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ARTICLE

Genetic analysis of wood quality traits in Norway spruce
open-pollinated progenies and their parent plus trees at
clonal archives and the evaluation of phenotypic selection of
plus trees
Linghua Zhou, Zhiqiang Chen, Sven-Olof Lundqvist, Lars Olsson, Thomas Grahn, Bo Karlsson,
Harry X. Wu, and María Rosario García-Gil

Abstract: A two-generation pedigree involving 519 Norway spruce (Picea abies (L.) Karst.) plus trees (at clonal archives) and their

open-pollinated (OP) progenies was studied with the aim to evaluate the potential of plus-tree selection based on phenotype data

scored on the plus trees. Two wood properties (wood density andmodulus of elasticity, MOE) and one fiber property (microfibril

angle, MFA) were measured with a SilviScan instrument on samples from one ramet per plus tree and 12 OP progenies per plus

tree (total of 6288 trees). Three ramets per plus tree and their OP progenies were also assessed for Pilodyn penetration depth and

Hitman acoustic velocity, which were used to estimate MOE. The narrow-sense heritability (h2) estimates based on parent–

offspring regression were marginally higher than those based on half-sib correlation when three ramets per plus tree were

included. For SilviScan data, estimates of the correlation between half-sib, progeny-based breeding values (BVs) and plus-tree

phenotypes, as well as repeatability estimates, were highest for wood density, followed by MOE and MFA. Considering that the

repeatability estimates from the clonal archive trees were higher than any h2 estimate, selection of the best clones from clonal

archives would be an effective alternative.

Key words: solid wood, Norway spruce, parent–offspring regression, heritability, repeatability.

Résumé : Une population pedigree de deux générations comprenant 519 arbres plus d’épicéa commun (Picea abies (L.) Karst.;
d’archives clonales) et leurs descendants issus de pollinisation libre (OP) ont été étudiés conjointement dans le but d’évaluer le

potentiel de sélection d’arbres plus en fonction de données phénotypiques prises sur ces derniers. Deux propriétés du bois

(densité du bois et module d’élasticité, MOE) et une propriété des fibres (angle des microfibrilles, MFA) ont été mesurées avec un

instrument SilviScan sur les échantillons d’un ramet par arbre plus et 12 descendants issus d’OP par arbre plus (total de

6288 arbres). Trois ramets par arbre plus et leur descendants d’OP ont également été évalués pour la profondeur de pénétration

du Pilodyn et la vitesse acoustique à l’aide d’un appareil Hitman, afin d’estimer le MOE. Les valeurs d’héritabilité au sens strict

(h2) basées sur la relation parents–progéniture étaient marginalement plus élevées que celles basées sur la corrélation de

demi-fratries, lorsque trois ramets par arbre plus étaient considérés. Pour les données de SilviScan, les estimations de la

corrélation entre les valeurs en croisement (BV) découlant de l’analyse des demi-fratries et les phénotypes d’arbres plus, ainsi que

les estimations de répétabilité, étaient les plus élevées pour la densité de bois, suivie par MOE et MFA. Considérant que les

estimations de répétabilité découlant des arbres d’archives clonales étaient plus élevées que toutes les valeurs de h2, la sélection

des meilleurs clones à partir d’archives clonales apparaît comme une alternative efficace. [Traduit par la Rédaction]

Mots-clés : bois massif, épicéa commun, régression parents–progéniture, héritabilité, répétabilité.

Introduction
Norway spruce (Picea abies (L.) Karst.) is one of the most impor-

tant conifer species in Europe for both economic and ecological

aspects (Spiecker 2000). Higher volume production, vitality, and

log quality for straightness and branch angle have traditionally

been the main objectives of the species breeding program, while

more recently, different aspects related to wood quality are gain-

ing increasing attention (Mullin et al. 2011; Rosvall et al. 2011). For

mechanical properties of wood-based products, wood density, mi-

crofibril angle (MFA), and modulus of elasticity (MOE) are consid-

ered as the most important solid-wood quality traits (Chen et al.

2015; Zobel and Jett 1995), and therefore they are the focus of our

study.

The SilviScan technology was developed to measure radial vari-

ation (i.e., frompith to bark) of solid-wood quality traits, including

wood density, MFA, and MOE (Evans 1999, 2008; Evans and Elic
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2001), as well as fiber traits (Evans 1994). Its high efficiency com-
paredwith that of corresponding laboratorymethods contributed
substantially to advances in research and development within
wood biology, forestry, and the optimal use of forest resources in
softwoods (Lindström et al. 1998; Lundgren 2004; Kostiainen et al.
2009; McLean et al. 2010; Piispanen et al. 2014; Fries et al. 2014), in
hardwoods (Kostiainen et al. 2014; Lundqvist et al. 2017), and on
modelling of trait variations (Wilhelmsson et al. 2002; Lundqvist
et al. 2005; Franceschini et al. 2012; Auty et al. 2014). SilviScan is
also used to produce benchmark data and validate the procedures
of more rapid and nondestructive methods. Examples of solid-
wood traits are Pilodyn penetration depth and Hitman acoustic
velocity (hereafter referred to as Pilodyn and velocity, respectively;
Chen et al. 2015; Kennedy et al. 2013; Vikram et al. 2011). Pilodyn is
an indirect, nondestructive, low-cost, and easy-to-use instrument
for estimating wood density. In Norway spruce and other conifer
species, strong genetic correlations have been observed between
Pilodyn penetration depth and wood density measured with Sil-
viScan (Chen et al. 2015; Cown 1978; Desponts et al. 2017; Fukatsu
et al. 2011; King et al. 1988; Sprague et al. 1983; Yanchuk and Kiss
1993). Further, acoustic velocitymeasured with Hitman apparatus
has been shown as an efficient, indirect method related to MFA
and has already been used on many species, including Scots pine
(Pinus sylvestris L.; Hong et al. 2015), white spruce (Picea glauca (Mo-
ench) Voss; Lenz et al. 2013), and Norway spruce (Chen et al. 2015).
Models for many species were implemented in an earlier version
of SilviScan (Evans and Elic 2001), followed by further improve-
ments (Evans 2008). An analogous model using the proxy mea-
surements of acoustic velocity and Pilodyn penetration on
standing trees was shown to be efficient for selection based on
wood stiffness in Norway spruce (Chen et al. 2015). Pilodyn, how-
ever, measures wood density in only the outermost annual rings;
therefore, it has also been suggested that it may not be reliable for
ranking thewhole tree in caseswhere the correlation between the
outermost rings and inner rings is low (Wessels et al. 2011) or if the
diameter of tree is wide.

A common practice in forest tree breeding programs, which
aims to guarantee early genetic gain, is to phenotypically select
superior genotypes (plus trees) from naturally regenerated ma-
ture stands (Zobel and Talbert 1984; Danusevicius and Lindgren
2002). In Sweden, selection of the breeding base population of
Norway spruce plus trees started in the 1940s (Karlsson and
Rosvall 1993). Presently, large numbers of plus trees are main-
tained in ex situ, grafted clonal archives. These archives serve as
breeding base populations in which crossings of selected parental
genotypes are conducted with the purpose of generating cross-
pollinated progenies for the next generation in the breeding cy-
cle. After establishment of the clonal archives, the plus trees are
genetically evaluated (ranked) for growth, straightness, branch
angle, and vitality superiority following the backward-selection
approach. Backward selection is an expensive method that starts
with the establishment of open-pollinated (OP) progenies for large
numbers of families in progeny trials often tested at multiple
sites. This is followed by the assessment of the progenies at more
than one site and at a tree age high enough for selection and
finally by the estimation of breeding values (BVs) to identify the
superior genotypes (White et al. 2007). A less expensive alternative
to backward selection is the direct selection of plus trees in the
clonal archives based on phenotype data directly measured on
the plus trees. This approach can be incorporated as the first
part of a two-stage selection approach in which plus trees are
first selected based on phenotype data for traits of high herita-
bility, followed by a second selection based on clonal or prog-
eny testing (Danusevicius and Lindgren 2005).

The goal of this study is to evaluate the potential of selection
based on phenotype data of outstanding plus trees comparedwith
backward selection based on OP progeny trials. For this, we con-
ducted the following three analyses:

1. correlations between the plus-tree BVs for wood density, MFA,
and MOE estimated based on OP progenies and plus-tree phe-
notypesmeasured at the clonal archive; where SilviScan-based
data were available, correlations were estimated for each an-
nual ring;

2. narrow-sense heritability (h2) based on parent–offspring re-
gression and half-sib progeny correlation; and

3. repeatability or the proportion of clone variation at the clonal
archive to conduct plus-tree selection.

Materials and methods

Plant material
The study was based on a two-generation pedigree involving

519 mother plus trees from two different clonal archives located
at Ekebo and Maltesholm in southern Sweden. The clonal archive
at Ekebo was established in 1984 and the one at Maltesholm was
established in 1985–1987. At the time of establishment, 10 ramets
on average were grafted for each plus tree and planted with a
spacing of 3 m × 0.5 m. At the time of sampling, spacing had been
increased through thinning two times, leaving themajority of the
genotypes with first seven and then only three ramets remaining.
For their corresponding 519 OP families, more progenies per fam-
ily were planted at each progeny trial. Data from two progeny
trials were used: S21F9021146 (also known as F1146; Höreda, Eksjö,
Sweden) and S21F9021147 (also known as F1147; Erikstorp, Tollarp,
Sweden), both established in 1990 with a spacing of 1.4 m × 1.4 m.
The same OP families were present in both progeny trials. Incre-
ment cores from the progenies of the OP families were sampled in
2010 and from the ramets at the clonal archive in 2017.

Silvicultural activities
Mild precommercial thinnings were conducted in Höreda and

Erikstorp in 2008, at the age of 18 years, and in 2010, at the age of
20 years. At the first thinning, only strongly suppressed trees that
were judged to not reach commercial dimensions were cut down.
Most of these were less than 50 mm diameter at breast height
(DBH; breast height = 1.30 m), and their removal was assumed to
have no effect on the growth or properties of the remaining trees.
The second thinning was performed in the year of sampling and
influenced only the outermost growth ring, for which data were
excluded for other reasons (see following sections). The clone ar-
chives at Ekebo and Maltesholm were topped in autumn 2007 at
age 23 years, when a large seed crop was harvested. The upper-
most 15%–20% of the trees was removed. Thinnings of the Ekebo
clonal archive and parts of the Maltesholm archive were carried
out for the first time in the late 1990s and the last time in autumn
2009 at age 25 years.

Phenotypic measurements
The radial variations in wood density, MFA, and MOE had been

assessed already in a previous study (Chen et al. 2014). Increment
cores of up to 12 progenies per OP family (six from each progeny
trial) had been analyzed frompith to barkwith SilviScan, followed
by the calculation of area-weighted means, representing the trait
means of all wood formed in the stem cross sections at each
cambial age. In the current study, analogous SilviScan data were
also generated for one ramet from each clone from the parental
519 plus trees at the clonal archives. Pilodyn 6J Forest and Hitman
ST300 instruments were used on the standing trees to assess pen-
etration depth and acoustic velocity (respectively) of the same
ramets. These measurements were used to estimate MOE as the
indirect methods (MOE(ind)) using the following formula:

MOE(ind) � (1/Pilo) × 10000 × AV2

where Pilo is the Pilodyn penetration depth (mm), and AV is the
velocity of the wave through thematerial (km·s−1). AV has a strong

Zhou et al. 811

Published by NRC Research Press



inverse correlation with MFA, and the inverse of Pilo has a strong

correlation with wood density (Chen et al. 2015).

When data for more than one ramet were available, the mean

was used for further Pearson correlation analysis. The evaluations

were based on data from ring 3 to ring 16. The two rings closest to

the pith were removed from the evaluations, as the rings here

may be so curved that the X-ray beam used on measurement will

pass through wood of adjacent rings. However, values for rings 1

and 2 are kept in Fig. 1 to illustrate the described problem. Data on

rings larger than 16 from the progeny trials were excluded to

avoid problems of representability, given that the slow-growing

trees did not reach the highest cambial ages (Lundqvist et al. 2018).

The number of rings per tree varied from 10 to 18. Further, data

for the outermost ring of each tree were excluded from the eval-

uations, as they may not be fully formed, to avoid problems of

data distortion due to damage of the ring during the increment

core extraction.
The genetic parameters were calculated based on means for

stem cross sections at different cambial ages (ring numbers) using
R (version 3.3.3; R Core Team 2017).

BV of mothers based on progeny tests
The linear mixed model used for the estimation of parental BV

and variance components was expressed in matrix form:

y � Xb � Zu � e

where y is a vector of measured data, b is a vector of fixed effects
with design matrix X, u is a vector of random effects with design
matrix Z, and e is a vector of residuals. Fixed- and random-effect
solutions were obtained by solving the following mixed-model
equation (White and Hodge 2013):

�X ′X X ′Z

Z ′X Z ′Z � I�
��b̂û � � �X ′y

Z ′y
�

where b is the fixed effects, including site, block within site, and

provenance; u is the random effect, which is the family; I is the

identity matrix with dimensions equal to the number of mothers;

and� is a ratio of residual variance and genetic variance explained

by the random family effect.

The estimations of BV (u), variance, and covariance components

were done using the lme4 package (Bates et al. 2015) in R (version

3.3.3; R Core Team 2017).

Pearson correlation
For all wood properties measured with SilviScan and indirect

methods, Pearson correlation was calculated between the plus

trees’ BVs and plus trees’ phenotype data. In the case of SilviScan-
based analysis, only one ramet was available, whereas in the case
of Pilodyn, velocity, andMOE(ind), two or three ramets were avail-
able, depending on the OP family.

Narrow-sense heritability (h2)
Two methods for calculating heritability were estimated. The

first method was based on half-sib family progeny analysis, and
the linear mixed model was fitted as follows:

yijklm � � � Si � Bj(i) � Pk � Fl(k) � SFil(k) � eijklm

where yijklm is the phenotypic individual observation; � is the
general mean; Si, Bj(i), and Pk are the fixed effects of site i, block j,
and provenance k, respectively; Fl(k) is the random effect of family l
within provenance k; SFil(k) is the random interactive effect of site i

Fig. 1. Mean values generated with SilviScan data from the open-pollinated (OP) progenies and the clonal archive. MFA, microfibril angle;

MOE, modulus of elasticity.
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and family lwithin provenance k; and eijklm is the random residual

effect for individual tree m.

Narrow-sense heritability was estimated for each trait as

ĥ2 �
�̂A
2

�̂P
2

�
4 × �̂F

2

�̂F
2 � �̂SF

2 � �̂e
2

where �̂A
2, �̂P

2, �̂F
2, �̂SF

2 , and �̂e
2 are estimations of additive genetic

variance (A), phenotypic variance (P), family variance (F), family–

site interaction variance (SF), and residual variance (e), respec-
tively.

The second method was based on parent–offspring regression.

We used a linear regression to model the mother–offspring pairs

for each trait value:

Y � �0 � �1X

where Y is the phenotype value for the offspring, �0 is the inter-

cept of the regression, �1 is the slope of the regression, andX is the

phenotype value for a mother. Because genetic covariance be-

tween parents and offspring is equal to �1/2��A
2 (Falconer and

Mackay 1996), we can get

�1 �
cov (X, Y)
var X

�
(1/2)�A

2

�P
2

The individual tree h2 is

h2 �
�A
2

�P
2

So from the slope of the regression, the estimation of h2 can be

obtained from

ĥ2 � 2�̂1

The standard error of heritability is estimated by 2/�N
(Falconer and Mackay 1996), where N is the number of families.

This way, the parent–offspring-based heritability was com-

puted for SilviScan data for each annual ring and for Pilodyn,

velocity, and MOE(ind). To allow comparison between the esti-

mates based on SilviScan and those based on indirect measure-

ments, all heritabilities were computed only on the 162 families

for which three ramets were available in the clonal archives.

In our study, the heritabilities for SilviScan datawere calculated

for each cambial age from the area-weighted means representing

stem cross sections.

Repeatability
Repeatability indicates the proportion of total variation in a

trait that is due to differences among clones (Falconer andMackay

1996). The individual repeatability R was calculated as (Falconer

and Mackay 1996; Lynch and Walsh 1998)

R �
�c
2

�c
2 � �e

2

where �c
2 is the estimated clone variance, and �e

2 is the residual

variance.

Progeny size effect on heritability
To investigate the effect of progeny size on the estimation of her-

itability based on a parent–offspring regression, we used a subset of

progeny trees inwhich each family had exactly six progenies in each

of the two trials. In total, 180 families and 2160 progeny trees were

included in the analysis. From this subset, one to six progenies

were randomly selected per family from each site. The process

was bootstrapped 500 times, and the means and standard errors

of heritability were then estimated for comparison. The most

prominent consequence of increasing the number of OP proge-

nies was the decrease in the standard errors (i.e., more precise

estimation of heritability) (Fig. 2). When a progeny size of four

trees was selected, parent–offspring heritability stabilized for

MOE(ind) and peaked for velocity, whereas it reached amaximum

value for Pilodyn at progeny size six. Based on these results, all of

the genetic parameters involving progeny data were estimated

using the highest number of progeny size.

Results

Traits curve for progenies and plus trees
Mean values for ring width, DBH, wood density, MOE, and MFA

were plotted against each annual ring for progenies and plus trees

(Fig. 1). Ring numbers larger than 27 for the clonal archive and

ring numbers larger than 16 for progeny trees were excluded, as

they were based on very few trees.

Ringwidth andwood density curves showed clear discrepancies

between the trees at the clonal archive and those at the progeny

trials. In the progeny test, the mean widths of the rings decreased

steeply until about ring 10, after which it became rather stable

until the overrepresentation of fast-growing trees became visible

at above ring 15 (Lundqvist et al. 2018), which is indicated in Fig. 1

with a black, vertical line. The density mean was high closest to

the pith, then stable at a low level until ring 10, after which it

started to increase steeply until the fast-growing trees became

overrepresented. In contrast to the progeny trial, the ring width

means of the clonal archives started low and increased steadily

until rings 10–12, presumingly at the time when the archive was

first thinned from dense to low spacious compared with the prog-

eny trials. Then, the means started to decrease with age. These

trees were topped at age 23 years, which should approximately

correspond to ring 18, indicated with a grey, vertical line. At

higher ages, ring width experienced a sharp drop, which can be

interpreted as a physiological response of the trees to the removal

of the upper canopy. From this, we concluded that data at higher

ages of the clonal archive may not represent the natural develop-

ment of trees andmay not be fully comparable with the expected

response in the progeny trials at older ages. At ages deemed

representative, the wood density curve for the clonal archive

mirrored the changes in ring width, which is not surprising

considering that growth and density are negatively correlated

(Chen et al. 2014). In reference to DBH, we observed that the trees

at the clonal archive were thinner from pith up to ring 14. After

this ring, they became thicker than those at the progeny trial

because of steadily wider rings.

The curves representing change in MFA with annual ring were

very similar between the trees at the progeny trial and those at the

clonal archive. In both types of plantation, MFA decreased sharply

and stabilized towards the bark. The slight increases of themeans

for the last rings shown may reflect overrepresentation of fast-

growing trees. As expected, the decrease in MFA is accompanied

by an increase in MOE because of the strong negative correlation

between the traits, also shown based on the same data by Chen

et al. (2014). It was also expected that the progeny trial MOEwould

reach higher values than those at the clonal archive, as MOE

shows positive correlation with wood density, which is higher for

these trees in rings larger than 10. In contrast to ring width and
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wood density, MFA andMOE curves did not reveal an effect of tree
topping.

BV and phenotypic value correlation
Per-ring correlations between half-sib, progeny-based BVs and

plus-tree phenotypes for the SilviScan data are presented in Fig. 3.
For wood density, correlation estimates increased steadily from
low levels at the pith to about 0.4 at rings 12–15. For MFA, the
estimates reached a plateau of about 0.17 at rings 4–7 and then
decreased gradually. The estimates for MOE were in-between: an
initial increase was followed by a plateau, with a decreasing ten-
dency only near the bark, which was possibly an effect of the
increasing overrepresentation of fast-growing trees at those ring
numbers.

The estimated correlations between half-sib, progeny-based BVs
and plus-tree phenotypes were 0.29, 0.13, and 0.23 for Pilodyn,
velocity, and MOE(ind), respectively. When using three plus-tree
ramets, the correlations increased to 0.32, 0.15, and 0.28, respec-
tively. These values were in concordance with the SilviScan-based
estimates of correlation, inwhich the highest valueswere reached
for density, followed by MOE and MFA.

Heritability estimates on progeny and parent–offspring
regression

Estimations of h2 based on parent–offspring regression at each
annual ring using SilviScan data are presented in Fig. 4. The h2
estimates for wood density increased from pith to bark, and for
MFA, they remained on the same level across all annual rings. For
MOE, an initial increase of the h2 estimates was followed by a
plateau.

The h2 estimations of the whole-stem cross sections based on
half-sib progeny correlation and parent–offspring regression are
presented in Table 1. Based on progeny correlation, the h2 esti-
mates were 0.43, 0.29, and 0.38 for wood density, MFA, and MOE,

respectively. For mean parent–offspring, the h2 estimates (based

on one ramet) were 0.35, 0.15, and 0.28 for wood density, MFA, and

MOE, respectively. The h2 values estimated by progeny correlation

were 0.31, 0.20, and 0.28 for Pilodyn, velocity, and MOE(ind), re-

spectively. Moreover, based on parent–offspring regression, the

h2 values ranged from 0.27 to 0.41, 0.13 to 0.29, and 0.13 to 0.30 for

Pilodyn, velocity, and MOE(ind), respectively. With respect to the

indirect measurements of wood quality, these results indicate

that h2 estimations based on parent–offspring regression were

only marginally higher than those based on half-sib correlation,

even when three ramets per plus tree were included in the anal-

yses. Based on data collected with indirect methods, the progeny-

based h2 estimates were higher than parent–offspring regression

h2 estimates for one ramet. Instead, the progeny-based h2 esti-

mates were marginally lower than the h2 estimates obtained for

parent–offspring regression for three ramets. Based on SilviScan

data, the progeny-based h2 estimates were higher than the h2 es-

timates obtained for parent–offspring regression for one ramet.

To allow comparison, all of the h2 estimates in Table 1 were com-

puted only on the 162 families for which three ramets were avail-

able in the clonal archive. Repeatability estimates were higher

than any h2 estimate.

Discussion
In this study, we evaluated the potential of ranking and selec-

tion for better solid-wood quality traits of outstanding pheno-

types (plus trees) as an alternative to backward selection based on

BV estimates on half-sib progenies. The evaluation was based on

multiple genetic parameters: correlation between half-sib prog-

eny BVs and plus-tree phenotype data, repeatability, and narrow-

sense heritability (h2) based on parent–offspring regression as

compared with half-sib correlation.

Fig. 2. Heritability estimation by parent–offspring regression based on different numbers of progenies for Pilodyn penetration depth, Hitman

acoustic velocity, and MOE(ind). The number of ramets per mother clone varied among plus trees from one to three. [Colour online.]
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Fig. 4. Heritability estimates using parent–offspring regression of area-weighted values calculated from SilviScan data for each annual ring.

[Colour online.]
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Fig. 3. Correlations of SilviScan data for each annual ring between breeding values (BVs) of plus trees estimated from the progeny and

area-weighted phenotypic values from the plus trees. [Colour online.]
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The h2 estimates for wood density, MFA, and MOE measured
with SilviScan from increment cores were 0.43, 0.29, and 0.38 and
0.35, 0.15, and 0.28 based on progeny correlation and parent–
offspring regression, respectively. When using indirect measure-
ments directly on standing trees, the h2 estimates based on
progeny correlation were 0.31, 0.20, and 0.28 for Pilodyn, velocity,
and MOE(ind), respectively. Moreover, based on parent–offspring
regression, the values ranged from 0.27 to 0.41, 0.13 to 0.29, and
0.13 to 0.30 for Pilodyn, velocity, and MOE(ind), respectively. Our
h2 values estimated by progeny correlation were in the range of
those previously reported for wood properties in loblolly pine
(Pinus taeda L.; Isik et al. 2011), maritime pine (Pinus pinaster Aiton;
Louzada 2003; Gaspar et al. 2008), lodgepole pine (Pinus contorta
Douglas ex Loudon; Hayatgheibi et al. 2017), Norway spruce (Hylen
1997, 1999; Hannrup et al. 2004; Hallingbäck et al. 2008), white
spruce (Lenz et al. 2010), and British Columbia’s interior spruce
(Ivkovich et al. 2002). Similarly, our h2 estimates based on parent–
offspring regression also agree with previously reported values
for wood properties in Norway spruce (Steffenrem et al. 2016),
loblolly pine (Loo et al. 1984; Williams and Megraw 1994), and
Sakhalin spruce (Picea glehnii (F. Schmidt)Mast.; Tanabe et al. 2015).

Our repeatability estimates for the indirect measurements
based on the analysis of three ramets per plus tree were 0.52, 0.30,
and 0.45 for Pilodyn, velocity, and MOE(ind), respectively. Previ-
ously reported repeatability estimates for wood quality and
growth in Norway spruce (Rosner et al. 2007; Gräns et al. 2009;
Steffenrem et al. 2016) and Sakhalin spruce (Tanabe et al. 2015) are
also in concordance with our estimates, whereas other studies
have reported either higher MFA and MOE values in radiata pine
(Pinus radiataD. Don; Lindström et al. 1998) or lowerMOE values in
Sitka spruce (Picea sitchensis (Bong.) Carrière; Hansen and Roulund
1997).

Interpretation of the discrepancies between progeny and
plus tree for ring width and wood properties

The observed discrepancies in developments across annual
rings between the trees at the progeny trials and those at the
clonal archive for ring width, wood density, and MOE could be
attributed to a difference in spacing, including thinning of the
clonal archive. During the first years, the trees of the clonal ar-
chive were only 0.5 m apart and were under strong competition
compared with the trees in the progeny trials. This is presumed to
explain their thinner annual rings and higher wood density at
these ages. The thinning performed at two occasions even out this
difference in competition, and widths and densities become sim-
ilar. Thinning results in more favourable growth conditions for
the clonal archive trees regarding access to light and other re-
sources, which is presumed to explain why trees at these ages
instead have wider annual rings and lower wood densities. After
topping of the trees, it is harder to relate this to the developments
of growth and patterns.

Less spacing among trees is known to result in stronger compe-
tition for resources. Under tight spacing, lower diameter is pri-
marily the result of competition for light (Turner et al. 2009).
Trees tend to grow taller at the expense of diameter in their at-

tempt to outcompete the neighbouring trees in search of light.
Multiple studies in conifer species have reported effects of plan-
tation density on growth (diameter and slenderness) and wood
and fiber properties. Wider spacing at planting has been reported
to be associatedwith higher tree diameter and lowerMOE in Scots
pine (Persson et al. 1995) and a number of coniferous species
(Chuang and Wang 2001; Zhang et al. 2002; Clark et al. 2008;
Lasserre et al. 2008, 2009; Schimleck et al. 2018). Ring width and
wood density are negatively correlated, and MOE is negatively
correlatedwith bothwood density andMFA (Loo et al. 1984; Hodge
and Purnell 1993; Zhang and Morgenstern 1995; Waghorn et al.
2007; Gaspar et al. 2008; Lasserre et al. 2009; Chen et al. 2014). The
effect of spacing on growth and wood properties, together with
their well-documented correlations, strengthens our previous in-
terpretation regarding thinner rings and higher density for the
clonal archive trees in the first rings and the reverse later on. It
also supports our interpretation of the higher MOE, and lower
MFA, at these latter ages for the progeny trees.

Although narrow spacing could account for the results that we
obtained, it is also possible that additional factors have contrib-
uted to the discrepancies between the two plantation types: abi-
otic factors such as rainfall, temperature, or soil properties.
However, a previous study conducted on the same data from the
progeny trials, both treated with similar silvicultural activities,
revealed low genotype–environment interaction (Chen et al.
2014), which indicates that climatic conditions or soil properties
are not factors behind the differences (at least in southern Swe-
den, where all three plantations are located).

Potential for selection of Norway spruce plus trees on
phenotype data at clonal archives

In operational breeding, selection of plus trees as gene donors
to the next generation is usually conducted through evaluation of
their OP progenies grown in common-garden experiments (prog-
eny trials), a breeding design known as a backward selection. This
is a method that involves multiple actions such as seedling pro-
duction, seedling establishment (often in multiple sites), and as-
sessment and evaluation of multiple tree properties when the
trees in the trial have grown at least 10 rings at breast height. The
high demands in time and costs of this approach motivate evalu-
ation of alternatives such as plus-tree selection based on pheno-
type data assessed at the clonal archive.

Phenotypic selection of plus trees is a common practice for
establishing the foundations of a breeding program, while provid-
ing early genetic gains (Zobel and Talbert 1984). Furthermore,
two-stage selection strategies of plus trees, in which plus trees are
first selected based on phenotype followed by a second stage
based on clonal or progeny test, have previously been proposed in
conifers (Danusevicius and Lindgren 2002, 2004). Danusevicius
and Lindgren concluded that when heritability is high, pheno-
typic selection is a superior breeding strategy and a two-stage
strategy based on progeny testing improves by the first stage of
phenotypic selection.

Considering that repeatability and h2 estimates are similar, we
suggest that selection of MFA at the clonal archive would be an

Table 1. Heritability and repeatability estimates based on measurements of wood density, MFA, and MOE from SilviScan, as well as Pilodyn

penetration depth and Hitman acoustic velocity, which were used to estimate MOE as the indirect methods.

Methods

SilviScan Indirect methods

Density MFA MOE Pilodyn Velocity MOE(ind)

Parent–offspring regression (1 ramet) 0.35 (±0.16) 0.15 (±0.16) 0.28 (±0.16) 0.27 (±0.15) 0.13 (±0.15) 0.13 (±0.15)
Parent–offspring regression (3 ramets) N/A N/A N/A 0.41 (±0.15) 0.29 (±0.15) 0.30 (±0.15)
Half-sib correlation (offspring only) 0.43 (±0.09) 0.29 (±0.08) 0.38 (±0.08) 0.31 (±0.08) 0.20 (±0.08) 0.28 (±0.08)
Repeatability N/A N/A N/A 0.52 (±0.06) 0.30 (±0.04) 0.45 (±0.05)

Note: To allow comparison, all heritability estimates (± standard error) were based only on the 162 families for which three ramets were available in the clonal

archive. Estimates that are statistically significantly different from zero are indicated in boldface type. MFA, microfibril angle; MOE, modulus of elasticity; MOE(ind),

modulus of elasticity for indirect methods; N/A, not applicable.

816 Can. J. For. Res. Vol. 49, 2019

Published by NRC Research Press



effective alternative. However, given the low values of correlation

among plantations, h2, and repeatability, a lower efficiency in tree

improvement is expected for MFA than for other traits with

higher h2 (e.g., density; Chen et al. 2014). This conclusion can be

extended to selection based on both progeny and plus-tree phe-

notype. The heritability of MOE using three ramets based on

parent–offspring regression (0.30) is higher than using half-

correlation (0.28); however, considering that clonal repeatability

for MOE (0.45) is higher than any h2 estimate, we suggest that it

would be more cost- and time-effective to select clonal archive

trees based on MOE scored with indirect measurements. Previ-

ously, MFA and MOE have been reported to have low and moder-

ate heritabilities, respectively, in Norway spruce (Hannrup et al.
2004; Lenz et al. 2010; Chen et al. 2014), whereas higher heritabil-
ities have been reported for MOE in Scots pine (Hong et al. 2015)
and for MOE and MFA in loblolly pine (Isik et al. 2011). Similar to
the other wood properties (repeatability for wood density is
higher than correlation and h2), selection of trees at the clonal
archive based on indirect measurements of this trait will be effi-
cient. Considering that h2 increases towards the bark, a higher
response to selection is expected at older ages. Other studies also
support our observation of higher heritability for wood density
than for MFA and MOE (Lenz et al. 2010; Isik et al. 2011; Chen et al.
2014).

