST (Blastn) search, using the option for only highly similar sequences (megablast) in the National
Center for Biotechnology Information (NCBI) nucleotide collection database

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?).

Results and Discussion

Trait trajectories

For traits with complex time/age trajectories, the application of functional mapping enables an
aggregated analysis of temporal trends?’. The ring MFA initially decreased from an average across the
trees of about 30° at the pith and stabilized after reaching a cambial age of about 10 years at an
average of 10-12°%, The adapted central peak curves combined with the threshold at 20° resulted in an
average of five years for MFAra, defining the inner core of lower quality timber with AM performed
for the latent traits of MFAcore and MFAourer.

For all the other tracheid phenotypes: wall thickness, radial tracheid width, tangential tracheid
width and coarseness, family means of o (intercept) and B to B3 (effects of knot 1 to 3, see Baison et
al., 2019)® were implemented in the association mapping. Candidate gene loci were identified for
MFAcore, MFAouter and MF AT, and for the intercepts fo, of the tracheid dimensions and coarseness

of rings, EW, TW and LW.

Genetic associations detected and modes of gene action
A total of 30 significant associations were detected across the 18 traits with fraction of phenotypic
variances being explained (PVE) ranging between 0.01 to 3.79% (Table 2), using an Stability selection

probability (SSP) minimum inclusion frequency of 0.52. Seven of the 30 marker trait associations for

12



which dominance and additive effects could be calculated were consistent with partially to fully
dominant effects (0.50 <|d/a| < 1.25). The remaining 23 markers were all determined to have an
additive (|d/a| < 0.50) mode of inheritance (Table 2). The relationships between the genotypic classes
of markers associated to a phenotype were consistent with these patterns (Fig. 1). Three SNPs
MA_10436040g0010_171180, MA_105586g0010_65505 and MA_10426383g0010_135796, were
significantly associated across and within several traits, with all the modes of gene action being

additive for the marker-trait interactions for the three SNPs (Table 2; Fig. 1).
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Genetic associations and genes of interest

Two of the associations detected for MFA were intron variants MA 10434903g0010 8217 and
MA 10117352g0010 1285. MA_10434903g0010 8217 was associated with MFAouter explaining
1.03% of the PVE. MA_10117352g0010_1285, a synonymous variant explaining 1.47% PVE
associated with MFAourer, occurred within gene MA_10117352g0010 homologous to Arabidopsis
ONE HELIX PROTEIN (OHP). The gene is highly expressed especially in needles and shoots in
spruce (Fig. 2). OHPs have been reported to be constitutively expressed and essential for
photosynthesis in Arabidopsis, with mutants exhibiting severe growth defects”.

Associations for radial tracheid widths were detected in earlywood and latewood. TWrew was
associated with a single missense SNP (MA_10435070g0010_17636) explaining 3.16% of the PVE
and occurred within a gene encoding nuclear transcription factor Y subunit A-7 (NF-YA7) (Table S1).
NF-Y is a multimer complex binding CCAAT box in the promoter regions of many genes, and has
multiple biological functions including growth regulation, cell size regulation, and responses to abiotic
stresses’!”?, including nitrogen deficiency in Arabidopsis™. The overexpression of the NF-YAs has
been shown to stimulate growth during low nitrogen and phosphorous availability’®. This gene is
ubiquitously, highly expressed in shoots and buds of spruce, indicating its important function in this

species (Fig. 2
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TWrrw with seven significant associations, had the highest number of detected associations
per trait. Two missense SNPs, MA 336364g0010 6123 and MA_64438g0010 10851 associated with
TWrLw, explained a small proportion of the PVE observed 0.01% and 0.03%, respectively.
MA_336364g0010 is homologous to the Arabidopsis INDUCER OF CBF EXPRESSION 2 (ICE2)
regulating deep-freezing tolerance by inducing CBF1, CBF2 and CBF3 genes (Table S1)7¢. CBF genes
have been identified to constitute a central node of hormone cross-talk during cold stress response and
their expression is modulated by abscisic acid, gibberelins, jasmonate, ethylene and brassinosteroids”’.
It has emerged that different hormone signaling pathways converge at the CBF promoter level, with
the result of this hormone cross-talk being the fine-tuned transcript levels impacting on plant
development and growth’®. In spruce, the homolog of ICE2 gene is highly expressed in developing
stems (Fig. 2) and strongly upregulated in the cambium and radial expansion zone (Fig. 3) supporting
its role in situ in promoting the tracheid expansion. Since CBFs have already been identified as
convergence points for hormones required for the regulation of plant growth under cold stress, these
factors would warrant a detailed look in relation to their influence on wood tracheid development,
especially during the time when the water stress and cold stress can be common. The gene
MA 644380010 is homologous to an Arabidopsis PHOSPHATIDYLINOSITOL BINDING
CLATHRIN ASSEMBLY PROTEIN 5B (PICALMS5B), a part of the ENTH/ANTH/VHS superfamily
(Table S1). The ENTH/ANTH/VHS superfamily is involved in clatrin assembly at secretory vescicles
and is essential for vescicle intracellular trafficking and thus, cell growth and development”. The gene
was observed expressed in developing wood (Fig. 3), indicating its importance for tracheid
development in spruce. Indeed, the genes of ENTH/ANTH/VHS family have been previously
associated with secondary cell wall formation in Populus®’, and vescicle trafficking-related genes were
seen upregulated coinciding with radial expansion of developing wood cells in aspen®!. Such genes are
therefore expected to be associated with tracheid radial expansion in spruce. Another gene associated
with TWrLw was MA_950574g0010_7132, explaining a comparatively high PVE of 2.27%. It is
remotely similar to Arabidopsis CALCINEURIN-B-LIKE-INTERACTING SERINE/THREONINE-

PROTEIN KINASE 23 (CBLPK23) involved in the regulation of HAK5-mediated high-affinity K*
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uptake in calcium-dependent manner in Arabidopsis rootss>. The confidence of the spruce model was
low, but the gene was found highly expressed in developing shoots, buds and cones (Fig. 2), and
during primary and secondary wall formation in developing spruce tracheids (Fig. 3) confirming that it
was not a pseudogene. A CALCINEURIN-B-LIKE gene was found to explain the largest phenotypic
variance in cell wall mannose content in white spruce”. These observations make the identified spruce
CBLPK23 gene an interesting candidate for calcium-dependent regulation of K™ uptake in developing
tracheids, thus likely regulating tracheid expansion, similar to vessel element expansion, known to be
dependent on K transport®>. Interestingly, there was another candidate gene related to K* transport
associated with tracheid radial width: the splice variant MA_11172g0010 18275 explaining 0.01%
PVE (Table 2). This gene is homologous to Arabidopsis CYCLIC NUCLEOTIDE-GATED CHANNEL
17 (CNGC17) (Table S1). CNGCs are potassium channels involved in several plant physiological
processes including root development, pollen tube growth and plant disease resistance®*. They regulate
ion homeostasis within plants through the uptake of cations, which is essential for plant growth and
development®. Arabidopsis CNGC17 is localized in the plasmamembrane and promotes protoplast
expansion by regulating cation uptake®®. Its spruce homolog exhibited specific expression during
latewood formation in August (Fig. 2), supporting its role in latewood tracheid development.

Three significant associations were identified for tangential tracheid width components with
an upstream variant MA 10436040g0010_ 61320 being detected across traits TWtrw and TWitring
(Table 2). This variant was detected on contig MA 10436040 with high inclusion frequencies
explaining relatively high percentages of the variance observed, 2.13% for TWtrw and 3.79% for
TWtgin (Table 2). The associated gene - MA_10436040g0010 - is homologous to the stress-related
eukaryotic initiation factor 4A-III (e[F4A-III) which also has a DEAD-box ATP-dependent RNA
helicase 2, and is involved in RNA processing and nonsense-mediated mRNA decay in Arabidopsis,
especially under hypoxia and heat stress®’ (Table S1). The spruce gene was not found expressed in
available datasets (Fig 2). SNP MA 102395560010 131776 was associated with TWtgw and
explained a moderate amount of the PVE 1.80% (Table 2). The Arabidopsis homolog encodes a
subunit C of the vacuolar ATP synthase, which is a membrane-bound enzyme complex/ion

transporter that combines ATP synthesis and/or hydrolysis with the transport of protons across the
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tonoplast membrane. This gene was highly and ubiquitously expressed (Fig. 2). All three SNPs were
consistent with an additive mode of gene action (Table 2).