Conclusion
Our study resulted in the following conclusions.

• Narrow spacing at the clonal archive could account for the
discrepancies between the progeny trial and clonal archive for
ring width and wood density traits.

• Narrow-sense heritabilities (h2) estimated from parent–offspring re-
gression using a single ramet were lower than those based on
half-sib correlation. Based on indirect measurements, parent–
offspring h2 estimates using three ramets were higher than
those based on half-sib correlation, indicating that multiple
copies of ramets are critical in estimating reliable genetic pa-
rameters and making selection in archive.

• Wood density, or its surrogate trait Pilodyn measurement, had
the highest h2 among the three wood quality traits, whether it
was based on SilviScan data using increment cores or indirect
measurements on standing trees and parent–offspring regres-
sion or half-sib correlation, followed by MOE and MFA.

• Backward selection, whether based on offspring data alone or a
combination of offspring and clonal archive data, would be
most effective for wood density and least effective for MFA.

• Based on higher repeatability estimates as compared with the
h2 estimates, selection of the best clones from clonal archives
would be highly cost- and time-effective.

• The observed discrepancies between both plantation types for
growth, wood, and fiber properties could be mostly explained
by the tighter tree spacing at the clonal archive.
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SUMMARY

Norway spruce is a boreal forest tree species of significant ecological and economic importance. Hence

there is a strong imperative to dissect the genetics underlying important wood quality traits in the species.

We performed a functional genome-wide association study (GWAS) of 17 wood traits in Norway spruce

using 178 101 single nucleotide polymorphisms (SNPs) generated from exome genotyping of 517 mother

trees. The wood traits were defined using functional modelling of wood properties across annual growth

rings. We applied a Least Absolute Shrinkage and Selection Operator (LASSO-based) association mapping

method using a functional multilocus mapping approach that utilizes latent traits, with a stability selection

probability method as the hypothesis testing approach to determine a significant quantitative trait locus.

The analysis provided 52 significant SNPs from 39 candidate genes, including genes previously implicated

in wood formation and tree growth in spruce and other species. Our study represents a multilocus GWAS

for complex wood traits in Norway spruce. The results advance our understanding of the genetics influenc-

ing wood traits and identifies candidate genes for future functional studies.

Keywords: candidate genes, functional trait mapping, genome-wide association mapping, Norway spruce,

sequence capture, single nucleotide polymorphisms.

INTRODUCTION

Norway spruce (Picea abies (L.) Karst.) is a dominant bor-

eal species of significant economic and ecological impor-

tance (Hannrup et al., 2004). Long-term Norway spruce

breeding programmes for improvement of growth and sur-

vival were initiated in the 1940s and recently, wood quality

has become one of the priority traits (Bertaud and Holm-

bom, 2004; Hannrup et al., 2004). Norway spruce breeding

in Sweden completes one cycle in about 20 years and such

long generation time makes improvements in growth and

wood quality very slow. Among wood quality traits, wood

© 2019 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd
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density is considered a key indicator of stability, strength

and stiffness of sawn timber (Hauksson et al., 2001). Sev-

eral studies of wood quality observed that fast growth con-

flicts with high quality wood, as shown by the negative

genetic correlation between wood volume growth and den-

sity in Norway spruce (Olesen, 1977; Dutilleul et al., 1998;

Chen et al., 2014). However in several conifers such as

Scots pine (P. sylvestris L.) and red pine the relationship

has been inconsistent (Larocque and Marshall, 1995; Pel-

tola et al., 2009). To combine fast growth and desirable

wood properties through breeding, and to shorten the

breeding cycle, it is therefore imperative to design effective

early selection methods and breeding strategies. In an

effort to design optimal breeding and selection strategies it

is essential to identify alleles that are responsible for gen-

erating favourable or unfavourable genetic correlations

(Hallingb€ack et al., 2014).

One of the early studies in conifers identified quantita-

tive trait locus (QTLs) for wood density variation in loblolly

pine using linkage analyses based on segregating family

pedigrees (Groover et al., 1994). However, marker-aided

selection (MAS) based on results from QTL linkage analy-

ses were never implemented in practical tree breeding due

to the so-called Beavis effect (e.g. inflated estimates of alle-

lic effects and underestimation of QTL number for eco-

nomically important traits) (Beavis, 1998), inconsistent

associations among different families and the low transfer-

ability of markers (Strauss et al., 1992). Association map-

ping (AM), also called linkage disequilibrium (LD)

mapping, is a powerful alternative QTL detection method

that was introduced to tree genetics using a candidate

gene approach (Thumma et al., 2010). AM overcomes the

limited resolution of family-based QTL linkage mapping by

relying on historical recombination in the mapping popula-

tion (Neale and Savolainen, 2004; Thavamanikumar et al.,

2013; Huang and Han, 2014). However, the genome-wide

levels of LD in Norway spruce has been revealed to be

complex and highly heterogenous (Larsson et al., 2013).

Therefore, AM is also vulnerable to some confounding his-

torical factors such as population admixture, selection

pressures which include possible genetic drift. Therefore,

population genetic structure, kinship and LD within the

study population need to be carefully accounted for in the

analysis to minimize false positives (Khan and Korban,

2012).

The availability of a draft genome sequence for Norway

spruce (Nystedt et al., 2013) has provided numerous possi-

bilities for the development of genetic markers to conduct

both AM at the genome-wide level (genome-wide associa-

tion, GWAS) and genomic selection (GS). Several reduced

representation-based approaches such as sequence cap-

ture and transcriptome sequencing (Hirsch et al., 2014)

have been developed for studying large genomes, such as

the 20 Gb Norway spruce genome. These approaches

reduce the sequence space by decreasing the repetitive

sequence content of the genome.

Several AM studies have been performed on traits in dif-

ferent tree species and have identified genetic loci linked

to, for instance, wood properties in Populus trichocarpa

Torr. & A. Gray ex. Hook (Porth et al., 2013) and Eucalyptus

(Resende et al., 2017b), and adaptive traits in Pinus con-

torta Douglas (Parchman et al., 2012). Some genes may

impact the trait development at a particular developmental

stage, whereas others may alter, or control, rates of

change and transitions between consecutive stages (Xing

et al., 2012; Anderegg, 2015). Studies aimed at dissecting

the genetic basis of such dynamics in wood properties can

benefit from the application of mathematical functions that

account for year-to-year variation across annual growth

rings, cambial age and distance from pith (Li et al., 2014).

The development of mathematical methods for the analy-

sis of these longitudinal traits has made it possible to map

QTLs underlying the dynamics of developmental traits

(Yang et al., 2006; Li and Sillanp€a€a, 2013; Camargo et al.,

2018), and to enhance our understanding of the genetic

architecture of the growth trajectories of such dynamic

traits (Ma et al., 2002; Xing et al., 2012). Such functional

mapping analysis can be conducted using a multistage

approach (Heuven and Janss, 2010). First, the phenotype

trends of each individual are modelled using curve-fitting

methods and the parameters describing the curve are then

considered as latent traits. The latent traits are then used

in an independent association analyses to search for geno-

mic regions affecting the trait and to estimate genetic mar-

ker effects (Li and Sillanp€a€a, 2013; Li et al., 2014).

In this study, we applied a functional AM approach to

identify genomic regions contributing to wood quality

traits in Norway spruce. We applied spline models since

traditional analyses that utilise a single point data across

annual growth rings may confound the analyses by aver-

aging across a full sample. Such averaging may obscure

mechanisms acting at specific time points during wood

formation and will make identification of underlying genes

more difficult. This study has performed the analysis of

number of cells per ring calculated from SilviScan data.

Penalized LASSO regression (Tibshirani, 1996) and the sta-

bility selection probability method (Meinshausen and

B€uhlmann, 2010) were then used, to detect significant

associations between latent traits derived from estimated

breeding values (EBVs) and 178101 SNP markers covering

the Norway spruce genome.

RESULTS AND DISCUSSION

All 517 Norway spruce maternal trees in the study were

considered for variant detection and an average of 1.5

million paired-end reads were sequenced per individual

resulting in 178 101 SNPs. Most SNPs were missense

(61%). Applying the probability of stability selection
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(SSP) to the intercept, slope and two nodes (b2 and b3)
we detected 52 significant QTLs in 17 individual traits

whose phenotypic variance explained (PVE) ranged from

0.01 to 4.93% (Table 1). 14 of the significant markers

were consistent with overdominance (|d/a| > 1.25), with

the remaining being codominant (27) (|d/a| < 0.50) and 10

exhibiting partial to full dominance (0.50 < |d/a| < 1.25)

(Table 2, Figure 3).

Table 1 Phenotypes, latent traits, SNP, SNP feature, frequency and PVE

Phenotype Latent Trait QTL SNPa Allele SNP Feature Frequency PVE (%)

WD Intercept 167610 MA_10435406_13733 A/G Downstream variant 0.71 4.64
Slope 30469 MA_33109_11804 A/G Upstream variant 0.72 4.50
b2 30469 MA_33109_11804 A/G Upstream variant 0.551 4.15
b3 157442 MA_10432646_63090 G/A Upstream variant 0.567 2.43

EWD Intercept 167610 MA_10435406_13733 A/G Downstream variant 0.545 3.38
Slope 23798 MA_20321_44812 C/T Upstream variant 0.53 0.69

70955 MA_118446_4316 T/A Upstream variant 0.644 0.40
TWD Slope 131698 MA_10235390_3386 G/A Stop gained 0.672 1.58

160208 MA_10433411_3386 T/C Intron variant 0.595 3.41
b2 89044 MA_212523_6278 T/C Upstream variant 0.534 3.34

LWD Slope 43797 MA_62987_13474 T/C Missense variant 0.524 1.81
165481 MA_10434805_21408 C/T Intron variant 0.588 1.21
171223 MA_10436058_4902 G/A Intron variant 0.712 4.03

RW Intercept 11535 MA_10694_9101 A/C Synonymous variant 0.545 1.95
112391 MA_879270_7373 C/T,A Stop gained 0.532 1.45
112394 MA_879384_3894 C/A Splice region variant 0.692 2.56

Slope 165481 MA_10434805_21408 C/T Intron variant 0.521 2.66
b2 23808 MA_20322_28351 T/G Synonymous variant 0.554 1.78

165481 MA_10434805_21408 C/T Intron variant 0.533 0.18
b3 23808 MA_20322_28351 T/G Synonymous variant 0.55 1.20

165481 MA_10434805_21408 C/T Intron variant 0.615 1.79
TRW Slope 111057 MA_817099_1105 T/A Missense variant 0.685 1.12

b2 33110 MA_38472_13803 T/A Upstream gene variant 0.657 3.23
89295 MA_214776_1624 G/A Upstream gene variant 0.688 4.51

b3 111057 MA_817099_1105 T/A Missense variant 0.672 1.20
LRW Intercept 143628 MA_10428744_29330 C/T Downstream variant 0.668 0.5

b3 164772 MA_10434624_20686 C/A Downstream variant 0.571 0.06
MOE Slope 165481 MA_10434805_21408 C/T Intron variant 0.602 1.00
NC b2 145839 MA_10429444_12692 G/C Upstream variant 0.645 3.82
ENC Slope 98508 MA_402880_2045 A/C Upstream variant 0.667 0.03

167610 MA_10435406_13733 A/G Downstream variant 0.685 0.01
TNC Intercept 95870 MA_346723_2241 T/C Upstream variant 0.667 3.78

126785 MA_9447489_687 A/C Upstream gene variant 0.68 4.93
LNC Intercept 143628 MA_10428744_29330 C/T Downstream variant 0.66 3.14

Slope 143628 MA_10428744_29330 C/T Downstream variant 0.672 4.77
EP Intercept 16868 MA_15729_40331 G/T Intron variant 0.609 3.32

91242 MA_246125_1213 G/A Synonymous variant 0.594 3.41
TP Intercept 101203 MA_462319_4322 A/C Upstream gene variant 0.594 1.16

132014 MA_10251995_2442 A/C Upstream gene variant 0.601 3.22
LP b2 162397 MA_10434007_77578 C/T Upstream gene variant 0.892 1.14
EP/LP Intercept 51657 MA_80954_29644 G/A Downstream variant 0.63 0.81

60787 MA_98424_947 C/T Intron variant 0.655 1.80
123639 MA_8790100_1384 A/C Upstream variant 0.628 0.75

b2 59480 MA_96191_7122 A/G Synonymous 0.6 2.37
b3 117333 MA_1045136_4310 T/C Missense variant 0.523 1.34

Mass index (growth 9 density) Intercept 166235 MA_10435002_4986 G/A Intergenic variant 0.533 0.65
Slope 61096 MA_99004_17108 G/A Synonymous variant 0.66 0.01

67181 MA_109804_10278 G/A Missense variant 0.612 0.05
1401 MA_1378_4718 C/A Exon/stop gained 0.588 1.19
138744 MA_10427214_13968 G/T Missense variant 0.58 1.80
162397 MA_10434007_77578 C/T Upstream variant 0.627 1.44

b2 21924 MA_19222_1789 A/G Upstream variant 0.71 1.82

aSNP: The SNP name was composed of the contig (MA_number) and SNP position on contig. For example, the first SNP
MA_1043540_13733 was located on contig MA_1043540 at position 13 733 bp; PVE is the phenotypic variance explained.
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Previous work utilizing a functional mapping analysis in

forest trees have used a limited number of molecular mark-

ers (Li et al., 2014). Li et al. (2014) applied this analysis in a

bi-parental Scots pine cross using 319 markers. Hence, our

work represents an advance in that we have been able to

apply this approach at the genome-wide scale (178 101

SNPs) on maternal trees, with a dynamic trait dataset

comprising 14 time points/annual growth rings (i.e. cam-

bial age). Latent traits represent significant time points in

the trait development allowing us to detect putative genes

at these critical junctures in wood formation. Functional

mapping has also been applied in ecological studies (Paine

et al., 2012) and crops more recently. The fitting of growth

models to the data describing growth trajectories of wood

Table 2 SNP modes of inheritance

Phenotype QTL SNP Allele 2aa db d/a

WD 167610 MA_10435406_13733 A/G 19.63 9.45 0.96
30469 MA_33109_11804 A/G 5.19 6.22 2.40
157442 MA_10432646_63090 G/A 4.49 2.80 1.25

EWD 167610 MA_10435406_13733 A/G 5.495 2.270 0.83
23798 MA_20321_44812 C/T 4.814 5.905 2.45
70955 MA_118446_4316 T/A 1.989 0.966 0.97

TWD 131698 MA_10235390_3386 G/A 3.849 �0.636 �0.33
160208 MA_10433411_3386 T/C 2.313 3.908 3.38
89044 MA_212523_6278 T/C 0.703 �0.962 �2.73

LWD 43797 MA_62987_13474 T/C 5.124 �1.086 �0.42
165481 MA_10434805_21408 C/T 4.684 1.165 0.50
171223 MA_10436058_4902 G/A 0.938 2.482 5.29

RW 11535 MA_10694_9101 A/C 0.111 0.049 0.88
112391 MA_879270_7373 C/T,A 0.056 �0.027 �0.98
112394 MA_879384_3894 C/A 0.194 �0.045 �0.45
165481 MA_10434805_21408 C/T 0.158 0.039 0.49
23808 MA_20322_28351 T/G 0.025 0.030 2.62

TRW 111057 MA_817099_1105 T/A 0.016 0.001 0.16
33110 MA_38472_13803 T/A 0.029 �0.002 �0.19
89295 MA_214776_1624 G/A 0.026 �0.001 �0.13

LRW 143628 MA_10428744_29330 C/T 0.006 �0.002 �0.67
164772 MA_10434624_20686 C/A 0.002 0.003 2.90

MOE 165481 MA_10434805_21408 C/T 0.376 0.101 0.53
NC 145839 MA_10429444_12692 G/C 0.298 0.792 5.31
ENC 98508 MA_402880_2045 A/C 4.144 1.314 0.63

167610 MA_10435406_13733 A/G 4.695 �3.033 �1.29
TNC 95870 MA_346723_2241 T/C 0.529 �0.187 �0.71

126785 MA_9447489_687 A/C 0.083 �0.429 �10.21
LNC 143628 MA_10428744_29330 C/T 0.219 �0.057 �0.52
EP 16868 MA_15729_40331 G/T 0.542 0.149 0.55

91242 MA_246125_1213 G/A 0.183 �0.129 �1.40
TP 101203 MA_462319_4322 A/C 0.469 �0.199 �0.85

132014 MA_10251995_2442 A/C 0.339 �0.429 �1.63
LP 162397 MA_10434007_77578 C/T 0.127 �0.071 �1.11
EP/LP 51657 MA_80954_29644 G/A 0.081 0.062 1.49

60787 MA_98424_947 C/T 0.254 �0.181 �1.43
123639 MA_8790100_1384 A/C 0.032 �0.078 �4.81
59480 MA_96191_7122 A/G 0.120 �0.117 �1.95
117333 MA_1045136_4310 T/C 0.018 0.077 8.56
166235 MA_10435002_4986 G/A 0.138 0.013 0.19

MI 61096 MA_99004_17108 G/A 0.006 �0.009 �3.16
67181 MA_109804_10278 G/A 0.007 �0.012 �3.14
1401 MA_1378_4718 C/A 0.003 0.004 2.67
138744 MA_10427214_13968 G/T 0.002 0.017 17.00
162397 MA_10434007_77578 C/T 0.025 �0.010 �0.79
21924 MA_19222_1789 A/G 0.014 �0.008 �1.14

aCalculated as the difference between the phenotype means observed within each homozygous class (2a = |GBB � Gbb|, where Gij is the trait
mean in the ijth genotype class).
bCalculated as the difference between the phenotypic mean observed within the heterozygous class and the average phenotypic mean
across both homozygous classes [d = GBb � 0.5(GBB+Gbb)], where Gij is the trait mean in the ijth genotypic class.
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formation phenotypes allowed the identification of marker-

trait associations. This enabled us to track phenotype

development against the genetic contributions at key time

points.

Wood properties have previously been indicated to have

a complex genetic architecture, in which association studies

that make use of historical recombination represent a

method that presents a substantial increase in QTL detec-

tion power for such complex traits (Hall et al., 2016). In our

study, the number of QTLs detected reflected the complex

nature of the traits under study, and our experimental

design allowed the detection of the largest/most significant

QTLs. A previous functional mapping study involving SNPs

in conifers applied two levels of evaluating QTLs (Li et al.,

2014), for which they have suggestive and significant QTLs,

with our study only reporting the significant QTLs (single

level), hence the small number of QTLs in our study. The

small number of significant QTLs might also be due to the

complex nature of the approximately 20 Gbp spruce gen-

ome. The sequence capture method only covered a total of

2331.1 kbp of exonic sequence, 2470.9 kbp of intronic

sequence, 40.7 kbp of UTR-like sequence and 9119

exon�intron boundaries (Vidalis et al., 2018). Therefore, a

large portion of the genome was not represented and this

would be compounded by the rapid LD in spruce, which

might affect the number of significant QTLs detected. How-

ever, the numbers of QTLs detected in our study are in line

with some previous studies in conifers (Gonz�alez-Mart�ınez

et al., 2007), and with the drought association study in Nor-

way spruce (29 significant SNP) (Trujillo-Moya et al., 2018).

The QTL detected in our study explain a small propor-

tion of the genetic variation and this could be due to sev-

eral factors. This is in line with previous studies examining

genetic variation in complex traits in coniferous species

using forward genetic approaches, such as QTL (Sewell

et al., 2000; Novaes et al., 2009) and AM (Wegrzyn et al.,

2010; Du et al., 2013, 2018; Porth et al., 2013; McKown

et al., 2014; Lamara et al., 2016) The large effective popula-

tion size in forest tree populations closely resembles

humans, therefore making the ‘missing heritability’ issue

found in human AM experiments relevant to forest tree

populations. First, one of the hypothesis attributed to this

‘missing heritability’ is the substantial amount of quantita-

tive variation linked to the cumulative effect of rare alleles

that cannot be detected in GWAS using small sample sizes.

Therefore in our study increasing the sample size from 517

individuals might allow the inclusion of rare alleles,

explaining some of the missing heritability (Hamblin et al.,

2011; De La Torre et al., 2019). The detection of true low-

frequency alleles associated with complex traits is chal-

lenging as it requires large and genetically diverse popula-

tions (Hall et al., 2016). Variants with low minor allele

frequencies are usually discarded due to the potential of

genotyping errors. However, rare alleles play an important

role in both the genetic regulation of traits and explaining

the ‘missing heritability’ in forest species (De La Torre

et al., 2019). Therefore, this could have also contributed to

the small effect sizes detected in our study as we filtered

SNPs with low minor allele frequencies (<0.05 MAF). Sec-

ond, allelic heterogeneity in which multiple functional alle-

les exist and are associated with different phenotypes,

especially for such complex traits as those linked with

wood formation. The presence of allelic heterogeneity will

require a large population size that will encompass the

allelic variations to account for the missing heritability

(Bergelson and Roux, 2010). Third, non-additive effects

mainly epistatically derived variation between genes might

go undiscovered (Storey et al., 2005). Most GWAS models

have been designed to only consider the additive effects of

markers. Numerous studies have shown that non-additive

effects constitute a large part of the genetic variation of

complex traits, these studies considered intra-locus (domi-

nance) and inter-locus (epistatic) effects (Huang et al.,

2012; Zhou et al., 2012; Mackay, 2013; Yang et al., 2014; Du

et al., 2015). Yang et al. (2014) showed in corn an increase

in the proportion of heritability explained when a model

considering dominance was utilized and therefore allowing

a better overview of heterosis. In rice Zhou et al. (2012)

demonstrated the accumulation of multiple effects, includ-

ing dominance and overdominance, which might partially

explain some of the genetic basis for heterosis. Du et al.

(2015) identified additive, dominant and epistatic effects

explaining nearly two-fold high heritability in Populus

tomentosa for 10 growth and wood property traits utilizing

pathway-based multiple gene associations.

Lastly, epigenetic variation is also likely to be one of the

sources of the ‘missing heritability’. With the development

of advanced sequencing platforms, sophisticated genotyp-

ing tools have been developed to unravel epigenetic varia-

tion (Johannes et al., 2009). Therefore, the influence of

each of these factors on heritability strongly depends on

the population sampled and inclusion of sophisticated

genotyping tools in the case of epigenetics. The incorpora-

tion of a combination of advanced statistical models such

as regional heritability mapping (RHM) and the detection

of structural variants, insertion/deletions (InDels) and copy

number variants in GWAS studies from several tree spe-

cies has resulted in higher heritabilities being detected

(Resende et al., 2017a; Gong et al., 2018)

Trait trajectories and functional mapping

EBVs were plotted as phenotype data versus 14 consecu-

tive cambial ages (Figure 1). All phenotypes under investi-

gation are represented with thin light blue (Black average)

curves, to visualize the nature of variation and growth tra-

jectories of the phenotype (Figure 1 and Supporting Infor-

mation Figure S1). The dissection of dynamic traits in

forest trees has been predominantly performed using
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Figure 1. EBV trajectories of four wood quality

traits over time: (a) wood density, (b) late wood

density, (c) annual ring width and (d) late wood ring

width. Individual trajectories for each trait are

shown in light blue lines and the black line repre-

sents the mean trajectory for the phenotype. These

trajectories were used to determine the four latent

traits of each tree, using linear splines with two

knots.
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single data points representing the value of the trait at a

given developmental stage. The major disadvantage of

such an approach is that it overlooks many of the factors

that define the process of formation and development for

important traits such as density and ring width. We utilized

splines that have the advantage of not making a priori

assumption about the shape of the curve and allow for the

trait growth trends to be unbiased. Splines also allow for

the characterization of the dynamic traits in terms of a few

parameters derived from the spline models (Al-Tamimi

et al., 2016). The fitting of growth trajectories is considered

as optimal because it treats phenotypes measured over

time as different traits and also takes into account the cor-

relation generated by the ordered time points (Yang et al.,

2006). The growth trajectories of the traits over time were

calculated from the fitted splines and time intervals were

identified and selected based on the characteristic growth

trajectory of each trait, resulting in associations across and

within traits being identified (Table 1). Therefore, indicat-

ing the control by different sets of genes at different time

points for our longitudinal traits (Table 2), just as in some

age-specific QTLs found in other conifers and rice (Verhae-

gen et al., 1997; Emebiri et al., 1998; Wu et al., 1999). This

approach has the potential to be applied to genomic pre-

diction and selection studies for predicting individuals that

would have the highest impact through the formation and

development of a trait of interest. With application of dif-

ferentially penalized regression (DiPR), pooled significant

association markers can be utilized in GS in order to

increase prediction accuracies (Bentley et al., 2014).

Linkage disequilibrium

The zygotic LD (squared correlation coefficient r2) was

determined through the pooling of all r2 values and plot-

ting them against the physical distances between the same

SNP pair (Figure 2a). This allowed us to estimate the gen-

ome-wide degree of LD in Norway spruce, with the aver-

age LD for linked SNPs being inferred from the trendline

(curve) of the nonlinear regressions. The fitted curve indi-

cates the LD is low in Norway spruce, rapidly decaying by

over 50% (from 0.50 to 0.20) (Figure 2a). The average dis-

tance associated with the LD decline for r2 = 0.1 varied

from 14 to 1500 bp (Figures 2c,d and S2). Neale and Savo-

lainen (2004) reported an LD decayed to less than 0.20

within roughly 1500 bp based on 19 candidate genes in

loblolly pine. As conifers are highly outcrossing a rapid LD

decay is expected, however in spruces the LD displays

diverse patterns among different genes or the same genes

in different species. The LD decline in spruces was also

noted to be roughly between a few base pairs and 2000 bp

(Namroud et al., 2010). These diverse heterogenous LD

patterns were also observed when we analyzed the LD for

individual contigs that had significant associations to our

traits (Figure 2c,d, Figure S3). The general LD estimate of

all the SNP pairs indicated a fast LD decay (Figure 2a). This

rapid decay could be due to the number of contigs ana-

lyzed in relation to the large Norway spruce genome, as

well as the use of zygotic LD between genotypes. Lu et al.

(2016), noted that the calculation of gametic LD from

phased haplotypes indicated a slower LD decay than when

using zygotic LD in loblolly pine. However, they also

observed varying rates of LD decay between genes and

across different genome regions (Lu et al., 2016). There-

fore, the generality of the LD patterns within the Norway

spruce genome remains to be further analyzed because

only a relatively small and highly specific portions of the

genome was studied here.

Population inference

To account for effects derived from population stratifica-

tion we performed a principal component analysis (PCA).

The top two explained a total of 5.3% of the variation. Pop-

ulation structure inference of clusters detected by PCA was

performed by ADMIXTURE (Figure S3) and the best K

value plotted from the cross-validation error term. Using

the best K method, K = 2 better explained the genetic

structure of the study population (Figure S3).

Overall summary of genetic associations

Several associations were shared within each trait and

across traits in the analysis. WD, Ring width (RW), Transi-

tional ringwitdh (TRW) and Latewoodnumber of cells (LNC)

had one (MA_33109_11804), two (MA_10434805_21408 and

MA_20322_28351), one (MA_817099_1105) and one

(MA_10428744_29330) QTLs shared by two or more latent

traits, respectively. CommonQTLswithinRWwere observed

for slope, b2 and b3 latent traits, with moderate frequencies

ranging from 0.521 to 0.615 and influenced their respective

traits tomodest degrees (PVE in ranges of 0.18–2.66%).

For QTLs common across the different latent traits, SNP

MA_10434805_21408 was shared between latewood wood

density (LWD), RW and Modulus of elasticity (MOE); this is

not surprising because of the close correlation between

MOE and wood density. Intron variant MA_10434805_

21408 explained between 0.18 and 2.66% of the PVE

observed in the respective traits. This SNP associated also

had high frequencies of 0.602 and 0.615 in MOE and RW

explaining PVE of 1.00 and 2.66%, respectively (Table 2).

SNP MA_10435406_13733 was shared between WD, Early-

wood wood density (EWD) and Earlywood number of

cells (ENC), was associated with the intercept trait for WD

and EWD and the slope latent trait in ENC (Table 1), with

PVE ranging from 0.01 to 4.64%. The QTL had a high influ-

ence on the density related traits as it explained 4.64%

(WD) and 3.38% (EWD) both exhibiting a partial dominant

inheritance pattern (Table 2).

Numbers of cells (NC), ENC, TNC and LNC traits were

associated with a total of three putative genes and three
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protein domains. Of the three putative genes, two are

associated with serine/kinase activity and one is involved

in cysteine and methionine synthesis (Table S1). All the

SNPs associated with these traits were either downstream

or upstream of coding regions and may therefore act as

modifiers of gene expression.

Wood percentage traits, early wood proportion (EP), LP,

TP and the ratio of EP/LP had significant associations with

10 SNPs. Four of the six significant SNP variants for EP/LP

are modifiers with the other two SNPs, being a synony-

mous (MA_96191_7122) and missense (MA_1045136_4310)

variant. The synonymous SNP MA_96191_7122 was consis-

tent with the codominant mode of inheritance (Table 2).

The significant SNP MA_15729_40331, an intron variant,

that is associated with EP, is located in the gene

MA_15729g0010, homologous to a DNA-3-methyladenine

glycosylase II enzyme (Table 1).

WD, EWD, TWD and LWD had a total of 12 significant

associations. A missense SNP, MA_33109_11804, was

associated with WD and located within the gene homolo-

gous to an Arabidopsis senescence-associated gene 24

(Table S1). Of the three significant SNP associations for

Transitional wood density (TWD), two, SNP MA_10235390_

3386 (stop gained) and SNP MA_212523_89044 (upstream

gene variant) were identified within genes. Two of the

three significant SNPs identified for LWD were intron vari-

ants (MA_10434805_21408 and MA_10436058_4902) with

the third being a missense variant (MA_62987_13474).

Trees showing a positive correlation between growth

and density had seven QTL specific for this observed phe-

nomenon (MI), explaining a PVE ranging between 0.05 and

1.82% (Table 1). The seven associated SNPs, were two

upstream gene variants, two missense variants one inter-

genic variant, one stop gained variant and one synony-

mous nucleotide replacement (Table 1). The SNP

MA_1378g0010_4718 encodes for a premature stop codon

on gene MA_1378g0010. Two SNPs associated with

the slope latent trait for MI (MA_1378_4718 and

MA_10427214_13968) have an overdominance inheritance

pattern with the C and G alleles being dominant, respec-

tively (Table 2; Figure 3).

Genetics associations for genes of known function in

wood formation

Intercept associations. Our study identified several inter-

esting genes linked to the significant QTLs from the inter-

cept latent trait, which represents the mean from our spline

model. This resulted in 17 significant associations with a

PVE ranging from 0.50 to 4.64% associated with the inter-

cept latent trait. The modes of action determined by the

non-additive effects of these significant SNP associations to

the intercept latent trait were one for overdominance

(|d/a| > 1.25), codominant (|d/a| < 0.50) 12 and four SNPs

were partial to fully dominant (0.50 < |d/a| < 1.25).

Ring width phenotypes RW, TRW, and LRW were linked

with a total of three gene models associated with the inter-

cept latent trait (Table S1). Of these putative genes associ-

ated with RW phenotypes, gene MA_10694g0010 was of

particular interest with regards to wood formation. SNP

MA_10694_9101 with a partial to fully dominant mode of

inheritance (Table 2) was located on the gene

MA_10694g0010 that is homologous to an enzyme involved

in cell wall biosynthesis, endoglucanase 11-like, and was

associated with RW (Table S1) and was expressed in the

wood (phloem+cambium+xylem) component of spruce

(Figure 4). This enzyme is a vital component of xylogenesis

and is involved in the active digestion of the primary cell

wall (Goulao et al., 2011). Endoglucanases have been pro-

posed as enzymes involved in controlling cell wall loosen-

ing (Cosgrove, 2005). Endoglucanase 11-like gene is part of

the endo-1 family in which the eno-1-4-b-glucanase Korri-

gan gene belongs. Characterization of the Korrigan gene in

P. glauca has identified it to be functionally conserved and

essential for cellulose synthesis (Maloney et al., 2012).

Density-related phenotypes (WD, EWD, TWD and LWD)

had two significant associations detected for the intercept.

Both associations were detected by SNP MA_10435406_

13733 and were both partial to fully dominant in their form

of inheritance (Table 2). The SNP MA_10435406_13733

downstream on gene MA_10435406g0010 was also signifi-

cantly associated with the trait ENC slope latent trait. The

association of this gene with the WD and EWD intercept

implies that it has an impact on the overall development of

density throughout the growth period. This result coincides

with previous report about the influence of the earlywood

component on the properties of the annual ring as a whole

in Scots pine (Li et al., 2014). Association of the same gene

also with the slope latent trait of ENC corroborates the pre-

dictive value of number of cells for wood density. The gene

is homologous to phosphoadenosine phosphosulfate

reductase (PAPS), which plays a central role in the reduc-

tion of sulfur in plants. An analysis of PAPS enzymes in

Arabidopsis (Klein and Papenbrock, 2004) and Populus

(Kopriva et al., 2004) revealed that enzymes involved in sul-

fate conjugation play an important role in plant growth and

development (Klein and Papenbrock, 2004).

Figure 2. (a) Decay of linkage disequilibrium (LD) across all the tagged genomic sequences, the majority being exonic regions. The squared correlation coeffi-

cient between loci (r2) is plotted against distance, in base pairs, separating loci. The fitted curve (red) is representative of the trend of decay from the 178 101

SNPs utilized in the association mapping (AM). (b) Decay of LD with distance in base pairs between sites from across 41 contigs with significant associations.

(c) Decay of LD across contig MA_96191 that has a significant association for ratio of percentage earlywood vs latewood on which two probes were captured.

(d) Decay of LD on contig MA_80033 indicating the variable LD in the genome.
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Slope associations. The analysis of slope (rate of change)

of wood formation traits over cambial ages, to our knowl-

edge, has never been dissected in any Norway spruce QTL

or AM analyses.

For slope latent traits two significant candidate genes

concerning wood formation, PAPS and Proliferating Cell

Nuclear Antigen (PCNA), were detected across related

traits density, growth number of cells and MOE. The

codominant SNP MA_10435406_13733 (Table 2) that is a

30-gene variant for WD was located on a gene that is

homologous to a phosphoadenosine phosphosulfate

reductase gene cysH_2 and common across ENC, WD and

EWD.

The SNP MA_10434805_21408 was located on the gene

MA_10434805g0010, which is homologous to an Arabidop-

sis PCNA protein (Table S1) and was ubiquitously

expressed with high levels in the wood (phloem+cam-

bium+xylem) component of spruce (Figure 4). This SNP is

associated across LWD, RW and MOE with partial to fully

dominance (0.50 < |d/a| < 1.25) for all three associations

(Table 2). The presence of these common QTL suggests

that these traits might be under the control of the same

genes or genetic pathways. Chen et al. (2014) reported a

significant positive genetic correlation between wood den-

sity and MOE, which increased with tree age. However,

wood volume growth and density have a negative correla-

tion (Chen et al., 2014), our study was able to detect QTLs

for trees exhibiting a positive correlation for this phe-

nomenon (MI). The common QTL observed across WD,

EWD and ENC indicates that the number of cells during the

juvenile wood development stages has a significant impact

on the overall density. The seasonal changes in EWD to

LWD have been speculated to be due to a change in auxin

levels leading to the initiation of wall-thickening phase,

which has a direct impact on the wood quality traits such

as MOE. This phase coincides with the cessation of height

growth and where available resources are used for cell

wall thickening (Sewell et al., 2000), which may explain the

common QTL between LWD, RW and MOE, as part of the

same feedback loop mechanism.

b2 and b3. When analyzing QTLs associated with the two

latent traits b2 and b3, 16 significant associations were

detected, with phenotypic variances ranging from 0.01 to

4.51% (Table 1). Five of the significant markers were con-

sistent with overdominance (|d/a| > 1.25), with the 11 mark-

ers being dominant (0.50 < |d/a| < 1.25) (Table 2, Figure 3).

Wood density phenotypes (WD, EWD, TWD and LWD)

had three significant associations with the b2 and b3 latent

traits (Table 1). The upstream variant MA_33109_11804

associated with both the slope and b2 latent traits of WD

was detected on the gene model MA_33109g0100 that is

homologous to the Arabidopsis senescence-associated

gene 24 (Table S1) and the gene being expressed in shoots

and buds of spruce (Figure 4). An association for the latent

trait b2 of TWD with a codominant SNP (MA_212523_6278)

(Table 2) was located upstream of gene MA_212523g0010

homologous to Kinesin-related protein 13 (gene-

L484_021891) and ubiquitously expressed in shoot, buds

and wood component of spruce, indicating its important

Figure 3. Box plot of the estimated genotypic effect on the phenotypes in the study. The significant SNPs associated and each one of the traits have been corre-

lated to give the impact each genotype has on the average of the overall trait

© 2019 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,

The Plant Journal, (2019), 100, 83–100

92 John Baison et al.



function in this species (Figure 4). This association is of

interest because Kinesin-related proteins are known to be

involved in secondary wall deposition, which can impact

wood density (Zhong et al., 2002), cell wall strength and

oriented deposition of cellulose microfibrils. Therefore,

these proteins would have a direct correlation with the

increase in density at the latent trait b2 at age 6 years (Fig-

ure S1).

Ring width phenotypes (RW, TRW and LRW) had eight

significant associations identified for the latent traits b2
and b3, explaining PVE ranging from 0.01 to 4.51%

(Table 1). The synonymous SNP MA_2032_28351 associ-

ated with the b2 latent trait for RW is located on a gene

homologous with a plant-specific B3-DNA binding protein

domain explaining 1.78% variation and is shared among

various plant-specific transcription factors. This includes

transcription factors involved in auxin and abscisic acid

responsive transcription (Yamasaki et al., 2004). Auxin is

one of the central phytohormones in the control of plant

growth and development (Abel and Theologis, 1996), and

also known to be involved in cell wall loosening and

elongation (Cosgrove, 2016). This association was

detected within the RW phenotype and detected for both

b2 and b3 latent traits (Table 1). Therefore, this domain

could be involved with transcription factors involved in

both the decrease and increase of RW (Figure S1). Three

putative genes were associated with the b2 and b3 latent

traits for the TRW phenotype. Of interest a senescence-as-

sociated protein associated on the TRW b2 latent trait with

the missense variant MA_817099_1105. This might be

linked to the decrease in TRW at year 6 (Figure S1) due to

the decline of photosynthetic rate known to be induced by

the activity of senescence related proteins (Sillanp€a€a

et al., 2005). The gene was highly expressed in both the

early and late wood components of spruce supporting the

row of these senescence genes in controlling tree growth

(Figure 4). This association was also identified for the

slope latent trait indicating a potential impact on the rate

of change of transitional wood. The detection of senes-

cence related genes for wood density related phenotypes

for both the slope and b2 latent trait (MA_33109_11804)

could indicate a possible relationship between the genes

Figure 4. The heatmap showing the expression levels (VST values) of spruce candidate genes in different organs and tissues based on data of Nystedt et al.

(2013) available at http://congenie.org.
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influencing RW and wood density. Contig MA_10434624 is

homologous to a pectin esterase and was associated with

the downstream variant MA_10434624_20686 with an

over-dominant mode of inheritance for LRW (b3 latent

trait) at year 10 (Table 2, Figure S1). This significant

downstream SNP (MA_10434624_20686) associated with

LRW on gene MA_10434624g0020 and homologous to

pectin methylesterases (PMEs), which are cell wall associ-

ated enzymes responsible for demethylation of polygalac-

turonans (Phan et al., 2007). This gene was observed

highly expressed in developing wood (Figure 4), indicat-

ing its importance for growth in spruce. This enzyme has

been shown to be linked with many developmental pro-

cesses in plants, such as, cellular adhesion and stem elon-

gation (Micheli, 2001). An association study in Picea

glauca (Moench) Voss identified a significant nonsynony-

mous SNP coding for cysteine associated with earlywood

and total wood cell wall thickness associated with pectin

methylesterase (Beaulieu et al., 2011). Our study identified

a PME SNP association in the late wood stage, supporting

the importance of PMEs in wood cell development.

When analyzing QTLs detected for traits linked to the

percentage of cells (EP, LP and EP/LP) we identified three

putative candidate genes, DNA-3-methyladenine glycosy-

lase II enzyme, phytochrome kinase substrate 1 and gly-

cosyltransferase. Synonymous SNP (MA_96191_59480)

within the gene MA_96191g0010, which is homologous

to Glucosyltransferase in Picea sitchensis was associated

with the EP/LP, b2 latent trait. The gene is highly

expressed in vegetative shoots (June) and during the

late afternoon in needles (Figure 4). Glycosyl transferases

operate by facilitating the catalytic sequential transfer of

sugars from activated donors to acceptor molecules that

form region and stereospecific glycosidic linkages (Lair-

son et al., 2008). The Arabidopsis ortholog (UDP-gluco-

syltransferase 73B2) encodes for a putative flavonol 7-O-

glucosyltransferase involved in stress responses. In our

study, this significant association was associated with

EP/LP, however a nonsynonymous variant in a gene cod-

ing for a glycosyl transferase in Populus was associated

with fibre development and elongation (Porth et al.,

2013).

Several receptor-like kinases (TIR/NBS/LRR and serine/

threonine-protein phosphatase) homologues were identi-

fied across traits (TRW, NC, EP, EP/LP and EWD) (Table S1).

Approximately 2.5% of the annotated genes in Arabidopsis

genome are RLK homologues (Shiu and Bleecker, 2001), in

which they, among other functions, play an important role

in the differentiation and separation of xylem and phloem

cells (Fisher and Turner, 2007). Similar to our study a syn-

onymous SNP in an RLK gene was associated with EP in

white spruce (Beaulieu et al., 2011), hence RLKs seem to be

involved in modifying a number of different wood proper-

ties from density to cell identity and number.

Norway spruce trees that possess the ability of fast

growth and high wood density are very rare, but such trees

and associated SNPs were discovered in our study. Trees

combining these traits are of high interest to the forestry

industry. Of the seven genes significantly linked to this phe-

nomenon of particular interest was a synonymous SNP on

MA_99004g0100 gene homologous to a transcription factor

from the GRAS family (Table S1). GRAS is an important

class of plant-specific proteins derived from three members:

GIBBERELLIC ACID INSENSITIVE (GAI), REPRESSOR of GAI

(RGA) and SCARECROW (SCR) (GRAS) (Hirsch and Oldroyd,

2009). GRAS genes are known to be involved in the regula-

tion of plant development through the regulation of gib-

berellic acid (GA) and light signalling (Hirsch and Oldroyd,

2009; Cenci and Rouard, 2017). Furthermore GA signalling

has also been shown to stimulate wood formation in Popu-

lus (Mauriat and Moritz, 2009). Therefore, the GRAS tran-

scription factor identified here and the other six genes

positively associated with MI provide interesting genetic

markers and tools to understand this phenomenon.

Wood density traits were associated with a total of 12

genes, the largest number of genes identified from the

contigs. The percentage of wood was linked to 10 putative

genes, cell width had nine putative genes and number of

cells was associated with six genes. Two genes were

shared across multiple traits, PCNA was common across

RW and LWD, and phosphoadenosine phosphosulfate

reductase was shared across WD, EWD and ENC.

EXPERIMENTAL PROCEDURES

Plant material and phenotype data

Plant material and phenotype data used in this study have previ-
ously been described in Chen et al. (2014). In brief, two progeny
trials were established in 1990 in southern Sweden (S21F9021146
aka F1146 (trial1) and S21F9021147 aka F1147 (trial2)). We selected
517 families originating from 112 sampling stands to use in the
investigation of wood properties. At each site, increment wood
cores of 12 mm were collected at breast height from six trees of
the selected families (1.3 m) (6 progeny 9 2 sites = 12 progenies
in total). In total, 5618 trees, 2973 and 2645 trees from the F1146
and F1147 trials respectively, were analysed. The pith to bark pro-
filing of growth and wood physical attributes was performed
using the SilviScan instrument (Evans and Ilic, 2001) at Innventia,
now part of RISE, Stockholm, Sweden, where also the initial data
evaluations were performed (Methods S2). These included the
identification and dating of all annual rings and their compart-
ments of early wood (EW), transition wood (TW) and late wood
(LW). For this, a density-based ‘20-80’ definition was used,
described and discussed in (Lundqvist et al., 2018). Traits of inter-
est to breeders were derived from the SilviScan data, such as the
radial NC and Mass Index (MI) introduced to express the relative
amount of biomass at breast height.

The investigation was trigged by the observation that some
trees broke the unfavourable negative correlation of the trait MI
which is between density and growth. They produced, more bio-
mass than expected, and it was therefore important. In order to
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identify putative genes behind high values for this trait. MI was
defined as:

Mass index ¼ðIndividual cross� sectional averagedensity

=population cross� sectional averagedensityÞ
�ðindividual cross� sectional area

=population average cross� sectional areaÞ

The traits investigated in this study are listed in Table 3.

Statistical analysis

EBVs were calculated for growth and wood quality traits for 14
consecutive annual growth rings. The variance and covariance
components were estimated using ASREML 4.0 (Gilmour et al.,
2014) as described in Chen et al. (2014). In brief, the EBVs at each
cambial age were estimated using univariate, bivariate or multi-
variate mixed linear models. The following univariate linear mixed
model for joint-site analysis was fitted to calculate EBV:

Yijkl ¼ lþ Si þ BjðiÞ þ Fk þ SFik þ eijkl (1)

where Yijkl is the observation on the lth tree from the kth family in
jth block within the ith site, l is the general mean, Si and Bj ið Þ are
the fixed effects of the ith site and the jth block within the ith site,
respectively, Fk and SFik are the random effects of the kth family
and the random interactive effect of the ith site and kth family,
respectively, eijkl is the random residual effect. The random family
and site by family interaction effects are assumed to follow
N 0; r2f
� �

N 0; r2sf
� �

and, respectively, where r2f and r2sf are the esti-
mated family genetic variance and site by family interaction vari-
ance, respectively. Residual variation e was assumed to

N 0;
In1r2e10
0In2r2e2

� �� �
, where r2e1 and r2e2 are the residual variances for

site 1 and site 2, In1 and In2 are identity matrices, n1 and n2 are the
number of individuals in each site. The fit of different models was
evaluated using the Akaike Information Criteria (AIC) and the opti-
mal model was selected based on a compromise of model fit and
complexity.

Latent traits

The EBVs were plotted against cambial age (annual ring number)
to produce time trajectories for each trait (Figures 1 and S1).
Spline model was fitted to the trajectories and their curve parame-
ters describing the character of their development over time were
used as latent traits in order to describe the dynamics of the EBVs
across age.

The general definition of a linear spline with multiple knots is
as follows

yðtÞ ¼b0 þ b1t þ b2 t � K1ð Þþ þ b3 t � K2ð Þþ þ . . .

þ b1þm t � Kmð Þþ;
(2)

which is continuous and where Ki (i = 1, . . . ,m; K1 < K2 . . . <Km)
are defined as knots, and (t � Ki)+ = (t � Ki) if t > Ki (Ki > 0; i = 1,
. . . ,m), and otherwise is equal to zero. The number of knots has to
be properly defined to provide an accurate description of the data
under investigation, while avoiding overadaptation to data (Li and
Sillanp€a€a, 2015; Camargo et al., 2018). In our case, we found two
knots most suitable to the time intervals investigated. Hence, the
linear spline model to describe the growth trajectory of individual
i applied in this study was defined as:

yðtÞ ¼b0 þ b1t þ b2 t � K1ð Þþ þ b3 t � K2ð Þþ þ eiðtÞ;
eiðtÞ �iid N 0;r2

� �
:

(3)

In equation (2), the intercept b0, slope parameters b1, b2 (at Knot
1 (K1)) and b3 (at Knot 2 (K2)) are estimated by standard least
squares (Ruppert et al., 2003). The four estimates were used as
the latent trait in the subsequent QTL analysis conducted in RSTU-

DIO (Team, 2015), and then analysed using the LASSO model to
identify SNPs showing significant associations to the traits.

The intercept and slopes were used to evaluate the mean and
rate of change for the trait across the annual rings, respectively.
b2 and b3 represent inflection points in the cambial age trajecto-
ries where the development of the EBVs enters new phases.
These two points (b2 and b3) are therefore supposed to have bio-
logical significance, warranting a closer analysis of the genes
imparting these shifts in the EBVs dynamics. The four latent
traits show lower correlations compared with the direct measure-
ments on the original scales and they also have constant vari-
ances, thereby reducing the need to account for residual
dependencies in the model (Wu et al., 2004; Yang and Xu, 2007;
Li et al., 2014).

Sequence capture, genotyping and SNP annotation

Total genomic DNA was extracted from 517 maternal trees, using
the Qiagen Plant DNA extraction (Qiagen, Hilden, Germany) proto-
col with DNA quantification performed using the Qubit� ds DNA
Broad Range (BR) Assay Kit (Oregon, USA). Extracted DNA was
submitted to RAPiD Genomics (USA) where DNA library prepara-
tion and capture sequencing were performed. Sequence capture
was performed using the 40 018 diploid probes designed and
evaluated for P. abies (Vidalis et al., 2018). The Illumina sequenc-
ing compatible libraries were amplified with 14 cycles of poly-
merase chain reaction (PCR) and the probes were then hybridized
to a pool comprising 500 ng of 8 equimolar combined libraries fol-
lowing Agilent’s SureSelect Target Enrichment System (Agilent
Technologies, https://www.agilent.com/). These enriched libraries
were then sequenced using an Illumina HiSeq 2500 instrument
(San Diego, USA) on the 2 9 100 bp sequencing mode.

Table 3 List of the phenotypes, their abbreviations and measure-
ment unit

Phenotype Abbreviation Unit

Ring wood density WD kg m�3

Early wood density EWD kg m�3

Transition wood density TWD kg m�3

Late wood density LWD kg m�3

Ring width RW lm
Early wood ring width ERW lm
Transition wood ring width TRW lm
Late wood ring width LRW lm
Ring number of cells NC
Early wood number of cells ENC
Transition wood number of
cells

TNC

Late wood number of cells LNC
Early wood percentage EP %
Transition wood percentage TP %
Late wood percentage LP %
Early/late wood percentage EP/LP %
Modulus of elasticity MOE GPa
Mass index (density 9 growth) MI
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Raw reads were mapped against the P. abies reference gen-
ome v.1.0 using BWA-MEM (Li, 2013). SAMTOOLS v.1.2 (Li et al., 2009)
and Picard (http://broadinstitute.github.io/picard) were used for
sorting and marking of PCR duplicates. Variant calling was per-
formed using GATK HAPLOTYPECALLER v.3.6 (Van der Auwera et al.,
2013) in gVCF output format. Samples were then merged into
batches of approximately 200 before all 517 samples were
jointly called.

Variant Quality Score Recalibration (VQSR) method was per-
formed to avoid the use of hard filtering for exome/sequence
capture data. For the VQSR analysis two datasets were created,
a training subset and an input file. The training dataset was
derived from the Norway spruce genetic mapping population
showing expected segregation patterns (Bernhardsson et al.,
2019) and assigned a prior value of 15.0. The input file was
derived from the raw sequence data using GATK with the follow-
ing parameters: extended probe coordinates by +100 excluding
INDELS, excluding LowQual sites, and keeping only bi-allelic
sites. The following annotation parameters QualByDepth (QD),
MappingQuality (MQ) and BaseQRankSum, with tranches 100,
99.9, 99.0 and 90.0 were then applied for the determination of
the good versus bad variant annotation profiles. After obtaining
the variant annotation profiles, the recalibration was then
applied to filter the raw variants. Using VCFTOOLS v.0.1.13 (Dane-
cek et al., 2011), SNP trimming and cleaning involved the
removal of any SNP with a MAF and ‘missingness’ of <0.05 and
>20%, respectively. The resultant SNPs were annotated using
default parameters for SNPEFF 4 (Cingolani et al., 2012). Ensembl
general feature format (GFF; gene sets) information was utilized
to build the P. abies SNPEFF database.

Genetic structure and mode of inheritance

Linkage disequilibrium was calculated as the squared correlation
coefficient between genotypes (r2), globally with special attention
given to all the contigs with significant associations in VCFTOOLS

v.0.1.13 software using the ‘geno-r2’ routine (Danecek et al.,
2011). The trendline of LD decay with physical distance was fitted
using nonlinear regression (Hill and Weir, 1988) and the regres-
sion line was displayed using RSTUDIO (Team, 2015). Non-additive
effects of the significant markers was determined using the ratio
of dominance (d) to additive (a). The ranges were: partial or com-
plete dominance (�0.50 < |d/a| < 1.25) and additive (�0.50 ≤ |d/a| ≤
0.50), with |d/a| > 1.25 being equal to over- or underdominance
(Eckert et al., 2009).

FactoMiner (Multivariate Exploratory Data Analysis and Data
Mining) (Husson et al., 2017) implemented in RSTUDIO software
was used to perform PCA. The covariate matrix derived from the
PCA was then displayed by plotting principal component 1 scores
against principal component 2 scores. The components of the
PCA covariate matrix were then applied to the AM to account for
population structure and correcting for any stratification within
the study. Significance of each genetic principal component (PC)
was determined using the Tracy-Widom (TWi) distribution and a
significance threshold of P = 0.01. For population clustering, ADMIX-

TURE v.1.3.0 (Alexander et al., 2009) was used with five-fold cross-
validation and 200 bootstrap replicates. The bestK method was
implemented in RSTUDIO to determine the best K with the use of
an elbow plot on the cross-validation error.

Trait association mapping

It is natural to use LASSO method for simultaneous estimation of
SNP effects and selecting a sparse subset of trait-associated SNPs
to the multilocus association model. This is because LASSO has

nice properties like being able to handle high-dimensional cases
with p>>n (i.e., a number of SNPs much larger than number of
individuals) and selecting only a single representative SNP from
the group of highly dependent SNPs. The LASSO model as
described by Li et al. (2014), was applied to all latent traits for the
detection of QTLs.

The LASSO model:

min
ða0 ;aj Þ

1

2n

Xn
i¼1

yi � a0 �
Xp
j¼1

xijaj

 !2

þ k
Xp
j¼1

jaj j; (4)

where yi is the phenotypic value of an individual i (i = 1,. . .,n; n is
the total number of individuals) for the latent trait b0, b1, b2 or b3,
a0 is the population mean parameter, xij is the genotypic value of
individual i and marker j coded as 0, 1 and 2 for three marker
genotypes AA, AB and BB, respectively, aj is the effect of marker j
(i = 1,. . .,n; n is the total number of markers), and k (>0) is a
shrinkage tuning parameter. The penalty term is able to shrink the
additive effects of some of the markers exactly to zero, and select
a subset of the most important markers into the model. The tun-
ing parameter k determines the degree of shrinkage, and the num-
ber of markers having non-zero effects. Cross-validation is used to
decide an optimal value for k.

In stability selection (Meinshausen and B€uhlmann, 2010; Alexan-
der and Lange, 2011): (i) several bootstrap samples are first created
from the original data; and (ii) frequency over-bootstrap samples
on how many times each SNP is being selected to the LASSO
model is monitored and used as a stable measure of variable selec-
tion. Stability selection probability (SSP) of each SNP being
selected to the model was applied as a way to control the false dis-
covery rate and determine significant SNPs (Gao et al., 2014; Li
and Sillanp€a€a, 2015). Briefly a subsample of half the number of
individuals was randomly picked up and the LASSO was per-
formed on it to select a set of markers. This procedure was
repeated 1000 times. Then the selection frequency of each marker
being selected was calculated, and was used to judge the support
of QTL. A decision rule suggested by Meinshausen and B€uhlmann
(2010) was applied to control the expected number of false posi-
tives:

1

2
þ q2

2E V½ �p ; (5)

where q is the number of selected markers, E[V] is the expected
number of false positives, and p is the total number of markers.
For a marker to be declared as a significant QTL, a SSP inclusion
frequency of at least 0.52 (i.e. derived based on formula 5) was
used for all traits. This frequency was inferred conditional on the
expected number of false selected markers being less than one
(B€uhlmann et al., 2014).

Population structure was accounted for in all analyses by
including the first five PCs based on the genotype data as covari-
ates into the model. An adaptive LASSO approach (Zou, 2006)
was used to determine the percentage of phenotypic variance
(PVE) (H2

QT) of all the QTLs (Methods S1). These analysis were all
performed in RSTUDIO (Team, 2015).

Candidate gene mining

To assess putative functionality of SNPs with significant associa-
tions, a gene enrichment analysis of putative genes and their
associated orthologs was performed against the NORWOOD v1.0
database (http://norwood.congenie.org) hosted by CONGENIE

(http://congenie.org/). The complete P. abies contigs that har-
boured the QTLs that were not annotated in the CONGENIE were
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used to perform a nucleotide BLAST (BLASTN) search, using the
option for only highly similar sequences (MEGABLAST) in the
National Center for Biotechnology Information (NCBI) nucleotide
collection database (https://blast.ncbi.nlm.nih.gov/Blast.cgi?).

CONCLUSION

This work has dissected the genetic basis of wood properties in
Norway spruce with use of functional AM. In total, we identified
52 significant QTLs for wood properties and mining of candidate
genes located in the vicinity of significant QTLs identified genes
that could be directly or indirectly responsible for variations in the
observed traits. Functional mapping analyses allowed us to utilize
all the longitudinal data for a trait simultaneously and may better
account for the temporal trends and correlation structures across
years for the complex traits associated with wood formation. It
can therefore be applied to the detection of QTLs stable over time
(i.e. the QTLs associated with intercept traits) with greater statisti-
cal evidence. The slope latent trait over cambial ages or the rate
of juvenile-to-mature wood transition has allowed for the dissec-
tion the dynamics of the transition process itself and can be
applied to other important plant breeding traits. The significance
of our results is provided by the identification of QTLs associated
to both high wood density and fast growth, therefore larger bio-
mass. These QTLs can now be a basis for future functional geno-
mics in Norway spruce.

However, the direct use of QTLs for marker-assisted breeding
has not been successful, mainly due to the difficulty in transfer-
ring the associations across populations and species of forest
trees. With the small percentage variances detected and no direct
information about the developmental change of QTL expression,
breeders will be unable to make use of these QTLs in direct early
selection. Non-additive interactions especially epistasis, play an
important role in accounting for the total genetic variance of a
trait. Therefore this study will be a good basis for initiating the
detection and estimation of possible epistatic influence on these
complex traits. Future work should focus on replicated sampling
from a larger number of representative genotypes across different
environments, which take into consideration genotype 9 environ-
ment interactions. Additional support for marker-assisted tree
breeding may also be provided by the functional genetics studies,
systems mapping and consideration of biological mechanisms
(Liu and Yan, 2019) of the identified candidate genes in model
trees like Populus sp.
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Husson, F., Lê, S. and Pag�es, J. (2017). Exploratory multivariate analysis by

example using R: Chapman and Hall/CRC.

Johannes, F., Porcher, E., Teixeira, F.K. et al. (2009) Assessing the impact of

transgenerational epigenetic variation on complex traits. PLoS Genet. 5

(6), e1000530. https://doi.org/10.1371/journal.pgen.1000530.

Khan, M.A. and Korban, S.S. (2012) Association mapping in forest trees and

fruit crops. J. Exp. Bot. 63(11), 4045–4060. https://doi.org/10.1093/jxb/ers105.
Klein, M. and Papenbrock, J. (2004) The multi-protein family of Arabidopsis

sulphotransferases and their relatives in other plant species. J. Exp. Bot.

55(404), 1809–1820. https://doi.org/10.1093/jxb/erh183.
Kopriva, S., Hartmann, T., Massaro, G., H€onicke, P. and Rennenberg, H. (2004)

Regulation of sulfate assimilation by nitrogen and sulfur nutrition in poplar

trees. Trees, 18(3), 320–326. https://doi.org/10.1007/s00468-003-0309-4.
Lairson, L., Henrissat, B., Davies, G. and Withers, S. (2008) Glycosyltrans-

ferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77,

521–555.
Lamara, M., Raherison, E., Lenz, P., Beaulieu, J., Bousquet, J. and MacKay,

J. (2016) Genetic architecture of wood properties based on association

analysis and co-expression networks in white spruce. New Phytol. 210

(1), 240–255. https://doi.org/doi:10.1111/nph.13762.
Larocque, G.R. and Marshall, P.L. (1995) Wood relative density development

in red pine (Pinus resinosa Ait.) stands as affected by different initial

spacings. For. Sci. 41(4), 709–728.
Larsson, H., K€allman, T., Gyllenstrand, N. and Lascoux, M. (2013) Distribu-

tion of Long-Range Linkage Disequilibrium and Tajima’s D Values in

Scandinavian Populations of Norway Spruce (Picea abies). G3: Genes -

Genomes - Genetics, 3(5), 795–806. https://doi.org/10.1534/g3.112.005462.
Li, H. (2013). Aligning sequence reads, clone sequences and assembly con-

tigs with BWA-MEM. arXiv preprint arXiv:1303.3997.

Li, Z. and Sillanp€a€a, M.J. (2013) A Bayesian nonparametric approach for

mapping dynamic quantitative traits. Genetics, 194(4), 997–1016.
Li, Z. and Sillanp€a€a, M.J. (2015) Dynamic quantitative trait locus analysis of

plant phenomic data. Trends Plant Sci. 20(12), 822–833. https://doi.org/
10.1016/j.tplants.2015.08.012.

© 2019 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,

The Plant Journal, (2019), 100, 83–100

98 John Baison et al.



Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth,

G., Abecasis, G. and Durbin, R. (2009) The sequence alignment/map for-

mat and SAMtools. Bioinformatics, 25(16), 2078–2079. https://doi.org/10.
1093/bioinformatics/btp352.

Li, Z., Hallingb€ack, H.R., Abrahamsson, S., Fries, A., Gull, B.A., Sillanp€a€a,

M.J. and Garc�ıa-Gil, M.R. (2014) Functional multi-locus QTL mapping of

temporal trends in Scots pine wood traits. G3: Genes - Genomes - Genet-

ics, 4(12), 2365–2379. https://doi.org/10.1534/g3.114.014068.
Liu, H.-J. and Yan, J. (2019) Crop genome-wide association study: a harvest

of biological relevance. Plant J. 97(1), 8–18. https://doi.org/10.1111/tpj.

14139.

Lu, M., Krutovsky, K.V., Nelson, C.D., Koralewski, T.E., Byram, T.D. and Loop-

stra, C.A. (2016) Exome genotyping, linkage disequilibrium and population

structure in loblolly pine (Pinus taeda L.). BMCGenom. 17(1), 730.

Lundqvist, S.-O., Seifert, S., Grahn, T., Olsson, L., Garc�ıa-Gil, M.R., Karls-

son, B. and Seifert, T. (2018) Age and weather effects on between and

within ring variations of number, width and coarseness of tracheids

and radial growth of young Norway spruce. Eur. J. Forest Res. 137(5),

719–743.
Ma, C.-X., Casella, G. and Wu, R. (2002) Functional mapping of quantitative

trait loci underlying the character process: a theoretical framework.

Genetics, 161(4), 1751–1762.
Mackay, T.F.C. (2013) Epistasis and quantitative traits: using model organ-

isms to study gene–gene interactions. Nat. Rev. Genet. 15, 22. https://doi.

org/10.1038/nrg3627.