Twelve associations were detected for wall thickness components, with low to moderate PVE
ranging from 0.01 to 1.78% (Table 2). Two of these associations (SNP MA_105586g0010_7132 and
MA_10426383g0010_7358) were shared across cell wall thickness and coarseness traits. Ring
average for cell Wall Thickness (WTkring) had three significant associations. The synonymous SNP
MA 492000g0010_ 1672 had a high inclusion frequency (0.726) and explained the highest percentage
of PVE (1.78%). The same SNP was associated with WTgw. The gene MA 492000g0010 is
homologous to a tRNA synthetase beta subunit family protein, phenylalanyl-tRNA synthetase beta
chain (Table S1). Consistent with its predicted general metabolic function in protein biosynthesis, it is
ubiquitous and highly expressed in spruce tissues (Fig. 2). Missense SNP MA 9563494g0010 4010
and downstream variant MA_138164g0010_2032 explained 0.01% and 1.25% PVE, respectively.
MA_9563494g0010_4010 is located in a gene MA_9563494g0010 named as Picea abies BIG GRAIN
2 (PabBG2)* homologous to the BIG GRAIN 1 gene (OsaBG1) inrice®. OsaBGI encodes a
membrane protein regulating auxin transport and sensitivity, and positively affecting plant biomass
and seed size. The gene belongs to a small family containing nine members in spruce®®. Auxin has
long been known to act as a key hormone essential for the induction of vascular strands, cambial

growth and secondary wall deposition®®?192:93

. PabBG?2 is highly expressed and specifically
upregulated in the developing xylem (Fig. 2) with a peak of expression in the cambial zone (Fig. 3),
coinciding with a peak of IAA distribution in wood forming tissues®*. It is therefore likely that the
PabBG2 gene pays a major role in xylogenesis, as suggested by its association with tracheid cell wall
thickness, and that it should be considered as main target for woody biomass increase. Moreover, the
SNP MA 138164g0010 78937 explaining PVE 1.25% associated with WTkring Was located in a gene
homologous to the subunit of E3 ubiquitin complex encoded by At4PC1 and involved in cell cycle
regulation by degradation of cyclin B1%. The E3 ubiquitin complex is also known in Arabidopsis to
regulate auxin homeostasis®®*’’. Hence, the detection of two significant associations for WTring that

are potentially related to auxin regulation implies a close relation between auxin and cell wall

thickness in spruce. A QTL in rice grain for width and weight, which is related to plant biomass, has
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been associated with a RING-type E3 ubiquitin ligase”. Several auxin responsive genes were also
associated with tracheid width and MFA, which both are linked to cell wall thickness, in white
spruce?.

WTew has three significant associations beside MA 49200020010 103329 discussed above
(Table 2). The missense variant MA_80033g0010_51296 was within a gene encoding a MYB
transcription factor similar to Arabidopsis MYB68 (Table S1). This gene exhibited very low
expression levels in the developing xylem but rather was expressed in young shoots and needles (Fig.
3). Different MY B transcription factors regulate plant developmental processes, and several have been
identified as crucial factors for secondary wall deposition and lignification. Loblolly pine (Pinus teada
L.) PtMYBS expressed in spruce induced secondary cell wall thickening!'®. White spruce (P. glauca
L.) PgMYB4 was associated with cell wall thickness and tracheid coarseness®, and has been shown to
be highly expressed during secondary cell wall formation and lignification in both white spruce and

101

loblolly pine'’'. MYB encoded by MA_80033g0010 could play a more indirect role in secondary wall
regulation in spruce considering its expression (Fig. 2). Two remaining SNPs
MA 1784320010 19482 and MA 105586g0010 7132, had PVEs of 0.01% and 0.10%, respectively
(Table 2). The former was a missense variant within a gene homologous to Arabidopsis TOC64-V.
The latter was not matching any known gene and was also associated with Cew and explaining a
moderate percentage of PVE 2.08%. However, the two models were not expressed in any of the
previously reported spruce expression studies (Fig. 2).