Maloney, V.J., Samuels, A.L. and Mansfield, S.D. (2012) The endo-1, 4-b-glu-
canase Korrigan exhibits functional conservation between gymnosperms

and angiosperms and is required for proper cell wall formation in gym-

nosperms. New Phytol. 193(4), 1076–1087.
Mauriat, M. and Moritz, T. (2009) Analyses of GA20ox-and GID1-over-ex-

pressing aspen suggest that gibberellins play two distinct roles in wood

formation. Plant J. 58(6), 989–1003.
McKown, A.D., Kl�ap�st�e, J., Guy, R.D., Geraldes, A., Porth, I., Hannemann, J.,

Friedmann, M., Muchero, W., Tuskan, G.A. and Ehlting, J. (2014) Gen-

ome-wide association implicates numerous genes underlying ecological

trait variation in natural populations of Populus trichocarpa. New Phytol.

203(2), 535–553. https://doi.org/10.1111/nph.12815.
Meinshausen, N. and B€uhlmann, P. (2010) Stability selection. J. R. Stat. Soc.

Series B Stat. Methodol. 72(4), 417–473. https://doi.org/10.1111/j.1467-

9868.2010.00740.x.

Micheli, F. (2001) Pectin methylesterases: cell wall enzymes with important

roles in plant physiology. Trends Plant Sci. 6(9), 414–419. https://doi.org/
10.1016/S1360-1385(01)02045-3.

Namroud, M.-C., Guillet-Claude, C., Mackay, J., Isabel, N. and Bousquet, J.

(2010) Molecular evolution of regulatory genes in spruces from different

species and continents: heterogeneous patterns of linkage disequilibrium

and selection but correlated recent demographic changes. J. Mol. Evol.

70(4), 371–386.
Neale, D.B. and Savolainen, O. (2004) Association genetics of complex traits

in conifers. Trends Plant Sci. 9(7), 325–330.
Novaes, E., Osorio, L., Drost, D.R. et al. (2009) Quantitative genetic analysis

of biomass and wood chemistry of Populus under different nitrogen

levels. New Phytol. 182(4), 878–890. https://doi.org/10.1111/j.1469-8137.

2009.02785.x.

Nystedt, B., Street, N.R., Wetterbom, A., Zuccolo, A., Lin, Y.-C., Scofield,

D.G., Vezzi, F., Delhomme, N., Giacomello, S. and Alexeyenko, A. (2013)

The Norway spruce genome sequence and conifer genome evolution.

Nature, 497(7451), 579–584.
Olesen, P. (1977) The variation of the basic density level and tracheid width

within the juvenile and mature wood of Norway spruce. For. Tree

Improv, 12, 1–22.
Paine, C.E.T., Marthews, T.R., Vogt, D.R., Purves, D., Rees, M., Hector, A.

and Turnbull, L.A. (2012) How to fit nonlinear plant growth models and

calculate growth rates: an update for ecologists. Methods Ecol. Evol. 3

(2), 245–256. https://doi.org/doi:10.1111/j.2041-210X.2011.00155.x.
Parchman, T.L., Gompert, Z., Mudge, J., Schilkey, F.D., Benkman, C.W. and

Buerkle, C. (2012) Genome-wide association genetics of an adaptive trait

in lodgepole pine. Mol. Ecol. 21(12), 2991–3005. https://doi.org/10.1111/j.
1365-294X.2012.05513.x.

Peltola, H., Gort, J., Pulkkinen, P., Gerendiain, A.Z., Karppinen, J. and Iko-

nen, V.-P. (2009) Differences in growth and wood density traits in Scots

Pine (Pinus sylvestris L.) genetic entries grown at different spacing and

sites. Silva Fenn. 43(3), 339–354.
Phan, T.D., Bo, W., West, G., Lycett, G.W. and Tucker, G.A. (2007) Silencing

of the major salt-dependent isoform of Pectinesterase in tomato alters

fruit softening. Plant Physiol. 144(4), 1960–1967. https://doi.org/10.1104/
pp.107.096347.

Porth, I., Klap�ste, J., Skyba, O. et al. (2013) Genome-wide association map-

ping for wood characteristics in Populus identifies an array of candidate

single nucleotide polymorphisms. New Phytol. 200(3), 710–726. https://d
oi.org/doi:10.1111/nph.12422.

Resende, R.T., Resende, M.D.V., Silva, F.F., Azevedo, C.F., Takahashi, E.K.,

Silva-Junior, O.B. and Grattapaglia, D. (2017a) Regional heritability map-

ping and genome-wide association identify loci for complex growth,

wood and disease resistance traits in Eucalyptus. New Phytol. 213(3),

1287–1300. https://doi.org/10.1111/nph.14266.
Resende, R.T., Resende, M.D.V., Silva, F.F., Azevedo, C.F., Takahashi, E.K.,

Silva-Junior, O.B. and Grattapaglia, D. (2017b) Regional heritability map-

ping and genome-wide association identify loci for complex growth,

wood and disease resistance traits in Eucalyptus. New Phytol. 213(3),

1287–1300.
Ruppert, D., Wand, M.P. and Carroll, R.J. (2003). Semiparametric Regression

Vol. 12. Cambridge University Press: UK.

Sewell, M.M., Bassoni, D.L., Megraw, R.A., Wheeler, N.C. and Neale, D.B.

(2000) Identification of QTLs influencing wood property traits in loblolly

pine (Pinus taeda L.). I. Physical wood properties. Theor. Appl. Genet.

101(8), 1273–1281. https://doi.org/10.1007/s001220051607.
Shiu, S.-H. and Bleecker, A.B. (2001) Plant receptor-like kinase gene family:

diversity, function, and signaling. Sci. STKE, 2001(113), re22.

Sillanp€a€a, M., Kontunen-Soppela, S., Luomala, E.-M., Sutinen, S., Kan-

gasj€arvi, J., H€aggman, H. and Vapaavuori, E. (2005) Expression of senes-

cence-associated genes in the leaves of silver birch (Betula pendula).

Tree Physiol. 25(9), 1161–1172.
Storey, J.D., Akey, J.M. and Kruglyak, L. (2005) Multiple locus linkage analy-

sis of genomewide expression in yeast. PLoS Biol. 3(8), e267. https://doi.

org/10.1371/journal.pbio.0030267.

Strauss, S., Lande, R. and Namkoong, G. (1992) Limitations of molecular-

marker-aided selection in forest tree breeding. Can. J. For. Res. 22(7),

1050–1061.
Team, R. (2015). RStudio: integrated development for R. RStudio, Inc., Bos-

ton, MA URL http://www.rstudio.com.

Thavamanikumar, S., Southerton, S.G., Bossinger, G. and Thumma, B.R.

(2013) Dissection of complex traits in forest trees—opportunities for mar-

ker-assisted selection. Tree Genet. Genomes, 9(3), 627–639.
Thumma, B.R., Southerton, S.G., Bell, J.C., Owen, J.V., Henery, M.L. and

Moran, G.F. (2010) Quantitative trait locus (QTL) analysis of wood

quality traits in Eucalyptus nitens. Tree Genet. Genomes, 6(2), 305–
317.

Tibshirani, R. (1996) Regression shrinkage and selection via the LASSO. J.

R. Stat. Soc. Series B Methodol. 58, 267–288.
Trujillo-Moya, C., George, J., Fluch, S., Geburek, T., Grabner, M., Karan-

itsch-Ackerl, S., Konrad, H., Mayer, K., Sehr, E. and Wischnitzki, E. (2018)

Drought sensitivity of Norway Spruce at the Species’ warmest fringe:

quantitative and molecular analysis reveals high genetic variation among

and within provenances. G3 (Bethesda, Md.), 8(4), 1225–1245.
Van der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., Del Angel, G.,

Levy-Moonshine, A., Jordan, T., Shakir, K., Roazen, D. and Thibault, J.

(2013) From FastQ data to high-confidence variant calls: the genome

analysis toolkit best practices pipeline. Curr. Protoc. Bioinformatics, 43

(1), 11.10.1-11.10.33.

Verhaegen, D., Plomion, C., Gion, J.-M., Poitel, M., Costa, P. and Kremer, A.

(1997) Quantitative trait dissection analysis in Eucalyptus using RAPD

markers: 1. Detection of QTL in interspecific hybrid progeny, stability of

QTL expression across different ages. Theor. Appl. Genet. 95(4), 597–608.
https://doi.org/10.1007/s001220050601.

Vidalis, A., Scofield, D.G., Neves, L.G., Bernhardsson, C., Garc�ıa-Gil, M.R.

and Ingvarsson, P. (2018) Design and evaluation of a large sequence-

capture probe set and associated SNPs for diploid and haploid sam-

ples of Norway spruce (Picea abies). bioRxiv. https://doi.org/10.1101/

291716.

Wegrzyn, J.L., Eckert, A.J., Choi, M., Lee, J.M., Stanton, B.J., Sykes, R.,

Davis, M.F., Tsai, C.-J. and Neale, D.B. (2010) Association genetics of

© 2019 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,
The Plant Journal, (2019), 100, 83–100

Genome-wide association study in Norway spruce 99



traits controlling lignin and cellulose biosynthesis in black cottonwood

(Populus trichocarpa, Salicaceae) secondary xylem. New Phytol. 188(2),

515–532. https://doi.org/doi:10.1111/j.1469-8137.2010.03415.x.
Wu, W.-R., Li, W.-M., Tang, D.-Z., Lu, H.-R. and Worland, A. (1999) Time-re-

lated mapping of quantitative trait loci underlying tiller number in rice.

Genetics, 151(1), 297–303.
Wu, R., Ma, C.-X., Lin, M. and Casella, G. (2004) A general framework for

analyzing the genetic architecture of developmental characteristics.

Genetics, 166(3), 1541–1551.
Xing, J.U.N., Li, J., Yang, R., Zhou, X. and Xu, S. (2012) Bayesian B-spline

mapping for dynamic quantitative traits. Genet. Res. 94(2), 85–95.
https://doi.org/10.1017/S0016672312000249.

Yamasaki, K., Kigawa, T., Inoue, M. et al. (2004) Solution structure of the B3

DNA binding domain of the Arabidopsis cold-responsive transcription

factor RAV1. Plant Cell, 16(12), 3448–3459.
Yang, R. and Xu, S. (2007) Bayesian shrinkage analysis of quantitative trait

loci for dynamic traits. Genetics, 176(2), 1169–1185. https://doi.org/10.

1534/genetics.106.064279.

Yang, R., Tian, Q. and Xu, S. (2006) Mapping quantitative trait loci for longi-

tudinal traits in line crosses. Genetics, 173(4), 2339–2356.
Yang, J., Li, L., Jiang, H., Nettleton, D. and Schnable, P.S. (2014) Dominant

gene action accounts for much of the missing heritability in a gwas and

provides insight into heterosis. Genome-wide association studies to dis-

sect the genetic architecture of yield-related traits in maize and the

genetic basis of heterosis, 1001, 44.

Zhong, R., Burk, D.H., Morrison, W.H. and Ye, Z.-H. (2002) A kinesin-like pro-

tein is essential for oriented deposition of cellulose microfibrils and cell

wall strength. Plant Cell, 14(12), 3101–3117.
Zhou, G., Chen, Y., Yao, W., Zhang, C., Xie, W., Hua, J., Xing, Y., Xiao, J.

and Zhang, Q. (2012) Genetic composition of yield heterosis in an elite

rice hybrid. Proc. Natl Acad. Sci. USA, 109(39), 15847–15852. https://doi.
org/10.1073/pnas.1214141109.

Zou, H. (2006) The adaptive LASSO and its oracle properties. J. Am. Stat.

Assoc. 101(476), 1418–1429.

© 2019 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,

The Plant Journal, (2019), 100, 83–100

100 John Baison et al.







OR I G I N A L A R T I C L E

Association genetics identifies a specifically regulated Norway
spruce laccase gene, PaLAC5, linked to Heterobasidion
parviporum resistance

Malin Elfstrand1 | John Baison2 | Karl Lundén1 | Linghua Zhou2 |

Ingrid Vos3 | Hernan Dario Capador1 | Matilda Stein Åslund1 | Zhiqiang Chen2 |

Rajiv Chaudhary1 | Åke Olson1 | Harry X. Wu2 | Bo Karlsson3 | Jan Stenlid1 |

María Rosario García-Gil2

1Uppsala Biocentre, Department of Forest

Mycology and Plant Pathology, Swedish

University of Agricultural Sciences, Uppsala,

Sweden

2Umeå Plant Science Centre, Department of

Forest Genetics and Plant Physiology, Swedish

University of Agricultural Sciences, Umeå,

Sweden

3Skogforsk, Svalöv, Sweden

Correspondence

Malin Elfstrand, Uppsala Biocentre,

Department of Forest Mycology and Plant

Pathology, Swedish University of Agricultural

Sciences, P.O.Box 7026 75005 Uppsala,

Sweden.

Email: malin.elfstrand@slu.se

Funding information

Swedish Foundation for Strategic Research,

Grant/Award Number: RBP14-0040; The

Swedish Research Council for Environment,

Agricultural Sciences and Spatial Planning,

Grant/Award Number: 2017-0040; VINNOVA,

Grant/Award Numbers: 2015-02290,

2016-00504

Abstract

It is important to improve the understanding of the interactions between the trees

and pathogens and integrate this knowledge about disease resistance into tree

breeding programs. The conifer Norway spruce (Picea abies) is an important species

for the forest industry in Europe. Its major pathogen is Heterobasidion parviporum,

causing stem and root rot.

In this study, we identified 11 Norway spruce QTLs (Quantitative trait loci) that cor-

relate with variation in resistance to H. parviporum in a population of 466 trees by

association genetics. Individual QTLs explained between 2.1 and 5.2% of the pheno-

typic variance. The expression of candidate genes associated with the QTLs was

analysed in silico and in response to H. parviporum hypothesizing that (a) candidate

genes linked to control of fungal sapwood growth are more commonly expressed in

sapwood, and; (b) candidate genes associated with induced defences are respond to

H. parviporum inoculation. The Norway spruce laccase PaLAC5 associated with con-

trol of lesion length development is likely to be involved in the induced defences.

Expression analyses showed that PaLAC5 responds specifically and strongly in close

proximity to the H. parviporum inoculation. Thus, PaLAC5 may be associated with the

lignosuberized boundary zone formation in bark adjacent to the inoculation site.

K E YWORD S

genome-wide association study (GWAS), lignosuberized boundary zone, mitochondrion,

sapwood, secretory and endosomal trafficking pathways, suberin, TOM40

1 | INTRODUCTION

The importance of trees and forests for sustaining terrestrial life and

biodiversity can probably not be exaggerated (Petit & Hampe, 2006).J Baison, K Lundén and L Zhou These authors contributed equally.
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Pathogen and pest attacks on trees negatively impact the health and

biodiversity of native forest ecosystems as well as forest plantations,

which can have large economic, ecological and societal consequences

(Cubbage, Pye, Holmes, & Wagner, 2000; Garbelotto &

Gonthier, 2013; Pautasso, Schlegel, & Holdenrieder, 2015; Wood-

ward, Stenlid, Karjalainen, & Hüttermann, 1998). Therefore, it is

important to increase the understanding of interactions between the

tree and a pathogen in order to incorporate traits that confer to

increased resistance into forest tree breeding programs.

Norway spruce [Picea abies (L.) Karst.] is economically impor-

tant for the forest industry in Europe. Its major pathogens are fungi

in the species complex Heterobasidion annosum sensu lato (s.l.),

which causes stem and root rot in Norway spruce and several other

conifer tree species (Garbelotto & Gonthier, 2013; Woodward

et al., 1998). Under natural conditions, airborne spores of

H. annosum s.l. can infect stumps created after harvesting and thin-

ning operations. Once the stump is infected, surrounding trees or

stumps can be infected by secondary spread when H. annosum

s.l. mycelium enters neighbouring trees through root grafts and

contacts (Oliva, Bendz-Hellgren, & Stenlid, 2011; Redfern &

Stenlid, 1998). In Norway spruce, resistance to the spruce-infecting

congener Heterobasidion parviporum is quantitative in its nature

(Arnerup, Swedjemark, Elfstrand, Karlsson, & Stenlid, 2010; Chen

et al., 2018; Karlsson & Swedjemark, 2006; Steffenrem, Solheim, &

Skrøppa, 2016), and classical interval mapping-based quantitative

trait locus (QTL) analysis for resistance to H. parviporum identified

13 QTL linked to host resistance (Lind et al., 2014). PaLAR3, on the

QTLs associated with control of fungal spread in the sapwood, has

been validated and the function of the variation at the locus

described (Nemesio-Gorriz et al., 2016).

A feature that Norway spruce has in common with all tree species

is that a large fraction of the biomass is invested in the sapwood in

the trunk (Petit & Hampe, 2006). The primary function of the sap-

wood is to transport water and nutrients to the crown and it is domi-

nated by dead cells that have a limited capacity to respond to biotic or

abiotic stress (Johansson & Theander, 1974; Oliva et al., 2015;

Shain, 1971). To protect the sapwood, the trunk of a tree is clad in an

impermeable barrier, bark. The term “bark” commonly refers to all tis-

sues external to the vascular cambium of trees. The outer bark is

highly suberized and lignified, making it extremely resistant to

mechanical and chemical degradation. Only a few pathogenic microor-

ganisms are capable of directly penetrating the outer bark (Lindberg &

Johansson, 1991). Therefore, a common mode of entry for fungi that

cause stem cankers and decays is via mechanical wounds, exposing

the cortex, secondary phloem tissues or the xylem (Woodward &

Pocock, 1996). The speed at which the tree is able to seal off the tis-

sues exposed by wounding with wound periderm is critical in avoiding

damaging infections and subsequent loss of water transport capacity.

The process to heal the bark begins with rapid necrosis of cells closest

to the wound or progressing infection. It then continues with

programmed death of cells adjacent to the necrosis, forming the

lignosuberized boundary zone (LSZ), and de-differentiation of cells

next to the LSZ followed by differentiation of the wound periderm

(Bodles, Beckett, & Woodward, 2007; Mullick, 1977; Woodward,

Bianchi, Bodles, Beckett, & Michelozzi, 2007).

The trait control of lesion length extension (LL, with reported her-

itability values of 0.14–0.33) is measured as the size of the discernible

necrosis cells closest to the wound or progressing infection (Arnerup,

Lind, Olson, Stenlid, & Elfstrand, 2011; Chen et al., 2018; Steffenrem

et al., 2016). It could be argued that LL provides a measure of how the

induced defences and wound healing responses interact to control

the spread of the necrotrophic pathogen (Arnerup et al., 2011; Chen

et al., 2018; Danielsson et al., 2011; Lind et al., 2014; Steffenrem

et al., 2016). The trait control of fungal spread in the sapwood (fungal

sapwood growth, SWG) can be considered to provide a measure of

how well the combination of constitutive defences and the induced

defence responses in the parenchymatic cells can control the spread

of H. parviporum in the exposed sapwood (Johansson & Stenlid, 1985;

Oliva et al., 2015). The narrow-sense heritability of SWG has been

estimated to vary between 0.11 and 0.42 depending on the material

studied (e.g., experimental cross, natural population) (Arnerup

et al., 2010; Chen et al., 2018).

To date, the main focus of practical breeding in Norway spruce

has been on climatic adaptation, growth and wood quality traits

(Skrøppa, Solheim, & Steffenrem, 2015). In contrast, breeding for

replantation material with improved resistance to H.annosum s.s. and

H. parviporum is an overlooked objective because of limited informa-

tion about genetic variation in resistance to these pathogens and the

lack of reliable selection techniques (Skrøppa et al., 2015). There are,

however, clearly sufficient phenotypic and genetic variation for resis-

tance to H. parviporum in Norway spruce to allow for breeding

(Arnerup et al., 2010; Chen et al., 2018; Karlsson &

Swedjemark, 2006; Steffenrem et al., 2016), and no adverse correla-

tions between resistance to H. parviporum and growth or wood prop-

erties traits (Chen et al., 2018; Steffenrem et al., 2016). Hence, the

selection for H. parviporum resistance in breeding programmes could

lead to considerable gain without compromising other breeding

achievements (Chen et al., 2018).

To gain a deeper understanding of the heritability and genetic

architecture of, for example, disease resistance traits, including the

number, location, effect and nature of the loci involved, quantitative

and molecular genetic approaches can be used to analyse the relation-

ships between DNA polymorphism and phenotypic variation

(Bartholomé et al., 2016; Neale & Savolainen, 2004). The two main

approaches to detect QTLs: Interval mapping (IM) in experimental

crosses or linkage disequilibrium (LD) mapping, commonly known as

genome-wide association studies (GWAS) (Neale & Savolainen, 2004).

GWAS, relying on historical recombination in the mapping population,

overcomes the limited resolution of IM in experimental crosses

(Baison et al., 2019; Neale & Savolainen, 2004). If enough markers can

be analysed, this should be especially advantageous in conifers that

have particularly short average distances of maintained LD, often

even confined within genes (Namroud, Guillet-Claude, Mackay,

Isabel, & Bousquet, 2010). The effects of LD are also influenced by

the extreme physical distances separating genes in conifers (Nystedt

et al., 2013).
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It is likely that the Norway spruce genome harbours additional,

yet undetected loci, to the 13 QTLs already identified by (Lind

et al., 2014) controlling resistance to H. parviporum (Chen et al., 2018;

Hall, Hallingbäck, & Wu, 2016). Identification of further loci would

support the initiation of a breeding programme for the resistance to

the pathogen in Norway spruce and, just as importantly, improve the

understanding of the interactions between trees and necrotrophic

pathogens. The short maintained LD and the polygenic nature of the

traits controlling resistance suggest that GWAS could be a powerful

method to identify further QTL regions associated with H. parviporum

resistance in Norway spruce. Consequently, in this study, we aimed to

identify Norway spruce loci that correlate with variation in resistance

to H. parviporum in a population of 466 Norway spruce trees by

GWAS. We identified candidate genes associated with the QTLs and

analysed the expression patterns of the candidate genes in response

to H. parviporum hypothesizing that (a) candidate genes linked to the

SWG trait would be expressed in sapwood while candidate genes

linked to LL are expressed in more peripheral tissues, and;

(b) candidate genes that are part of the induced defence are induced

in response to H. parviporum inoculation.

2 | MATERIALS AND METHODS

2.1 | Phenotyping of resistance traits in the
progeny of 466 Norway spruce mother trees

We used the currently available largest Norway spruce resistance

phenotyping dataset to perform the GWAS. The material, inoculation

method and genetic analyses are described in detail in (Chen

et al., 2018). On average ten 2-year-old, open-pollinated progenies

derived from 466 tested plus trees in the Swedish breeding popula-

tion were inoculated with H. parviporum Niemelä & Korhonen strain

Rb175. A wooden dowel colonized by H. parviporum was fixated at a

wound on the stem of the plant with Parafilm. The inoculated plants

were kept under ambient light and temperature in the forest tree

nursery and harvested 21 days post-inoculation. The induced defence

responses (LL) in the phloem and inner bark were estimated by mea-

suring the discernible lesion spread upwards and downwards from the

edge of the inoculation point on the inside of the bark. SWG was esti-

mated using established protocols (Arnerup et al., 2010; Stenlid &

Swedjemark, 1988) (Table 1). The seedlings were cut up into five mm

discs and placed on moist filter papers in Petri dishes. Plates were

incubated in darkness under moist conditions at 21�C for 1 week to

induce conidia formation. Thereafter, the presence or absence of

H. parviporum conidia on each individual disc was determined under a

stereomicroscope. For each seedling, the sum of the discs where con-

idia were observed multiplied by 5 (mm) was noted as SWG. Plates

where no conidia could be observed on the discs, the inoculation

point and on the inoculation plug, and that showed total lesion length

of 2 mm or shorter, were treated as inoculation failures and were dis-

carded (Lind et al., 2014). Chen et al. (2018) reported narrow-sense

heritability values of 0.33 and 0.42, respectively, for LL and SWG and

moderate phenotypic (0.48) and genetic (0.47) correlations between

LL and SWG in this material.

2.2 | Norway spruce genotyping and SNP
annotation

Dormant buds were collected from each of the mother trees. Total

genomic DNA was extracted from the buds, using the Qiagen Plant

DNA extraction kit (Qiagen, Hilden, Germany), and the DNA was

quantified using the Qubit® ds DNA Broad Range (BR) Assay Kit

(Oregon, USA). The generation and evaluation of exome capture for

Norway spruce are described elsewhere (Vidalis et al., 2018).

Sequence capture on the mother tree DNA was performed using

40,018 previously evaluated diploid probes (Baison et al., 2019;

Vidalis et al., 2018). Probe design and sequence capture were done by

RAPiD Genomics (Gainesville, FL, USA). In brief, Illumina sequencing

compatible libraries were amplified with 14 cycles of PCR and the

probes were then hybridized to a pool comprising 500 ng of eight

equimolarly combined libraries following Agilent's SureSelect Target

Enrichment System (Agilent Technologies). These enriched libraries

were then sequenced to an average depth of 15x using an Illumina

HiSeq 2,500 (San Diego, USA) on the 2 × 100 bp sequencing mode.

Read mapping and initial variant calling as well as the recalibration

of the quality of SNP calling were then applied to filter the raw vari-

ants, described in detail in Baison et al. (2019). In brief, the variant

calling was made using GATK HaplotypeCaller v.3.6 as per the best

practices protocol (Auwera et al., 2013) in gVCF output format. To

increase accuracy, hard filters in the form of minor allele frequency

(MAF) and “missingness” of <0.05 and >20%, respectively, were then

performed on the final dataset.

3 | GWAS

The LASSO model as described by Li et al. (2014) was applied to the

H. parviporum resistance trait data for the detection of QTLs.

TABLE 1 Summary statistics of the phenotype data used in the
trait-marker association study (Details can be found in Chen
et al. (2018))

Inoculation study Acron. Unit Na Mean

Diameterb D mm 4,628 4.0

Lesion lengthc LL mm 4,547 7.6

Fungal growthd FG/SWG mm 4,554 32.5

Vitalitye Vitality Classes 4,376 1.9

aN: total number of progenies with valid recording of the trait.
bDiameter of the progenies at the inoculation site.
cLength of the necrotic lesion in the phloem and inner bark.
dFungal growth in the sapwood of the progenies.
eVitality of the progenies where score 1 was given to fully vital and worst

score 3 was given to plants showing a pronounced loss of vitality.
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The LASSO model:

min
α0,α jð Þ

1
2n

Xn
i=1

yi−αo−
XP
j=1

xy−α j

 !2

+ λ
XP
j=1

α j, ð1Þ

where yi is the estimated breeding values (EBV) of an individual

i (i = 1,…,n; n is the total number of individuals) for each trait, α0 is the

population mean parameter, xij is the genotypic value of individual

i and marker j coded as 0, 1 and 2 for three marker genotypes AA, AB

and BB, respectively, αj is the effect of marker j (i = 1,…,n; n is the total

number of markers) and λ (>0) is a shrinkage tuning parameter. A fun-

damental idea of LASSO is to utilize the penalty function to shrink the

SNP effects towards zero, and only keep a small number of important

SNPs that are highly associated with the trait in the model. The stabil-

ity selection probability (SSP) of each SNP being selected to the model

was applied as a way to control the false discovery rate and determine

significant SNPs (H. Gao et al., 2014; Li & Sillanpää, 2015). For a

marker to be declared significant, an SSP inclusion ratio (Frequency)

was used with an inclusion frequency of all traits. This frequency

inferred that the expected number of falsely selected markers was

less than one, according to the formula of Bühlmann, Kalisch, and

Meier (2014). Population structure was accounted for in all analyses

by including principal components based on the genotype data as

covariates into the model (Baison et al., 2019). An adaptive LASSO

approach (Baison et al., 2019; Zou, 2006) was used to determine the

percentage of phenotypic variance (PVE) (H2
QT) of all the QTLs. The

analyses were all performed in RStudio (Team, 2015).

3.1 | Identification of candidate genes associated
with the QTLs

To assess putative functionality of SNPs with significant associations,

a gene enrichment analysis of putative genes and their associated

orthologs was performed against the P. abies v1.0 genome (http://

congenie.org), collecting PFAM and GO term annotations and Populus

and Arabidopsis orthologues. The position of the detected QTLs in

Norway spruce genome was estimated by searching an ultra-dense

genetic map (Bernhardsson et al., 2019) for markers derived from the

same probes as the SNP markers holding the QTLs, identified based

on tblastn sequence homology for the SNP array sequences in the

Lind et al. (2014) study, as described by (Bernhardsson et al., 2019).

Information on the expression pattern of the putative candidate

genes associated with the QTL, in the Norway spruce clone Z4006

(the clone sequenced in Nystedt et al. (2013)) and in wood, were col-

lected from three sources. Firstly, expression data were downloaded

from the publicly available P.abies exAtlas (https://www.congenie.org)

and NorWood v1.0 (http://norwood.congenie.org) databases, respec-

tively. Both these databases are comprised of expression profiles from

approximately 50-year-old ramets of the genotype “Z4006.” Then, we

examined an RNAseq study of bark and phloem samples harvested at

seven dpi proximal (0–5 mm from the wound) and distal to the

inoculation site (10–15 mm away from the wound) from two Norway

spruce genotypes (S21K0220126 and S21K0220184) inoculated with

H. parviporum (Chaudhary et al., submitted manuscript). In brief, two-

year-old branches on clones of S21K0220126 and S21K0220184

were inoculated and sampled as described above using wounding as a

control. A total RNA from three biological replicates of each clone per

treatment were sequenced on the Illumina HiSeq 2500 at the

SNP&SEQ Technology Platform (SciLifeLab, Uppsala). Quality filtering

was done using Nesoni 0.97 (http://www.vicbioinformatics.com/

nesoni-cookbook/index.html#). Differential gene expression was iden-

tified using the Tophat-cufflinks pipeline (Trapnell et al., 2012, 2014;

Trapnell et al., 2013) and the “P. abies v1.0-all-cds.fna” gene catalogue

as a reference (Chaudhary et al., submitted manuscript).

3.2 | Branch inoculation with H. parviporum

We performed an inoculation experiment on six-year-old grafted

cuttings of the Norway spruce genotype S21K7820222. Branches

on healthy-looking potted plants were inoculated with wooden

dowels colonized by H. parviporum Rb175 fixated to a wound on a

two-year-old branch with Parafilm. Control treatment branches

were wounded and covered with Parafilm. The inoculated plants

kept at ambient light and temperature conditions in a greenhouse.

At 7 days post-inoculation (dpi), bark surrounding the wounds and

inoculation sites were cut into two sections and samples were col-

lected at the inoculation site 0–5 mm around the wound and distal

to the inoculation site 10–15 mm from the wound. The bark sam-

ples were frozen separately in liquid nitrogen and stored at −80�C

until further use.

3.3 | Quantitative PCR analysis of expression
patterns in response to H. parviporum inoculation

The total RNA was isolated according to the protocol by Chang,

Puryear, and Cairney (1993). To eliminate genomic DNA contamina-

tion, samples were treated with DNase I (Sigma-Aldrich) according to

the manufacturer's instructions. RNA integrity and quantity were

analysed by using the Agilent RNA 6000 Nano kit (Agilent Technolo-

gies Inc.). The 1 μg of total RNA was reverse transcribed to cDNA

with the iScript cDNA Synthesis Kit (Bio-Rad) in a total reaction vol-

ume of 20 μl according to the manufacturer's instructions, followed

by a two-fold dilution of the cDNA and storage at − 20�C.

Quantitative PCR (qPCR) reactions were performed with the

SsoFast™ EvaGreen® Supermix (Bio-Rad) according to the instructions

in the manual, using 0.3 μM of each primer (Table S1 in Data S1) and

Norway spruce cDNA equivalent to 25 ng of total RNA. The qPCRs

were carried out in an iQ5™ Multicolor Real-Time PCR Detection Sys-

tem thermocycler (Bio-Rad) using a program with a 30 s initial dena-

turation step at 95�C, followed by 40 cycles of 5 s denaturation at

95�C and 10 s at 60�C. Melt curve analyses were used to validate the

amplicon. Four biological replicates were used per treatment and two
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technical repetitions per standard, sample and negative control

were run.

The relative expression was calculated from threshold cycle

(Ct) values using the 2ΔΔCT-method (Livak & Schmittgen, 2001) by

using the geometric mean of Phosphoglucomutase (Vestman

et al., 2011) and elongation factor 1-α (ELF1α) (Arnerup et al., 2011) to

normalize transcript abundance. The gene expression experiments

were performed with four biological and two technical replicates.

One-way ANOVA with Dunns Post-test (GraphPad Prism 5.0) was

used to detect differences in expression levels between treatments.

4 | RESULTS

4.1 | Trait association mapping identifies novel
QTLs for resistance to H. parviporum

From an average of 1.5 million paired end sequence reads per individ-

ual, 197,399 high confidence SNPs from 23,837 probes were identi-

fied. The majority of the SNPs were missense (61%) and silent (36%),

the highest percentage being either upstream or downstream variants

(68% total).

Employing a Stability Selection Probability (SSP) on the estimated

breeding values (EBVs) for SWG and LL of the offspring on the

466 trees, we identified six SNPs with significant associations for

SWG and five SNPs associating with LL (Table 2). The QTLs for con-

trol of sapwood growth of H. parviporum (SWG) explained similar frac-

tions of the observed phenotypic variation (H2
QTL) 2.4 to 5.2%

(Table 2). The five QTLs for control of the LL development in bark

explained between 2.1 and 4.4% of the observed phenotypic variation

(Table 2).

To investigate if the identified QTLs are independent from previ-

ously identified QTLs for resistance to the same isolate of

H. parviporum using IM (Lind et al., 2014), we searched an ultra-dense

genetic map (Bernhardsson et al., 2019) for the probes the SNP

markers originated from. This allowed us to estimate the position of

the detected QTLs and the original IM-based QTLs in the Norway

spruce genome. We could estimate the position in the Norway spruce

genome for six of the SNPs/probes (Table S2.I and Figure S2.II in Data

S1). All of the identified SNPs/probes were positioned >30 cM away

from the original IM-based QTLs in the genetic map. Given that the

maintained LD is estimated to only 109 bp across all the tagged geno-

mic sequences in this study (Table S2 in Data S1), it is likely that they

are independent. The SNP MA_53835_9763, associating with the trait

SWG, presented a potential exception as the probe MA_14663 is

positioned 4 cM away from MA_53835 in the map (Bernhardsson

et al., 2019). The probe MA_14663 corresponds to the SNP array

sequence for an IM-based QTL for infection prevention (Lind

et al., 2014; Chaudhary et al., submitted manuscript).

On the scaffolds holding the SNPs associated with the resistance

traits, a total of 14 gene models were identified, including 11 high- or

medium-quality Norway spruce gene models (Table 3). On the scaf-

folds holding more than one gene model, the SNPs were positioned in

MA_5978g0020, MA_25569g0020 and MA_97119g0010. Seven of

the candidate genes associated with SWG QTLs and seven with LL

(Tables 2 and 3). PFAM and GO term annotations and Populus and

Arabidopsis orthologues were collected from P. abies v1.0 genome

portal (Table 3). These metrics suggested that the gene models

MA_97119g0010 and MA_97119g0020, found on the scaffold

harbouring the SNP MA_97119_12277, indeed represented one gene.

BlastN searches against the NCBI database essentially confirmed this

suggestion as both gene models match JX500691.1 (Picea abies

TABLE 2 Significant association in the GWA study

Phenotypea QTL SNPb Allelec SNP featured Frequencye PVE (%)f

SWG_tot 8675 MA_5978_21,011 T/C Missense 0.71 4.83

26756 MA_17884_58584 A/G Upstream variant 0.72 3.41

54184 MA_53072_3732 G/A Synonymous 0.551 2.88

54695 MA_53835_9763 G/A Upstream variant 0.567 2.40

56105 MA_56128_7752 C/A Upstream variant 0.545 5.21

71928 MA_84091_11329 C/A Upstream variant 0.534 2.23

LL_tot 21105 MA_14352_27165 G/A Missense variant 0.603 3.82

27795 MA_18316_3165 G/T Upstream variant 0.618 2.11

31060 MA_19645_22184 C/T Missense 0.682 2.73

37057 MA_25569_28091 T/C Upstream variant 0.667 2.77

81488 MA_97119_12277 T/C Upstream variant 0.742 4.39

aPhenotype specifies the trait upon which the marker associate.
bSNP: The SNP name was composed of the contig (MA_number) and SNP position on contig. For example, the first SNP MA_5978_21011 was located on

contig MA_5978 at position 21011 bp.
cAllele indicates the biallelic SNP.
dSNP feature allelic variation associated with the SNP.
eFrequency, stability selection probability inclusion ratios for markers declared significant.
fPVE, phenotypic variance explained, only values larger than 1.0% are displayed.
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TABLE 3 Candidate Norway spruce gene models associated with the QTL markers

SNPa Candidate geneb Description (Blast2Go)c PFAM-Description/GO termd

Orthologs populus/

Arabidopsise

MA_5978_21,011 MA_5978g0010 Phenylcoumaran benzylic ether

reductase

PF00106-short chain dehydrogenase, Potri.009G118100.1/

AT1G75280.1PF01073-3-beta hydroxysteroid

dehydrogenase/isomerase family

PF01118-Semialdehyde dehydrogenase,

NAD binding domain,

PF01370-NAD-dependent epimerase/

dehydratase family,

PF02719-Polysaccharide biosynthesis

protein,

PF03435-Saccharopine dehydrogenase,

PF03807-NADP oxidoreductase

coenzyme F420-dependent,

PF05368-NmrA-like family,

PF07993-Male sterility protein,

PF08659-KR domain,

PF13460-NADH(P)-binding

MA_5978g0020 Nuclear factor 1 A-type isoform

2

PF06219-Protein of unknown function

(DUF1005)

Potri.013G071000.3/

AT5G17640.1

MA_17884_58584 MA_17884g0010 Mitochondrial import receptor

subunit TOM40-1

PF01459-Eukaryotic porin Potri.007G000200.1/

AT3G20000.1

MA_53072_3732 MA_53072g0010

MA_53835_9763 MA_53835g0010 Probable tocopherol O-

chloroplastic

PF01209-ubiE/COQ5 methyltransferase

family,

Potri.013G077000.1

AT1G64970.1

PF01728-FtsJ-like methyltransferase,

PF02353-Mycolic acid cyclopropane

synthetase,

PF03059-Nicotianamine synthase

protein,

PF05175-Methyltransferase small

domain,

PF05891-AdoMet dependent proline

di-methyltransferase,

PF07021-Methionine biosynthesis

protein MetW,

PF08003-Protein of unknown function

(DUF1698),

PF08241-Methyltransferase domain,

PF08242-Methyltransferase domain,

PF12847-Methyltransferase domain,

PF13489-Methyltransferase domain,

PF13578-Methyltransferase domain,

PF13649-Methyltransferase domain,

PF13659-Methyltransferase domain,

PF13679-Methyltransferase domain,

PF13847-Methyltransferase domain

MA_56128_7752 MA_56128g0010 Potri.006G130600.1

MA_84091_11329 MA_84091g0010

MA_14352_27165 MA_14352g0010 Transcription factor bHLH118 PF00010-Helix–loop–helix
DNA-binding domain

Potri.015G134300.1/

AT4G25400.1
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laccase LAC5a) with E = 4*10−135 and E = 0 and 99.62 and 99.71%

identity, respectively. This laccase, PaLAC5, was originally isolated

from lignin-forming Norway spruce suspension cultures. Apart from

MA_97119, two other QTL holding scaffolds (MA_5978 and

MA_25569) harboured more than one gene model (Table 3). Both of

these scaffolds appear to hold two different gene models as judged

by the PFAM annotations and Populus or Arabidopsis orthologs

(Table 3). MA_5978g0010 appears to encode a phenylcoumaran ben-

zylic ether reductase (PCBER) with similarity to PicglPPR21 (Porth,

Hamberger, White, & Ritland, 2011). The gene model

MA_14352g0010 may belong to the basic helix–loop–helix (bHLH)

DNA-binding superfamily since the PFAM-ID PF00010 (Helix–loop–

helix DNA-binding domain) is associated with the gene model. The

candidate gene MA_18316g0010 is associated with PF03398 (regula-

tor of Vps4 activity in the MVB pathway), indicating that this gene

too may be involved in regulatory activities. The gene model

MA_53835g0010 appears to encode a protein with methyltransferase

capacities based on its PFAM annotation and its Arabidopsis

orthologue (Table 3), and based on its PFAM annotation (PF01459)

and the annotation of the Arabidopsis orthologue, AT3G20000.1

(Table 3) which encodes β-barrel protein, TOM40, forming channels in

the outer mitochondrial membranes, it is likely that the candidate

gene MA_17884g0010 encodes a Norway spruce TOM40-like

protein.

4.2 | A majority of the candidate genes associated
with SWG are expressed in stem and wood forming
tissues

To gain a better understanding of the functionality of the candidate

genes, we assessed the expression in silico using available resources

such as NorWood and P. abies exATLAS databases. It predicted that

the candidate genes linked to SWG would more commonly be

expressed in sapwood than genes linked to LL. Only seven candidate

genes (MA_5978g0010, MA_5978g0020, MA_17884g0010,

MA_53835g0010, MA_56128g0010, MA_18316g0010 and

MA_25569g0020) were expressed in any of the libraries in NorWood

(Figure 1). Of the expressed candidate genes, five were linked to

SWG. This indicated a trend (Chi-square = 3.233, p = .07) where can-

didate genes linked to the SWG QTLs were expressed more often in

wood compared to candidate genes linked to LL.

NorWood is a database of transcript abundances in high spatial

resolution section series throughout the cambial and woody tissues of

Norway spruce (Jokipii-Lukkari et al., 2017). Three of the five candi-

date genes associated with control of SWG (MA_5978g0010,

MA_5978g0020 and MA_17884g0010) showed the highest transcript

TABLE 3 (Continued)

SNPa Candidate geneb Description (Blast2Go)c PFAM-Description/GO termd

Orthologs populus/

Arabidopsise

MA_18316_3165 MA_18316g0010 IST1 homologue PF03398-Regulator of Vps4 activity in

the MVB pathway

Potri.019G087400.1/

AT1G34220.2

MA_19645_22184 MA_19645g0010

MA_25569_28091 MA_25569g0010 GO:0005618-cell wall, Potri.002G054900.1/

AT1G03230.1GO:0016020-membrane,

GO:0044444-cytoplasmic part

MA_25569g0020 Potri.001G266500.1

MA_97119_12277 MA_97119g0010 Laccase PF07732-Multicopper oxidase Potri.019G124300.1 /

AT2G30210.1

MA_97119g0020 Laccase 12 PF00394-Multicopper oxidase, Potri.010G183500.1 /

AT5G05390.1PF07731-Multicopper oxidase

aSNP: The SNP name was composed of the contig (MA_number) and SNP position on contig.
bCandidate gene.
cDescription (Blast2Go).
dPFAM-Description or GO terms when PFAM descriptions were missing.
ePopulus/Arabidopsis orthologs identified in the P. abies v1.0 genome portal.

F IGURE 1 Relative expression levels of candidate genes
associated to H. parviporum resistance QTLs through different stages
of xylem development including cambium and expanding early wood
(cambium), secondary cell wall-forming xylem (SCW), first dead early
wood cells (Early wood) and the previous year's latewood (late wood).
Data collected from NorWood v1.0 (http://norwood.congenie.org)
database, T1-T3 represent the expression level in each of the three
analysed trees (Jokipii-Lukkari et al., 2017). The bar to the left
indicates the relative expression level of the candidate gene in the
heat map [Colour figure can be viewed at wileyonlinelibrary.com]
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levels in the cambial region. MA_56128g0010, also associated with

SWG, appeared to be more active in the expanding early wood and

secondary cell wall-forming tissues (Figure 1). One of the two candi-

date genes associated with the LL extension in the phloem and inner

bark that were detected in the NorWood libraries, MA_25569g0020

showed very high activity in the samples collected at the visual

appearance of dead early wood cells and in latewood (Figure 1). The

inspection of the expression patterns in the P. abies exATLAS indi-

cated that all candidate genes but MA_84091g0010 and

MA_19645g0010 were expressed in at least one tissue of the clone

Z4006 (Figure S3 in Data S1). Apart from the candidate genes that

were also detected in the NorWood database, several candidate

genes (MA_14352g0010, MA_25569g0010, MA_97119g0010 and

MA_97119g0020) associated with LL were found to be expressed in

samples derived from stem tissues (Figure S3 in Data S1).

4.3 | The transcriptional responses to
H. parviporum inoculation identifies candidates
responding specifically to the pathogen

If the candidate gene models associated with QTLs contribute to the con-

trol of the H. parviporum infection, they may be involved in either the con-

stitutive or induced defence in the tissue (or both) (Arnerup et al., 2011;

Danielsson et al., 2011; Oliva et al., 2015). Assuming that genes associated

with the induced defences respond to inoculation with the pathogen, it is

relevant to assess the candidate genes expression pattern in response to

H. parviporum (Arnerup et al., 2011; Danielsson et al., 2011; Oliva

et al., 2015). We used an RNASeq study of transcriptional responses in

bark and phloem response to wounding and H. parviporum inoculation

(Chaudhary et al., submitted manuscript). Five candidate genes showed

constitutive expression at seven dpi irrespective of the treatment:

MA_5978g0020, MA_17884g0010, MA_53835g0010, MA_56128g0010

and MA_25569g0020 (Figure 2). Most of these showed moderate expres-

sion levels, but MA_17884g0010 expression was relatively high in all sam-

ples. Four gene models associated with LL were differentially expressed at

seven dpi: MA_14352g0010, MA_18316g0010, MA_97119g0010 and

MA_97119g0020 (Figure 2). Interestingly, the two candidate gene models,

(MA_97119g0010 and MA_97119g0020, i.e., PaLAC5) that showed the

largest induction in response to the inoculation treatment compared to

the wounding control proximal to the inoculation site, were not induced

but rather downregulated distally at seven dpi (Figure 2). To validate the

transcriptional responses estimated from the RNAseq data, we set up a

separate inoculation experiment in a single Norway spruce genotype for

qPCR validation of the expression patterns at seven dpi. The qPCR verified

the transcriptional regulation patterns between H. parviporum inoculation

and wounding treatment for most genes (Figures 2 and 3). This included

the absence of a transcriptional activity of the candidate genes

MA_53072g0010, MA_84091g0010, MA_19645g0010 and

MA_25569g0010. The repression of the putative bHLH transcription fac-

tor MA_14352g0010 in response to H. parviporum was not detected in

the qPCR experiment. The qPCR did confirm that PaLAC5

(MA_97119g0010 and MA_97119g0020) is strongly and specifically

upregulated in close proximity to the H. parviporum inoculation site

(Figure 3d). Two of the candidate genes linked to the SWG QTLs with

detected expression in the Norwood database, MA_17884g0010 and

MA_53835g0010, were shown to be induced in response to

H. parviporum compared to the control (Figure 3f,g). None of the tested

candidate genes, including MA_17884g0010 and MA_53835g0010, were

differentially expressed between H. parviporum inoculation and wounding

in sapwood in early interactions (Table S4 and Method Section in

Data S1).

5 | DISCUSSION

5.1 | Twelve distinct QTLs for resistance to
H. parviporum identified by GWAS

In this study, the GWAS identified 11 significant associations across

the two traits for H. parviporum resistance. QTLs for LL and SWG

traits detected in the GWAS explained similar fractions of the

observed phenotypic variation, as in the IM-based QTL study by Lind

et al. (2014). However, the narrow-sense heritability of the pheno-

typic traits was considerably higher among the 466 Norway spruce

half-sib families than in the single family used in the IM-based QTL

study, 0.42 compared to 0.11 for SWG (Arnerup et al., 2010; Chen

et al., 2018; Lind et al., 2014). The fact that the Norway spruce

genome v 1.0 assembly was highly fragmented comprising >10 million

scaffolds over 500 bp (Bernhardsson et al., 2019; Nystedt et al., 2013)

made it difficult to evaluate how the QTLs identified by GWAS relate

to the previously identified QTLs (Lind et al., 2014), or to each other.

However, the newly published ultra-dense genetic map (Bernhardsson

et al., 2019) showed that five of the QTLs were independent from the

other QTL regions as they were found in different linkage groups.

Only one of the QTL regions that was identified in the linkage map

F IGURE 2 Expression profile of candidate genes for
H. parviporum resistance in response to H. parviporum inoculation and

wounding at seven dpi proximally (0–5 mm from the inoculation site)
and distally (10–15 mm from the inoculation site) in the clones
S21K0220126 and S21K0220184 (Chaudhary submitted MS).
Asterisks indicate significant different expression levels between the
inoculation treatment and the wounding control in Cuffdiff. The bar to
the left indicates the FPKM values associated with the gene model
[Colour figure can be viewed at wileyonlinelibrary.com]
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may possibly coincide with a previously identified resistance QTLs

(Lind et al., 2014). The SNP MA_53835_9763 is positioned within

4 cM from a probe in the confidence region for the trait infection pre-

vention (IP) on LG 11 (Lind et al., 2014; Chaudhary et al., submitted

manuscript). Thus, the possibility that these markers target the same

genomic region cannot be excluded, although it is not very likely given

the short LD. Overall, the GWAS returned 11 new potential markers

for resistance to H. parviporum in Norway spruce that could be used

to aid selection in breeding programmes.

5.2 | Candidate genes have orthologues whose
genetic variation is associated with the control of the
responses to multiple stresses

Three of the candidate genes identified in the GWAS,

MA_17884g0010, MA_5978g0020 and MA_18316g0010, have Ara-

bidopsis orthologues AT3G20000.1, AT5G17640.1 and

AT1G34220.2, respectively. These orthologues hold QTLs for

responses to multiple stresses (Kawa et al., 2016; Thoen et al., 2017).

F IGURE 3 Expression profile of
candidate genes for H. parviporum
resistance in response to H. parviporum
inoculation (Hp) and wounding (W) at
seven dpi proximally (0–5 mm from the
inoculation site, indicated by the letter
“A” in, e.g., the treatment “Hp_A”) and
distally (10–15 mm from the inoculation
site, indicated by the letter “C”) in the

Norway spruce clone S21K7820222 as
detected by qPCR. Candidates a–d are
associated with the trait LL and candidate
genes e–g with trait the SWG. The
floating bars in the graphs indicate min
and max values, the line indicates mean,
and different letters over the bars in the
graph indicate significant differences in
the statistical analyses (N = 4)
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The candidate gene MA_18316g0010 was associated with control of

lesion length in the inner bark and it was upregulated in response to

H. parviporum inoculation compared to wounding alone, both proxi-

mally and distally. The Arabidopsis orthologue AT1G34220.2 encodes

IST1-LIKE1 (ISTL1), a protein predicted to be the Arabidopsis homo-

logue of yeast IST (Buono et al., 2016). ISTL1 is a regulator of the mul-

tivesicular bodies (MVB) pathway in which ubiquitinated and

endocytically internalized membrane proteins are degraded (C. Gao,

Zhuang, Shen, & Jiang, 2017). ISTL1, in interaction with LIP5 (LYST

INTERACTING PROTEIN 5, AT4G26750), is essential for normal plant

growth and repression of spontaneous cell death (Buono et al., 2016).

The fungus H. parviporum is a necrotrophic pathogen and upon infec-

tion or inoculation in trees, it will create necrotic lesions in the phloem

to gain access to the sapwood (Johansson & Stenlid, 1985; Lindberg &

Johansson, 1991). It is, therefore, tempting to propose that the

MA_18316g0010 protein fulfils the same role in the control of the cell

death process as the ISTL1/LIP5 complex, MA_18316g0010 was

upregulated in response to H. parviporum inoculation to repress cell

death, a mechanism that must be integral to the LL trait. It would be

interesting to test if the variation at MA_18316_3156 leads to differ-

ential accumulation of the transcript in response to H. parviporum.

The Arabidopsis orthologue to MA_17884g0010, AT3G20000.1,

encodes translocase of the outer mitochondrial membrane

40, TOM40. AtTOM40 is in LD with a QTL (Ch3:6968031) identified

in a multi-trait QTL mixed models GWAS using the responses to a set

of 30 biotic and abiotic stresses in 196 accessions of Arabidopsis

(Thoen et al., 2017). TOM40 protein is the central channel forming

units of the TOM complex (Hill et al., 1998). The TOM complex and

the mitochondrial outer membrane play a central role in the interac-

tion between the mitochondrion and the cytosol. It mediates the

import of preproteins, the passage of small molecules and the trans-

duction of signals between cellular compartments (Duncan, van der

Merwe, Daley, & Whelan, 2013). Consequently, it is perhaps not

unexpected that genetic variation associated with MA_17884g0010

and TOM40 may influence plants responses to stress, or that

MA_17884g0010 shows a ubiquitous expression in the surveyed Nor-

way spruce tissues, with a slight upregulation in metabolically very

active tissues (eg the cambium) and in response to H. parviporum

inoculation.

5.3 | Candidate genes linked to SWG QTLs are
more commonly expressed in wood

Despite the economic and ecological importance of conifers, we know

surprisingly little about the genetic basis of resistance to decay patho-

gens compared to canker-forming pathogens in conifers (Kinloch,

Sniezko, & Dupper, 2003; Liu et al., 2017; Sniezko, Smith, Liu, &

Hamelin, 2014). Examining the regions under selection in response to

given pathogens or stressors, identifying and testing candidate genes,

can lead to better understanding of the interaction between the host

and the pathogen (Liu et al., 2017; Martin, Rönnberg-Wästljung, Ste-

nlid, & Samils, 2016; Nemesio-Gorriz et al., 2016; Thoen et al., 2017).

Under the expectation that candidate genes linked to the control of

SWG are involved in processes shaping the cell wall or in production

of, for example, specialized metabolites in wood (Oliva et al., 2015;

Popoff, Theander, & Johansson, 1975; Stenlid & Johansson, 1987), we

predicted that the expression of the candidate genes linked to SWG

QTLs should be more commonly detected in the wood-forming tis-

sues than the genes linked to the LL QTLs. A trend for this was

observed in the NorWood database (Jokipii-Lukkari et al., 2017),

although a larger number of QTLs and candidate genes for both traits

studied would probably have been needed to gain conclusive evi-

dence. It is, however, important to point out that none of the QTLs

identified for SWG, or LL, coincide with the 52 QTLs for important

wood quality traits in Norway spruce reported by Baison et al. (2019).

An observation that is fully in agreement with the absence of signifi-

cant correlations between wood quality, or growth, traits and resis-

tance to H. parviporum in this material (Chen et al., 2018), suggesting

that the detected SWG QTLs may be associated to distinct defence-

related processes. Several of the expressed candidate genes showed

their highest transcriptional activity in the cambium and expanding

early wood libraries. The candidate gene MA_25569g0020, associated

with LL, showed increased transcriptional activity during visual

appearance of dead early wood cells in the sapwood. The transcript is

also specifically expressed in the phloem in the autumn/winter

(Jokipii-Lukkari et al., 2018), but it was not induced by H. parviporum

inoculation. This points to that the role of MA_25569g0020 in resis-

tance may be associated to the constitutive defence.

5.4 | The Norway spruce laccase PaLAC5 responds
specifically to H. parviporum inoculation

Two candidate genes associated with the LL trait in bark,

MA_53835g0010 and PaLAC5, are likely to be members of the

induced defence to H. parviporum. The Norway spruce laccase gene

PaLAC5 (MA_97119g0010 and MA_97119g0020) was originally iso-

lated from lignin-producing Norway spruce suspension cultures

(Koutaniemi, Malmberg, Simola, Teeri, & Kärkönen, 2015), and trans-

criptome analyses of these lignin-producing Norway spruce suspen-

sion cultures under different conditions suggest that PaLAC5 is

associated with the activation of stress associated lignin production

(Laitinen et al., 2017). PaLAC5 has a very specific spatial expression

pattern in response to H. parviporum inoculation. It is strongly, and

specifically, upregulated proximally to the H. parviporum inoculation

site but not regulated 10 mm away from the developing necrotic

lesion or in response to the wounding control. In contrast to the

induction of PaLAC5 in stress associated lignin production conditions

in vitro, the transcriptional activity of PaLAC5 is very low in sapwood

(Blokhina et al., 2019; Jokipii-Lukkari et al., 2017; Laitinen

et al., 2017). Therefore, PaLAC5 is not likely to be associated with lig-

nifying tracheids or ray parenchyma cells indicating that the induction

of PaLAC5 expression under lignin-forming conditions in the cell cul-

tures is stress-associated and not directly connected to lignification

processes in wood (Blokhina et al., 2019; Jokipii-Lukkari et al., 2017;
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Laitinen et al., 2017). However, if PaLAC5 would be responding to

stress in general, it would likely have had an expression pattern similar

to many other studied defense genes, which often show upregulation

in proximal to both mechanical wounding sites and to inoculation

points (Arnerup et al., 2011; Danielsson et al., 2011; Ralph

et al., 2006). Instead, it showed a distinct expression pattern. Thus, it

is probable that PaLAC5 expression is associated with specific cell

types or processes such as the formation of the LSZ in the bark adja-

cent to the inoculation site. The LSZ is characterized by deposition of

phenolics and suberin, and an early development of a discernible LSZ

is crucial in stopping fungal invasions (Bodles et al., 2007; Lindberg &

Johansson, 1991; Solla, Tomlinson, & Woodward, 2002; Woodward

et al., 2007). Recently, it was suggested that specific isoforms of per-

oxidase and laccases may be involved in cross-linking aromatics to

form lignin-like polyphenolics in the suberin in bark (Rains, Molina, &

Gardiyehewa de Silva, 2017). The expression pattern of PaLAC5

responding to H. parviporum and lignin-forming conditions (Laitinen

et al., 2017) clearly makes it an interesting candidate for such a role. It

remains to be seen if PaLAC5, indeed, is involved in the LSZ formation

and if genetic variation associated with PaLAC5 influences the forma-

tion of the LSZ.

6 | CONCLUSIONS

Our large sample sizes and a relatively high number of markers

allowed us to link traits to SNPs with GWAS and to identify candidate

genes associated with the QTLs. These candidate genes present new

insights into the interaction between Norway spruce and

H. parviporum, such as a putative involvement of the secretory and

endosomal trafficking pathways and the laccase PaLAC5, in the control

of lesion extension in the inner bark or the potential role of mitochon-

drial protein import and biogenesis in controlling H. parviporum spread

in the sapwood.
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Effect of number of annual rings and tree
ages on genomic predictive ability for solid
wood properties of Norway spruce
Linghua Zhou1, Zhiqiang Chen1, Lars Olsson2, Thomas Grahn2, Bo Karlsson3, Harry X. Wu1,4,5,
Sven-Olof Lundqvist2,6† and María Rosario García-Gil1*†

Abstract

Background: Genomic selection (GS) or genomic prediction is considered as a promising approach to accelerate
tree breeding and increase genetic gain by shortening breeding cycle, but the efforts to develop routines for
operational breeding are so far limited. We investigated the predictive ability (PA) of GS based on 484 progeny
trees from 62 half-sib families in Norway spruce (Picea abies (L.) Karst.) for wood density, modulus of elasticity (MOE)
and microfibril angle (MFA) measured with SilviScan, as well as for measurements on standing trees by Pilodyn and
Hitman instruments.

Results: GS predictive abilities were comparable with those based on pedigree-based prediction. Marker-based PAs
were generally 25–30% higher for traits density, MFA and MOE measured with SilviScan than for their respective
standing tree-based method which measured with Pilodyn and Hitman. Prediction accuracy (PC) of the standing
tree-based methods were similar or even higher than increment core-based method. 78–95% of the maximal PAs
of density, MFA and MOE obtained from coring to the pith at high age were reached by using data possible to
obtain by drilling 3–5 rings towards the pith at tree age 10–12.

Conclusions: This study indicates standing tree-based measurements is a cost-effective alternative method for GS.
PA of GS methods were comparable with those pedigree-based prediction. The highest PAs were reached with at
least 80–90% of the dataset used as training set. Selection for trait density could be conducted at an earlier age
than for MFA and MOE. Operational breeding can also be optimized by training the model at an earlier age or using 3
to 5 outermost rings at tree age 10 to 12 years, thereby shortening the cycle and reducing the impact on the tree.

Background
Norway spruce is one of the most important conifer spe-
cies in Europe in relation to economic and ecological as-
pects [1]. Breeding of Norway spruce started in the 1940s
with phenotypic selection of plus-trees, first in natural
populations and later in even-aged plantations [2]. Norway
spruce breeding cycle is approximately 25–30 years long,

of which the production of seeds and the evaluation of the
trees take roughly one-half of that time [3].
Genomic prediction using genome-wide dense

markers or genomic selection (GS) was first introduced
by Meuwissen [4]. The method modelling the effect of
large numbers of DNA markers covering the entire gen-
ome and subsequently predict the genomic value of indi-
viduals that have been genotyped, but not phenotyped.
As compared to the phenotypic mass selection based on
a pedigree-based relationship matrix (A matrix), gen-
omic prediction relies on constructing a marker-based
relationship matrix (G matrix). The superiority of the G-
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appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
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matrix is the result of a more precise estimation of gen-
etic similarity based on Mendelian segregation that not
only captures recent pedigree but also the historical
pedigree [5–7], and corrects possible errors in the pedi-
gree [8, 9].
There are multiple factors affecting genomic predic-

tion accuracy such as the extent of linkage disequilib-
rium (LD) between the marker loci and the quantitative
trait loci (QTL), which is determined by the density of
markers and the effective population size (Ne). Increased
accuracy with higher marker density has been reported
in simulation [10] and empirical studies in multiple for-
est tree species including Norway spruce [11–14], and
SNP position showed no significant effect [15–17].
Simulation [10] and empirical [18] studies also agree on
the need of a high marker density in populations with
larger effective size (Ne) in order to cover more QTLs
under low LD in contributing to the phenotypic
variance.
In forest tree species the accuracy of the genomic pre-

diction model has been mainly tested in cross-validation
designs where full-sibs and/or half-sibs progenies within
a single generation are subdivided into training and val-
idation sets [10, 19–22]. Model accuracy was reported to
increase with larger training to validation set ratios [11,
17, 23], while the level of relatedness between the two
sets is considered as a major factor [10, 15–17, 19, 24].
When genomic prediction is conducted across environ-
ments, the level of genotype by environment interaction
(GxE) of the trait determines its efficiency [11, 20, 21,
25]. The number of families and progeny size have also
been shown to affect model accuracy [11, 15].
As compared to the previously described factors, trait

heritability and specially trait genetic architecture are in-
trinsic characteristics to the studied trait in a given
population. Those two factors can also be addressed by
choosing an adequate statistical model depending on the
expected distribution of the marker effects [26]. Despite
theory and some results indicate that complex genetic
structures obtain better fit with models that assume
equal contribution of all markers to the observed vari-
ation, traits like disease-resistance are better predicted
with methods where markers are assumed to have differ-
ent variances [13, 20, 22, 27, 28]. However, results in for-
estry so far indicate that statistical models have little
impact on the GS efficiency [12, 17, 29].
In this study, we conducted a genomic prediction study

for solid wood properties based on data from 23-year old
trees from open-pollinated (OP) families of Norway spruce.
We focused on wood density, microfibril angle (MFA) and
modulus of elasticity/wood stiffness (MOE) measured both
with SilviScan in the lab, on standing trees of Pilodyn pene-
tration depth and Hitman velocity of sound. The measure-
ment methods are detailed in the next section.