WTLw was associated with four upstream variants and a single synonymous SNP
MA 1042638320010 7358. The four upstream variants explained PVE ranging from 0.01 to 0.10%
whereas the synonymous SNP MA 1042638320010 7358 had a high inclusion frequency and
explained a moderate amount of the PVE 1.57% (Table 2). MA_10426383g0010 is homologous to
VIT 16s0098g01810 from Vitis vinifera (Table S1) annotated as encoding ATP binding protein that
may be involved in chromosome organization and biogenesis'"'. The Arabidopsis homolog - GAMMA-
IRRADIATION AND MITOMYCIN C INDUCED 1 (GMII) is responsible for double strand repair via
somatic homologous recombination'®. The spruce gene shows increased expression in organs with

active meristems (Fig. 2), which is expected for the function in DNA repair. The same SNP

24



MA 104263830010 7358 was also associated with traits related to coarseness (Ctw and Crw) and
explained a relatively high PVE of 3.25% and 1.40%, respectively. It also had high inclusion
frequencies for all three traits (WTrw, Crw and Crw) (Table 2). The associated gene might therefore be
a good candidate to explore for effects on tracheid development, especially since it is highly expressed
in the developing wood” (Fig. 2). SNP MA 5g0010 1 associated with WTLw was detected upstream
of gene MA 5g0010 belonging to the 4-coumarate-CoA ligase (4CL) family, which includes key
enzymes in the monolignol biosynthetic pathway. However, the Arabidopsis homolog of MA 5g0010),
At4g05160 does not encode an enzyme active on phenyl propanoid substrates but a fatty acyl CoA
synthase involved in lipid and jasmonic acid biosynthesis'®. MA_5g0010 is not expressed in the
developing wood but it is highly expressed in young vegetative shoots and needles, including the
infected needles (Fig. 2), making it an unlikely candidate for lignin biosynthesis in developing wood
but suggesting a rather indirect function in the regulation of tracheid cell wall thickness. The SNP
MA_9125g0010_34791 associated with WTLw was located upstream of a gene homologous to
Arabidopsis OBERON2 (OBE2) encoding a plant homeodomain (PHD) finger protein (Table S1) (Lee
et al., 2009). Homeodomain genes encode transcription factors central in the regulation of plant
developmental processes!®. OBEI and OBE? redundanlty regulate meristem establishment and
maintenance in Arabidopsis (Saiga et al., 2008). The spruce OBE?2 gene is ubiquitous and highly
expressed in vegetative and reproductive organs (Fig. 2) including developing wood where it shows
high expression during secondary wall deposition (Fig. 3) and therefore it could have a direct role in
cell wall thickening in tracheids. SNP MA_885527g0010_112677 associated with WTLw was found
upstream of a gene containing a SET domain. SET domain proteins have been identified in
Arabidopsis to play aide in the epigenetic control of genes involved in a wide range of activities
including plant growth!®, A link has also been established between PHD finger proteins and SET
domain proteins in the regulation of developmental transitions in Arabidopsis where PHD finger
proteins VEL1, VRNS and VIN3 interacting with H3K27me3 repress FLC transcription allowing for
the transition from vegetative to reproductive development'%. MA_885527g0010 is highly upregulated
in developing wood from August that is involved in latewood biosynthesis (Fig. 2) suggesting its

direct role in latewood tracheid development.
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Fig. 3. Expression (Variance stabilized transformed expression values) profiles of selected candidate
genes in wood developing tissues of sections through developing wood zones, phloem to mature

xylem of spruce based on NorWood dataset (http:/norwood.congenie.org/norwood-v1.0/%7).