The specific aims of the study were: (i) to compare
narrow-sense heritability (h2) estimation, predictive abil-
ity (PA) and prediction accuracy (PC) of the pedigree-
based (ABLUP) models with marker-based models based
on data from measurements with SilviScan on increment
cores and from Pilodyn and Hitman measurements on
standing trees, (ii) to examine the effects on model PA
and PC of different training-to-validation set ratios and
different statistical methods, (iii) to compare some prac-
tical alternatives to implement early training of genomic
prediction model into operational breeding.

Result
Narrow-sense heritability (h2) of the phenotypic traits,
predictive ability (PA) and predictive accuracy (PC) based
on pedigree and maker data
In Table 1, narrow sense heritabilities (h2) and Prediction
Abilities (PA) based on ABLUP and GBLUP are compared
for density, MFA and MOE based on cross-sectional aver-
ages at age 19 years, and for Pilodyn, Velocity and MOEind
based on measurements with the bark at age 22 and 24
years, respectively. For density, MOE and Pilodyn, h2 did
not differ significantly between estimates based on the pedi-
gree (ABLUP) and marker-based (GBLUP) methods taking
standard error into account. For MFA, the pedigree-based
h2 was lower than the GBLUP estimate while for Velocity
and MOEind, the pedigree-based h2 was higher.
When using pedigree, the order of the traits by h2 agrees

with their order by PA estimates. Traits with higher h2

tended to show also high PA estimates irrespective of the
method. The ABLUP PA estimates were similar to the
GBLUP estimates for density and Pilodyn, while for the rest
of the traits GBLUP delivered slightly higher PA estimates,
and significantly higher for MFA. The relative performances
of ABLUP compared to GBLUP differed for MOE, Velocity
and MOEind. The h2 estimates for MOE were similar for
both methods, while the PA estimate was higher for GBLUP.
In the case of Velocity and MOEind, a higher h2 based on
pedigree contrasted with a slightly higher PA estimates based
on marker data. Standardization of the PAs with the h values
did not change the conclusions on the relative efficiencies of
pedigree versus marker data-based estimates.

Marker-based PA and PC between increment core-based
and standing-base wood quality traits
The marker-based PAs were generally 25–30% higher for
traits density, MFA and MOE measured with SilviScan than
for their respective standing tree-based method which mea-
sured with Pilodyn and Hitman. Concordantly, the h2

values were 46, 65 and 55% higher based on Silviscan
methods, respectively. However, if we compare PC of the
increment core- and standing tree-based methods, they
were similar, and PC of MOEind was even higher than that
for MOE using GBLUP.
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Effects on PAs of the GS models ratios between the
training and validation sets, and from the statistical
method used
Figure 1 shows how the PA estimates change with in-
creasing percentage of data used for training of the GS
model (training set), and as a consequence decreasing

validation set, on use of the five studied statistical
methods: one based on pedigree data and four on
marker information. For most of the traits, PA estimates
showed a moderate increase with increasing training set,
irrespective of the statistical method. Exceptions were
observed for MFA and MOE with less clear trends and

Table 1 Trait heritability, predictive ability (PA) and predictive accuracy (PC) Predictive accuracy (PC) for density, MFA and MOE
cross-sectional averages at tree age 19 years, for their proxies on the stems without removing the bark at tree ages 21 and 22 years.
Standard errors are shown in within parenthesis

Narrow-sense heritability (standard error)
(h2)

Predictive ability
(standard error)
(PA)

Predictive Accuracy
(PA/h)

Trait ABLUP GBLUP ABLUP GBLUP ABLUP GBLUP

density 0.70 (0.18) 0.69 (0.15) 0.30 (0.01) 0.29 (0.03) 0.36 0.35

MFA 0.04 (0.08) 0.17 (0.13) 0.04 (0.01) 0.16 (0.02) 0.20 0.39

MOE 0.27 (0.14) 0.31 (0.15) 0.15 (0.01) 0.22 (0.02) 0.29 0.39

Pilodyn 0.35 (0.15) 0.32 (0.14) 0.22 (0.01) 0.20 (0.01) 0.37 0.35

Velocity 0.16 (0.12) 0.11 (0.10) 0.10 (0.01) 0.13 (0.01) 0.25 0.39

MOEind 0.31(0.14) 0.17 (0.13) 0.17 (0.01) 0.19 (0.01) 0.31 0.46

ABLUP pedigree-based Best Linear Unbiased Predictor (BLUP); GBLUP genomic-based BLUP

Pilodyn Velocity MOE_ind

Density MFA MOE
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Fig. 1 Predictive ability obtained with different ratios of training set and validation set, using different statistical methods
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the highest PA estimates at 80% of the trees in the train-
ing set. Figure 1 also shows that the PAs were consist-
ently about 25–30% higher for density, MFA and MOE
compared to their proxies-based om measurements with
Pilodyn and Hitman: approximately 0.28 versus 0.18,
0.17 versus 0.13 and 0.25 versus 0.18, respectively.
For density and Pilodyn, all five methods resulted in

very similar PA estimates across the ratios, while rrBLUP
and GBLUP seemed superior for the rest of the traits,
and mostly so for Velocity and MOE (Fig. 1). The rest of
the analysis were conducted based on the GBLUP mod-
elling method.

PAs on estimation of traits at reference age with models
trained on data available at earlier ages
Figure 2 shows how well the cross-sectional averages of
the different traits at the reference age 19 years were
predicted by models trained based on data from the
rings between pith and bark at increasing ages, using the
GBLUP method. The calculations were performed with
two representations of age: 1) Tree age counted from
the establishment of the trial (calendar age) and 2) cam-
bial age (ring number). In a plantation, the tree age of a
planted tree is normally known but not the cambial age
at breast height, as it depends on when the tree reached
the breast height. For the trees originally accessed, al-
most 6000 trees from the two trials, this age ranged
from tree age 2 to 15 years [30]. Among the 484 trees in-
vestigated in the current study, only 60 trees represent-
ing 33 families had reached breast height at tree age 3
years, 248 trees at 4 years and 410 at age 5 years (Fig. 2).
This means that for tree age, data are only available from
year 3, and then for only 12% of the trees. Those trees
being identified based on fast longitudinal growth but
also typically fast-growing radially. It was previously de-
scribed a positive correlation of R2 = 0.67 familywise be-
tween radial and height grown across almost 6000 trees
[30]. Thereafter, the number of trees increased and
reached the full number some years later. When study-
ing the trees based on cambial age, the pattern is adverse
with data for all trees at ring 1 but decreasing numbers
when approaching the tree age of sampling. The number
of trees included in this work at each tree and cambial
age are shown with grey bars in Fig. 2.
For density, the estimated PAs showed a rising trend

within a span of about 0.25–0.30 for the models based
on both age types, after the first years. But the year-to-
year fluctuations were more intense for models based on
data organized on tree age. As MFA typically develops
from high values at the lowest cambial ages via a rapid
decrease to lower and more stable values from cambial
age 8–12 years and on, one may expect that models
trained on data from only low ages would have difficul-
ties to predict properties at age 19 years. This was also

confirmed. We even obtained some negative PA values
at early ages, such as years 1995 and 1996, and the PAs
for cambial age-based models started from very low
values, then increasing. The curves for MOE showed
PAs developing at values in between those for density
and MFA. This is logical, as MOE is influenced by both
density and MFA, with particularly negative effects from
the high MFAs at low cambial ages. At cambial age 13,
MFA and MOE showed a drop in the cambial age-based
PA estimates. Generally, the Figure indicates that gen-
omic selection for density could be conducted at an earl-
ier age than for MFA and MOE.

Search for optimal sampling and data for training of GS
prediction models
Figure 2 showed estimated PAs of models trained on
data from sampling different years, using data from all
rings available at that age (except for the innermost
ring). In this section instead of estimating PAs with the
whole increment core from bark to pith, we estimated
PAs with partial cores with different shorter depths to
reduce the injury to the tree, as showed in Fig. 3a-d.
This analysis was preformed based on tree age data only,
as the cambial age of a ring can only be precisely known
if the core is drilled to the pith which allowing all rings
to be counted.
Each row of the figures represents a tree age when

cores are samples, starting at age 3 years when the first
60 trees formed a ring at breast height, ending at the
bottom with the reference age 19 years with17 rings.
Each column represents a depth of coring, counted in
numbers of rings. As one more ring is added each year,
thus also to the maximum possible depth on coring, the
tables are diagonal. The uppermost diagonal represents
models trained on data from the 60 (12%) trees which
had reached breast height at age 3. The diagonal next
below represents models based on the 243 (51%) trees
with rings at age 4, etc. The PAs shown below the three
uppermost diagonals represent models trained of data
from more than 90% of the trees. The PAs were calcu-
lated from the cross-validation, based on data from the
trees on which the respective models were trained. This
means that the PAs of the three uppermost diagonals
are based only on fast-growing trees not fully represen-
tative for the trials. Many of the highest PAs found
occur along these diagonals. Due to their trees’ special
growth, only PAs based on more than 90% of the trees
will be further commented.
For wood density, Fig. 3b, the variations in predictabil-

ity show an expected general pattern: The PAs increased
with the increase of tree age on coring, and also with the
increase of depth, the increase of number of rings from
which the cross-sectional averages were calculated and
exploited on training of the prediction models. The
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highest values, 0.29, are obtained at age 19 years, but
then also data from the reference year are included on
training the prediction model. An example of quite high
PAs at lower ages and depths: For coring at tree ages
10–12 years and using data from the 3–5 outermost
rings, all alternatives gave PA values of 0.26–0.29.
For MFA, a trait with low heritability, the PA values

are low as already shown in Fig. 2 and the pattern in Fig.

3c is not easy to interpret. Here, the same set of alterna-
tives of samples at tree ages 10–12 and depths 3–5
outermost rings gave PA values of 0.15–0.18, compared
to the maximum of 0.19 among all alternatives using
90% of the trees. The values are lower at the highest
ages. Streaks of higher and lower values can be imagined
along the diagonals. The pattern for MOE in Fig. 3d is
similar to that of MFA, but on higher level. Training on

Fig. 2 Estimated Predictive abilities (PA) for prediction of cross-sectional averages at tree age 19 years, based on cross-sectional averages at
different tree ages (upper graphs) and cambial ages (lower graphs) from pith to bark
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data from coring at ages and to depths as above gave PA
values of 0.20–0.23, compared to the corresponding
maximum of 0.25.

Discussion
We have conducted a genomic prediction study for solid
wood properties assessed on increment cores from
Norway spruce trees with SilviScan derived data from
pith to bark, using properties of annual rings formed up
to tree age 19 years as the reference age.
On Norway spruce operational breeding, the use of

OP families is preferable because it does not require ex-
pensive control crosses. The only action required is to
collect cones where progenies are typically assumed to
be half-sibs. Thus, OP families permit the evaluation of
large numbers of trees at lower costs and efforts than
structured crossing designs. We investigated narrow-

sense heritability estimation with ABLUP and marker-
based GBLUP and the effect on PA from using different
training-to-validation set ratios, as well as different stat-
istical methods. Further, we investigated what level of
precision can be reached when training the models with
data from trees at different ages, and 5also compared re-
sults for the solid wood properties with those for their
proxies. We also estimated the level of PAs reached
when coring to different depths from the bark at differ-
ent tree ages. The motivation was to find cost-effective
methods for GS with minimum impact on the trees dur-
ing the acquisition of data for training the prediction
models.

Narrow-sense heritability (h2)
In our study, PA estimates for both pedigree and
marker-based methods were consistent with their
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respective h2 estimates. A conifer literature review indi-
cates that the level of consistency varies across studies
[8, 18–20]. In our study, h2 estimation of density, MOE
and Pilodyn were similar for ABLUP and GBLUP; for
Velocity and MOEind, ABLUP had higher h2 estimation
and for MFA, GBLUP achieved higher h2 estimation. In
a previous study conducted on full-sib progenies in
Norway spruce, however, the ABLUP-based h2 were re-
ported higher in all three standing-tree-based measure-
ments [11]. Instead, other conifer studies based on full-
or half-sib progenies reported a comparable performance
of A-matrix and G-matrix based methods in Pinus taeda
[18, 23], Douglas-fir [29] and Picea mariana [15] for
growth related traits and wood properties. Moreover,
ABLUP accuracies were lower for growth, form and
wood quality in Eucalyptus nitens [24]. Experimental de-
sign factors such as number of progenies and their level
of coancestry, statistical method and the traits and pedi-
gree errors under study may account for the apparent
inconsistence in the relative performance of both
methods [31].
Our results indicate that for more heritable traits

ABLUP and GBLUP capture similar levels of additive
variance, whereas for traits with very low heritability
using ABLUP, such as MFA, the markers are able to
capture additional genetic variance probably in the form
of historical pedigree reflected in the G matrix. Less ob-
vious is the case for Velocity and MOEind where GBLUP
seems to capture lower values of additive variance. It is
possible that at intermediate values of h2 the benefits of
capturing historical consanguinity is overcome by pos-
sible confounding effects caused by markers which are
identical by state (IBS) or simply due to genotyping er-
rors. The h2 values obtained with ABLUP and GBLUP is
the result of a balance between multiple factors such as
the genetic structure of the trait, the historical pedigree,
and the possible model overfitting to spurious effects or
genotyping errors.

Effects on GS model predictive ability (PA) of training-to-
validation sets ratios and statistical methods
In conifers and Eucalyptus cross-validation is often per-
formed on 9/1 training to validation sets ratio [8, 12, 15,
16, 28]. This coincide with the general conclusion from
the present study, with the exception of MFA and MOE,
for which the best results were obtained at ratio 8/2. It has
been suggested that when the trait has large standard de-
viation, more training data is needed to cover the variance
in order to get high predictive ability [32]. Therefore, for
density, Pilodyn and Velocity, PA kept increasing with the
size of the training set increased. But for other traits with
smaller standard deviation, (4.44 and 2.28 for MFA and
MOE), PA decreased when increasing the training set

from 80 to 90%, which may indicate that too much noise
was introduced during model training.
The fact that the estimated PAs for all the solid wood

properties as measured by SiliviScan are 25–30% higher
than their proxies estimated from measurements of pene-
tration depths and sound velocity at the bark may reflect
the indirect nature of their proxies: the correlations calcu-
lated for the almost 6000 trees initially sampled were −
0.62 between Pilodyn and density, − 0.4 between Velocity
and MFA and 0.53 between MOEind and MOE [33].
In the conifer literature it has more often been re-

ported similar performance of different marker-based
statistical models for wood properties [11, 12, 18, 28,
34]. This general conclusion agrees with our findings for
all our traits with the exception of Velocity and to a less
extent of MOEind. For these two traits, GBLUP and
rrBLUP performed better than the other GS methods,
which could be the result of a highly complex genetic
structure where a large number of genes of similar and
low effect are responsible for controlling of the trait. For
traits affected by major genes the variable selection
methods, for example BayesB or LASSO, have been re-
ported to perform better [18], whereas for additive traits
the use of nonparametric models may not yield the ex-
pected accuracy [35].

Comparison of PA and PC from methods based on
pedigree and markers
Generally, pedigree-based PA estimates in conifer spe-
cies have been reported to be higher or comparable to
marker-based models [11, 15, 16, 19, 20, 23], but there
are also some studies reporting marker-based PA esti-
mates to be higher [13, 24, 36]. Our results for density
and Pilodyn follow the general finding in forest trees,
whereas for MFA, a low heritability trait, the PA estima-
tion based on GBLUP model is substantially higher
(0.16) compared to the ABLUP model (0.04). When PA
is standardized with h, the predictive accuracies of the
methods become more similar across traits, indicating
that proportionally similar response to GS can be ex-
pected for all traits.

Use of tree age versus cambial age (ring number)
From a quick look at Fig. 2, one may get the impression
that breeding based on cambial age data allows earlier
selection than using tree age data. That would however
be a too rushed conclusion. At tree age 3 years, after the
vegetation period of 1993, only 12.5% of the trees had
formed the first annual ring at breast height. Not until
tree age 6 years, more than 90% of the trees had done
so. But if aiming for 90% representation, one must wait
several years more until more rings are formed at breast
height, i.e., from 1993 to end of growth season 1996 at
tree age 6. And to train models based on data from 90%
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of the trees for cambial age say, age 6 at breast height,
samples cannot be collected until the end of growth sea-
son at tree age 11 years, or if a representation of 80% is
judged as satisfactory, at tree age 10 years. This has to be
considered if selection efficiencies are calculated based
on cambial age data, which is common. Such results
have for instance been published based on the almost
6000 trees sampled at 2011 and 2012 [37].
Correctly compared based on minimum 90% of the

trees, the estimated PAs shown in Fig. 2 are similar be-
tween the age alternatives, or slightly better for use of
tree age. For example, the PA for MOE using cambial
age data shows a smooth increase, reaching above 0.2 at
cambial age (ring number) 7, which needs data from the
tree of age 12. The corresponding curve from using tree
age passed above 0.2 already at age 8 years. However,
curves based on tree age often show larger year-to-year
variation. This is most likely an effect of the fact that the
rings of same cambial age represent wood formed across
a span of years with different weather. Thus, cambial age
data reflect annual weather across a range of years,
which does not happen when using tree age data. On
the other hand, from a practical point of view, methods
based on using tree age may be easier to apply in oper-
ational breeding, especially as light color results in Fig.
3b-d, indicating that high PAs can be reached without
coring all the way to the pith. To number the rings for
precise cambial age, you need to find the innermost ring
at the pith, but that may not be necessary for good
results.

Implementation of GS for solid wood into operational
breeding
The results indicate that GS can result in similar early
selection efficiency or even higher than traditional
pedigree-based breeding and offers further possibilities.
Previously, in loblolly pine it was reported that models
developed for diameter at breast height (DBH) and
height with data collected on 1 to 4-year old trees
had limited accuracy in predicting phenotypes at age
6-year old [21]. In British Columbia Interior spruce,
the predictive accuracy for tree height of models
trained at ages 3 to 40 years, at certain intervals, and
validated at 40 years revealed less opportunities for
early model training, since the plateau was not
reached until 30 years [28].
In our study, the highest PA values (on the diagonals

in Fig. 3b-d) were obtained for the subsets of fast-
growing trees which had reached breast height already at
tree age 3 and 4 years, 12 and 51% of the total number
of trees, representing a limited number of the OP fam-
ilies included in the analysis. Trees in this subgroup are
affected by high intensity of selection for alleles acceler-
ating growth within each OP family. Also, on cross-

validation the prediction abilities for this group were cal-
culated based on the trees within the same group. In this
elite group different factors could account for a higher
PA value, such as lower phenotypic variance, decreased
number of alleles of minor effect could also facilitate
identification of major effects and/or higher consanguin-
ity between those families which may share alleles for
growth. These models are shown for completeness, but
as they cannot be used for operational breeding they are
not further discussed.
Models for genetic selection are useful in different

steps of a breeding program. One type of prediction
models, here illustrated with Table 1, can be trained
from existing trials, preferably based on trees of as old
age as available. Since the aim of breeding is to predict
tree qualities at age of harvesting when the major part of
the stem will be dominated by mature wood. Training
the models in older trees for wood properties also allows
considering other properties which cannot be easily ob-
served from trees of very young age, such as stem
straightness and health. For wood density, the results in-
dicate that models can be built without coring very deep
into the stem. It may be expected that this is valid also
for instance for tracheid dimensions which in combin-
ation determines the wood density [30].
As illustrated in this work, two aspects of incorporat-

ing wood properties into operational GS breeding pro-
grams can be addressed with the same set of data.
Firstly, as mentioned above, models for cost-effective se-
lection based on genomic information from existing
trees. In that case, models from data at old ages would
normally be preferred, for example for wood density
some model at bottom line of Fig. 3b. Secondly, models
providing guidance on at what age it is reasonable to ap-
proach young trees for training of GS models for specific
traits: a) trees in existing juvenile trials, or b) trees of
new generations with different pools of genetics. As an
example, the same Fig. 3b for wood density suggests GS
model training at tree ages 10 to 12 on the third to fifth
outermost rings to reduce costs and the negative impact
on the tree.

Conclusions

1) In comparison with phenotypic selection, Genomic
selection methods showed similar to higher
prediction abilities (PAs) for both increment core-
and standing tree-based phenotyping methods. This
indicates that the standing tree-based measure-
ments may be a cost-effective alternative method
for GS, but higher PAs were obtained based on in-
crement core-based wood analyses.

2) Different genomic prediction statistical methods
provided similar PA. At least 80% data should be
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included in the training set in order to reach the
highest levels of PA

3) This study represents the first published
investigation of the efficiency of GS with prediction
models trained on data acquired from sampling/
coring trees at different ages, combined with
sampling/coring to different depths, to optimize the
operational breeding for the combination of length
of breeding cycle, cost and impact on the trees. The
results indicate that similar efficiency can be
obtained at tree age 10–12 with 3–5 outermost
rings.

Methods
Plant material
The study was conducted on two OP progeny trials:
S21F9021146 (F1146) (Höreda, Eksjö, Sweden) and
S21F9021147 (F1147) (Erikstorp, Tollarp, Sweden). Both
trials were established in 1990 with a spacing 1.4 m × 1.4
m. Originally, the experiments contained more than 18
progenies from 524 families at each of site, but after
thinning activities in Höreda and Erikstorp in 2010 and
2008, respectively, about 12 progenies per family were
left. In 2011 and 2012, six trees per site (524 * 12 ~ 6000
trees) were phenotyped [37]. Standing tree-based mea-
surements with Pilodyn and Hitman were performed on
the same trees in 2011 and 2013, respectively, after
which further thinning was performed. For this study, in
2018, we generated genomic (SNP) data from 484
remaining progeny trees after thinning which belonged
to 62 of the OP families (out of the original 524 families)
and on average eight progenies per family. This geno-
typic data was combined with available phenotypic data
for the same trees that were used.

Phenotypic data
The phenotypic data was previously described in Zhou
et al., 2019 [38]. Increment cores of 12 mm diameter
from pith to bark were collected from the progenies in
2011 and in 2012. These samples were analyzed for pith
to bark variations in many woods and fiber traits with a
SilviScan [39] instrument at Innventia (now RISE),
Stockholm, Sweden. This data is referred as increment
core-based measurements through the text. The annual
rings of all samples were identified, as well as their parts
of earlywood, transition wood and latewood, averages
were calculated for all rings, as well as their parts and
dated with year of wood formation [30].
The aim of breeding is not for properties of individual

rings, but properties of the stem at harvesting target age.
Therefore, this study focused on predictions of averages
for stem cross-sections, and we chose tree age 19 years
as the reference age, with models trained on trait aver-
ages for all rings formed up to different younger ages.

Three types of averages were calculated and predictions
compared for density, MFA and MOE: 1) area-weighted
averages, relating to the cross-section of the stem, 2)
width-weighted, relating to a radius or an increment
core, and 3) arithmetic averages, where all ring averages
are weighted with same weight. For the calculation of
area-weighted average we assumed that each growth ring
is a circular around the pith, calculated the area of each
annual ring from its inner and outer radii, and when cal-
culating the average at a certain age, the trait average for
each ring was weighted with the ring’s proportion of the
total cross-sectional area at that age. Similarly, for the
calculation of the width-weighted average, the trait aver-
age for each ring was weighted with the ring’s propor-
tion of the total radius from pith to bark at that age.
Similar results were obtained with the three average
methods. For this reason, only the estimates based on
the area-weighted method (the most relevant for breed-
ing) are shown. Tree age 19 years was used as the refer-
ence age. Thus, all the selection methods investigated
for density, MFA and MOE, phenotypic and genetic,
were compared based on how well they predicted the
cross-sectional averages of the trees at this age, with
their last ring formed during the vegetation period of
2009.
In addition, estimates of the three solid wood traits

were calculated based on data from Pilodyn and Hitman
instruments, measured on the standing trees without re-
moving the bark at age 22 and age 24 years, respectively.
Pilodyn measures the penetration depth with a needle
pressed into the stem, which is inversely correlated with
wood density. Hitman measures the velocity of sound
in the stem, which correlates with microfibril angle,
MFA [40, 41]. MOE is related to wood density and
velocity of sound [42–44] and can therefore be esti-
mated by combining the Pilodyn and Velocity data,
which estimates we here name MOEind (for standing-
tree based). Further details on how this was per-
formed in our study are given in Chen et al. 2015
[33]. The references show that these standing-tree-
based measurements provide useful information and
are very time and cost-efficient. However, they do not
allow calculation of properties of the tree at younger
ages. Therefore, we were not able to investigate from
what early ages such data can be uses within genomic
selection.

Genotypic data
Genomic DNA was extracted from buds or needles
when buds were not available. Qiagen Plant DNA ex-
traction protocol was utilized for DNA extraction and
purification and DNA quantification performed using
the Qubit® ds DNA Broad Range (BR) Assay Kit (Ore-
gon, USA). Genotyping was conducted at Rapid
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Genomics, USA, using exom capture methodology same
as the method used in Baison et al. 2019 [45]. Sequence
capture was performed using the 40,018 diploid probes
previously designed and evaluated for P. abies [46] and
samples were sequenced to an average depth of 15x
using an Illumina HiSeq 2500 (San Diego, USA) [45].
Variant calling was performed using the Genome Ana-
lysis Toolkit (GATK) HaplotypeCaller v3.6 [47] in Gen-
ome Variant Call Format (gVCF) output format. After
that, the following steps were performed for filtering: 1)
removing indels; 2) keeping only biallelic loci; 3) remov-
ing variant call rate (“missingness”) < 90%; 4) removing
minor allele frequency (MAF) < 0.01. Beagle v4.0 [48]
was used for missing data imputation. After these steps,
130,269 SNPs were used for downstream analysis.

Population structure
As a first step, we conducted a principal component
analysis to determine the presence of structure in our
population. The spectral decomposition of the marker
matrix revealed that only about 2% of the variation was
captured by the first eigenvector, indicating low popula-
tion structure. Additionally, in previous study, low geno-
type by environment (GxE) interaction was detected for
wood quality traits on these two trials [37]. Therefore,
population structure was not considered in the design of
cross-validation sets (see Modelling and cross-validation
chapter for further details on the cross-validation sets
design).

Narrow-sense heritability (h2) estimation
For each trait, an individual tree model was fitted in
order to estimate additive variance and breeding values:

y ¼ Xβþ ZuþWbþ e: ð1Þ
where y is a vector of measured data of a single trait, β

is a vector of fixed effects including a grand mean, prov-
enance and site effect, b is a vector of post-block effects
and u is a vector of random additive (family) effects
which follow a normal distribution u ~N(0,Aσ2u) and e
is the error term with normal distribution N(0,Iσ2e). X, Z
and W are incidence matrices, A is the additive genetic
relationship matrix and I is the identity matrix. σ2u
equals to σa

2 (pedigree-based additive variance) when
random effect in eq. 1 is pedigree-based in which case u
~N(0,Aσ2u), and σ2u equals to σg

2 (marker-based addi-
tive variance) when random effect in eq. 1 is marker-
based in which case u ~N(0,Gσ2u). The G matrix is cal-

culated as G ¼ ðM−PÞðM−PÞT
2
Pq

i¼1
pið1−piÞ , where M is the matrix of

samples with SNPs encoded as 0, 1, 2 (i.e., the number
of minor alleles), P is the matrix of allele frequencies
with the ith column given by 2(pi − 0.5), where pi is the
observed allele frequency of all genotyped samples.

Pedigree-based individual narrow-sense heritability (h2a

) and marker-based individual narrow-sense heritability

(hg
2) were calculated as.

h2a ¼ σ2
a

σ2pa
; h2g ¼ σ2g

σ2pg

respectively, σ2pa and σ2pg are phenotypic variances for
pedigree-based and marker-based models, respectively.

Selection of the optimal training and validation sets ratio
Cross-validation was conducted after dividing randomly
the whole dataset into a training and a validation set. To
find the most suitable ratio between the two, we divided
the data into sets with five different ratios between the
training and the validation sets: 50, 60, 70, 80 and 90%.
100 replicate iterations were carried out for each tested
ratio and trait.

Statistical method for model development
In the same context we aimed to find optimal methods.
Several statistical methods were compared: pedigree-
based best linear unbiased predictions (ABLUP), and
four GS methods: genomic best linear unbiased predic-
tions (GBLUP) [49], random regression-best linear un-
biased predictions (rrBLUP) [4, 50], BayesB [4], and
reproducing kernel Hilbert space (RKHS).
rrBLUP used a shrinkage parameter lamda in a mixed

model and assumes that all markers have a common
variance. In BayesB the assumption of common variance
across marker effects was relaxed by adding more flexi-
bility in the model. RKHS does not assume linearity so it
could potentially capture nonadditive relationships [51].
R package rrBLUP [52] was used for GBLUP and
rrBLUP, package BGLR [53] was used for BayesB and
RKHS. The pedigree-based relationship matrix was ob-
tained with the R package pedigree [54].

PA and accuracy estimation
The adjusted phenotypes y’ = y-Xβ were used as model
response in the genomic prediction models. Model qual-
ity was evaluated by predictive ability (PA), which is the
mean of the correlation between the adjusted phenotype
and the model predicted phenotypes, r(y’,yhat) from 100
times CV. Prediction accuracy (PC) was defined as PA/
√ (h2) [15, 55]. In order to investigate whether GS model
training can be conducted at earlier age, PA at each tree
calendar age and cambial age were estimated. In this
case, cross validation was conducted only using area-
weighted values at each age, then the trait values at each
age were estimated. PA at a specific age was calculated
as the correlation between estimated trait values at that
age and area-weighted values from pith to the last ring
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(for cambial age) and last year (for calendar age),
respectively.
Genomic selection for well-performing trees with the

use of marker information (G matrix) requires access to
previously trained GS models. Thus, model training is a
necessary part of GS integration into operational breed-
ing. Model training can be conducted in already existing
plantations with trees of relatively high ages, as illus-
trated in this work. It is, however, expected and desired
that such model training can be conducted with high
PAs also for younger trees. This would be especially use-
ful if maturity (flower production) can be accelerated, to
shorten the total breeding cycle.
Operationally, it is also important to develop protocols

to assess wood quality in resources at minimum cost
and time, and with minimal impact on the trees. There-
fore, on coring, it is not only important to know the
minimum age at which useful information can be ob-
tained, but also from how many rings from the bark to-
wards the pith information is required to train models
with high predictive ability. To address these two prac-
tical questions for operational breeding, we trained pre-
diction models based on data from different sets of
rings, in order to mimic and compare PAs obtained
when coring at different ages of the trees to different
depths into the stem, or more precisely, using data from
different numbers of rings, starting next to the bark. All
the models were judged on, compared by their ability to
predict the cross-sectional average of the trait at age 19
years across all trees in the validation set.
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Abstract 

Through the use of genome-wide association studies (GWAS) mapping it is possible to establish the 

genetic basis of phenotypic trait variation. Our GWAS study presents the first such effort in Norway 

spruce (Picea abies (L). Karst.) for the traits related to wood tracheid characteristics. The study 

employed an exome capture genotyping approach that generated 178 101 Single Nucleotide 

Polymorphisms (SNPs) from 40 018 probes within a population of 517 Norway spruce mother trees. 

We applied a least absolute shrinkage and selection operator (LASSO) based association mapping 

method using a functional multi-locus mapping approach, with a stability selection probability method 

as the hypothesis testing approach to determine significant Quantitative Trait Loci (QTLs).  The 

analysis has provided 30 loci and 26 candidate genes, the majority of which show specific expression 

in wood-forming tissues or high ubiquitous expression, potentially controlling tracheids dimensions, 

their cell wall thickness and microfibril angle. Among the most promising candidates based on our 

results and prior information for other species are: Picea abies BIG GRAIN 2 (PabBG2) with a

predicted function in auxin transport and sensitivity, and MA_373300g0010 encoding a protein similar 

to wall-associated receptor kinases, which were both associated with cell wall thickness. The results 

demonstrate feasibility of GWAS to identify novel candidate genes controlling industrially-relevant 

tracheid traits in Norway spruce  

Introduction

Norway spruce is considered to be one of the most important multipurpose species. Its wood provides 

various solid wood products as well as pulp and paper products. It is considered one of the best raw-

materials for the production of mechanical pulp for many types of paper grades1. The properties of the 

tracheids have large influences on the quality of the final products, and also on process economy and 

sustainability, for solid wood as well as fibre-based products2. Tracheid morphology and cell wall 

structure influence the flexibility of wood and fibres, interactions among fibres, as well as the 

mechanical, physical and optical properties of the end-products3. Consequently, identifying the genetic 

background of different tracheid traits as a basis for breeding may bring benefits for both industry and 

society. Several papers have reported the phenotypic correlations, between tracheid cross-sectional 
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dimensions and wood traits such as density in conifers4,5,6. A study of Norway spruce felled in the 

winter of 1989/1990 in central Sweden, found tracheid length dependent on the logarithm of cambial 

age and growth ring width, with density dependent on latewood percentage. Similar models for the 

influence of cambial age and ring width have been presented for tracheid length, width and wall 

thickness models of Norway spruce, Sitka spruce, Scots pine and loblolly pine7. Such results have 

indicated that changes in growth conditions over time acting mainly through crown development, will 

have an influence on wood structure development in Norway spruce6. However, these reports paid 

very little regard to the underlaying genetic factors influencing these phenotypes. Therefore, the 

dissection of the genetics impacting these relationships and the variations observed in tracheid 

properties will be of great value to any tree breeding program.  

Various long-term breeding programmes for the species are already being pursued with the 

goal to identify genotypes with high productivity and wood quality8. Wood density and microfibril 

angle (MFA) are key indicators of wood quality as they influence strength and dimensional stability of 

solid wood9. However, combining productivity with wood quality is problematic due to negative 

genetic correlations between these traits10. One of the tools helping to understand these genetically 

complex variations in forest trees is the integration of extensive genetic and phenotypic data in order 

to discern the genetics underlying these traits11,12,13. Hence, knowing the genetic control of these 

variations, may lead to optimal breeding strategies for the improvement of both growth and wood 

quality traits.  

With genomic resources now available, a large array of molecular markers has been available 

for the studying and understanding of complex traits. The majoritiy of these traits are known to be 

predominantly polygenic in nature, and affected by environmental effects14, hence the need to utilize 

techniques that target the whole genome15. The availability of an array of genomic resources has led to 

the reliable identification of Quantitative Trait Loci (QTLs), which in conifers are traditionally

detected using suitable segregating populations such as, full- or half-sib progenies. More recently, 

GWAS, also known as Linkage Disequilibrium (LD) mapping, has been applied as an alternative 

approach of QTL detection from traditional pedigree-based mapping studies. GWAS accounts for 

historical recombination events in the natural population as compared to those observed in a pedigree 
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based QTL mapping16. When confounding factors are taken into consideration, LD mapping provides 

greater resolution than pedigree studies, since it utilizes markers in strong LD with putative causative 

genomic regions17.

Many coniferous species are characterized by an outcrossing mating system and large 

population sizes which lead to a rapid LD decay within the genomes and low inbreeding coefficient16.

However, rapid and heterogenous decay in conifer LD18 can be a source of concern as proximal 

markers can be completely unlinked and therefore offer no predictive power to the quantitative trait 

that may be residing physically close19. Together  LD heterogeneity, population structure20, epistasis 

and Genotype x Environment interactions (GxE)21 are factors that if not carefully controlled can 

negatively impact  QTL identification. The utilization of LD mapping in the dissection of genetic 

backgrounds underpinning complex traits has been shown in several systems, for example, complex 

solid wood properties in Norway spruce22, white spruce23 and Eucalyptus19, and detecting genes 

underlying ecological adaptations in Populus24. The dissection of these complex traits can benefit from 

the application of mathematical functions that account for the year-to-year variation across  annual 

growth rings. The development of mathematical methods for the analysis of dynamic data has made it 

possible to develop functional mapping approaches25,26 that firstly model the phenotypes using curve-

fitting methods and then utilize the parameters describing the curve (latent traits) for independent 

association analysis27,28. 

GWAS can also increase our knowledge on molecular processes controlling tracheid traits. 

Presently the majority of breeding programs have focused on the easy to measure phenotypic traits 

such as volume, straightness, disease resistance and spiral grain. Due to cost and time of measurement 

of traits related to tracheid dimensions most programs have not been able to select and advance such 

traits using marker assisted breeding29.Therefore, this study is novel in that it is, to our knowledge, one 

of the first to tackle the issue of dissecting the genetic background to tracheid properties in a conifer 

species. With the exception of a single study conducted in Arabidopsis thaliana, as a model system, 

for traits controlling fibre length30, the majority of the studies related to tree fibre related traits have 

focused on mostly microfibril angle genetics31,32,33,34. Hence our study seeks to form the bases upon 

which, the dissection of the genetic backgrounds to more complex and expensive traits, such as, 
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tracheid dimensions can be investigated. Such traits are to a large extent determined by the genes 

acting during wood development35,36. Tracheid traits can also be regulated non-cell-autonomously by 

processes that take place in other organs and tissues. For example, the activity of the shoot apical 

meristem determines the availability of auxin in the cambium and developing wood37,38, whereas the 

photosynthetic activity in the needles influences the availability of sucrose for wood biosynthesis39.

Therefore, combining the knowledge of candidate genes with their expression analysis will give more 

insights to the biological processes shaping tracheids. 

The major goal of this study was to identify causative allelic effects of genomic regions 

contributing to wood tracheid traits using LD mapping on exome sequence capture data. Due to the 

large size of the Norway spruce genome (20 Gb) and its highly repetitive nature, it presents a 

challenge to use whole genome re-sequencing approaches for the development of molecular markers. 

Approaches aimed at reducing these genome complexities, especially by either eliminating or 

drastically reducing the repetitive sequences have been developed40. These approaches are referred to 

as reduced representation approaches as there are used as proxies for whole genomic sequencing. In 

this study, we have used exome capture, aiming at maximizing the capture of exonic regions of the 

genome only, thereby increasing the coverage and depth of genic sequence in our variant detection 

study. The analysis provided 26 mostly novel candidate genes for regulation of various tracheid traits, 

which, along with their expression patterns, give new insights to the tracheid traits determination, and 

offer key markers for early genetic selection in Norway spruce breeding. 

Materials and Methods 

Association mapping population  

The association mapping population, phenotypic data and statistical analysis are described in Chen et

al., (2014)41 and Hayatgheibi et al., (2018)42. Briefly, the mapping population for the association 

mapping population constisted of two progeny trails established 1990 in Southern Sweden: 

(S21F9021146 aka F1146 (trial1) and S21F9021147 aka F1147 (trial2)), composed of 1373 and 1375 

half-sib families. A randomized incomplete block design with single-tree plots was employed for both 

trials. From the trials, 517 families in 112 provenances were selected for use in the investigation of 
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wood tracheid properties. Wood increment cores with diameter of 12 mm were collected at breast 

height (1.3 m) from six trees from each of the selected families of each trial. A total of 5618 trees were 

sampled: 2973 trees from trial F1146 and 2645 from F1147.  

Phenotypic data generation 

The radial variations of  growth, wood and tracheid attributes from pith to bark were analysed using 

the SilviScan instrument43 at Innventia, now RISE Bioeconomy, Stockholm, Sweden. SilviScan is an 

instrument for efficient measurement of radial variations in a multitude of properties from the same 

sample with high spatial resolution. High precision sample strips from pith to bark were produced 

from the increment cores and automatically scanned for radial variations in cross-sectional tracheid 

widths with a video microscope combined with image analysis, in wood density with X-ray 

transmission and in structural orientations with X-ray diffraction. From these data, information on 

radial variations of further traits were derived, such as wall thickness, coarseness and MFA of 

tracheids, and stiffness of wood (MOE). The locations of the annual rings were identified, as well as 

of their compartments of earlywood (EW), transitionwood (TW) and latewood (LW), using the “20-80 

density” definition44, established for use in different types of studies45,46,47. Averages for all rings and 

their compartments were calculated for the traits and organised to be ready for use in continued 

genetic evaluations, such as the work on solid wood traits48, on tracheid traits49 and for wood traits22,

genomic selection50 and influences of age and weather51. The traits addressed in the current work are 

listed in Table 1. 

For MFA, central peak regression mathematical functions were fitted to describe the MFA 

variation from juvenile towards mature wood, using procedures presented by Hayatgheibi et al., 

(2018)52, including also pre-processing of the data for removal of outliers. A threshold value of MFA 

20 for the fitted curves was chosen to define an age up to to which an inner core of wood with 

inferior timber properties occurred, here named the transition age MFATA
42. From anatomical 

perspective, a threshold of 20° is on the high side, emphasizing a core of pronounced juvenility. We 

have decided to stay with this threshold level, because for the young trees investigated, the fitted 

curves for quite a few trees would not pass a low treshold, and they would have had to be discarded 
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from the analysis. Thus, it works better for ranking. The averages of MFA for wood inside and outside 

this limit were calculated, MFACORE and MFAOUTER. This provided three latent traits for MFA. 

Table 1. List of the  traits, their abbreviations and measurement unit. 

Trait Abbreviation Unit

Radial tracheid width (TWr)

Ring TWrRing m

Earlywood TWrEW m

Transitionwood TWrTW m

Latewood TWrLW m

Tangential tracheid width (TWt)

Ring TWtRing m

Earlywood TWtEW m

Transitionwood TWtTW m

Latewood TWtLW m

Wall Thickness (WT)

Ring WTRing m

Earlywood WTEW m

Transitionwood WTTW m

Latewood WTLW m

Coarseness (C)

Ring CRing mg/m

Earlywood CEW mg/m

Transitionwood CTW mg/m

Latewood CLW mg/m

Microfibril angle (MFA)
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Ring MFARing Degrees

Corewood MFACORE Degrees

Outerwood MFAOUTER Degrees

Transition age (cambial) MFATA Year

Exome Capture Analysis

DNA extraction, variant detection and annotation and population structure on the genomic data 

utilized in this study was previously described22. Total genomic DNA from 517 half-sib individuals 

was extracted using the Qiagen Plant DNA extraction kit (Qiagen, Hilden, Germany). DNA was 

extracted from buds, when present, or from young needles, when buds were absent. DNA 

quantification was performed using the Qubit® ds DNA Broad Range (BR) Assay Kit (Oregon, USA). 

DNA from randomly selected individuals was then electrophoresed on a 2% agarose gel. Probe design 

and evaluation is described in Vidalis et al., (2017)53. In breif, the exome capture method was 

implemented by the probe design that was based on a combination of sequenced genomic DNA, 

predicted gene annotations and de novo transcript assemblies. Exome capture was based upon the use 

of targeted oligonucleotides that bind to complementary genomic sequences. Sequencing was 

performed at Rapid Genomics, USA, using the Illumina sequencing platform. Sequence capture with 

average depth of 15x coverage was performed using the 40 018 diploid probes previously designed 

and evaluated for Norway spruce. Illumina sequencing compatible libraries were amplified with 14 

cycles of PCR and the probes were then hybridized to a pool comprising 500 ng of 8 equimolarly 

combined libraries following Agilent’s SureSelect Target Enrichment System (Agilent Technologies). 

These enriched libraries were then sequenced to an average depth of 15x using an Illumina HiSeq 

2500 (San Diego, USA) on the 2 x 100 bp sequencing mode at Rapid Genomics, USA.  

Raw reads were mapped against the P. abies reference genome v1.0 using BWA-MEM54.

SAMTools v.1.255 and Picard (http://broadinstitute.github.io/picard) were used for sorting and 

marking of PCR duplicates. Variant calling was performed using GATK HaplotypeCaller v.3.6 as per 

the best practices protocol56 in gVCF output format (see 
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http://www.broadinstitute.org/gatk/guide/best-practices for more information about GATK best 

practices). Samples were then merged into batches of ~200 before all 517 samples were jointly called. 

GATK based Variant Quality Score Recalibration (VQSR) method was performed in order to 

avoid the use of hard filtering for exome/sequence capture data. For the VQSR analysis, two datasets 

were created: a training file and an input file. The training dataset was derived from a Norway spruce 

genetic mapping population with known segregating loci. The training dataset was designated as true 

SNPs and assigned a prior value of 12.0. The input file was derived from the raw sequence data using 

the above mentioned GATK’s best practices with the following parameters: extended probe 

coordinates by +100 excluding INDELS, excluding the LowQual sites, and keeping only bi-allelic 

sites. The annotation parameters QualByDepth (QD), MappingQuality (MQ) and BaseQRankSum, 

with tranches 100, 99.9, 99.0 and 90.0, were then applied to the two files for the determination of the 

good versus bad variant annotation profiles. After obtaining a VQSR for all raw data variant sites, the 

recalibration was applied to filter the raw variants. The SNP trimming and cleaning involved the 

removal of any SNP with MAF and “missingness” of < 0.05 and >20%, respectively. These 

parameters were filtered out using VCFTools57. The resultant SNPs were annotated using default 

parameters for snpEff 458. Ensembl general feature format (GTF, gene sets) information was utilized 

to build P. abies 1.0 snpEff database.  

GWAS LASSO

Latent traits expressing how the traits developed with age were calculated in two steps. First, a 

breeding value approach was applied to refine data from influences not directly related to the genes, 

such as site and block effects. For this purpose,  breeding values were estimated (EBV) for each 

annual ring separately (cambial age), reducing site and block effects, but also the  time trajectories, 

which were reconstructed as a final step by adding back the averages at each age. The variance and 

covariance components were estimated using ASREML 4.0 as described in Chen et al., (2014)10. The 

EBVs at each cambial age were estimated using univariate, bivariate or multivariate mixed linear 

models in order to select the optimal model for each trait, based on a compromise of model fit and 

complexity. Akaike Information Criteria (AIC) was used to determine the fitness of different models. 
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This resulted in use of a univariate linear mixed model for joint-site analysis as the bases for the 

analyses of all traits: = + S + B ( ) + F + SF + e                      [1]

where Y is the observation on the lth tree from the kth family in jth block within the ith site,

u is the general mean, S and B ( ) are the fixed effects of the ith site and the jth block within the ith
site, respectively,  F and SF are the random effects of the kth family and the random interactive

effect of the ith site and kth family, respectively, e  is the random residual effect.

For the tracheid dimension and coarseness traits, linear splines with multiple knots were fitted 

to the EBV refined time trajectories against cambial age (annual ring number) (Fig 1), generally

defined as follows: 

0 1 2 1 3 2 1( ) ( ) ( ) ... ( ) ,   [2]m my t t t K t K t K

This is a continuous curve starting at the intercept 0, with linear segments between the knots at t=Ki

(i=1,…,m; K1<K2…<Km), segments with slopes defined by the 1 to 1+m parameters, where i = 0 if t 

< Ki-1. The knots are thus reflecting transitions between phases of different slopes in the development 

of the traits, and at each knot, the slope is changed according to the  of the next segment. Therefore, 

the times when the knots occur have to be properly defined in order to provide accurate descriptions of 

the data under investigation, and also their numbers in order to avoid overadaptation to data59,28. We

found use of two knots the most suitable for tracheid dimension traits across the time intervals 

investigated. Hence, the linear spline model used was defined as: 

i.i.d.
2

0 1 2 1 3 2( ) ( ) ( ) ( ),        ( ) ~  N(0, ).       [3]i iy t t t K t K t t

In a first analysis, fixed values of K1 and K2 were adapted for each trait. Then, the intercept 0, and the 

slope parameters 1, 2 and 3 were estimated for each tree by standard least squares60. The four 

estimates were used as the latent trait in the subsequent QTL analysis conducted in R-studio61, and 

then analysed using the LASSO model in order to identify SNPs showing significant associations to 

the traits. 
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The LASSO model as described by Li et al (2014)59, was applied to all latent traits for the detection of 

QTLs. 

The LASSO model: 

0

2
0( , ) 1 1 1

1min ( ) | |,   [4]
2j

p pn

i ij j j
i j j

y x
n

where yi is the phenotypic value of an individual i (i=1,…,n; n is the total number of individuals) for the 

latent trait, 0 is the population mean parameter, xij is the genotypic value of individual i and marker j

coded as 0, 1 and 2 for three marker genotypes AA, AB and BB, respectively, j is the effect of marker 

j (i=1,…,n; n is the total number of markers), and (>0) is a shrinkage tuning parameter.  

Stability selection probability (SSP) of each SNP was applied as a way to control the false discovery 

rate and determine significant SNPs62,63,59. For a marker to be declared significant, a SSP inclusion 

ratio (Frequency) was used with an inclusion frequency of at least 0.52 for all traits. This frequency 

inferred that the expected number of falsely selected markers was less than one (1), according to the 

formula of Buhlmann et al, (2014)64. Population structure was accounted for in all analyses by 

including the first five principal components based on the genotype data as covariates into the model. 

The LASSO regression has a limitation in that it might over-shrink the effect size of SNPs due to the 

use of a single tuning parameter for all the regression parameters65. The consequence is that the 

LASSO might significantly under-estimate the proportion of phenotypic variation (PVE) explained by 

a SNP66. To improve this, an adaptive LASSO approach65 was used alternatively to evaluate the PVE 

of a QTL (Methods S4):  

In brief,  estimated breeding values (EBV) were computed for each annual ring by cambial 

age to reduce site and block effects (see Chen et al 2014). In a second step, linear splines were applied 

to reconstruct time trajectories based on annual ring EBV. Fix age values for two knots were 

determined, as the intercept and slope parameters, the latent traits, were fitted to the EBV describing 

the shape of the time trajectories of each individual tree. 

Candidate gene mining
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To assess putative functionality of SNPs with significant associations, gene ontology and network 

analysis of putative genes and their associated orthologs was performed against the NorWood v1.0 

database (http://norwood.congenie.org67) hosted by ConGenIE (http://congenie.org/). After the 

identification of the QTL, the Norway spruce contigs linked to the significant SNPs were extracted 

from the web based database congenie (congenie.org/blast). The complete Norway spruce contigs that 

harboured the QTLs that were not annotated in the ConGenIE were used to perform a nucleotide 

BLAST (Blastn) search, using the option for only highly similar sequences (megablast) in the National 

Center for Biotechnology Information (NCBI) nucleotide collection database 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?).  

Results and Discussion 

Trait trajectories 

For traits with complex time/age trajectories, the application of functional mapping enables an 

aggregated analysis of temporal trends27. The ring MFA initially decreased from an average across the 

trees of about 30 at the pith and stabilized after reaching a cambial age of about 10 years at an 

average of 10-12 68. The adapted central peak curves combined with the threshold at 20° resulted in an 

average of five years for MFATA, defining the inner core of lower quality timber with AM performed 

for the latent traits of MFACORE and MFAOUTER.  

For all the other tracheid phenotypes: wall thickness, radial tracheid width, tangential tracheid 

width and coarseness, family means of 0 (intercept) and 1 to 3 (effects of knot 1 to 3, see Baison et 

al., 2019)69 were implemented in the association mapping. Candidate gene loci were identified for 

MFACORE, MFAOUTER and MFATA, and for the intercepts 0, of the tracheid dimensions and coarseness 

of rings, EW, TW and LW. 

Genetic associations detected and modes of gene action 

A total of 30 significant associations were detected across the 18 traits with fraction of phenotypic 

variances being explained (PVE) ranging between 0.01 to 3.79% (Table 2), using an Stability selection 

probability (SSP) minimum inclusion frequency of 0.52. Seven of the 30 marker trait associations for 
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which dominance and additive effects could be calculated were consistent with partially to fully 

dominant effects (0.50 < |d/a| < 1.25). The remaining 23 markers were all determined to have an 

additive (|d/a| < 0.50) mode of inheritance (Table 2). The relationships between the genotypic classes 

of markers associated to a phenotype were consistent with these patterns (Fig. 1). Three SNPs 

MA_10436040g0010_171180, MA_105586g0010_65505 and MA_10426383g0010_135796, were 

significantly associated across and within several traits, with all the modes of gene action being 

additive for the marker-trait interactions for the three SNPs (Table 2; Fig. 1).  
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Genetic associations and genes of interest 

Two of the associations detected for MFA were intron variants MA_10434903g0010_8217 and 

MA_10117352g0010_1285. MA_10434903g0010_8217 was associated with MFAOUTER explaining 

1.03% of the PVE. MA_10117352g0010_1285, a synonymous variant explaining 1.47% PVE 

associated with MFAOUTER, occurred within gene MA_10117352g0010 homologous to Arabidopsis 

ONE HELIX PROTEIN (OHP). The gene is highly expressed especially in needles and shoots in 

spruce (Fig. 2). OHPs have been reported to be constitutively expressed and essential for 

photosynthesis in Arabidopsis, with mutants exhibiting severe growth defects70. 

Associations for radial tracheid widths were detected in earlywood and latewood. TWrEW was 

associated with a single missense SNP (MA_10435070g0010_17636) explaining 3.16% of the PVE 

and occurred within a gene encoding nuclear transcription factor Y subunit A-7 (NF-YA7) (Table S1). 

NF-Y is a multimer complex binding CCAAT box in the promoter regions of many genes, and has 

multiple biological functions including growth regulation, cell size regulation, and responses to abiotic 

stresses71,72, including  nitrogen deficiency in Arabidopsis73. The overexpression of the NF-YAs has 

been shown to stimulate growth during low nitrogen and phosphorous availability74. This gene is 

ubiquitously, highly expressed in shoots and buds of spruce, indicating its important function in this 

species (Fig. 2
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TWrLW with seven significant associations, had the highest number of detected associations 

per trait. Two missense SNPs, MA_336364g0010_6123 and MA_64438g0010_10851 associated with 

TWrLW, explained a small proportion of the PVE observed 0.01% and 0.03%, respectively. 

MA_336364g0010 is homologous to the Arabidopsis INDUCER OF CBF EXPRESSION 2 (ICE2)

regulating deep-freezing tolerance by inducing CBF1, CBF2 and CBF3 genes (Table S1)76. CBF genes 

have been identified to constitute a central node of hormone cross-talk during cold stress response and 

their expression is modulated by abscisic acid, gibberelins, jasmonate, ethylene and brassinosteroids77.

It has emerged that different hormone signaling pathways converge at the CBF promoter level, with 

the result of this hormone cross-talk being the fine-tuned transcript levels impacting on plant 

development and growth78. In spruce, the homolog of ICE2 gene is highly expressed in developing 

stems (Fig. 2) and strongly upregulated in the cambium and radial expansion zone (Fig. 3) supporting 

its role in situ in promoting the tracheid expansion. Since CBFs have already been identified as 

convergence points for hormones required for the regulation of plant growth under cold stress, these 

factors would warrant a detailed look in relation to their influence on wood tracheid development, 

especially during the time when the water stress and cold stress can be common. The gene 

MA_64438g0010 is homologous to an Arabidopsis PHOSPHATIDYLINOSITOL BINDING 

CLATHRIN ASSEMBLY PROTEIN 5B (PICALM5B), a part of the  ENTH/ANTH/VHS superfamily 

(Table S1). The ENTH/ANTH/VHS  superfamily is involved in clatrin assembly at secretory vescicles 

and is essential for vescicle intracellular trafficking and thus, cell growth and development79. The gene 

was observed expressed in developing wood (Fig. 3), indicating its importance for tracheid 

development in spruce. Indeed, the genes of ENTH/ANTH/VHS family have been previously 

associated with secondary cell wall formation in Populus80, and vescicle trafficking-related genes were 

seen upregulated coinciding with radial expansion of developing wood cells in aspen81. Such genes are 

therefore expected to be associated with tracheid radial expansion in spruce. Another gene associated 

with TWrLW was MA_950574g0010_7132, explaining a comparatively high PVE of 2.27%.  It is 

remotely similar to Arabidopsis CALCINEURIN-B-LIKE-INTERACTING SERINE/THREONINE-

PROTEIN KINASE 23 (CBLPK23) involved in the regulation of HAK5-mediated high-affinity K+
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uptake in calcium-dependent manner in Arabidopsis roots82. The confidence of the spruce model was 

low, but the gene was found highly expressed in developing shoots, buds and cones (Fig. 2), and 

during primary and secondary wall formation in developing spruce tracheids (Fig. 3) confirming that it 

was not a pseudogene. A CALCINEURIN-B-LIKE gene was found to explain the largest phenotypic 

variance in cell wall mannose content in white spruce23. These observations make the identified spruce 

CBLPK23 gene an interesting candidate for calcium-dependent regulation of K+ uptake in developing 

tracheids, thus likely regulating tracheid expansion, similar to vessel element expansion, known to be 

dependent on K+ transport83. Interestingly, there was another candidate gene related to K+ transport 

associated with tracheid radial width: the splice variant MA_11172g0010_18275 explaining 0.01% 

PVE (Table 2). This gene is homologous to Arabidopsis CYCLIC NUCLEOTIDE-GATED CHANNEL 

17 (CNGC17) (Table S1). CNGCs are potassium channels involved in several plant physiological 

processes including root development, pollen tube growth and plant disease resistance84. They regulate 

ion homeostasis within plants through the uptake of cations, which is essential for  plant growth and 

development85. Arabidopsis CNGC17 is localized in the plasmamembrane and promotes protoplast 

expansion by regulating cation uptake86. Its spruce homolog exhibited specific expression during 

latewood formation in August (Fig. 2), supporting its  role in latewood tracheid development.  

Three significant associations were identified for tangential tracheid width components with 

an upstream variant MA_10436040g0010_61320 being detected across traits TWtTW and TWtRing

(Table 2). This variant was detected on contig MA_10436040 with high inclusion frequencies 

explaining relatively high percentages of the variance observed, 2.13% for TWtTW and 3.79% for 

TWtRin (Table 2). The associated gene - MA_10436040g0010 - is homologous to the stress-related 

eukaryotic initiation factor 4A-III (eIF4A-III) which also has a DEAD-box ATP-dependent RNA 

helicase 2, and is involved in RNA processing and nonsense-mediated mRNA decay in Arabidopsis,

especially under hypoxia and heat stress87 (Table S1). The spruce gene was not found expressed in 

available datasets (Fig 2). SNP MA_10239556g0010_131776 was associated with TWtEW and

explained a moderate amount of the PVE 1.80% (Table 2). The Arabidopsis homolog encodes a 

subunit C of  the vacuolar ATP synthase, which is a membrane-bound enzyme complex/ion 

transporter that combines ATP synthesis and/or hydrolysis with the transport of protons across the 
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tonoplast membrane. This gene was highly and ubiquitously expressed (Fig. 2). All three SNPs were 

consistent with an additive mode of gene action (Table 2).

Twelve associations were detected for wall thickness components, with low to moderate PVE

ranging from 0.01 to 1.78% (Table 2). Two of these associations (SNP MA_105586g0010_7132 and 

MA_10426383g0010_7358) were shared across cell wall thickness and coarseness traits. Ring 

average for cell Wall Thickness (WTRing) had three significant associations. The synonymous SNP 

MA_492000g0010_1672 had a high inclusion frequency (0.726) and explained the highest percentage 

of PVE (1.78%). The same SNP was associated with WTEW. The gene MA_492000g0010 is 

homologous to a tRNA synthetase beta subunit family protein, phenylalanyl-tRNA synthetase beta 

chain (Table S1). Consistent with its predicted general metabolic function in protein biosynthesis, it is 

ubiquitous and highly expressed in spruce tissues (Fig. 2). Missense SNP MA_9563494g0010_4010 

and downstream variant MA_138164g0010_2032 explained 0.01% and 1.25% PVE, respectively. 

MA_9563494g0010_4010 is located in a gene MA_9563494g0010 named as Picea abies BIG GRAIN 

2 (PabBG2)87 homologous to the BIG GRAIN 1 gene (OsaBG1) in rice89. OsaBG1 encodes a

membrane protein regulating auxin transport and sensitivity, and positively affecting plant biomass 

and seed size. The gene belongs to a small family containing nine members in spruce88. Auxin has 

long been known to act as a key hormone essential for the induction of vascular strands, cambial 

growth and secondary wall deposition90,91,92,93. PabBG2 is highly expressed and specifically

upregulated in the developing xylem (Fig. 2) with a peak of expression in the cambial zone (Fig. 3), 

coinciding with a peak of IAA distribution in wood forming tissues91,94. It is therefore likely that the 

PabBG2 gene pays a major role in xylogenesis, as suggested by its association with tracheid cell wall 

thickness, and that it should be considered as main target for woody biomass increase. Moreover, the 

SNP MA_138164g0010_78937 explaining PVE 1.25% associated with WTRing was located in a gene 

homologous to the subunit of E3 ubiquitin complex encoded by AtAPC1 and involved in cell cycle 

regulation by degradation of cyclin B195. The E3 ubiquitin complex is also known in Arabidopsis to 

regulate auxin homeostasis96,97,97. Hence, the detection of two significant associations for WTRing that 

are potentially related to auxin regulation implies a close relation between auxin and cell wall 

thickness in spruce. A QTL in rice grain for width and weight, which is related to plant biomass, has 
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been associated with a RING-type E3 ubiquitin ligase99. Several auxin responsive genes were also 

associated with tracheid width and MFA, which both are linked to cell wall thickness, in white 

spruce23.

WTEW has three significant associations beside MA_492000g0010_103329 discussed above 

(Table 2). The missense variant MA_80033g0010_51296 was within a gene encoding a MYB 

transcription factor similar to Arabidopsis MYB68 (Table S1). This gene exhibited very low 

expression levels in the developing xylem but rather was expressed in young shoots and needles (Fig. 

3). Different MYB transcription factors regulate plant developmental processes, and several have been 

identified as crucial factors for secondary wall deposition and lignification. Loblolly pine (Pinus teada

L.) PtMYB8 expressed in spruce induced secondary cell wall thickening100. White spruce (P. glauca 

L.) PgMYB4 was associated with cell wall thickness and tracheid coarseness23, and has been shown to 

be highly expressed during secondary cell wall formation and lignification in both white spruce and 

loblolly pine101. MYB encoded by MA_80033g0010 could play a more indirect role in secondary wall 

regulation in spruce considering its expression (Fig. 2). Two remaining SNPs 

MA_17843g0010_19482 and  MA_105586g0010_7132, had PVEs of 0.01% and 0.10%, respectively 

(Table 2). The former was a missense variant within a gene homologous to Arabidopsis TOC64-V.

The latter was not matching any known gene and was also associated with CEW and explaining a 

moderate percentage of PVE 2.08%. However, the two models were not expressed in any of the 

previously reported spruce expression studies (Fig. 2).  