Expression profiles of three trees sampled during the peak of wood formation in the summer are
shown. The X-axis shows numbers of consecutive tangential sections through the developing wood
zones. The zone numbers corresponding to: 1) cambium-radial expansion zone,ii) secondary wall

formation zone, and iii) mature zone are shown above the graphs for each tree.

A total of five significant associations were identified for coarseness traits explaining
moderate to high PVE ranging from 0.78 to 3.62% (Table 2). Two of them, SNPs
MA 10558620010 7132 and MA 1042638320010 7358 were also associated with WTew and WTrw,
and discussed above. An Upstream variant MA 373300g0010 1844 associated with Crw explained a
relatively high percentage of PVE 3.62% and was consistent with a partial to fully dominant mode of
gene action (Table 2) as shown by the genotypic effects (Fig 1). The gene is similar to Potri. 7064000

from Populus trichocarpa annotated as encoding a protein kinase similar to wall-associated receptor
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kinase-like (WAK-like) proteins. WAKSs have been previously reported to be associated with average
ring width and the proportion of earlywood in white spruce?* and with MFA in Populus®. The gene is
expressed primarily in early season needles and late season stem from vegetative shoots but there is no
detectable expression in developing xylem (Fig. 2), suggesting its indirect involvement in the

regulation of tracheid coarseness.

Conclusion

This work presents the first genome wide dissection of wood tracheid traits in Norway spruce. A total
of 30 significant associations were detected for all investigated traits. These associations have
identified a set of genes that could be exploited to alter wood tracheid traits for improving solid wood
properties for its use in industrial processes. Previous studies utilizing a LASSO penalized analysis

approach were limited in the nature and number of molecular markers available!"”-’

, with our study
representing a major advance by using 178101 SNPs with a functional mapping approach. The
relatively small number of associations is comparable to other association studies of complex growth
traits in forest trees, were a few associations are detected with a relatively small proportion of the
genetic variation being explained!%%80-2410%110 Tt can be argued that many of the alleles causing
variation for polygenic traits may be either rare or have small effects and current GWAS methods lack
the power to detect them, thus the small number of significant associations''"''2. The small number of
associations being reported could also be largely due to the small sample sizes in these studies for such
complex traits. Theoretical work has also shown that alleles of large effect are unusual, with allele
effect having been suggested to follow a negative exponential distribution pattern''®. Thus the
magnitude of the detected allele effects follows a truncated exponential distribution''*. Therefore, the
detection of alleles with small effects is difficult when compounded with the small population size.
The small number of significant associations can also be attributed to the genotyping method, which is
a complexitiy reduction genotyping method. The limitation of the genotyping employed in our study
has also been noted in other studies!', in that some of the alleles impacting a trait might not be within

the captured regions that we targeted. If the sampled markers do not include the casual allele or if the
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LD between the marker and the casual allele is incomplete the power of detection is drastically
reduced®. The statistical power required to detect associations between molecular markers and a trait

16117 Due to the challenges of developing large populations

is heavily dependent upon the sample size
for GWAS in conifers, the majority of the studies utilize a few hundred individuals from natural
populations, which limits the statistical power of GWAS. It was reported that in order to capture 50%
of genetic variaon for growth traits in an association mapping study, it would require roughly 25 000
individuals to be analysied!'®. Therefore, the relatively small association population size results in low
statistical power, thus rendering small to medium effect QTLs statistically non-significant and very
difficult to detect. Our study had 517 martenal trees to perform GWAS upon, thus rendering a small
number of significant associations. Missing heritability will remain an issue in association studies as

118

long as population sizes are kept in the range of hundreds''®. However, improvements made to

statitstical methods are now potential viable options, which are being developed and utilize a
combination of information from multiple populations using Meta-GWAS and Joint-GWAS' 120,

These approaches are now being applied in some recent forest tree studies!!” and could be the next

level of analysis using our application of latent traits on these complex traits.
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