WTLW was associated with four upstream variants and a single synonymous SNP 

MA_10426383g0010_7358. The four upstream variants explained PVE ranging from 0.01 to 0.10% 

whereas the synonymous SNP MA_10426383g0010_7358 had a high inclusion frequency and 

explained a moderate amount of the PVE 1.57% (Table 2). MA_10426383g0010 is homologous to 

VIT_16s0098g01810 from Vitis vinifera (Table S1) annotated as encoding ATP binding protein that 

may be involved in chromosome organization and biogenesis101. The Arabidopsis homolog - GAMMA-

IRRADIATION AND MITOMYCIN C INDUCED 1 (GMI1) is responsible for double strand repair via 

somatic homologous recombination103. The spruce gene shows increased expression in organs with 

active meristems (Fig. 2), which is expected for the function in DNA repair. The same SNP 
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MA_10426383g0010_7358 was also associated with traits related to coarseness (CTW and CLW) and 

explained a relatively high PVE of 3.25% and 1.40%, respectively. It also had high inclusion 

frequencies for all three traits (WTLW, CTW and CLW) (Table 2). The associated gene might therefore be 

a good candidate to explore for effects on tracheid development, especially since it is highly expressed 

in the developing wood75 (Fig. 2). SNP MA_5g0010_1 associated with WTLW was detected upstream 

of gene MA_5g0010 belonging to the 4-coumarate-CoA ligase (4CL) family, which includes key 

enzymes in the monolignol biosynthetic pathway. However, the Arabidopsis homolog of MA_5g0010,

At4g05160 does not encode an enzyme active on phenyl propanoid substrates but a fatty acyl CoA 

synthase involved in lipid and jasmonic acid biosynthesis104. MA_5g0010 is not expressed in the 

developing wood but it is highly expressed in young vegetative shoots and needles, including the 

infected needles (Fig. 2), making it an unlikely candidate for lignin biosynthesis  in developing wood 

but suggesting a rather indirect function in the regulation of tracheid cell wall thickness. The SNP 

MA_9125g0010_34791 associated with WTLW was located upstream of a gene homologous to 

Arabidopsis OBERON2 (OBE2) encoding a plant homeodomain (PHD) finger protein (Table S1) (Lee

et al., 2009). Homeodomain genes encode transcription factors central in the regulation of plant 

developmental processes105. OBE1 and OBE2 redundanlty regulate meristem establishment and 

maintenance in Arabidopsis (Saiga et al., 2008). The spruce OBE2 gene is ubiquitous and highly 

expressed in vegetative and reproductive organs (Fig. 2) including developing wood where it shows 

high expression during secondary wall deposition (Fig. 3) and therefore it could have a direct role in 

cell wall thickening in tracheids. SNP MA_885527g0010_112677 associated with WTLW was found 

upstream of a gene containing a SET domain. SET domain proteins have been identified in 

Arabidopsis to play aide in the epigenetic control of genes involved in a wide range of activities 

including plant growth100. A link has also been established between PHD finger proteins and SET 

domain proteins in the regulation of developmental transitions in Arabidopsis where PHD finger 

proteins VEL1, VRN5 and VIN3 interacting with H3K27me3 repress FLC transcription allowing for 

the transition from vegetative to reproductive development106. MA_885527g0010 is highly upregulated  

in developing wood  from August that is involved in latewood biosynthesis (Fig. 2) suggesting its 

direct role  in latewood tracheid development.  
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Fig. 3. Expression (Variance stabilized transformed expression values) profiles of selected candidate 

genes in wood developing tissues of sections through developing wood zones, phloem to mature 

xylem of spruce based on NorWood dataset (http://norwood.congenie.org/norwood-v1.0/67). 

Expression profiles of three trees sampled during the peak of wood formation in the summer are 

shown. The X-axis shows numbers of consecutive tangential sections through the developing wood 

zones. The zone numbers corresponding to: i) cambium-radial expansion zone,ii) secondary wall 

formation zone, and iii) mature zone are shown above the graphs for each tree.  

A total of five significant associations were identified for coarseness traits explaining 

moderate to high PVE ranging from 0.78 to 3.62% (Table 2).  Two of them, SNPs 

MA_105586g0010_7132 and MA_10426383g0010_7358 were also associated with WTEW and WTLW,

and discussed above. An Upstream variant MA_373300g0010_1844 associated with CTW explained a 

relatively high percentage of PVE 3.62% and was consistent with a partial to fully dominant mode of 

gene action (Table 2) as shown by the genotypic effects (Fig 1). The gene is similar to Potri.T064000 

from Populus trichocarpa annotated as encoding a protein kinase similar to wall-associated receptor 
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kinase-like (WAK-like) proteins. WAKs have been previously reported to be associated with average 

ring width and the proportion of earlywood in white spruce23 and with MFA in Populus80. The gene is 

expressed primarily in early season needles and late season stem from vegetative shoots but there is no 

detectable expression in developing xylem (Fig. 2), suggesting its indirect involvement in the 

regulation of  tracheid coarseness.  

Conclusion 

This work presents the first genome wide dissection of wood tracheid traits in Norway spruce. A total 

of 30 significant associations were detected for all investigated traits. These associations have 

identified a set of genes that could be exploited to alter wood tracheid traits for improving solid wood 

properties for its use in industrial processes. Previous studies utilizing a LASSO penalized analysis 

approach were limited in the nature and number of molecular markers available107,27, with our study 

representing a major advance by using 178101 SNPs with a functional mapping approach. The 

relatively small number of associations is comparable to other association studies of complex growth 

traits in forest trees, were a few associations are detected with a relatively small proportion of the 

genetic variation being explained108,80,24,109,110. It can be argued that many of the alleles causing 

variation for polygenic traits may be either rare or have small effects and current GWAS methods lack 

the power to detect them, thus the small number of significant associations111,112. The small number of 

associations being reported could also be largely due to the small sample sizes in these studies for such 

complex traits. Theoretical work has also shown that alleles of large effect are unusual, with allele 

effect having been suggested to follow a negative exponential distribution pattern113. Thus the 

magnitude of the detected allele effects follows a truncated exponential distribution114. Therefore, the 

detection of alleles with small effects is difficult when compounded with the small population size. 

The small number of significant associations can also be attributed to the genotyping method, which is 

a complexitiy reduction genotyping method. The limitation of the genotyping employed in our study 

has also been noted in other studies115, in that some of the alleles impacting a trait might not be within 

the captured regions that we targeted. If the sampled markers do not include the casual allele or if the 
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LD between the marker and the casual allele is incomplete the power of detection is drastically 

reduced80. The statistical power required to detect associations between molecular markers and a trait 

is heavily dependent upon the sample size116,117. Due to the challenges of developing large populations 

for GWAS in conifers, the majority of the studies utilize a few hundred individuals from natural 

populations, which limits the statistical power of GWAS. It was reported that in order to capture 50% 

of genetic variaon for growth traits in an association mapping study, it would require roughly 25 000 

individuals to be analysied118. Therefore, the relatively small association population size results in low 

statistical power, thus rendering small to medium effect QTLs statistically non-significant and very 

difficult to detect.  Our study had 517 martenal trees to perform GWAS upon, thus rendering a small 

number of significant associations. Missing heritability will remain an issue in association studies as 

long as population sizes are kept in the range of hundreds118. However, improvements made to 

statitstical methods are now potential viable options, which are being developed and utilize a 

combination of information from multiple populations using Meta-GWAS and Joint-GWAS119,120.

These approaches are now being applied in some recent forest tree studies117 and could be the next 

level of analysis using our application of latent traits on these complex traits. 



29

References 

1. Mäkinen, H., Saranpää, P. & Linder, S. Effect of Growth Rate on Fibre Characteristics in Norway

Spruce (Picea abies (L.) Karst.). (2002).

2. Lundqvist, S.-O. & Gardiner, B. Key products of the forest-based industries and their demands on

wood raw material properties. Joensuu, Finland, http://www. efi.

int/files/attachments/publications/eforwood/efi_tr_71. pdf,[March 23, 2013] (2011).

3. Brändström, J. Morphology of Norway spruce tracheids with emphasis on cell wall organisation.

vol. 237 (2002).

4. Dutilleul, P., Herman, M. & Avella-Shaw, T. Growth rate effects on correlations among ring width,

wood density, and mean tracheid length in Norway spruce (Picea abies). Canadian Journal of

Forest Research 28, 56–68 (1998).

5. Hannrup, B. & Ekberg, I. Age-age correlations for tracheid length and wood density in Pinus

sylvestris. Can. J. For. Res. 28, 1373–1379 (1998).

6. Lindström, H. Fiber length, tracheid diameter, and latewood percentage in Norway spruce:

development from pith outward. Wood and Fiber Science 29, 21–34 (2007).

7. Lundqvist, S.-O., Grahn, T. & Hedenberg, Ö. Models for fibre dimensions in different softwood

species. Simulation and comparison of within and between tree variations for Norway and Sitka

spruce, Scots and Loblolly pine. in vol. 5 22–27 (2005).

8. Hannrup, B. et al. Genetic parameters of growth and wood quality traits in Picea abies.

Scandinavian Journal of Forest Research 19, 14–29 (2004).

9. Yang, J. L. & Evans, R. Prediction of MOE of eucalypt wood from microfibril angle and density.

Holz als Roh- und Werkstoff 61, 449–452 (2003).

10. Chen, Z.-Q. et al. Inheritance of growth and solid wood quality traits in a large Norway spruce

population tested at two locations in southern Sweden. Tree Genetics & Genomes 10, 1291–1303 

(2014). 

11. Eckert, A. J. et al. High-throughput genotyping and mapping of single nucleotide

polymorphisms in loblolly pine (Pinus taeda L.). Tree Genetics & Genomes 5, 225–234 (2009). 

12. Neale, D. B. & Ingvarsson, P. K. Population, quantitative and comparative genomics of

adaptation in forest trees. Current Opinion in Plant Biology 11, 149–155 (2008). 

13. Parchman, T. L. et al. Genome wide association genetics of an adaptive trait in lodgepole

pine. Molecular Ecology 21, 2991–3005 (2012). 

14. Hall, D., Hallingbäck, H. R. & Wu, H. X. Estimation of number and size of QTL effects in

forest tree traits. Tree Genetics & Genomes 12, 110 (2016). 

15. Hall, D., Tegström, C. & Ingvarsson, P. K. Using association mapping to dissect the genetic

basis of complex traits in plants. Briefings in Functional Genomics elp048 (2010). 



30

16. Neale, D. B. & Savolainen, O. Association genetics of complex traits in conifers. Trends in 

Plant Science 9, 325–330 (2004). 

17. Cardon, L. R. & Bell, J. I. Association study designs for complex diseases. Nature Reviews

Genetics 2, 91 (2001). 

18. Pavy, N., Namroud, M. C., Gagnon, F., Isabel, N. & Bousquet, J. The heterogeneous levels of

linkage disequilibrium in white spruce genes and comparative analysis with other conifers. 

Heredity 108, 273–284 (2012). 

19. Thavamanikumar, S. et al. Association mapping for wood quality and growth traits in

Eucalyptus globulus ssp. globulus Labill identifies nine stable marker-trait associations for seven 

traits. Tree Genetics & Genomes 10, 1661–1678 (2014). 

20. Larsson, H., Källman, T., Gyllenstrand, N. & Lascoux, M. Distribution of Long-Range

Linkage Disequilibrium and Tajima’s D Values in Scandinavian Populations of Norway Spruce 

(Picea abies). G3: Genes|Genomes|Genetics 3, 795–806 (2013). 

21. Gupta, P. K., Rustgi, S. & Kulwal, P. L. Linkage disequilibrium and association studies in

higher plants: Present status and future prospects. Plant Molecular Biology 57, 461–485 (2005). 

22. Baison, J. et al. Genome-wide association study identified novel candidate loci affecting wood

formation in Norway spruce. The Plant Journal 100, 83–100 (2019). 

23. Beaulieu, J. et al. Association Genetics of Wood Physical Traits in the Conifer White Spruce

and Relationships With Gene Expression. Genetics 188, 197–214 (2011). 

24. McKown, A. D. et al. Genome wide association implicates numerous genes underlying

ecological trait variation in natural populations of Populus trichocarpa. New Phytologist 203, 535–

553 (2014). 

25. Ma, C.-X., Casella, G. & Wu, R. Functional Mapping of Quantitative Trait Loci Underlying

the Character Process: A Theoretical Framework. Genetics 161, 1751–1762 (2002). 

26. Xing, J. U. N., Li, J., Yang, R., Zhou, X. & Xu, S. Bayesian B-spline mapping for dynamic

quantitative traits. Genetics Research 94, 85–95 (2012). 

27. Li, Z. et al. Functional multi-locus QTL mapping of temporal trends in Scots pine wood traits.

G3: Genes| Genomes| Genetics 4, 2365–2379 (2014). 

28. Camargo, A. V. et al. Functional Mapping of Quantitative Trait Loci (QTLs) Associated With

Plant Performance in a Wheat MAGIC Mapping Population. Frontiers in Plant Science 9, 887–887 

(2018). 

29. Via, B. K., Stine, M., Shupe, T. F., So, C.-L. & Groom, L. Genetic Improvement of Fiber

Length and Coarseness Based on Paper Product Performance and Material Variability – a Review. 

IAWA Journal 25, (2004). 

30. Capron, A. et al. Identification of quantitative trait loci controlling fibre length and lignin

content in Arabidopsis thaliana stems. J Exp Bot 64, 185–197 (2013). 



31

31. Thamarus, K. et al. Identification of quantitative trait loci for wood and fibre properties in two 

full-sib pedigrees of Eucalyptus globulus. Theoretical and Applied Genetics 109, 856–864 (2004). 

32. Sewell, M. et al. Identification of QTLs influencing wood property traits in loblolly pine

(Pinus taeda L.). II. Chemical wood properties. Theoretical and Applied Genetics 104, 214–222 

(2002). 

33. Thumma, B. R. et al. Quantitative trait locus (QTL) analysis of wood quality traits in

Eucalyptus nitens. Tree Genetics & Genomes 6, 305–317 (2010). 

34. Li, Z. et al. Functional multi-locus QTL mapping of temporal trends in scots pine wood traits.

G3: Genes, Genomes, Genetics 4, 2365–2379 (2014). 

35. Mellerowicz, E. J., Baucher, M., Sundberg, B. & Boerjan, W. Unravelling cell wall formation

in the woody dicot stem. in Plant Cell Walls 239–274 (Springer, 2001). 

36. Plomion, C., Leprovost, G. & Stokes, A. Wood formation in trees. Plant Physiology 127,

1513–1523 (2001). 

37. Masuda, Y. Auxin-induced cell elongation and cell wall changes. The botanical magazine =

Shokubutsu-gaku-zasshi 103, 345 (1990). 

38. Farquharson, K. L. Probing the Role of Auxin in Wood Formation. The Plant Cell 20, 822–

822 (2008). 

39. Wegrzyn, J. L. et al. Association genetics of traits controlling lignin and cellulose biosynthesis

in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem. New Phytologist 188,

515–532 (2010). 

40. Buell, C. R., Hirsch, C. N., Hirsch, C. D. & Evans, J. Reduced representation approaches to

interrogate genome diversity in large repetitive plant genomes. Briefings in Functional Genomics

13, 257–267 (2014). 

41. Chen, Z.-Q. et al. Inheritance of growth and solid wood quality traits in a large Norway spruce

population tested at two locations in southern Sweden. Tree Genetics & Genomes 10, 1291–1303 

(2014). 

42. Hayatgheibi, H. et al. Genetic control of transition from juvenile to mature wood with respect

to microfibril angle in Norway spruce (Picea abies) and lodgepole pine (Pinus contorta). Canadian 

Journal of Forest Research 48, 1358–1365 (2018). 

43. Evans, R. & Downes, G. M. Recent developments in automated wood quality assessment.

(CRC Publications Committee, 1994). 

44. Lundqvist, S.-O. et al. Age and weather effects on between and within ring variations of

number, width and coarseness of tracheids and radial growth of young Norway spruce. European 

Journal of Forest Research 137, 719–743 (2018). 

45. Kostiainen, K. et al. Stem wood properties of mature Norway spruce after 3 years of

continuous exposure to elevated [CO2] and temperature. Global Change Biology 15, 368–379 

(2009). 



32

46. Franceschini, T. et al. Empirical models for radial and tangential fibre width in tree rings of 

Norway spruce in north-western Europe. Holzforschung 66, 219–230 (2012). 

47. Fries, A., Ulvcrona, T., Wu, H. X. & Kroon, J. Stem damage of lodgepole pine clonal cuttings

in relation to wood and fiber traits, acoustic velocity, and spiral grain. Scandinavian Journal of 

Forest Research 29, 764–776 (2014). 

48. Chen, Z.-Q. et al. Inheritance of growth and solid wood quality traits in a large Norway spruce

population tested at two locations in southern Sweden. Tree Genetics & Genomes 10, 1291–1303 

(2014). 

49. Chen, Z.-Q. et al. Genetic analysis of fiber dimensions and their correlation with stem

diameter and solid-wood properties in Norway spruce. Tree Genetics & Genomes 12, 123 (2016). 

50. Zhou, L. et al. Effect of number of annual rings and tree ages on genomic predictive ability

for solid wood properties of Norway spruce. BMC genomics 21, 1–12 (2020). 

51. Lundqvist, S.-O. et al. Age and weather effects on between and within ring variations of

number, width and coarseness of tracheids and radial growth of young Norway spruce. European 

Journal of Forest Research 137, 719–743 (2018). 

52. Hayatgheibi, H. et al. Genetic control of transition from juvenile to mature wood with respect

to microfibril angle in Norway spruce (Picea abies) and lodgepole pine (Pinus contorta). Canadian 

Journal of Forest Research 48, 1358–1365 (2018). 

53. Vidalis, A. et al. Design and evaluation of a large sequence-capture probe set and associated

SNPs for diploid and haploid samples of Norway spruce (Picea abies). bioRxiv (2018) 

doi:10.1101/291716. 

54. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform.

Bioinformatics 26, 589–595 (2010). 

55. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–

2079 (2009). 

56. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing

next-generation DNA sequencing data. Genome Res 20, 1297–1303 (2010). 

57. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158

(2011). 

58. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide

polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-

3. Fly 6, 80–92 (2012).

59. Li, Z. & Sillanpää, M. J. A Bayesian Nonparametric Approach for Mapping Dynamic

Quantitative Traits. Genetics 194, 997–1016 (2013). 

60. Ruppert, D., Wand, M. P. & Carroll, R. J. Semiparametric regression. vol. 12 (Cambridge

university press, 2003). 



33

61. Team, Rs. RStudio: integrated development for R. RStudio, Inc., Boston, MA URL http://www. 

rstudio. com (2015). 

62. Li, H. et al. Forward LASSO analysis for high-order interactions in genome-wide association

study. Briefings in Bioinformatics 15, 552–561 (2013). 

63. Gao, H. et al. Forward LASSO analysis for high-order interactions in genome-wide

association study. Briefings in Bioinformatics 15, 552–561 (2014). 

64. Bühlmann, P., Kalisch, M. & Meier, L. High-dimensional statistics with a view toward

applications in biology. (2014). 

65. Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical

association 101, 1418–1429 (2006). 

66. Li, Z. & Sillanpää, M. J. Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data.

Trends in Plant Science 20, 822–833 (2015). 

67. Jokipii-Lukkari, S. et al. NorWood: a gene expression resource for evo-devo studies of conifer

wood development. New Phytologist 216, 482–494 (2017). 

68. Hayatgheibi, H. et al. Genetic control of transition from juvenile to mature wood with respect

to microfibril angle (MFA) in Norway spruce (Picea abies) and lodgepole pine (Pinus contorta). 

bioRxiv (2018) doi:10.1101/298117. 

69. Baison, J. et al. Genome-wide association study identified novel candidate loci affecting wood

formation in Norway spruce. The Plant Journal 100, 83–100 (2019). 

70. Beck, J. et al. Small One-Helix Proteins Are Essential for Photosynthesis in Arabidopsis.

Frontiers in Plant Science 8, (2017). 

71. Zanetti, M. E., Rípodas, C. & Niebel, A. Plant NF-Y transcription factors: Key players in

plant-microbe interactions, root development and adaptation to stress. Biochimica et Biophysica 

Acta (BBA) - Gene Regulatory Mechanisms 1860, 645–654 (2017). 

72. Zhao, H. et al. The Arabidopsis thaliana Nuclear Factor Y Transcription Factors. Frontiers in

Plant Science 7, (2017). 

73. Sorin, C. et al. A miR169 isoform regulates specific NF YA targets and root architecture in

Arabidopsis. New Phytologist 202, 1197–1211 (2014). 

74. Qu, B. et al. A Wheat CCAAT Box-Binding Transcription Factor Increases the Grain Yield of

Wheat with Less Fertilizer Input. Plant Physiology 167, 411–423 (2015). 

75. Nystedt, B. et al. The Norway spruce genome sequence and conifer genome evolution. Nature

497, 579 (2013). 

76. Kim, Y. S., Lee, M., Lee, J.-H., Lee, H.-J. & Park, C.-M. The unified ICE–CBF pathway

provides a transcriptional feedback control of freezing tolerance during cold acclimation in 

Arabidopsis. Plant Molecular Biology 89, 187–201 (2015). 

77. Barrero-Gil, J. & Salinas, J. CBFs at the Crossroads of Plant Hormone Signaling in Cold

Stress Response. Molecular Plant 10, 542–544 (2017). 



34

78. Achard, P. et al. The Cold-Inducible CBF1 Factor–Dependent Signaling Pathway Modulates 

the Accumulation of the Growth-Repressing DELLA Proteins via Its Effect on Gibberellin 

Metabolism. The Plant Cell 20, 2117–2129 (2008). 

79. De Craene, J.-O. et al. Evolutionary analysis of the ENTH/ANTH/VHS protein superfamily

reveals a coevolution between membrane trafficking and metabolism. BMC Genomics 13, 297 

(2012). 

80. Porth, I. et al. Genome-wide association mapping for wood characteristics in Populus

identifies an array of candidate single nucleotide polymorphisms. New Phytologist 200, 710–726 

(2013). 

81. Sundell, D. et al. AspWood: High-spatial-resolution transcriptome profiles reveal

uncharacterized modularity of wood formation in Populus tremula. The Plant Cell (2017). 

82. Ragel, P. et al. CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis

roots. Plant Physiology 01401.2015 (2015). 

83. Langer, K. et al. Poplar potassium transporters capable of controlling K+ homeostasis and

K+ dependent xylogenesis. The Plant Journal 32, 997–1009 (2002). 

84. Ma, W., Smigel, A., Verma, R. & Berkowitz, G. A. Cyclic nucleotide gated channels and

related signaling components in plant innate immunity. Plant Signaling & Behavior 4, 277–282

(2009). 

85. Kaplan, B., Sherman, T. & Fromm, H. Cyclic nucleotide gated channels in plants. FEBS

Letters 581, 2237–2246 (2007). 

86. Ladwig, F. et al. Phytosulfokine regulates growth in Arabidopsis through a response module

at the plasma membrane that includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H+-

ATPase, and BAK1. The Plant Cell 27, 1718–1729 (2015). 

87. Pascuan, C., Frare, R., Alleva, K., Ayub, N. D. & Soto, G. mRNA biogenesis-related helicase

eIF4AIII from Arabidopsis thaliana is an important factor for abiotic stress adaptation. Plant cell 

reports 35, 1205–1208 (2016). 

88. Mishra, B. S., Jamsheer, K., Singh, D., Sharma, M. & Laxmi, A. Genome-Wide Identification

and Expression, Protein–Protein Interaction and Evolutionary Analysis of the Seed Plant-Specific 

BIG GRAIN and BIG GRAIN LIKE Gene Family. Frontiers in Plant Science 8, 1812 (2017). 

89. Liu, L. et al. Activation of Big Grain1 significantly improves grain size by regulating auxin

transport in rice. Proceedings of the National Academy of Sciences of the United States of America

112, 11102–11107 (2015). 

90. Uggla, C., Mellerowicz, E. J. & Sundberg, B. Indole-3-Acetic Acid Controls Cambial Growth

in Scots Pine by Positional Signaling. Plant Physiology 117, 113–121 (1998). 

91. Tuominen, H. et al. Cambial-Region-Specific Expression of the Agrobacterium iaa Genes in

Transgenic Aspen Visualized by a LinkeduidA Reporter Gene. Plant Physiology 123, 531–542 

(2000). 



35

92. Ranocha, P. et al. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for 

auxin homoeostasis. Nature communications 4, 2625 (2013). 

93. Yang, J. H. & Wang, H. Molecular Mechanisms for Vascular Development and Secondary

Cell Wall Formation. Frontiers in Plant Science 7, (2016). 

94. Hellgren, J. M. Ethylene and auxin in the control of wood formation. vol. 268 (2003).

95. Guo, L., Jiang, L., Lu, X.-L. & Liu, C.-M. ANAPHASE PROMOTING

COMPLEX/CYCLOSOME mediated cyclin B1 degradation is critical for cell cycle 

synchronization in syncytial endosperms. Journal of integrative plant biology (2018). 

96. Gray, W. M. et al. Identification of an SCF ubiquitin–ligase complex required for auxin

response in Arabidopsis thaliana. Genes & development 13, 1678–1691 (1999). 

97. Kepinski, S. & Leyser, O. Auxin-induced SCFTIR1–Aux/IAA interaction involves stable

modification of the SCFTIR1 complex. Proceedings of the National Academy of Sciences 101,

12381–12386 (2004). 

98. Azpeitia, E. & Alvarez-Buylla, E. R. A complex systems approach to Arabidopsis root stem-

cell niche developmental mechanisms: from molecules, to networks, to morphogenesis. Plant 

Molecular Biology 80, 351–363 (2012). 

99. Song, X.-J., Huang, W., Shi, M., Zhu, M.-Z. & Lin, H.-X. A QTL for rice grain width and

weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics 39, 623 

(2007). 

100. Bomal, C. et al. Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid

metabolism and secondary cell wall biogenesis: a comparative in planta analysis. Journal of 

experimental botany 59, 3925–3939 (2008). 

101. Bedon, F., Grima-Pettenati, J. & Mackay, J. Conifer R2R3-MYB transcription factors:

sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca). 

BMC Plant Biology 7, 17–17 (2007). 

102. Davies, T. G. E. & Coleman, J. O. D. The Arabidopsis thaliana ATP binding cassette proteins:

an emerging superfamily. Plant, Cell & Environment 23, 431–443 (2000). 

103. Böhmdorfer, G. et al. GMI1, a structural maintenance of chromosomes hinge domain

containing protein, is involved in somatic homologous recombination in Arabidopsis. The Plant 

Journal 67, 420–433 (2011). 

104. Schneider, K. et al. A new type of peroxisomal acyl-coenzyme A synthetase from Arabidopsis

thaliana has the catalytic capacity to activate biosynthetic precursors of jasmonic acid. Journal of 

Biological Chemistry 280, 13962–13972 (2005).

105. Chew, W., Hrmova, M. & Lopato, S. Role of Homeodomain Leucine Zipper (HD-Zip) IV

Transcription Factors in Plant Development and Plant Protection from Deleterious Environmental 

Factors. International Journal of Molecular Sciences 14, 8122–8147 (2013).



36

106. Thorstensen, T., Grini, P. E. & Aalen, R. B. SET domain proteins in plant development. 

Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1809, 407–420 (2011). 

107. Ma, C.-X., Casella, G. & Wu, R. Functional Mapping of Quantitative Trait Loci Underlying

the Character Process: A Theoretical Framework. Genetics 161, 1751–1762 (2002). 

108. Cappa, E. P. et al. Impacts of Population Structure and Analytical Models in Genome-Wide

Association Studies of Complex Traits in Forest Trees: A Case Study in Eucalyptus globulus. PLoS 

ONE 8, e81267 (2013). 

109. Allwright, M. R. et al. Biomass traits and candidate genes for bioenergy revealed through

association genetics in coppiced European Populus nigra (L.). Biotechnology for Biofuels 9, 195 

(2016). 

110. Lamara, M. et al. Genetic architecture of wood properties based on association analysis and

co-expression networks in white spruce. New Phytologist 210, 240–255 (2016). 

111. Thornton, K. R., Foran, A. J. & Long, A. D. Properties and Modeling of GWAS when

Complex Disease Risk Is Due to Non-Complementing, Deleterious Mutations in Genes of Large 

Effect. PLoS genetics 9, e1003258 (2013). 

112. De La Torre, A. R. et al. Genomic architecture of complex traits in loblolly pine. New

Phytologist 221, 1789–1801 (2019). 

113. Orr, H. A. The population genetics of adaptation: the distribution of factors fixed during

adaptive evolution. Evolution 52, 935–949 (1998). 

114. Otto, S. P. & Jones, C. D. Detecting the undetected: estimating the total number of loci

underlying a quantitative trait. Genetics 156, 2093–2107 (2000). 

115. Thavamanikumar, S., Southerton, S. G., Bossinger, G. & Thumma, B. R. Dissection of

complex traits in forest trees—opportunities for marker-assisted selection. Tree Genetics & 

Genomes 9, 627–639 (2013). 

116. Visscher, P. M. et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. The

American Journal of Human Genetics 101, 5–22 (2017). 

117. Müller, B. S. F. et al. Independent and Joint-GWAS for growth traits in Eucalyptus by

assembling genome-wide data for 3373 individuals across four breeding populations. New 

Phytologist 0, (2018). 

118. Hall, D., Hallingbäck, H. R. & Wu, H. X. Estimation of number and size of QTL effects in

forest tree traits. Tree Genetics & Genomes 12, 110 (2016). 

119. Mägi, R. & Morris, A. P. GWAMA: software for genome-wide association meta-analysis.

BMC Bioinformatics 11, 288 (2010). 

120. Bernal Rubio, Y. L. et al. Meta-analysis of genome-wide association from genomic prediction

models. Animal Genetics 47, 36–48 (2016). 



37

Data Availability 

All the latent traits, genotypic data, SNP position files the association mapping scripts used for the 

analysis are publicly available at are available from zenodo.org at 

https://doi.org/10.5281/zenodo.3374415 (DOI 10.5281/zenodo.3374414) . Raw sequence data for all 

the samples utilized in the study are found through the European Nucleotide Archive under accession 

number PRJEB29652. The Norway spruce genome assemblies and resources are available from 

http://congenie.org/pabiesgenome. 

Acknowledgements 

We acknowledge the Bio4Energy consortium for giving us accesss to the Silviscan wood properties 

data collection. We also acknowledge the support from Science for Life Laboratory, the Knut and 

Alice Wallenberg Foundation, the National Genomics Infrastructure funded by the Swedish Research 

Council, and Uppsala Multidisciplinary Center for Advanced Computational Science for assistance 

with massively parallel sequencing and access to the UPPMAX computational infrastructure. John 

Baison was supported though a postdoc position funded by the Kempe foundation and Swedish 

Strategic Foundation project. 

Competing interests 

The authors have no competing interests as defined by Nature Research, or other interests that might 

be perceived to influence the results and/or discussion reported in this paper.

Author contribution 

JB, LZ, SOL, EJM and MRGG (María Rosario García-Gil) all wrote the main manuscript and 

performed data analysis. TM,NF, TG, LO, BK and HXW collected and analysied the phenotypic data. 

All authors reviewed the article. 



Acta Universitatis Agriculturae Sueciae

Doctoral Thesis No. 2020:41

This thesis evaluates the potential of genomic-based breeding in Norway 

spruce. At this stage, the genetic information rendered by GWAS is 

insufficient to conduct efficient marker-assisted selection, however it 

has advanced our knowledge of the genetic architecture of traits of 

economic and ecological value. On the other hand, GS is considered as 

a powerful alternative to genomic breeding in Norway spruce.

Linghua Zhou

Department of Statistics

University of Kentucky

Acta Universitatis Agriculturae Sueciae presents doctoral theses from 

the Swedish University of Agricultural Sciences (SLU).

SLU generates knowledge for the sustainable use of biological natural 

resources. Research, education, extension, as well as environmental 

monitoring and assessment are used to achieve this goal.

Online publication of thesis summary: http://pub.epsilon.slu.se/

ISSN 1652-6880

ISBN (print version) 978-91-7760-600-0 

ISBN (electronic version) 978-91-7760-601-7

D
octoral T

h
esis N

o. 2020:41  •  Tow
ards genom

ic-based breeding in N
orw

ay spruce  •  Linghua Z
hou

Doctoral Thesis No. 2020:41
Faculty of Forest Sciences

Towards genomic-based breeding in 
Norway spruce 

Linghua Zhou



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SVE <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice




